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ABSTRACT: Genetic algorithms (GAs) are widely used in solving search and
optimisation problems involving very large search spaces, or very many vari-
ables where closed form solutions are impractical due to the very size of the
problems. GAs have been modelled in various ways, from the seminal work
by Holland describing an approach based on sets, to works based on Markov
chains in the 1990s. This dissertation combines the two salient features of
GAs, namely the temporal aspect of the evolutionary approach to solving
problems at the heart of the GA, and the stochastic aspect of evolution aris-
ing from its reliance on basically random generation of new individuals with
stringent selection in determining survival.

The work centres around describing the formal modelling of GAs using a
logical approach based on standard first-order logic combined with temporal
logic and with probabilistic logic. These logics are combined into a unified
logic, temporal-probabilistic logic (TPL) which is formulated in this work.

The GA is then described using TPL as the main tool, and the working of
the GA is detailed from its components to the actual processes by formulating
a model of the GA. Several important parameters are described and analysed,
as is the important mechanism of selection. A simple axiomatisation of the
GA using TPL is described as well.

Also presented are simulation of the workings of the genetic algorithm
based on high-level Petri nets and experimentation with a genetic algorithm
package providing experimental evidence centring on the various selection
mechanisms for some of the theoretical results.

KEYWORDS: Genetic algorithm, temporal logic, probabilistic logic, mod-
elling, simulation, Petri net
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1 INTRODUCTION

It is generally accepted that all biological development in nature follows gen-
eral principles originally laid down so eloquently by Charles Darwin in his
seminal work On the Origin of Species by Natural Selection in 1859 [Dar59,
p. 127]:

If during the long course of ages and under varying conditions of
life, organic beings vary at all in the several parts of their organisa-
tion, and I think this cannot be disputed; if there be, owing to the
high geometric powers of increase of each species, at some age,
season, or year, a severe struggle for life, and this certainly cannot
be disputed; then, considering the infinite complexity of the re-
lations of all organic beings to each other and to their conditions
of existence, causing an infinite diversity of structure, constitu-
tion, and habits, to be advantageous to them, I think it would be
a most extraordinary fact if no variation ever had occurred useful
to each being’s own welfare, in the same way as so many varia-
tions have occurred useful to man. But if variations useful to any
organic being do occur, assuredly individuals thus characterised
will have the best chance of being preserved in the struggle for
life; and from the strong principle of inheritance they will tend
to produce offspring similarly characterised. This principle of
preservation, I have called, for the sake of brevity, Natural Selec-
tion.

This, following Dennett, Darwin’s dangerous idea [Den95], forms the ba-
sis for so-called genetic algorithms as well – suitably substituting organic be-
ing with genetic algorithm, natural with artificial, and so forth. The ‘struggle’
for life within these algorithms takes place inside our computers, and we, the
creators of the algorithms, not nature, supply the conditions for survival.

1.1 THE GENETIC ALGORITHM

Following Holland’s vivid exposition [Hol92b], we may remark that living or-
ganisms are consummate problem solvers. They exhibit a versatility that puts
the best computer programs to shame. This observation is especially true for
computer scientists, who, often having spent an inordinate amount of time
on a thorny problem, discover that nature has bred a solution and organisms
come by it through the apparently undirected mechanism of evolution and
natural selection.

We see evolution’s remarkable power as something to be emulated rather
than envied. Natural selection eliminates one of the greatest hurdles of soft-
ware design: specifying in advance all the features of a problem and the ac-
tions a program should take in dealing with them. By harnessing the mech-
anism of evolution, we may be able to ‘breed’ programs that solve problems
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even when no person can fully understand their structure. Indeed, these
so-called genetic algorithms have already demonstrated the ability to make
breakthroughs in the design of such complex systems as, for example, jet
engines [Hol92b].

As pointed out by e.g. Goldberg [Gol89] in addition to Holland [Hol92b],
genetic algorithms make it possible to explore a far greater range of potential
solutions to a problem than do most conventional algorithms, in the same
amount of time. Most organisms evolve by means of two primary processes:
natural selection and sexual reproduction. The first determines which mem-
bers of a population survive to reproduce, and the second ensures mixing
and recombination among the genes of their offspring. This mixing allows
creatures to evolve much more rapidly than they would if each offspring sim-
ply contained a copy of the genes of each parent, occasionally modified by
mutation.

Selection is simple: if an organism fails some test of fitness, such as recog-
nising a predator and fleeing, it dies. Similarly, we have little trouble weeding
out poorly performing algorithms. For instance, if a program is supposed to
sort numbers in ascending sequence one need merely examine whether each
entry of the program’s output is larger than the previous one; if not, the algo-
rithm is not working, and is discarded.

People have employed a combination of crossbreeding and selection for a
long time to breed better crops, dogs and flowers. It is not easy, however, to
translate these techniques to computer algorithms. The major problems are
finding an equivalent to the ‘genetic code’ that can represent the structure
of different solutions to the problem at hand, and finding a suitable way of
measuring the quality of a solution (i.e., its fitness).

Genetic algorithms mimic evolution and natural selection. As such the
major problem, as pointed out above, is one of encoding the problem into
a form suitable for natural selection. Typically, such an encoding is either a
binary string or array of floating point values embodying some aspects of the
desired solution.

Recast in the language of genetic algorithms, the search for a good solu-
tion to a problem is a search for particular strings, binary or otherwise. The
universe of all possible strings can be considered as an imaginary landscape;
valleys mark the location of strings that encode poor solutions, and the land-
scape’s highest point corresponds to the best possible string. The landscape
metaphor is not new; it was originally used by Sewall Wright in his seminal
paper on the roles of mutation, breeding and selection in 1932 ([Wri32], as
cited by Dawkins [Daw96]).

Regions in the solution space can also be defined by looking at strings
that have 1’s and 0’s in specified places; a kind of binary equivalent of map
co-ordinates [Hol92b]. The set of all strings that start with a 1, for example,
constitutes a region in solution space, in the set of all possibilities. According
to Jones, this may often be thought of as a landscape as well [Jon95].

One conventional technique for exploring such a landscape is hill climb-
ing: start at some random point, and if a slight modification improves the
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quality of your solution, continue in that direction, otherwise, go in the op-
posite direction. Complex problems, however, lead to landscapes with many
high points. As the number of dimensions of the problem space increases, the
size of the search neighbourhood also increases; the countryside may contain
tunnels, bridges or even more exotic structures and convoluted topological
features. Finding the right hill or even determining which way is up becomes
increasingly difficult. In addition, such search spaces are enormous.

Genetic algorithms cast a net over this landscape. The multitude of strings
in an evolving population samples many regions in the landscape simultane-
ously. Interestingly, the rate at which the genetic algorithm samples different
regions corresponds directly to the region’s average ‘elevation’; that is, the
probability of finding a good solution in that vicinity [Hol92b].

This ability of genetic algorithms to focus their attention on the most
promising parts of a solution space is a direct consequence of their ability to
combine strings containing partial solutions. This is because, using crossing
operators, high-ranking strings encoding desirable characteristics are mated
producing new, possibly even higher-ranking solutions. These offspring do
not replace their parents; rather, they replace low-ranking solution candi-
dates.

In this way the population of solution candidates slowly improves. Fur-
thermore, mutations are allowed to occur with some very low probability;
this provides insurance against one particular string becoming dominant, re-
placing every other string and stopping evolution altogether.

1.2 STRUCTURE AND CONTRIBUTIONS OF THIS WORK

This work will study the genetic algorithm, but from two particular view-
points: that of time, i.e. temporal progression, and that of probability, i.e.
stochastic characteristics. The intention is to gain an understanding of these
central characteristics wherever applicable to the genetic algorithm, and to
provide a formalisation of the genetic algorithm incorporating them.

The particular contributions of this work centre around a new paradigm
for describing the workings of the genetic algorithm. The paradigm is that of
using logic, specifically temporal and probabilistic logics in conjunction with
traditional first order logic combined into a temporal-probabilistic logic in
modelling the genetic algorithm, including both its central temporally pro-
gressive and probabilistic or statistical aspects into a comprehensive frame-
work. In addition, the work also formulates a foundation for further studies
in describing a simple axiomatisation of the genetic algorithm, in line with
that of e.g. the formal axiomatisation of the theory of groups, as well as pro-
viding two different simulation approaches to genetic algorithms.

The overall structure of the thesis is made up of three major parts: first
we have a general part (comprising chapters 1, 2, and 3) providing the basic
descriptions of the genetic algorithm as well as of the formulations relating
to the logical and mathematical foundations for the work. The second part
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centres around applying the formulations from the first part to genetic algo-
rithms, and describing the genetic algorithm model itself. This part com-
prises chapters 4 and 5. The third part, consisting of chapters 6, 7, and 8,
are essentially applications of, and excursions from the theory formulated in
the previous parts, centring on the simulation of genetic algorithms from a
net-theoretic as well as an experimental point of view.

Looking at the thesis from a chapter to chapter viewpoint, it proceeds as
follows: chapter 2 provides an overview of the general concept of the ge-
netic algorithm, sufficient for the easy understanding of the remainder of
this work. It deals with the standard formulation of the genetic algorithm
and briefly touches on the so-called schema theorem and building-block hy-
pothesis which is quite often used to describe the genetic algorithm. Next,
chapter 3 provides an overview of the logical foundations used in the rest of
the work. It first describes the central tenets of the temporal logic used in the
remainder of the formulation of the theory of genetic algorithms. This is a
fairly standard exposition with some minor extension to make the logic for-
mulation more suitable for modelling genetic algorithms as presented in this
work. For instance, our temporal logic is based on intervals, which makes it
particularly suited for describing the common case of generation-based ge-
netic algorithms. We describe a natural extension of normal notation that
has been introduced to allow the temporal operator © (next) take a super-
script denoting future generations (and symmetrically, a negative superscript
for past time). This has not been encountered before and represents a new
formulation by the author. The chapter also introduces the second major
tenet of this work: incorporating the probabilistic element of genetic algo-
rithms. This we accomplish using a second tool, that of probabilistic logic
by first providing an overview of probabilistic logic, and continuing in the
same chapter, combining temporal and probabilistic logic in a formal frame-
work. This particular formal framework has not been previously formulated,
except by the author [San94b, San95], and represents a novel view of the
combination of these logics. An overview is provided in that chapter; a fuller
treatment is contained in appendix A, which formally describes the syntax
and proof theory of the combined logic, and is one of the contributions of
this work. The rationale for using interval temporal logic instead of point-
based (integer) temporal logic is that it in a more natural way captures the
ability of individuals in the genetic algorithm to survive (and thus live longer,
or for several base intervals at a stretch), something that is not possible, or at
least not as simple to describe, using other alternative formulations.

Continuing, chapter 4 introduces one of the major tenets and is one of the
major contributions of this work: how temporal logic may be used to discuss
the time dimension in genetic algorithms. It develops a novel description
of the genetic algorithm incorporating time. This model, based on interval
temporal logic has, as far as the author has been able to ascertain not been
previously formulated (except by the author in several conference papers; see
[San94b, San95, San96b, San96c, San96a]). Using temporal logic as a tool
to explicitly incorporate time in the theory of genetic algorithms we may in a
natural manner formulate temporal dependencies that are either not shown
by or are obscured in other formalisms.
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Furthermore, in chapter 5 we develop a formulation of the genetic algo-
rithm based on the combined temporal and probabilistic logic. This, one
of the main chapters of this work also includes novel formulations of a tem-
poral selection mechanism. This mechanism is shown to provide abilities to
avoid some of the more worrisome problems in practical genetic algorithms,
which represents one of the contributions to the perennial problem of ensur-
ing enough diversity in the genetic algorithm and has in this form not been
published before. As an example, we may avoid or at least discern the onset
of the problem of premature convergence. The novel mechanism employed
now described by the author centres around the concept of equality inter-
vals: fitness ranges where the differences are considered too small to matter,
and where consequently other means should be taken into use to distinguish
between the individuals within the range. This is in contrast to the methods
usually employed to deal with this problem, as it instead of attempting to ar-
tificially enlarge the minute differences between the individuals in order to
obtain a clear superiority/inferiority index recognises their equality and treats
them in non-genetic ways.

A further contribution never encountered by the author before is repre-
sented by the next chapter: in order to show the power and expressibility of
the temporal-probabilistic language formulated in this work it includes an ex-
position on axiomatisations of the genetic algorithm providing an interesting
view of this approach. It shows several theorems derived and proved using
the axioms and constitutes one of the main contributions of this work.

Furthermore, as a simulation of the workings of the genetic algorithm and
as an interesting modelling approach, we also present the genetic algorithm
modelled using a high-level Petri net. This is a very promising avenue which
we have not seen published before; chapter 7 represents very much a begin-
ning and further research is needed.

In order to test the practical implications of the theoretical framework,
and especially the novel temporal selection mechanisms a number of simu-
lations using empirical experiments based on a modified and freely available
implementation of genetic algorithms [Hun95b, Hun95a] are described in
chapter 8. In addition to the rather theoretical tests described, the well-known
travelling salesperson problem (TSP) is solved using both the standard and
a modified version of the genetic algorithm (with temporal selection). It
is shown that whilst the temporal selection mechanisms may provide advan-
tages in several instances, it is not a priori clear in which instances this would
be the case. In particular, it seems in the light of the tests described here, that
the TSP problem could benefit from temporal selection.

Finally, chapter 9 draws some general conclusions about the formulation
of the model of genetic algorithms and the logics as well as their application
to expressing a theoretical framework for genetic algorithms and shows why
they are important contributions to the field.
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1.3 RELATED WORK

Genetic algorithms may be modelled in many ways, taking different aspects
of the algorithm under consideration. Following the seminal work by John
Holland [Hol92a], originally published in 1975, the question of models in
the field of genetic algorithms has been either been slanted toward a set-
based or stochastic point of view.

For the description of genetic algorithms below, I have relied on many
sources, e.g. [Gol89, Dav91a] as well as [Hol92b] and [Hol92a]. For a popu-
lar account in a mathematical setting, see [Pet90, p. 209-215]. A good intro-
duction to the problems faced by simulation of evolution, and especially the
fallacies and mistakes often encountered in these, see [Atm94].

This work builds on our previous work on genetic algorithms, especially in
a database setting; see [San93a, San93b, San93c]. Initial work on modelling
the genetic algorithm using temporal and probabilistic reasoning appeared
in [San94b] and [San95].

During its history the genetic algorithm has been modelled in various
ways. As previously cited, we have the work by Holland [Hol92a], a theory
based on sets and probabilities; we have the work on deceptive problems
by Goldberg [Gol87], continued by Vose and Liepins [VL91]. This work
resulted in an exact model for a simple genetic algorithm in the form of a
Markov chain, developed by Nix and Vose [NV92]. Davis independently
developed a model based on Markov chains as well [Dav91b].

Subsequently, Vose developed the model by Vose and Nix to further tie
the genetic algorithm to the infinite-population model [Vos91a].

Some other work, notably Booker [Boo93], Whitley [Whi93], and Vose
[Vos93], has also considered different models of genetic algorithms and as-
pects of genetic algorithms. These have centred on stochastic (or probabilis-
tic) views of the genetic algorithm, and not emphasised the time aspect (apart
from the role it naturally plays in e.g. the Markov chain model). Reynolds
and Gomatam provide a modern view of stochastic modelling of genetic al-
gorithms in [RG96]. In [HB92, BS93] Bäck and others provide overviews of
current evolutionary algorithms and their differences and similarities.

Some very interesting work detailing the theoretical limits of search and
optimisation, with especial applicability to genetic algorithms, has been pub-
lished by Wolpert and Macready [WM95, WM97]; including the so-called
“No Free Lunch” theorem.

The landscape metaphor for search has been thoroughly explored by Jones
in his dissertation [Jon95].

The Santa Fe Institute of Complexity Studies has published several inter-
esting reports touching on search in general, for instance [WM95]; genetic
algorithms and their characteristics, especially compared with hill-climbing
techniques, have been covered in [MCH93, FM92, FM93, MH93]; genetic
algorithms and artificial life [MF93, MCH93, MHC93], and so forth.

Regarding more introductory works, the well-known Genetic Algorithm
Tutorial [Whi94], by Darrel Whitley is a good starting point for understand-
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ing and modelling the genetic algorithm. An introductory book by Melanie
Mitchell [Mit96] contains much interesting material, as does the overview of
the current state of genetic algorithm research by Bäck et.al. [BHS97]. Fur-
thermore, a very interesting book by Michalewicz [Mic99] treats the genetic
algorithm from both a theoretical and practical viewpoint, with the empha-
sis on the latter. Fairly recently, a survey of the theory of genetic algorithms
also by Bäck et.al. [BdGKK97] appeared in the Bulletin of the European
Association for Theoretical Computer Science.
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2 OVERVIEW OF GENETIC ALGORITHMS

This chapter will introduce the genetic algorithm by providing a standard,
simple exposition of the basic underlying concepts. It will introduce the two
types of genetic algorithms, and show what distinguishes the two; and it will
describe the well-known building-block hypothesis, with its schema theorem
that is one of the foundational justifications for using genetic algorithms to
solve problems.

2.1 ASPECTS OF GENETIC ALGORITHMS

The genetic algorithm is normally thought of as a process, i.e. an ordered pro-
gression of well-defined states, whereby solutions to set problems are evolved
using a population of solution candidates. These candidates are checked us-
ing some fitness measure against the problem (i.e. evaluated) and, using some
appropriate convergence or stopping criterion, the process is terminated. The
process view has given rise to several models and analyses of genetic algo-
rithms based on Markov processes (for a summary, see e.g. [RG96]).

There are two aspects of the genetic algorithm we wish to consider in this
work, with the emphasis on the former:

• the time aspect, as exhibited by the population of the genetic algorithm
during evolution from generation to generation, and

• the stochastic aspect, as exhibited when selecting and forming new
members of a population.

An overview of the genetic algorithm is provided in figure 2.1. It shows
two generations: a current one to the left, and a subsequent one to the right. A
generation consists of three stages: a current (parent) population from which
a selection takes place; a child population and the current population from
which survival of individuals in the populations is determined; and a new
population (together with a discarded population) from which a new genera-
tion is born.

Further introductions to genetic algorithms may be found in, for instance,
[Dav91a] or [Gol89].

2.2 THE TIME ASPECT

There are many ways to approach the problem of time in a genetic algo-
rithm. In general, time is thought of being a discrete, linear progression,
starting from an arbitrary initial time point, and infinite in the positive di-
rection. Formally, nothing prevents us from considering time as infinite in
both directions; it is customary, however, to treat time as having a starting
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Figure 2.1: Genetic algorithm overview

point and thus bounded in one direction. We will return to this question
later in this work, especially when considering the initial population, and the
axiomatisation of the genetic algorithm.

In general, there are two ways of considering evolution in a genetic algo-
rithm: the generational and steady-state model. These will be treated sepa-
rately below.

2.2.1 The generational genetic algorithm

This, the conventional genetic algorithm, may be characterised by the fol-
lowing schematic procedure.

1. all individuals are randomly selected as parents (typically pairwise, but
sometimes more),

2. offspring is generated using some genetic operators,

3. in some way the new population is chosen from the combination of
the old population and the newly generated offspring so that the popu-
lation size does not change,

4. the new population (and especially its main characteristic, the fitness of
the population) is checked against the stopping criterion; the algorithm
either stops or proceeds anew at step 1.

It should be noted that the above is very much a broad outline of the
algorithm.
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2.2.2 The steady-state genetic algorithm

This non-generational genetic algorithm proceeds schematically as follows.

1. some individuals are randomly selected as parents (again typically pair-
wise, but sometimes more),

2. offspring is generated using some genetic operators,

3. in some way new members of the population are chosen from the com-
bination of the old parents, the rest of the population, and the newly
generated offspring so that the population size does not change,

4. in the same way as in the generational case the new population is
checked against the stopping criterion; the algorithm either stops or
proceeds anew at step 1.

The critical difference is that the steady-state algorithm generates single
(or at least very few, compared with the population size) new members,
whereas the generational one renews the whole population every time (even
if in some optimised case some members are chosen to survive, so-called
elitism [Gol89]).

The time problem can be characterised as dealing with what may be
known or determined about subsequent generations given a current gener-
ation knowing the overall characteristics of the genetic algorithm. How will
fitness change, for instance? What characteristic features of the population
will survive? What can be said about the optimum? How will the genetic
algorithm converge? We will return to these questions below when we deal
with the time model of genetic algorithms.

2.3 THE STOCHASTIC ASPECT

The genetic algorithm relies on random selection (or semi-random, based
on some criteria, such as relative fitness, abundance, age, and so forth) of
parents when forming a new generation. It also relies on random techniques
(again, semi-random is often used as well, or even deterministic) when de-
termining how to combine the parents’ genetic material when forming the
child individual (or individuals).

In both of these cases there is a certain probability that a certain individ-
ual, a certain probability that a certain gene of the individual, will be selected
for, and consequently present in a subsequent generation. This gene (or more
often, chromosome) will determine a trait that is selected for, and determines
a desired characteristic of the solution the algorithm is set out to provide.

The stochastic problem is to determine what these probabilities are, what
the probability of the genetic algorithm reaching optimum is, and the prob-
ability of any single trait being present in any particular generation and indi-
vidual. The overwhelmingly most common method to examine the genetic
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algorithm in stochastic terms is to use Markov chains. Many researchers have
used them to determine convergence of simple genetic algorithms, e.g. Mah-
foud in [Mah93], or Suzuki in [Suz93]. However, as emphasised by Suzuki,
only the very simplest of genetic algorithms may be successfully modelled
using Markov chains due to the complexity involved. For a summary of work
modelling genetic algorithms with Markov processes see [RG96].

2.4 THE SCHEMA THEOREM

This theorem, which was originally formulated by Holland in 1975 (reprinted
as [Hol92a]), reformulated by Goldberg [Gol89], and worked on by many
researchers, such as Vose [Vos91b], shows how the fitness evolves from gen-
eration to generation. Central to understanding the schema theorem is the
notion of a schema, introduced by Holland. The following discussion will
endeavour to present the salient points of schemata and the schema theo-
rem without worrying too much that we are using terms and concepts not
formally defined yet.

Without loss of generality, assume for the present discussion that a ge-
netic algorithm works with fixed-length chromosomes ξ consisting of ele-
ments from {0, 1}. This means that the structures are encoded into simple
yes/no (true/false) answers, which is perfectly feasible for any genetic algo-
rithm, although not nearly always the most efficient way of representing the
structure [Vos91b]. Anticipating the formal definition (see equation 4.2 on
page 32) we denote the set of all possible strings Sξ. This also means that
the powerset 2Sξ contains all possible sets of strings (i.e. all possible chromo-
somes). Some interesting points recently formulated regarding the cardinality
(of the symbols used) of schemata by Fogel and Ghozeil show that there does
not seem to be any advantages to using an alphabet of a specific cardinality
[FG97].

In order to proceed we first provide a definition of a schema as used in the
genetic algorithm.

Definition 1 A schema H is a string notation for a member of 2Sξ formed
from the alphabet {0, 1, #}, where 0 and 1 are binary digits, and # is taken
to be a “don’t care” situation. Given a chromosome ξ formulated as a string
with binary digits it belongs to the schema H iff the corresponding positions
in the schema H and the string are either identical, or the schema H has a #
in that position.

In order to fully understand this definition we may study the following
example.

Example 1 An example, taken (and corrected) from [Ala92, p. 25] shows
this clearly. Let Sξ be all strings of length 8 (i.e. chromosomes have a fixed
length of 8 bits), to which belong, among others, the strings s1 = 00110011,
s2 = 00111100, s3 = 00111011, and s4 = 00101101.
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Let the schema H1 be the string representation 0011##11. In this case
s1 and s3 belong to the schema. Formally,

{s1, s3} ⊂ H1 = {00110011, 00110111, 00111011, 00111111} ∈ 2Sξ (2.1)

According to [Vos91b], the main advantage of using schemata is that the
expectation value of the improvement from generation to generation in the
genetic algorithm may be calculated. Simplifying the discussion (for a more
rigorous treatment, see e.g. [San93b]), we can say that the evolution of the
population, seen from a schema point of view, depends on the strength of
H or its average fitness with respect to the whole population Π. This implies
that in order for the average fitness of the whole population to increase we
must ensure that the strength of the schema does not decrease. Since due
to the application of genetic operators there are in general two forces acting
on a schema (and thus its strength), a strengthening force building up the
schema (e.g. recombination), and a destructive force attempting to tear it
apart (e.g. mutation), we must thus ensure that destruction does not over-
come construction. In short, Vose’s schema theorem says that if the strength
of a schema H, or the average schema fitness is above the average fitness of
all possible strings, then H will predominate over lower-strength schemata in
future generations, provided that the probability of schema break-up is not
too large. Especially short schemata (i.e. with many “don’t care” bits #) tend
to, having been generated, stay around. It is from these that good solutions
(structures) are found using genetic operators, like crossover and others.

It is also evident that, whilst the schema theorem does show how the ge-
netic algorithm behaves when examining two consecutive generations, it is
dependent on several assumptions. Chief among these is the assumption
that the genetic algorithm works by assembling short ‘building blocks’, i.e.
schemata, into larger, by assumption fitter structures, at least from the genetic
algorithm’s viewpoint, i.e. that viewpoint of the problem that the genetic al-
gorithm was designed to solve in the first place. However, being larger they
tend to be destroyed by the action of the crossover or recombination operator
(see below). Thus it is not at all clear that the genetic algorithm works, or
should work beyond the very first stages, if we only examine it in the light of
the schema theorem.

Note that, as the schema theorem is not essential for our temporal and
probabilistic treatment of the genetic algorithm we will not use it in our
formalisation of the algorithm in what follows in this work; however, we do
mention it to contrast it with our approach.

The problem with the Schema Theorem is not that isn’t true, but that it
is too true. Which is to say, it applies not only to schemata but to arbitrary
subsets of the search space, regardless of the fitness function.

If one translates it into its physics equivalent, the Schema Theorem says
only that, adjusting for particles lost by decay, the centre of mass of a cloud
of particles moves at the weighted average velocity of the particles, and the
centre of mass of any subset of that cloud moves at the weighted average
velocity of that subset.
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As Lee Altenberg so succintly says, the schema theorem has nothing at all
to say about a GA’s performance - there has to be some “knowledge” about
the search space embedded in the relationship between the operators, repre-
sentations, and fitness in order for a GA to perform better than average; see
[Alt95] in [WV95]. The need for implicit knowledge was proved in master-
ful generality by Wolpert and Macready in [WM95] in their famed “No Free
Lunch” theorem.
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3 LOGICAL FOUNDATIONS

This chapter introduces the logical foundations for this work. It proceeds
by first describing temporal logic using standard formulations from e.g. van
Benthem [Ben83]. We also describe some shorthand notations useful for
our work in describing the genetic algorithm using temporal logic. Next,
the chapter describes probabilistic logic. This logic is almost wholly based
on that of Bacchus [Bac90]. We briefly summarise his two main branches
of probabilistic logic, i.e. propositional and statistical probabilistic logic. We
then combine the two (together with standard first order logic) into a unified
whole, temporal probabilistic logic, for which we provide an overview in this
chapter. It is more formally detailed in appendix A.

3.1 TEMPORAL LOGIC (TL)

As Masini [Mas93] explains, temporal logic may be thought of as a modal
logic in which we place further restrictions on modal interpretations. The
modal logic employed is expanded from conventional first-order logic with
modal operators, giving the accessibility relation between states (or possible
worlds).

In this work we will rely on an integer, linear temporal structure, with
intervals, as well as temporal operators defined on the structures. In this
chapter we will first define and discuss the temporal structures we are going
to use. Then we will summarise the temporal operators.

We have chosen to use a temporal logic based on intervals instead of inte-
ger points because in our view it is more natural; also, since we use intervals
to calculate with the lifetimes of individuals it is much simpler to use in-
tervals. For instance, two individuals in a population may have overlapping
lifetimes (intervals), where the beginning and end points may be different
(although some generation, or generations, is common to both). In this way
it is easy to compare ages and survivability of individuals in a formal setting.

There are many ways of defining a suitable temporal logic on intervals;
the classical way, following van Benthem [Ben83], the logic based on the
meeting operator as defined by Allen and Hayes [AH85, AH87, AH89], and
the Tsang approach [Tsa87], roughly similar to van Benthem’s. However,
as Hajnicz states in [Haj95], the classical approach still offers the best ax-
iomatisation, and richest structures for most applications. Accordingly, our
approach closely follows van Benthem.

We will not go into too many details, such as a rigorous, axiomatic model,
regarding temporal logic at this stage as it is not essential for appreciating
the main thrust of this work. More details can be found in van Benthem,
Shoham [Sho88], Manna and Pnueli [MP91], as well as Ostroff [Ost89].
For a proof theory of modal logics, applicable to temporal logic, see e.g.
Masini [Mas93]. Modal logic, as generally applicable as well as specifically
applicable to temporal settings, may be consulted in Chellas’ work [Che80].
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3.1.1 Time structure

We need to define the basic temporal structures in genetic algorithms, specif-
ically in terms of the aspects we are emphasising. We begin with the central
concepts of time and interval.

Definition 2 (Time) In a genetic algorithm, time is seen as a discrete set of
points. The algorithm proceeds from a time point t0 when the population is
said to be initial.

We rely on the standard model of time; see e.g. van Benthem [Ben83,
Ben88] given by

〈T, <, V 〉 (3.1)

consisting of a “flow of time” 〈T, <〉, i.e. a set of “moments” ordered by “ear-
lier than” or “before”, and a “valuation” V . We defer the discussion of what
is actually valuated until a later time.

Note that the internal structure of time is not specified: it may be linear
or branching. However, the view of time in this work is one modelled on the
integers, Z, and is linear, not branching.

It should be noted that t0 is in no way special: time may be seen as infinite
in both directions as we may simply define the population of the genetic
algorithm as static during all time points before t0.

Following van Benthem [Ben83, p.60], we define an interval.

Definition 3 (Interval) An interval is a time duration between two time points,
the start and end time, respectively. It is defined as follows

I =df [m1, m2] =df {m ∈ Z | m1 ≤ m ≤ m2} (3.2)

where m1, m2 ∈ Z and m1 < m2.

It should be noted that van Benthem first defines these as open intervals of
rational numbers, and later mentions the integer case, as described above, as
a special case; we also disallow intervals of the form [m, m], which he allows.

We denote the set of all intervals I, i.e. I ∈ I.

We also define the interval, or period structure INT(Z), van Benthem
[Ben83], definition I.3.1.2. Note that since van Benthem initially uses the
rational numbers, Q whereas we use integers, some of the definitions below
take on a more complex shape than strictly necessary. We have noted where
this is the case; however, we wish to stay close to van Benthem and let the
more complicated definitions stand.

Definition 4 (Interval structure) The interval structure INT(Z) is the tuple

〈I,⊆, <〉 (3.3)

where I consists of all non-empty closed integer intervals [m1, m2], ⊆ is set-
theoretic inclusion, and < is defined by setting [m1, m2] < [m3, m4] if m2 ≤
m3.
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Note that we, in line with the above definition, intend that

[m1, m2] > [m3, m4] ⇔ [m4, m3] < [m1, m2]. (3.4)

Furthmore, if I = [m1, m2] and J = [m3, m4] then

I < J if m2 ≤ m3 (3.5)

I ≤ J if I < J ∨ I = J (3.6)

The intervals are of course equal if m1 = m3 and m2 = m4.

We also need to differentiate between intervals that may contain subinter-
vals and those that may not.

Definition 5 (Base interval) An interval of the form

I = [m, m + 1] (3.7)

is a base interval.

van Benthem calls these atomic, or minimal intervals, although he does
not deal with them further.

As should be clear from the above, the base interval may be stated in
another more general way as well:

@m, m1 < m < m2 (3.8)

where m 6= m1, m 6= m2. This is van Benthem’s usage.

The van Benthem definition could be said to be preferable because of its
easy generalisation to more complex intervals, such as those based on rational
numbers or additional dimensions. However, it is unnecessary in our setting
since we do not extend our intervals in this fashion.

All other intervals may be called composite. It should also be noted that
intervals are convex, i.e. uninterrupted, as pointed out by van Benthem. We
omit the specifier base or composite whenever the distinction does not mat-
ter.

The definition of intervals is similar to Schwartz, et. al. [SMSV83],
Shoham [Sho88] and Sandewall [San94a]. These characteristics of time are
also essentially the same as that of Jensen and Snodgrass in [JS94]. There the
authors define transaction time as a self-generated timestamp when a rela-
tion is added or deleted from a database; in our setting, when an individual is
‘born’ or ‘dies’, i.e. the start and end points of the interval, respectively, within
which it has a non-zero probability (see below). This corresponds to Jensen’s
and Snodgrass’ existence interval, which for an item e is [tt`e , ttae ] where tt
is the transaction time [JS94, p. 956]. To reason about relations (items) in
a temporal setting, the authors also define the concept of valid time, i.e. the
time when the item is valid. This time is a varying attribute of the relation,
and bears no necessary relationship to the transaction times; we will not use
valid time, since our individuals only ‘exist’ within the interval.

In the genetic algorithm we use time intervals to separate generations of
parent and child individuals and populations. One generation corresponds
to a base interval.
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Future operators Past operators
�p henceforth p �p always in the past p
3p eventually p 3p sometimes in the past p
pUq p until q pSq p since q
pWq p waiting-for (unless) q pBq p back-to q

©p next p ©p previously p

©̃p weak previously p

Table 3.1: Temporal operators. p and q are general propositions.

3.1.2 Temporal operators

Following van Benthem we choose a basic paradigm for the semantics of
intervals in order to be able to reason within the new formalism. We first
define the binary operations for inclusion and overlap.

Definition 6 (Inclusion) Given two intervals I1 = [m1, m2] and I2 = [m3, m4]
we say that I1 includes I2 when the starting point m3 is not less than m1 and
at the same time the end point m4 is not greater than m1. Denoting inclusion
by the symbol v we have formally

I2 v I1 iff m1 ≤ m3 ∧ m2 ≥ m4. (3.9)

Note that we follow van Benthem strictly here; in our setting we could
simply equate v with ⊆, and thus dispense with this definition altogether,
and rely on definition 4. We choose to follow van Benthem’s usage here; the
reader may treat v as synonymous for ⊆.

Definition 7 (Overlap) The binary relation overlap O between two intervals
I1 and I2 is defined by

I1 O I2 =df ∃I.I v I1 ∧ I v I2 (3.10)

In order to reason within our logic we need to define some basic opera-
tors, in addition to the standard first-order logic with its boolean operators ∨
(disjunction), ∧ (conjunction), ¬ (negation), → (implication) and ↔ (equiv-
alence). We also have the first order operators ∃ (existence), and ∀ (univer-
sality).

Following Manna and Pnueli [MP91, MP93], the temporal operators in
table 3.1.2 are sufficient for our purposes.

In addition, we have the precedence <, overlap O and inclusion v oper-
ators for intervals.

Note that some of these operators are ‘weak’ versions: waiting-for W is
a weak version of the until U operator which allows for the possibility that
q never occurs and, then, p holds at the interval and all intervals beyond.
Likewise, back-to B is a weak form of the since S operator which allows
the possibility that q never occurs and, then, p holds at the interval and all
preceding intervals.
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Also note that the henceforth � and eventually 3 operators are reflex-
ive, i.e. p may hold ‘now’. Some authors, e.g. Strulo, Gabbay, and Harrison
[SGH95] take these as nonreflexive, and define reflexive versions of � and 3

separately (�̂ and �̂, respectively). Their version of �p, for instance, is equal
to our ©�p.

The weak previously operator ©̃, although defined by Manna and Pnueli,
is unnecessary in our setting. It allows for the case where we are at the very
‘first’ instant of time, where no previous points exist. Our setting is infinite
time (i.e. infinite in both past and future directions), where no distinguished

start time is used, so weak previous ©̃ is simply the same as previous ©.

We will find a straightforward extension to the next operator © and previ-
ous operator © useful. We write ©n for n applications of the next operator,
i.e.

©n =df ©© . . . © n times (3.11)

with the analogous definition of ©
n

as n times application of ©. Given the
semantic meaning of these operators, we may also use negative exponents by
defining

©
−n

=df ©n (3.12)

©−n =df ©
n

(3.13)

which is a very useful notation.

However, Manna and Pnueli define the operators for point times only. In
our work we use intervals, and need to show that the operators may be used
on intervals as well.

Let us somewhat informally show this for the future operators; the exact
syntax and semantics of these are fully described in Appendix A. Take the
henceforth operator � first. Given our model INT(Z) of intervals (definition
4), we need to show that it gives a meaning to the validation formula

(INT (Z), I) |= �p (3.14)

where p is a proposition holding in the interval I .

In order for this to be valid, the proposition p must be valid from the
beginning of the interval I and onwards. Using a construction similar to
Manna and Pnueli, and van Benthem [Ben83, p.9] this means that we may
formulate the following definition.

Definition 8 (Henceforth) The henceforth operator � may be defined as
the operator fulfilling the following condition.

(INT (Z), I) |= �p ⇐⇒ ∀J ≥ I, (INT (Z), J) |= p (3.15)

Note that we will actually follow an alternate path for defining operators
(and indeed the whole logic); for more details, see Appendix A.

Likewise, for the eventually 3 operator:

3. LOGICAL FOUNDATIONS 19



Definition 9 (Eventually) The eventually operator 3 may be defined as the
operator fulfilling the following condition.

(INT (Z), I) |= 3p ⇐⇒ ∃J ≥ I, (INT (Z), J) |= p (3.16)

The until U operator is slightly more complicated and needs two condi-
tions in its definition.

Definition 10 (Until) The until operator U may be defined as the operator
fulfilling the following condition.

(INT (Z), I) |= p U q ⇐⇒ ∃J ≥ I, (INT (Z), J) |= q (3.17)

and ∀K, I ≤ K < J, (INT (Z), I) |= p

In order to simplify the corresponding conditions for the next © operator,
we define the concept of a next interval.

Definition 11 (Next interval) The next base interval J from an interval I is
the one that satisfies

I < J (3.18)

@ K, I < K < J

where K is an interval.

Analogously, we define the previous interval as follows.

Definition 12 (Previous interval) The previous base interval J from an in-
terval I is the one that satisfies

J < I (3.19)

@ K, J < K < I

where K is an interval.

We denote the next (base) interval from I with a superscript I©, and the

previous with I©. Note that the restriction to base intervals is necessary due
to the definition of interval precedence in Definition 4.

Note that the above definitions are not dependent on working in INT (Z).
If we restrict ourselves to this (and forego the generalisation option) we can
instead make use of the interval definitions restricted to integers and write

I© = [m1, m2]
© = [m2, m2 + 1] (3.20)

I© = [m1, m2]
© = [m1 − 1, m1] (3.21)

making use of the integer characteristics of the intervals.

Finally, the definition for the next operator © now becomes simple.

Definition 13 (Next) The next operator © may be defined as the operator
fulfilling the following condition.

(INT (Z), I) |= ©p ⇐⇒ (INT (Z), I©) |= p (3.22)

Since we will be defining these operators in another way in Appendix A,
we are satisfied that the past operators are defined analogously.

20 3. LOGICAL FOUNDATIONS



3.2 PROBABILISTIC LOGIC (PL)

Traditional first-order logic is incapable of reasoning with uncertain or defi-
cient knowledge, or applications exhibiting stochastic or random behaviour.
Probabilistic logic provides a framework for such reasoning, e.g. when mod-
elling the genetic algorithm. The following overview is based on Bacchus
[Bac90].

In probabilistic logic two key concepts need to be understood: statistical
and propositional probability.

• Statistical probability is used to reason about sets of individuals; they re-
late properties, not particular individuals. For example, the probability
of a 40-year old smoker contracting lung cancer.

• Propositional probabilities are probabilities attached to propositions
about particular individuals. For example, the probability that John,
a particular 40-year old smoker, will contract lung cancer.

Consider the statement

“More than 75% of all birds fly .” (3.23)

This is a statistical assertion about the proportion of fliers among birds.

On the other hand,

“The probability that Tweety flies is > 0 .75” (3.24)

is an assertion about a degree of belief; its truth is determined by the sub-
jective state of the agent who made the statement. This is a propositional
probability, relating the degree of belief of a particular individual having a
particular property.

What is important is to connect the two interpretations.

Direct inference is a technique for inferring propositional probabilities
from statistical information. In other words, by examing the environment, as
described by statistical information, we may infer probabilities to properties
of particular agents in the environment. Furthermore, a powerful system of
defeasible, or non-monotonic, reasoning may be developed.

3.2.1 Propositional Probabilities

Propositional probabilities are probabilities assigned to particular proposi-
tions or assertions. It is not a priori clear how to assign probabilities to logical
formulas in a consistent and useful manner. One way of doing it is sketched
below.

• With the standard notion of truth values (true,false) attached to formu-
las (e.g. α and β) we can group the formulas into equivalence classes
(e.g. [α] and [β]); if two formulas have the same truth value under all
possible valuations they fall in the same class.
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• The normal logical connectives act as operators over the equivalence
classes forming a Boolean algebra.

• We may define a function over the algebra by observing that the algebra
contains a partial order defined as [α] ≤ [β] iff every truth valuation
which assigns true to α also assigns true to β.

• This means that there is a unique smallest element, the equivalence
class of all unsatisfiable formulas, and a unique greatest element, the
class of tautologies; call these [0] and [1], respectively. Note that some-
times these are denoted [⊥] and [>], respectively.

A probability function µ may then be defined in the standard way.

Definition 14 A propositional probability function is a mapping µ satisfying
the following criteria

0 ≤ µ ([α]) ≤ 1 (3.25)

µ ([0]) = 0 and µ ([1]) = 1 (3.26)

µ ([α ∨ β]) = µ ([α]) + µ ([β]) − µ ([α ∧ β]) (3.27)

In order to simplify matters, we say that the probability of a formula α is
µ ([α]) which is denoted by prob(α) in the logical languages being defined.

Note that we introduce the notation prob because we will later extend
µ; see Appendix A. For more details regarding the function µ see Bacchus
[Bac90].

Definition 15 The language generated by the logic is called the language
of propositional probability, Lprop. This consists of first-order predicate logic
with the added prob operator together with arithmetics to handle the nu-
meric values.

Note that this section, and only this section, used the standard way of
denoting equivalence classes, i.e. the class between ‘[’ and ‘]’ characters.
We will be using (following Bacchus) this notation for statistical probablities
below. We hope this will not lead to undue confusion.

3.2.2 Probabilities over Possible Worlds

One can also place a probability distribution over a field of sets of interpre-
tations or truth valuations of the language. These different interpretations
can be viewed as being different possible worlds. With a probability distri-
bution over possible worlds we can assign a probability to every formula; it
is the proportion of the possible worlds satisfying the formula. Conversely,
wishing to indicate uncertainty with a probability of a proposition being true,
we may view it as being part of a set of possible worlds, giving the indicated
probability as indicated above. The way this is accomplished is captured in
the definition of µ; it is extended to encompass both worlds (using µS) and
objects (using µO). For more details, see Appendix A where we will give the
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our logics a possible world semantics, and assign a probability distribution to
them.

As indicated above, in order to formalise the notion and use the logic
of probability we extend the conventional first-order logic with a probability
operator denoting the probability of a formula α by prob(α).

We also find it convenient to denote certainty as follows.

Definition 16 A formula α is certain when its probability is 1.

cert(α) =df prob(α) = 1 (3.28)

According to Bacchus [Bac90, p. 69], it can be shown that the modal
logic developed for propositional probabilities is a generalisation of ordinary
Hintikka-style logics of belief [Hin62].

3.2.3 Statistical Probabilities

Typically statements of statistical probability make assertions about the pro-
portion of individuals from a particular set that are members of some other
set; e.g. the proportion of birds that fly. We may also view this as attributing
a property to a proportion of individuals in a set with a certain probability.

The difference compared with propositional probabilities is that the statis-
tical probability operator must specify a set of placeholder variables – we are
not talking about a particular individual, but about a set of individuals.

We may define the statistical probability formally as follows.

Definition 17 Let α be a well-formed formula and ~x a vector of n object vari-
ables 〈x1, x2, ...xn〉. Then [α]~x is the statistical probability of α with respect
to the variables given.

Note that the index used is a vector of placeholder variables; however, very
often we will have only one variable and will use a non-vector notation for
this. In other words, if ~x = 〈x〉 we will write [α]~x = [α]x instead. We hope
this will not lead to undue confusion.

We also need a measuring function, known in statistics and probability
theory as a random variable [Pap65]. These are used to map individual ob-
jects (or properties of objects) to real numbers in order to discuss these ob-
jects or properties; e.g. weight(x) would give us the weight of x in some
convenient unit [Bac90, p.84f] .

Note that we use the standard notation for conditional probabilities below;
see definition 65 on page 136.

Example 2 For example, “Most birds can fly” would be

[fly(x) | bird(x)]x > 0.5

We can also reason within the formalism.
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Example 3 Given that

“Most birds fly”

“Penguins do not fly”

we find that
“Most birds are not penguins”

as follows

` ([fly(x) | bird(x)]x > 0.5 ∧ ∀x.penguin(x) → ¬fly(x))

→ [¬penguin(x) | bird(x)]x > 0.5

Definition 18 The language generated by the logic is called the language of
statistical probability, Lstat.

3.2.4 Combined Probability Logic

The combination of propositional and statistical probabilities is syntactically
straightforward: we allow both probability operators in our language.

The formal semantics is more complicated due to existence of rigid and
non-rigid terms. We will formulate a semantics for the combined language
based on possible world semantics; please consult Appendix A. In short, rigid
terms do not change between worlds; non-rigid may do so. For more details,
consult Bacchus [Bac90].

Example 4 For example, “The probability is 0.95 that more than 75% of all
birds fly” would be

prob ([fly(x) | bird(x)]x > 0.75) = 0.95

Example 5 Or, “John is more likely to succeed than the average student” is

prob (succeed(John)) > [succeed(x) | student(x)]x

When discussing the direct inference principle (below) necessary for rea-
soning from statistical knowledge to individual knowledge, we need to take
into consideration the fact that the combined logic contains non-rigid nu-
meric terms; these denote different real numbers in every possible world.

We also have a probability distribution µS over the worlds; with µS(S) =
1, where S is the set of all possible worlds we attribute probabilities to.

Hence, it makes sense to talk about an expected, or expectation value of
non-rigid numeric terms.

Definition 19 The expectation value (or expected value) of non-rigid nu-
meric terms is the weighted average of their values over the possible worlds,
where µS determines the weight of influence of each individual world.

Syntactically, the new expectation operator is denoted by E. Given a for-
mula α, we have the expected value E(α). Finally, we define the language.

Definition 20 The language generated by the combined statistical and propo-
sitional logic is called the language of combined probability, Lcomb.
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3.2.5 The Direct Inference Principle

The language needs one more auxiliary definition in order to be able to
present one of the main definitions of this chapter. First we note that the con-
junction of all external facts relating to the object application domain (i.e.,
all fully believed truths in the current world) 1 is denoted KB, the knowl-
edge base. As Bacchus puts it [Bac90, p. 145], KB corresponds to the set of
objective assertations the agent has accepted, the agent’s belief base. As we
point out in Appendix A, KB denotes the conjunction of a finite collection
of objective formulas (page 150f); this includes assertions about particular
individuals as well as general logical relationships between properties, and
statistical information.

We start with the following auxiliary definition.

Definition 21 Let α be a formula of Lstat and KB be a finite set of objective
formulas from Lstat that are fully believed. If 〈c1, ...cn〉 are the n distinct ob-
ject constants appearing in KB and 〈v1, ...vn〉 are n distinct object variables
not appearing in KB, then let KB~v (and α~v) denote the new formula which
results from textually substituting ci by vi in KB (and in α) for all i.

We may then define the direct inference principle. Note that this is really
an axiom (as shown and discussed in Appendix A); since Bacchus always
refers to it as a principle, we defer to his usage.

Definition 22 The direct inference principle is given by

prob(α) = E
([

α~v | KB~v
]
~v

)
(3.29)

This is then the agent’s belief in α, given that cert
([

KB~v
]
~v

> 0
)
, and

that the propositional and statistical probabilities are consistent. For more
details regarding the direct inference principle, please see Appendix A.

Using the principle we may make inferences from knowledge bases. The
following example, taken from Bacchus [Bac90, p. 157] illustrates this.

Example 6 Suppose that

KB = bird(Tweety) ∧ [fly(x) | bird(x)]x > c.

where c is a rigid (i.e. same in all possible worlds) numeric constant strictly
greater than 0.5. In other words, we have accepted the assertion that Tweety
is a bird and that the majority of birds fly. Using the direct inference principle
we may then infer that

prob (fly(Tweety)) > c.

1Full belief: following Bacchus we equate degrees of belief with probability; i.e. fully
believed entails certainty, and vice versa.
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We do this in the following way.

(1) prob(fly(Tweety)) = (KB, dir.)
E([fly(v)|bird(v) ∧ [fly(x)|bird(x)]x > c]v)

(2) cert([fly(v)|bird(v) ∧ [fly(x)|bird(x)]x > c]v = (stat.)
[fly(v)|bird(v)]v)

(3) E([fly(v)|bird(v) ∧ [fly(x)|bird(x)]x > c]v) = (2, expt.)
E([fly(v)|bird(v)]v)

(4) prob(fly(Tweety)) = E([fly(v)|bird(v)]v) (1, 3)
(5) cert([fly(v)|bird(v)]v > c) (KB, thm.)
(6) E([fly(v)|bird(v)]v) > E(c) (5, expt.)
(7) E(c) = c (rigid)
(8) prob(fly(Tweety)) > c (4, 6, 7)

where we have used the following abbreviations

dir. direct inference principle, Axiom 7. See Appendix A, p. 151.

stat. Theorem 23. See Appendix A, p. 148.

expt. Expectation operator axiom, in Appendix A P16, p. 146. Specifically,
we use the fact that cert(t = t′) → E(t) = E(t′)

thm. Theorem 26. See Appendix A, p. 151.

rigid by definition, the constants are nonvarying from world to world

We may extend the formalism to non-monotonic reasoning by noting that

cert (∀~v.KBv → β) → E ([α | KBv]~v) = E ([α | β]~v) (3.30)

In other words, we allow non-monotonic inheritance of statistical informa-
tion from superclasses.

For more details, see Bacchus [Bac90].

3.3 TEMPORAL PROBABILISTIC LOGIC (TPL)

Temporal logic is used for reasoning about relationships and questions re-
garding time. Probabilistic logic, on the other hand, is used when knowledge
is not exact; when information is missing or deductions may not be made
with perfect knowledge, as informally shown in the previous chapter. This
section presents an overview of temporal probabilistic logic (TPL) centring
on giving the reader a sufficiently detailed picture of TPL in order to appre-
ciate the present work and the application of TPL to the genetic algorithm
that is in the following chapter. A more detailed description of TPL is con-
tained in Appendix A, which formalises a combination of first order logic
and temporal logic with the two probabilistic logics into a unified temporal
probabilistic logic.
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3.3.1 Syntax

The syntax of TPL closely follows that of its parent logics, first order logic
and the probabilistic logics as well as temporal logic.

There are symbols from all logics; notably the temporal operators from
temporal logic and the two probabilistic symbols prob and the ‘[’ and ‘]’ sur-
rounding a term together with a subscripted set of placeholder variables de-
noting propositional and statistical probabilities, respectively.

Formulas follow standard practice and are very similar to those of standard
first order logic with the addition of the operators and symbols from the other
logics. The only essential difference is in that it unlike first order logic al-
lows for numeric and temporal terms to be formulated from already existent
formulas. For example, given α and β as formulas, we may have α ∧ β and
other similar formulas as well as �α and 3β as well-formed temporal formu-
las. We also note that prob(α) is valid, as is [α]~x and E(t), t being a statistical
probability term. Numeric terms are also handled in the standard, intuitive
way with standard infix symbols like ‘+’ and ‘−’ and so forth.

We also often use the aforementioned definition for certainty, cert(α) =df

prob(α) = 1.

We also want our language to include conditional probability terms, and
formulate the following two axioms, which are duplicated here from the Ap-
pendix.

Definition 23 (Axiom of propositional conditional probabilities)

prob(β) 6= 0 → prob(α|β)× prob(β) = prob(α ∧ β)
prob(β) = 0 → prob(α|β) = 0

(3.31)

Definition 24 (Axiom of statistical conditional probabilities)

[β]~x 6= 0 → [α|β]~x × [β]~x = [α ∧ β]~x
[β]~x = 0 → [α|β]~x = 0

(3.32)

Note that this definition explicitly defines the case where the condition-
ing formula has probability zero, contrary to normal practice that leaves it
undefined.

3.3.2 Semantics

In order to interpret the formulas in our language we need to define appropri-
ate structures for them, first for temporal and then for probabilistic formulas.
We then turn our attention to the interpretation of the formulas.

The concept of time is informally defined using interval structures, and
intervals with two basic relations v ‘inclusion’ and < ‘precedence’. The view
of time we use is one modelled on the integers, Z. In order to simplify
axioms we introduce the overlap relation O. We also use the notation x©

for the next base interval relative to x and x© for the previous; we note that
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these are used heavily when discussing the genetic algorithm. Also note that
as shown earlier we have a smallest interval, the base interval.

Interpretation of the formulas is fairly standard, with some exceptions. In-
ductively, we assign a truth value true to α if our semantic structure or model
satisfies M |= α. The exceptions centre around the introduction of proba-
bilistic and temporal formulas, which have to be carefully handled in order
to obtain sensible results. We have taken the step of as far as possible isolat-
ing the logics (and their semantic and syntactical characteristics) from each
other. Thus, for instance the probability operator prob ‘gives’ a numeric
term, which cannot be handled by any other but probabilistic operators, and
so forth. For the details, see Appendix A.

3.3.3 Proof theory

In order to examine proof-theoretic properties of TPL we must present an
axiom system for all formulas. We do this separately for the different compo-
nents of the logic.

First-order logic axioms use an axiomatisation of first-order logic with
equality as a basis [Bac90] and is standard. The only thing to look out for
is to use compatible terms as specified in the theory.

Regarding numeric axioms, we following Bacchus [Bac90] do not attempt
to capture the full behaviour of these real-valued terms; instead we use the
axioms of a totally ordered field to capture a large part of their behaviour. For
details see appendix A.

The probability axioms from [Bac90] come in three groups: propositional,
statistical, and combined probability axioms. Appendix A contains full details
of the axioms, together with descriptions of their applicability.

Although there are many temporal axioms (see table A.7 in the Appendix),
they do not yield a recursive first-order axiomatisation for the theory of INT (Z).
This is no surprise, given the uncertainty regarding the axiomatisability of
FOUND’s first-order consequences [Ben83, p. 64 and 73].

In order to be able to reason about the future (and the past) we need the
frequently used next and future accessibility modalities, � and 3. Following
Masini [Mas93] we have the following intuitive meanings.

�A means A is true in every accessible future.

3A means A is true in some possible accessible future.

We note that � may be seen as a ‘henceforth’ operator, and 3 as an ‘even-
tually’ operator [Ben83, p. 156] [MP91] [MP93]. We incorporate these into
our logic using the axioms in the fourth section in table A.7 [Mas93, p. 17f].

We also need to show explicitly which rules of inference we support in
our logic. For completeness’ sake they are summarised below as well as in
the appendix A [Bac90] [Mas93].
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MP. From α and α → β infer β (Modus ponens)

UG. From α infer ∀x.α (Universal generalisation)

PE. From α ≡ β infer prob(α) = prob(β) (Probability of equivalents)

3.3.4 The direct inference principle revisited

As pointed out by Bacchus [Bac90, p. 139], what we now have is a logic
capable of dealing with propositional and statistical probabilities, as well as
temporal propositions. However, in this combined logic there is no intrin-
sic relationship between the two kinds of probabilities. They simply coexist
without any necessary interaction.

Bacchus notes that, although the types of probabilities are distinct, there is
clearly a connection between them, which is most clearly apparent in actu-
arial situations, which often equate the two. A good example is an insurance
company quoting a rate based on statistical information for an actual person.

This leads us to a very important principle: that of direct inference, from
statistical probability to propositional. This we have already treated above.

3.3.5 Soundness, completeness, and consistency

Is this combined logic sound, i.e., are all formulas deducible from it valid,
and complete, i.e., are all valid formulas deducible from it? Furthermore, is
it consistent, i.e., given a formula α, its negation ¬α must not be deducible.

Briefly, following Bacchus [Bac90, p. 132] we can show that the com-
bined logic of first order, propositional and statistical probability logic is
sound. Van Benthem shows that interval-based temporal logic is sound as
well; in the appendix detailing our formalism we show that the combination
of all of these is both sound and consistent as well.

However, as Bacchus notes [Bac90, p. 62], Abadi and Halpern [Aba88]
have shown that propositional probability logic is not complete, which is
clear because the set of deducible formulas do not form a recursively enu-
merable set. As van Benthem also points out, this is true for temporal logic
as well. The same is then immediately true for our combined logic.
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4 ASPECTS OF TIME IN GENETIC ALGORITHMS

This chapter lays the foundation for the genetic algorithm by first defining
the structures to be used and then formalising the algorithm using them. We
emphasise the temporal aspects by defining the structures in temporal terms,
in a setting based on sets.

Having laid the foundation, we then discuss the basic problems associ-
ated with genetic algorithms in the light of the new formalism: convergence,
selection, and the existence of optima. Parts of this chapter are based on
material first presented in [San95, San96a, San96b, San96c] .

The basic idea is to think of the genetic algorithm being handled by a
logic, with population individuals being seen as propositions. In other words,
an individual’s genetic information (encoded in the genes forming the chro-
mosome) is taken as a proposition (in a certain problem-specific language not
further detailed) having a defined truth value. Thus a population is formed of
individuals, where the fact that they are alive indicate the propositions being
true. Furthermore, this logic is also a temporal one, defined over intervals
of time: the intervals will separate generations of individuals (and possibly
populations). Since individuals are defined over temporal intervals we have
an interval-dependent population, one in which propositions can be said to
be existing. We may then reason within the logic, trying to solve problems
and answer interesting questions regarding the behaviour of the genetic algo-
rithm over time. For instance, we will endeavour to give conditions for the
algorithm finding optimal (in some pre-defined sense) solutions, i.e. popu-
lations. What really is characteristic of an optimum? Can we tell when the
algorithm is ‘near’ the optimum?

4.1 GENETIC STRUCTURES

We will now turn our attention to defining structures relating more to genetic
algorithms.

By necessity we will be using some terms central to the genetic algorithm
before a formal definition of them is given; e.g. population, individual, and
generation.

Definition 25 (Gene) A gene γ is a structure embodying a specific item of
data encoded in some suitable form.

A gene forms the inherited information from generation to generation.
Note that the gene is defined as the smallest unit in the genetic algorithm,
i.e. as far as the further operation of the genetic algorithm is concerned they
are atomic. In practical genetic algorithms genes code for problem-specific
parameters. Note that natural chromosomes also contain non-coding genes,
i.e. genes that do not apparently code for any protein. Some studies show
that such non-coding genes stabilise the genetic algorithm as well, and allow
it to search faster for its objectives [WL95].
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Then, seeing the gene structures as bit strings, we denote the set of all
possible genes Sγ = ∪k

i=1Si, where Si is the set formed from all bit strings
of length i (i.e. of size 2i) and k is any arbitrary length of the bit strings we
allow; cf. p. 12.

For completeness’ sake we also show the definition of an allele.

Definition 26 (Allele) An allele is an allowed value of a gene, i.e. the alleles
form the range of the genes.

An allele is thus a specific value of a specific gene within a specific time
interval. An important question is that of the allowed range of the values of
an allele. Theoretically, the values can be anything – a real number, say –
however, they have to be encoded in the gene, as per definition 25. This
means that there have to be a finite, or at least denumerable number of pos-
sible values. This fits in very well with the characteristics of a string 1. Since
strings are used to encode genes in the genetic algorithm, gene values (i.e.
alleles) form Sγ , which thus is at least denumerable (and in practice always
finite).

Following Bäck and Schwefel [BS93] we define a chromosome as follows.

Definition 27 (Chromosome) A chromosome ξ is a vector of genes. For-
mally

ξ = ~γ = 〈γ1, γ2 . . . γn〉 (4.1)

where n is the length (i.e. number of genes) in the chromosome. Note that
the genes may be duplicated in the chromosome.

Although genes may be duplicated in chromosomes we may often think
of the chromosome as a set of genes instead of a vector. However, note that
since genes are positional we, wherever the distinction is important must use
the vector representation; such a position in a chromosome is called a locus
in genetics. This means that, although two genes may look the same, they
‘code’ for different information if they are at different loci. Every locus (i.e.
coded parameter) has its own alleles.

Chromosomes, in contrast to genes, are thus not atomic; they may be split
and recombined at gene boundaries.

We denote the set of all possible chromosomes Sξ . This set has the form

Sξ =
⋃

n≥1

L1 × · · · × Ln (4.2)

where Li is the i:th locus’ gene space and n is the number of loci, i.e. the
length of the chromosome in number of genes. In the common case, in
terms of the genetic algorithm, of a fixed number of genes per chromosome
and all genes sharing the same possible values, this degenerates into

Sξ = Sn
γ . (4.3)

1According to the IEEE 1484 Learning Technology Standards Committee a string is a
data type consisting of symbols from standard character sets; properties: unordered, exact,
non-numeric, and denumerable.
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since then each Li = Sγ .

Often the concept of a gene is omitted in the literature on genetic algo-
rithms, and chromosomes are used exclusively. In this case the chromosome
is often thought of as a string of bits encoding the problem at hand; strictly
speaking the bits would then form the genes.

Furthermore, in nature the chromosome is always based on a physical
structure. It is important to realise that in nature species may have identi-
cal or virtually identical sets of genes, and still differ significantly (see e.g.
[HP95]). The reason is that in nature it is strictly speaking not the chro-
mosome that is the most important bearer of information: it is the genome,
a vector of genes that may or may not encompass a single chromosome. In
other words, both the contents and order of the genes within the genome mat-
ters. Interestingly, this imposes a second-order structure on the inheritance
of information which to our knowledge has not been exploited in genetic
algorithms.

Definition 28 (Agent) An agent α (also called an individual) is a tuple

α = 〈ξ, I〉 (4.4)

where ξ is a chromosome and I ∈ I is a time interval.

Note that we use the terms agents and individuals interchangeably through-
out this work. Sometimes we may also talk about members of a population,
especially when we want to emphasise the membership.

Let Sα be the set of possible agents. This set of all possible agents may be
infinite because there is no a priori restriction on range of intervals. Because
intervals are defined over INT(Z) the set is countable. We note that the set
of all possible agents within an interval I (whether base or composite) is

SI
α = {α | I v I(α)} (4.5)

where I(α) denotes the interval within which α is defined (‘alive’).

Example 7 In order to see what a possible population looks like in this for-
malism, we can imagine a set of agents αi, i = 1 . . . n with the following
general form

αi = 〈~γi, Ii〉

where ~γi is a vector of genes, say < 0, 1, 0, 1 > making up a chromosome,
and Ii = [mi, ni] according to the relevant definitions. Then, in particular,
the following explicit agents are allowed

α1 = 〈< 0, 1, 0, 1 >, [0, 1]〉

α2 = 〈< 0, 1, 0, 1 >, [0, 2]〉

α3 = 〈< 0, 1, 0, 1 >, [0, 3]〉

α4 = 〈< 0, 1, 0, 1 >, [1, 2]〉

. . .

showing that agents may have the same genes (chromosome pattern, as it
were), as long as their intervals differ, i.e. they are not alive at the same times.
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Central to the genetic algorithm is the concept of the fitness of an agent.
Note that since individuals in genetic algorithms only have one chromosome
each (in contrast to real life) we could talk about the fitness of the chromo-
some instead; however, it is customary to use individual (or agent) – assum-
ing, of course, that the fitness is time-independent, and not depending on
the interval.

Definition 29 (Probabilistic fitness) An individual’s (i.e., agent’s) probabilis-
tic fitness is its probability of occurrence in a population within any given
interval:

φ(ξ, I) = p(αI) (4.6)

where αI denotes an agent with chromosome ξ within the interval I .

Sometimes we abbreviate φ(ξ, I) to φξ especially in cases where the time
interval need not be emphasised. When we want to emphasise the fitness of
a certain individual α with chromosome ξ we use the expression φξ(α). In
terms of our formalism the fitness is a number, which may be manipulated
using standard numerical operators. This means that we have a two-sorted
logic, in line with that of Bacchus’ [Bac90] probabilistic logic with its proba-
bility operator.

Since φ is a probability, this also means that the following hold.

φ : Sα → [0, 1]. (4.7)

In other words, φ is a function giving a number from 0 to 1, inclusive. Fur-
thermore, assuming I is a base interval,

∀I ∈ I :
∑

ξ∈Sξ

φ(ξ, I) = 1 (4.8)

capturing the essential fact that, looking at any single base interval the sum of
the probabilities of the possible chromosomes (i.e. the occurring individuals
in the population at that interval in time) is one.

Summarising, in this way we have equated the phenotypic fitness (the
relative ability of an organism to survive in its current environment) with
the probability of occurrence (probabilistic fitness); the genetic fitness (the
relative ability of an organism to propagate its genotype) is used when deter-
mining which agents may reproduce [Cas89]. The genetic fitness is what
connects the agent to the problem at hand, i.e. the problem-specific connec-
tion to the chromosome and its genes with their encoded information.

Strictly speaking, there need be no one-to-one correspondence between
the two types of fitness. For example, consider pleiotropy, the effect that a sin-
gle gene may simultaneously affect several phenotypic traits, and polygeny,
the effect that a single phenotypic trait may be determined by the simultane-
ous interaction of many genes [Fog94b].

Indeed, as has been pointed out by Nettleton [Net94], citing Lewontin
[Lew74], the interaction between genotypic space G and phenotypic space
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Figure 4.1: Phenotypic and genotypic space mappings suggested by Nettle-
ton and Lewontin. The four minimal mappings to fully describe the relation-
ship between phenotypic and genotypic space are schematically shown.

P is complex, and may be characterised by four functions:

f1 : E × G → P (4.9)

f2 : P → P (4.10)

f3 : P → G (4.11)

f4 : G → G (4.12)

where E models the addition of environmental symbols. The interaction is
shown in figure 4.1.

The mapping f1 models the development of the phenotype in terms of its
genotype and other environmental factors, such as epigenesis (the sensitivity
of development to local conditions). For example, some fish change gender
depending on the temperature of the sea. f2 controls the selection, immi-
gration and emigration of individuals within the population; this does not
impact on the individual’s encoding, but on its behaviour. The phenotypic
space contains traits, or characteristics of the individual (e.g. speed, dexterity,
etc.) as elements, i.e. range for f2 and f3 and domain of f1 and f2. Then,
f3 maps the effects of f2 back to the genotype. The genotypic space con-
tains chromosomes (in the sense of the genetic algorithm described above)
encoding in some way the aforementioned traits, as range for f1 and f4 and
domain of f3 and f4. Finally, f4 controls the manipulation of the coding
using genetic operators, such as mutation and recombination.

In this model, however, we assume that the genotype and phenotype sim-
ply correspond to each other. This leads us to formulate the following as-
sumption.

Axiom 1 (The Central Assumption [CA] of the GA Model.) There is a
one-to-one correspondence between the genetic and phenotypic fitness of an
agent.

To see that it is necessary to formulate this assumption, one need only
consider a lethal mutation (on the genotypic level) that makes the individ-
ual extremely fecund (on the phenotypic level). Then the mutation would
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quickly spread, but would make the population very ‘unfit’, in terms of the
genotypic fitness and at the same time very ‘fit’ in terms of the phenotypic
fitness since it would be exhibited by a large proportion of the population.
In other words, there is no necessary correlation, either positive or negative,
between the phenotypic and genotypic fitness. Of course, this is only true on
the individual level; on the population level there must be a positive correla-
tion, otherwise the population would die out. In other words, unless we have
this assumption we cannot derive any genotype fitness information from the
phenotype.

Using the CA we may omit the qualifier genetic or phenotypic, except
where we want to explicitly emphasise which kind of fitness we are referring
to.

For an interesting discussion on genotypes vs. phenotypes in a genetic
algorithm setting, see Hart, Kammeyer, and Belew [HKB94].

In practice, we use a fitness function (see below) that produces a value that
is used to grade individuals. This value is often called fitness as well; strictly
speaking, it is an external fitness, one that is used by the selection function in
determining which individuals shall survive to the next generation. In other
words, the probabilistic fitness may be seen as the external fitness normalised
to the open interval (0, 1] after selection has taken place. The reason for an
open lower boundary in the interval is clear from the definition of a popu-
lation below. This means that the probabilistic fitness cannot be used for
selection, as we shall see.

Definition 30 (Population) The population Π of a genetic algorithm is the
set of all agents having a non-zero probabilistic fitness within a time interval.
Formally

Π = {α | φ(α) > 0} ⊆Sα. (4.13)

We also call this the real population for reasons that become clear below
(theorem 2).

Π is normally very small compared with Sα, i.e. |Π| � |Sα|. For com-
pleteness’ sake we denote the set of all possible populations SΠ.

Before going on to formally define the genetic algorithm, we assume that
the population Π is finite. It is clear that if the population is finite initially,
then it will stay finite forever (in practice due to physical limitations). The
reason is that all new offspring are generated from a population (either ini-
tial or subsequent), and any operation that generates offspring will always
generate a finite number of them (see (4.50) and (4.51) below). Of course,
we could assume an operator that generates an infinite number of offspring;
however, such an operator would be impossible in practice even if conceiv-
able in theory. We need to assume that the initial population is finite; from
a practical point of view this is obvious (how could we do any calculations in
practice on an infinite population?), but from a theoretical point of view the
size of the population need not be constrained. Indeed, several researchers
have assumed infinite populations in their work (e.g. Goertzel [Goe95] and
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Figure 4.2: Population for an interval

Worden [Wor95]) but none has (as far as the author knows) assumed an op-
erator that from a finite number of parents generates an infinite number of
offspring.

The probabilistic fitnesses of the members of the population form a prob-
ability distribution over Sα. As the population Π is a set of individuals (see
Definition 30 above), the probability distribution f on Sα is a function f :
Sα → [0, 1] such that

∑
m∈Sα

f(m) = 1. The support of a probability dis-
tribution f on Sα is the set of m ∈ Sα such that f(m) > 0. For a set
of individuals L ⊆ Sα and a probability distribution f on Sα we define
f(L) =

∑
m∈L f(m). For more details see e.g. [SB95].

From the foregoing discussion it is also clear that the population is the
support of the probability distribution for the probabilistic fitness.

The population ΠI within a base interval I is given by

ΠI = {α | I v I(α) ∧ φ(α) > 0} (4.14)

Note that, using the preceding interval relations equation 4.14 may be
written as

ΠI = {α | I O I(α) ∧ φ(α) > 0}, (4.15)

using the overlap relation introduced in definition 7, as can readily be seen.

More concisely, this may also be written as

ΠI = {α ∈ SI
α | φ(α) > 0} (4.16)

using the previous definition of the possible set of agents within an interval
(equation 4.5).

This is shown in figure 4.2. In the figure we have a base interval In with
its neighbouring intervals, In−1 and In+1, and four population members α1,
α2, α3, and α4 depicting the four possibilities:

α1− extends from the beginning of the interval beyond the end of the
interval

α2− extends from beyond the beginning and beyond the end of the
interval
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Figure 4.3: Traditional genetic operator

α3− extends from beyond the beginning of the interval to the end of
the interval

α4− extends exactly over the interval (from the beginning to the end)

With the addition of the case of two totally disjoint intervals, these are the
‘interesting’ period relations as defined by van Benthem [Ben83, p. 9].

Putting it another way, we may, following Shoham [Sho88, p. 47ff] con-
sider the chromosome as a logical proposition (in the sense of [San94b]),
and in his terms say that we are using liquid temporal propositions [Sho88,
Shoham definition 2.7, p. 49]. Below we will not be using Shoham’s formal-
ism since it largely follows van Benthem’s.

Traditionally, the genetic algorithm is seen as modifying the genes (e.g.
for mutation) or chromosomes (e.g. for crossover and recombination) in a
population. This is depicted in figure 4.3 where we use the generic mapping
ω denoting the relation between, on the one hand, parent and offspring indi-
viduals (strictly speaking chromosomes), and on the other hand subsequent
populations (generations).

The problem is that in our setting we do not want to be seen modifying
the chromosome as it denotes a proposition in our underlying logic; instead
we describe the new population in terms of the propositions’ fitnesses. This
necessitates a change of perspective in such a way that the population so to
speak both before and after application of the genetic operators consists of
the same members. This means that a genetic operator that in the traditional
manner generates a new individual (the chromosome of which might not
have existed in the previous generation) instead modifies the fitness of an
(possibly ‘virtually’) existing one from zero to a finite value. In other words, a
new individual gets ‘born’. If the individual exists, the operator modifies the
fitness according to the composition of the new population. An individual
may also ‘die’, in which case the fitness, i.e. the probability of occurrence
after being selected against, goes from a non-zero to zero value.

We may thus think of the population as consisting of two kinds of mem-
bers: the real and the virtual members, where the real members have a non-
zero probability of occurrence, i.e. fitness, and the virtual ones have zero.
This is not the only criterion for a virtual member, however. It is important
to realise that the virtual members are not random: they are exactly those that
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at some time in the future will exist. Reversing the picture, any real member
has either always been real from the initial moment, or been virtual up to
a ‘time of birth’. Likewise, an individual may ‘die’ and become virtual; of
course, it may be ‘resurrected’ at a later time.

Below we define and characterise the concepts; for a real member of a
population we have the following definition.

Definition 31 (Real member) A real member αI of a population ΠI within
an interval I is an agent (individual) that exists.

The corresponding definition of a virtual member is as follows.

Definition 32 (Virtual member) A virtual member αI,v of a population ΠI

within an interval I is an agent (individual) that at some interval during the
run of the genetic algorithm has existed, or will exist, but that during I does
not do so.

In order to characterise these formally, we define the predicate alive.

Definition 33 (Alive predicate) The predicate alive is defined as

alive(α) : φ(α) > 0 (4.17)

and essentially is true when the fitness of an individual (the argument α) is
greater than 0, and false otherwise.

This definition is in line with Definition 30 for a population. We may now
present the following theorems using the predicate.

Theorem 1 For a general virtual member αI,v of a population ΠI the follow-
ing holds

©3alive ∨ ©�alive (4.18)

where alive is the predicate in Definition 33.

Proof. Separating the two halves dealing with future time (©3) and past
time (©�), and taking the future case first, we notice that the next operator
© ensures that we do not deal with the current interval I . Then, since the
eventually operator 3 ensures that the expression becomes true at some, un-
specified, time in the future, we have fulfilled the requirement of Definition
32 for future times. It is easy to see that past time is handled similarly, and
that our expression embodies the definition of a virtual member. 2

What this means is that from the next generation of the individual we
are certain (‘eventually’) that its fitness will some time in the future become
non-zero, i.e. it will exist; in other words, it will become a real member of
some future generation. Likewise, for the general case, for past times. We
will find little use for general virtual populations or their members. We will
use the term ’1-generation’ virtual member for one that is ’alive’ in the next
generation, and n-generation for one that is in the n:th generation ahead.

For this last case of n generations ahead, we prove the following theorem.
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Theorem 2 For a n-generation virtual member αI,v of a population ΠI the
following holds

©nalive (4.19)

where alive is the predicate in Definition 33.

Proof. n-generation means that the past is no longer taken into account, so
following definition 32 and theorem 1 the term with the barred operators
is omitted. Furthermore, recalling that ©n denotes the abbreviation of n
applications of © the eventually operator 3 may be dropped since, tempo-
rally speaking, 3 is equivalent to © applied enough times (i.e., ∃n such that
©nα = 3α.) The correctness of the theorem immediately follows. 2

Specifically, for a 1-generation virtual member we have the following.

Corollary 1 For a 1-generation virtual member αI,v of a population ΠI the
following holds

©alive (4.20)

where alive is the predicate in Definition 33.

Proof. Directly from Theorem 2 setting n = 1. 2

In other words, in the next generation the individual will be real, i.e. have
a non-zero fitness.

The set of virtual members will be called the virtual population ΠI,v. For
specific generations we may use superscripts, Π1

I,v, Π
2
I,v . . .Πn

I,v. Also note
that we mostly omit the superscript if it is 1; and that we frequently use the

shorthand I© for the next generation’s, and I© for the previous generation’s
interval. This also means that we use e.g. ΠI©,v for the virtual population
of the next interval. Furthermore, unless otherwise noted we will always
designate the 1-virtual member as a (plain) virtual member, and explicitly
use the prefix (e.g n-generation) for others; likewise for virtual populations.

The total population ΠI,t for an interval I is simply the union of the real
and virtual members within the interval. Thus we always have that ΠI =
ΠI,t −ΠI,v, omitting the superscripts to designate the interval (in the future).
The virtual population may also be designated as 1-generation, 2-generation,
. . . n-generation, as appropriate. For n > 1 we may also have cumulative or
direct virtual populations: as implied by the designations an n-cumulative
population is formed by first adding the virtual members for 1-, then 2-, . . . n-
generation, whereas an n-direct just adds the members from n-generation to
the population of interest.

This leads to the following interesting observation. Note that we use the
initial population Π0 from Definition 40 in advance of its introduction; we
trust this will not cause difficulties.

Theorem 3 The subset of Sξ that the genetic algorithm has examined (or
checked) up until any interval I is the n-generation cumulative virtual popu-
lation, n being the ordinal number of the interval in question, in addition to
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the initial population. Formally

ΠI,checked = Π0 ∪
n⋃

i=1

Πi
I,v (4.21)

where Π0 is the initial (real) population. This may also be shown as

ΠI,checked = {α | � alive(α) = true} (4.22)

where alive is the predicate in Definition 33.

Proof. The former equation follows directly from the foregoing discussion
and definitions 30, 32, and theorem 2. The latter equation follows from the
definition of the temporal previous � operator and the definition of a popu-
lation as having individuals with fitnesses greater than zero (others are never
examined); so any that has been checked must have had fitness greater than
zero. 2

Note that we are not implying that all individuals with non-zero fitness
have been examined.

We are now ready to discuss how new members of the population are
generated.

4.2 GENETIC OPERATORS

We also need to know by what mechanisms an individual changes, i.e. evolves.
We call these mechanisms genetic operators; strictly speaking there are three
different kinds corresponding to operations on the three structures in the ge-
netic algorithm:

• operators affecting genes: ωγ : Sγ → Sγ

• operators affecting chromosomes: ωξ : Sξ × Sξ × . . . × Sξ → Sξ

• operators affecting populations: ωΠ : SΠ → SΠ

Traditionally, genetic operators are seen as modifying the genes (e.g. for
mutation) or chromosomes (e.g. for crossing and recombination) in a popu-
lation. This is depicted in figure 4.3.

We define three kinds of genetic operators as sketched above. The first
one transforms genes to genes. A gene-specific operator ωγ is a mapping
transforming a gene γD to another gene γR. Mutation serves as a good ex-
ample: there a gene is transformed by, e.g. randomly flipping a bit (seeing
the gene as a bit string along the lines indicated on p. 31) in γD altering it
to γR. Note that in general application of gene-specific operators is optional,
i.e. they are applied with a typically very low probability. We can depict the
situation as in figure 4.4.
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Figure 4.4: Genetic operator

As the figure clearly shows each gene, at its own locus, may be transformed
to another of its own alleles; in other words, ωγ is a function.

Thus we may define ωγ as follows.

Definition 34 (Genetic operator: gene) A gene-specific genetic operator ωγ

is a deterministic function transforming an allele of a gene γD to another γR.

ωγ : γD 7→ γR (4.23)

where the subscripts D and R represent domain and range, respectively.

In general, a genetic operator ωγ is applied with a certain probability δ.
Since δ more often than not is comparatively small most genes are not mod-
ified during the run of the genetic algorithm. As an example, already men-
tioned above, consider mutation: a gene may either mutate to another allele,
or not at all. In any case one gene may never change into another gene; cf.
the discussion on loci above. The end result may from a chromosome point
of view be that two chromosomes and hence the individuals contain exactly
the same structure. However, these are considered different as the chromo-
somes (containing the genes) in the population strictly speaking form a mul-
tiset, as pointed out above. In other words, the mapping of gene loci from
generation to generation is bijective and the operator is a function.

The second kind of genetic operator operates on chromosomes. There we
have two or more chromosomes being transformed into one, two or more,
probably different chromosomes. The almost universally used crossover (or
recombination) operator is a good example of this. There are many ways
how crossover may be implemented: one-point, two-point, uniform, and so
on [Gol89, Whi94]. In these one new chromosome (individual) is generated
from two ‘parents’ in various different mixing schemes. In the evolutionary
strategies variety of evolutionary algorithms we frequently have a number of
recombining chromosomes not equal to two [BS95a, SB95].

Before showing the definition, we need to be able to obtain the chromo-
somes for a population Π at a specific interval I . Recalling Definition 28
for an agent belonging to a population (Definition 30) we see that we need
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to project out the chromosomes from the population, discarding the interval
information in the process. We define a projection operator \ as follows.

Definition 35 (Projection) Given a set A = {A1, A2, . . . Am} of tuples Ai =
〈ai,1, ai,2, . . . ai,n〉 the projection operator \aj

extracts a set B of an indicated
element aj from each of the tuples Ai in A. Formally we have

B = A\aj
= {a1,j, a2,j , . . . am,j} where 1 ≤ j ≤ n (4.24)

As a straightforward extension to the projection operator \ we allow it to
project out single elements from tuples; e.g given an agent α = 〈ξ, I〉 the
operation α\ξ gives just ξ.

Operators for chromosomes may then be characterised by the following
general definition.

Definition 36 (Genetic operator: chromosome) A chromosome-specific ge-
netic operator is a function transforming a set of chromosomes to a chromo-
some.

ωξ : {ξD | ξD ∈ ΠI\ξ} 7→ ξR ∈ ΠI©\ξ (4.25)

where I© refers to the immediately succeeding interval following I .

Strictly speaking, since we often equate chromosomes with individuals
we should use the adjective individual-specific, not chromosome specific, or
rather specific to a set of individuals; however, it is customary to use the plain
chromosome specifier.

The designation function above is warranted because of what we could
call the multiset property of the population; even if two individuals share
the same genetic information (the chromosomes being equal, and thus the
projection Π\ξ strictly speaking forms a multiset, not a set) we consider them
distinct because the agent according to Definition 28 includes the interval as
well.

Finally, the third type of genetic operator operates on whole populations.
There is only one in general use: the selection operator determining which
individuals will survive to the next generation and which will not. The se-
lection operator uses a special function to grade individuals; this function
is called the fitness function, as described above. We could easily imagine
other population functions as well: in an implementation of a distributed
genetic algorithm the actual distribution of the population could be treated
as such an operator, to mention one example. The formal definition of the
third kind of genetic operator is as follows.

Definition 37 (Genetic operator: population) A population-specific genetic
operator ωΠ is a mapping transforming a population ΠD of individuals into
another population ΠR of individuals.

ωΠ : ΠD 7→ ΠR (4.26)
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Of course, this definition may be seen as subsuming all the different cases
described above.

Note that due to the mapping ΠD 6= ∅ whereas ΠR may be ∅ and that
|ΠD| is not necessarily equal to |ΠR|. We will treat the population selection
and fitness function and their characteristics separately below (section 4.4).

We denote the set of all genetic operators Ω. First setting

Ωγ = {ωγ1
, ωγ2

, . . .} (4.27)

Ωξ = {ωξ1, ωξ2 , . . .} (4.28)

ΩΠ = {ωΠ1
, ωΠ2

, . . .} (4.29)

we have that

Ω = Ωγ ∪ Ωξ ∪ ΩΠ. (4.30)

It is also clear that the genetic operators described above are composable;
recall that a sufficient condition for composability is that they are (at least
partial) mappings and that they are compatible. Compatibility in this con-
text can be realised easiest by, so to speak, elevating all operators to operating
on populations; in other words, interpreting them all as ωΠ’s. Seen from
this perspective, ωξ will become an ωΠ, namely one where one individual’s
chromosome has been altered. Clearly, this individual is still an individual
of a population, albeit a different one; and we can say that the difference
has been caused by the application of an operator ωΠ having exactly this lo-
calised effect. In the same way we can argue that ωγ ’s can be seen as ωξ’s and
hence as ωΠ’s. Summarising, all operators ω ∈ Ω can be said to map from
a population to a population (i.e. ΠD 7→ ΠR as in Definition 37.) We can
formalise this by using a variant of the projection operator \ (see definition
35) for operators.

The important thing is to realise that we are dealing with structures em-
bedded in each other in a hierarchical fashion. Recall that

ΠI = {〈ξ1, I〉, . . . 〈ξn, I〉} (4.31)

ξ = 〈γ1, . . . γm〉. (4.32)

In other words, we have three ‘levels’: the population level Π, the chromo-
some level ξ, and the gene level γ, each of which (except for the atomic
lowest level γ) contains elements made from a level below. So it is warranted
to treat the functions modifying a level as functions also modifying the level
immediately above – provided the changes propagated ‘upwards’ are com-
patible with the levels they are seen as happening in. We formalise this as
follows.

Definition 38 (Operator compatibility) Given a structure S = 〈T1, . . . Tn〉 ∈
S of elements Ti ∈ T not further specified (i.e., which can be anything, e.g.
other structures) we say that a function f : x 7→ F is upwardly compatible
if F ⊆ T , i.e., its domain is part of the ‘higher’ level’s structures’ domain.
Calling functions in this ‘higher’ level g : y 7→ S, we denote such a function
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Level Function Function � Function ↑ Function ↓ Function �

Π ωΠ ωγ �ωΠ ωξ ↑
ωΠ

ξ ωξ ωγ ↑ωξ ωΠ ↓ωξ

γ ωγ ωξ ↓
ωγ ωΠ �ωγ

Table 4.1: Hierarchical function levels used in genetic algorithms

f ↑g. Note that x and y are ranges for the functions f and g, respectively;
their actual contents are immaterial (although they more often than not are
the same as the domains, i.e. F and S, respectively). We can easily extend
this to even higher levels, denoting them with as many arrows as levels raised
(e.g. �g); likewise, we can see them from above, so to speak, and extend
downwards using ↓g and �g, and so forth. For orders greater than 2, where
the number of arrows become unwieldy, we can use ↑(n)g and ↓(n)g for n
levels upwards and downwards compatibility, respectively.

We can visualise the situation as diagrammed in table 4.1, where we show
the situation as applied to genetic algorithms with its three levels.

Using the operator compatibility syntax defined above, we can now easily
define the projection operator for operators as follows, which will allow us to
compose all our genetic operators in the ways we desire.

Definition 39 (Projection for operators) The projection operator \g extracts
from an operator f those mappings that are compatible (according to defini-
tion 38) with the operator g. Formally, given two operators f and g, we define
the projection of the operator as one of the following, depending on whether
we desire upwards or downwards compatibility:

f\g = f ↑(n)g (4.33)

f\g = f ↓(n)g (4.34)

where n is the number of levels where f can be found in relation to g.

Regarding operator composability, following standard practice, we define
composition of functions as f ◦ g(x) = f(g(x)); most often we omit the
argument and say that f ◦ g = f(g(. . .)). However, the order does matter: a
sequence of genetic operators may for example be in the order

ωγ = ωγ1
◦ ωγ2

◦ . . . (4.35)

ωξ = ωξ1 ◦ ωξ2 ◦ . . . (4.36)

ωΠ = ωΠ1
◦ ωΠ2

◦ . . . (4.37)

Any order is of course acceptable, but obviously the result may differ. In
other words, commutativity between the different genetic operators does not
necessarily hold; i.e. in general ω1 ◦ ω2 6= ω2 ◦ ω1.

In order to be able to compose almost arbitrarily, the operators have to
compatible in the manner shown above. In other words, if we for instance
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wish to compose on the population Π level, we must write something similar
to the following, using definition 39

ωΠ = ωΠ1
◦ . . . ◦ ωΠn

◦ ωγ\ωΠ
◦ ωξ\ωΠ

◦ . . . (4.38)

ensuring that we are operating at the same level at all times, considering the
effects of the γ and ξ levels on the desired Π level as well.

Analogously with the virtual members of a population discussed above,
we may use the concept of virtual genetic operators. We use them in order
to affect a mapping from fitness value of an individual to fitness value of the
same individual in the next interval, not from chromosome to chromosome.
This is schematically depicted in figure 4.5 where the (real) operator ω is
shown together with its dual, the (virtual) operator ωv.
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Figure 4.5: Virtual genetic operator

In order to use the virtual operators, we need to formally define mor-
phisms between them and the real ones. In this way we may use the re-
sults interchangeably between the standard evolving structures and the vir-
tual evolving fitnesses. Firstly, we need to obtain the fitness φ(α) for an
individual. This is easily accomplished by projecting out ξ from 〈ξ, I〉 and
obtaining φ(ξ) = φ(α) from ξ using α\ξ. The problem is then that there
may be several individuals with the same fitness, i.e. φ : ξ 7→ r ∈ R is not
one-to-one. This would mean that the fitness value φ(α) for possibly several
individuals in an interval could not be mapped uniquely to the next interval.
In order to overcome this we need a bijective function from an individual
to a value that could serve as a fitness value; i.e. one that may be uniquely
mapped to the real fitness value φ(α). We need to define these morphisms;
see figure 4.6.

In a similar fashion, Battle and Vose show [BV91], in an interesting ap-
proach to characterising genetic operators using isomorphisms, that trans-
formations of schemata is possible using algebraic formulations, including
isomorphic genetic operators.

In our setting figure 4.6 depicts the needed mappings, where the following
symbols have been used.
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ΠI

f

��

ω // ΠI©

MI µ
// MI©

f−1

OO

Figure 4.6: Necessary commuting transformations and populations

• ΠI and ΠI© are the population of chromosome individuals for the cur-
rent and the next interval, respectively

• MI and MI© are the population of fitness individuals for the current
and the next interval, respectively

• ω is the (canonic) genetic function from chromosome population to
population

• µ is the (canonic) genetic function from fitness population to popula-
tion

• f and its inverse f−1 are the transformation functions from/to chromo-
some and fitness, respectively.

The problem is the function f . It has to be injective, and an inverse
must exist. The inverse should be bijective, i.e. injective and surjective. We
construct this function in the following manner. Recall that each individual
has a fitness φ = φ(ξ) = φ(α) ∈ [0, 1]. We wish to use natural numbers,
instead of real numbers. Denoting N0 = {0} ∪ N it is trivial to define a
function g : R → N0 to affect the converse transformation. So we define a
function

f : Sξ →N0 (4.39)

where f maps the individual fitness values by first ordering all individuals
α in ascending order on φ(ξ). Assume the number of different values is
N ≤ |Sξ|. Note that we use Sξ instead of Sα since the former is finite,
whereas the latter is not. Then assign each fitness value a unique natural
number following the rules

1. First we divide the natural number axis into increments of 2 · N , i.e.
0, 2 · N, 4 · N . . . 2 · N 2.

2. The first number is 0, corresponding to the first (lowest) real fitness (in
practice almost certainly 0, i.e. not ‘alive’).

3. For each individual

• if its real fitness value is different (i.e. higher) than the previous
one, we assign the individual the natural number of the next in-
crement,
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Figure 4.7: Fitness numbers

• if its real fitness value is the same as the previous individual, we
assign it the value of the previous individual incremented by one.

4. Continue until all individuals have been assigned a corresponding nat-
ural number.

Thus f maps a chromosomal individual to a unique natural number (its
fitness number), fulfilling the conditions above. The assignment algorithm
also ensures that the order is ascending, as well as in the same order as the
original fitnesses. See example 8.

Example 8 (Fitness numbers) Suppose we have a population of five individ-
uals, with varying fitnesses. We wish to assign them unique fitness numbers.
See figure 4.7.

In the figure we have a total of five individuals and their fitnesses, φ1 . . . φ5,
where φ2 and φ3 are equal, the rest all different, making N = 5. The as-
signment proceeds by first assigning φ1 the number 0, φ2, which is different
(higher) than φ1 gets the number 1 · 2 · N = 2 · 5 = 10. Next, since φ3 is
equal to 4 and φ5, being different from each other and higher than φ3, get the
numbers 20 and 30, respectively (2 · 2 · N and 3 · 2 · N ).

The sequence of fitness numbers has several interesting properties. Firstly,
it is monotonically ascending, by construction. This means that each possi-
ble individual α in Sα is mapped to a unique fitness number, the value of
which depends on its fitness as calculated by φ(α). f is thus clearly injec-
tive, whereas the inverse f−1 is bijective, which is exactly according to our
demands. In other words, f−1 : f(Sξ) 7→ Sξ. This of course has the con-
sequence that each mapping ω from (chromosomal) individual to individual
may be represented in the ‘fitness’ space N0 by a unique mapping µ. Sec-
ondly, by construction we have defined a range of fitness numbers ‘around’
each fitness increment (2 · N ) serving as a range of equality (equivalence in-
terval) for each fitness value φ, i.e. a range where we have a set of different
individual having the same fitness. We call this the equivalence interval. The
size of the interval is N , which explains the choice of 2 · N above ensuring
nonoverlapping equivalence intervals, and thus also ensuring the uniqueness
of each fitness number.
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Figure 4.8: Populations and commuting transformations, normal

This is quite similar to the approach taken by Goldberg in [Gol90] and
Mahfoud in [Mah93, Mah95], where the authors effectively partition the
(real) fitness space into classes with sets of individuals belonging to each class,
formally assigning each class the same fitness.

Note that in the following exposition on commuting transformations we
use compositions of functions in the way used in category theory; in other
words, we use f = f1 ◦ f2 to denote the composition f(x) = f1(f2(x)) .
The reason is that it is much easier to follow the category theory way when
describing and using commutative diagrams, cf. figure 4.6 or figure 4.8.

We now have the required equivalences (cf. figure 4.6 and 4.8):

ω = f ◦ µ ◦ f−1 (4.40)

µ = f−1 ◦ ω ◦ f (4.41)

In order to formulate a representation of the virtual genetic operator v we
obtain the commutative diagram shown in figure 4.8. It is clear that this
diagram commutes without the v arrow; by definition this added arrow must
also commute with the rest of the diagram.

Note that since f = f−1 ◦ f (or α = f(f−1(α))) we also have the com-
mutative diagram in figure 4.9.
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Figure 4.9: Populations and commuting transformations, reversed

Directly from the diagrams we thus obtain the following for v.

v = µ ◦ f−1 (4.42)

= f−1 ◦ ω (4.43)
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Item Description
1 Form parents Typically this is achieved by copying population

members in some form and proportion to an inter-
mediate population

2 Select parents Typically this is done using a selection scheme that
ensures that fit individuals have a higher survival rate
than unfit ones

3 Generate off-
spring

The selected individuals are further subject to genetic
operators that with some probability generate new in-
dividuals, thus exploring the search space induced by
the genotype

4 Test completion If an acceptable termination criterion is met we con-
clude the process, otherwise go back to stage 1

Table 4.2: Main genetic algorithm stages

as well as the trivial ω = f ◦v. This means that v may be defined as a function
v : N0 → Sα, or v : n 7→ αI© , where n is a fitness number as described above.
Or, casting this into functional form, we may say that v(n) = ω(f−1(n)),
where n is a fitness number.

We are now ready to formally define the previously informally presented
genetic algorithm.

4.3 FORMAL GENETIC ALGORITHM

This section will use the machinery introduced in the preceding sections
to characterise the working of the genetic algorithm from a formal point of
view. There are many formal versions based on other characterisations, e.g.
overviews and set-based in [Gol89, HB92, Hol92a], as well as algebra-based,
notably by Radcliffe and Surry [Rad91, Rad93, Rad94a, Rad94b].

In a way similar to Hoffmeister and Bäck in [HB92] a genetic algorithm
GA can be modelled as a 5-tuple

GA = 〈Sγ,Sξ,SΠ, INT (Z), Ω〉, (4.44)

using the symbols introduced in the preceding section. However, this model
is static in nature, and does not take into account the more interesting dy-
namic behaviour of the genetic algorithm.

As described in the introductory chapter, following the formation of an
initial population the genetic algorithm goes through the four stages listed in
figure 4.2.

Note that, as has been shown in the previous section the order of selection
and recombination does not matter: typically it is the one shown.

We form the initial population by randomly selecting a suitable number
of individuals from all possible individuals. In our formalism, using infinite
time we may characterise the initial population as follows.
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Figure 4.10: Genetic algorithm populations. For symbols see text.

Item Description
ΠI Original population at interval I
ΠI,E Elite population saved from interval I to I© (does not undergo

selection)
ΠI,P Parent population (undergoes selection)
ΠI,C Child population selected
ΠI© New population at interval I©

Table 4.3: Populations in the genetic algorithm

Definition 40 (Initial population.) A population Π for which

∃I0, ∀I < I0, ΠI = Π (4.45)

holds, where ΠI is the population in interval I , is called initial. We denote
this population Π0.

The initial population is thus the one where the population in the next
interval differs for the first time, or ΠI©

0

6= Π0. We may number the popula-

tions with a subscript, Π0, Π1 . . .Πn, but since the initial population is in no
way special in terms of the subsequent application of the genetic algorithm,
we omit the subscript, and call the population simply Π.

Having formed a population we need to form the set of parents, the size
of which may be smaller, the same, or larger than the full population. Thus
we continue with selection of those individuals that may participate in pro-
creation - i.e. the parents of the next generation (the offspring).

The whole process may be depicted as in figure 4.10. The various popula-
tions, from the original to the new population, are listed in table 4.3.

Of these, the ΠE population constitutes an often used, but optional elite
population, one that is deemed so fit that it is included without undergoing
selection (and thus competition) in the population for the next interval. It
may be formally defined as follows.

Definition 41 (Elite population) An elite is part of a population that is auto-
matically included in the next interval’s population because the fitness value
of its individuals exceeds an elite threshold, φE. Symbolically

ΠE = {α | α ∈ Π ∧ φ(α) > φE} (4.46)
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Note that, in general φE is dependent on the interval, i.e.

φE = φE(I) (4.47)

where I is the interval under consideration. This function might be used to
select the (one) best individual for automatic survival, for instance.

It is important to realise that the elite, if any, is bypassing the normal
mechanism for individual evolution in the genetic algorithm. Note that this
means that the elite does not participate in reproduction; this is of course a
choice that the designer of practical genetic algorithm may choose to disre-
gard. However, the effects of elitism may or may not be beneficial; for in-
stance, many practical applications want to retain the best individual found
so far, and incorporate elitism. On the other hand, it has also been proven
by Rudolph that the canonic genetic algorithm with added elitism does not
converge in the general case [Rud94]; cf. the section on convergence starting
on page 67.

There are many ways in which the parent population (or mating pool
[GD91]) may be formed. Note that this stage and the following in figure 4.2
are very often combined into a single selection stage [BT95, HB92, Whi94].
We will discuss selection below in section 4.4. The only certain character-
istic seems to be that parents must be present in the population; the size of
the parent population may be smaller or bigger than the original from which
they are chosen (or copied, if an intermediate population is used – in which
case there may be multiple copies of a particularly fit individual ensuring a
better probability of survival of its genotype).

Thus, in some manner not further specified at this time a parent set ΠI,P

is generated, or chosen from the full population ΠI .

ΠI,P = {αi ∈ ΠI | i ∈ K} (4.48)

where K is an index set indexing the population of ΠI,P with |ΠI,P | = |K|.
Since we do not require distinct individuals αi in ΠI,P , ΠI,P may formally be
seen as a multiset. For instance, in a selection scheme called linear ranking
(see table 4.4 on page 55) we purposefully duplicate individuals in order to
bias selection according to fitness. Note that this implies that in the general
case ΠI,P 6⊆ ΠI , and that we cannot say whether |ΠI| = |ΠI,P |, |ΠI| <
|ΠI,P |, or |ΠI | > |ΠI,P |. This has important consequences, as we shall see
below.

A genetic algorithm uses recombination (or crossover, short form for cross-
ing over) as the basic means of generating new individuals. In order to be
able to employ recombination we need to select the individuals whose chro-
mosomes we are going to combine. To this end the parent set ΠI,P is parti-
tioned into one or more mating sets ΠI,P1, ΠI,P2 . . .ΠI,Pn. We then select
an individual from each mating set forming the recombination set, which
constitutes all individuals from whom chromosomes will be combined, us-
ing a chromosome function as defined in the previous section. We may say
that these form parent tuples 〈α1, α2, . . . αn〉, where each αi is from the cor-
responding ΠI,P i. Following the recombination we have a set of offspring
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tuples 〈α′
1, α

′
2, . . . α

′
m〉. Together, all the offspring tuples form a child set

ΠI,C . In general, we may state that

ΠI,C = fΩ(ΠI,P1, ΠI,P2, . . . , ΠI,Pn) (4.49)

fΩ = ω1 ◦ ω2 ◦ . . . ◦ ωk (4.50)

where fΩ is a composition of all applied genetic operators as described in the
preceding section. Note that this is equivalent to the earlier formulation of
ωΠ (equation 37). In particular, we note that selection and recombination
are included.

The new population ΠI© is formed from the elite and the child popula-
tions.

ΠI© = ΠI,E ∪ ΠI,C (4.51)

where ΠI,E is the optional elite population described above, which deter-
mines which individual survives unopposed. Also note that, even if not a for-
mal requirement, we in all practical genetic algorithms have |ΠI | = |ΠI©|,
i.e. we adjust the selection in such a way that our population size does not
change. Exceptions to this rule are few, only the socalled Pareto genetic
algorithm can use populations whose size change. Also note that the new
population’s individuals will of course have their intervals suitably adjusted
(lengthened for surviving ones, or set for new ones) to include the appropri-
ate interval.

This process continues until the stopping criterion has been met.

We may now characterise the two main types of genetic algorithms.

Definition 42 (Generational GA) A generational genetic algorithm is one
where

ΠI ⊆ ΠI,P (4.52)

i.e. where the whole population participates in offspring creation (and con-
sequently none is left out).

Equivalently, the condition may be written

ΠI,P = ΠI iff |ΠI | = |ΠI,P |, (4.53)

which in practice often is the normal case.

Definition 43 (Steady-state GA) A steady-state genetic algorithm is one where

|ΠI©| > |ΠI,C | (4.54)

i.e. where only a part of the population generates offspring. The shortfall is
made up of individuals coming direct from ΠI , through ΠI,E.

In a steady-state genetic algorithm we have that typically |ΠI,P | � |ΠI |.
We can also immediately show that an elitist genetic algorithm strictly speak-
ing is not generational.

Theorem 4 An elitist genetic algorithm is not generational.
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Proof. Since in this case ΠI,E 6= ∅ and ΠI© = ΠI,E ∪ ΠI,C according to
equation 4.51 we immediately have that |ΠI,C | < |ΠI©| and definition 43 is
fulfilled. Do note that ΠI,E ∩ ΠI,C = ∅ because the individuals in the two
populations have different intervals (the children are newer than the elite). 2

In other words, looking at the genetic algorithm from a formal point of
view the only difference between the two types is in the individuals of the par-
ent set. As has been pointed out by e.g. Reynolds and Gomatam in [RG96]
the two kinds may also be seen for the generational genetic algorithm as one
without replacement into the population but instead forming a new popu-
lation, whereas the steady-state genetic algorithm uses replacement and no
new temporary populations.

It should be noted, though, that many different variants of genetic algo-
rithms have been described in the literature, and that the sequence of steps,
and indeed the steps themselves, are peculiar to each type of genetic algo-
rithm; see e.g. [BS93].

4.4 SELECTION AND THE POPULATION FITNESS FUNCTION

Selection, together with recombination is crucial in the genetic algorithm.
They determine which individuals may reproduce and how new offspring
are produced. In a temporal and probabilistic setting as outlined above we
are interested in the temporal characteristics of parents and offspring: who
survives, what are the conditions and possible alternatives, and so on.

The selection function modelled by ωΠ above is most often based on a
random selection from the parent set ΠI,P , where the probability of an indi-
vidual being chosen is directly proportional to its fitness.

Selection is performed in such a way that individuals are selected for in ac-
cordance with their fitness, so that the more fitter survive (statistically speak-
ing) and the less fitter do not. The key point here is that, on the average, new
individuals are fitter than old ones. Mathematically, we could say that

a ∈ ΠI©, b ∈ ΠI : P (φ(a) ≥ φ(b)) > 0.5 (4.55)

or, paraphrasing, on the average φ(a) ≥ φ(b).

As pointed out above, the formation of the parent set and the subsequent
selection process of individuals for offspring creation is most often combined.
We have the following common selection strategies, as listed in table 4.4
[BT95, GD91, HB92, MSV95, Sys91] .

There are a number of aspects which characterise the selection, conver-
gence and fitness in standard genetic algorithms [BT95, GD91]. Some of
the most common are listed in table 4.5.

From our point of view these parameters need to be redefined to provide
meaningful information in a temporal context.

The loss of diversity may be readily transcripted to a temporal context.
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Item Description
Tournament Selection scheme where a set of individuals of a certain size

(tournament size, often 2) is randomly chosen, and the best
is retained into the child population. Repeat until child
population is full.

Proportionate Selection schemes where we choose individuals with a
probability directly dependent on their fitness. Examples
include roulette-wheel selection [DJ75] [Gol89], and vari-
ous stochastic remainder schemes [GD91].

Linear ranking Selection scheme where we first sort individuals into as-
cending order on fitness, then assign each individual a
number of copies into the intermediate population based
on an increasing function on rank.

Truncation Select a certain percentage of the population for mating,
with equal probability [MSV93].

Steady-state Selection scheme where we work individual by individual,
choosing a parent by linear ranking, and replacing the cur-
rently worst individual [Sys91]

Table 4.4: Popular selection mechanisms

Item Description
Loss of diversity Denotes the narrowing of the current population diversity

due to deselection of ‘bad’ individuals from the population
Reproduction
rate

Denotes the ratio of the number of individuals with a cer-
tain fitness before and after selection

Selection inten-
sity (pressure)

The expected average fitness of the population after selec-
tion. Blickle and Thiele [BT95] point out that since this
is dependent on the initial fitness distribution, initially we
should have a normalised Gaussian distribution G(0, 1)

Takeover time Denotes the time until the population can no longer be
improved; essentially when it consists of only one ‘best’ in-
dividual; cf. loss of diversity above

Table 4.5: Selection parameters
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Definition 44 (Loss of diversity) The proportion of the population of an in-
terval I that was not virtual (i.e. was real) in the previous interval is called

the loss of diversity lI . Recalling that the previous interval is denoted I©

(definition 12), we have

lI =
|ΠI | − |Π1

I©,v
|

|ΠI |
(4.56)

for a certain interval I . Note that we have explicitly indicated that we mean
the 1-generation virtual population (see p. 39f) with the superscript 1 for
clarity.

Loss of diversity lI is related to the variance of the fitness in the popula-
tion. It can be shown [Lei95] that, for proportionate selection (e.g. roulette
wheel) the mean fitness φ of a population changes depending on the stan-
dard deviation σ2 (for a definition of statistical parameters see any general
text on probability and statistics, e.g. [Pap65]) as follows

φ
©

= φ(1 +
σ2

φ
2 ). (4.57)

In other words, mean fitness changes less and less as the genetic algorithm
converges, unless we can ensure that variance σ (or standard deviation σ2)
remains high. Note that equation 4.57 only applies to roulette wheel selec-
tion, although the broad statement “improvement is dependent on variance”
remains true [Lei95].

In order to better characterise ratios of individual characteristics, especially
regarding fitness, we need to be able to lump individuals with almost equal
fitnesses together.

In general, a fitness function φ(α) provides a value for each individual
used to grade them; this value is denoted φξ (because it solely depends on
the chromosome in the individual as previously defined; definition 28). The
problem is that this value is often too fine-grained; in other words, too dis-
cerning for applying a simple larger-than test. This is especially true when
we want to be able to compare individuals in the fitness space, as described
above. If this is the case we may ‘coarsen’ it by defining a range within which
two fitness values are considered “equal enough” to be considered the same.
Thus we define a equality environment (or equivalence interval) as follows.

Definition 45 (Equality environment) The equality environment ε is a range
of fitness values where individuals’ fitnesses are considered equal. For two in-
dividuals α1 and α2 we write

α1
∼=ε α2 (4.58)

when the following fitness condition holds

|φ(α1) − φ(α2)| ≤ ε (4.59)

This is readily expanded to any number of individuals.
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Similarly, the set α̃ of individuals in an equality environment ε around the
given individual α ∈ ΠI is

α̃ = {β ∈ ΠI | α ∼=ε β}. (4.60)

Varying the value of ε we can now obtain any granularity desired. For
comparing individuals in fitness space that have identical chromosome space
fitnesses, for instance, the value would be ε = 1

N
, where N = |ΠI |, the num-

ber of individuals in that interval (normally equal to the constant population
size). This is very similar to the approach taken by Goldberg in [Gol90] and
Mahfoud in [Mah93, Mah95].

Note that since both φ and ε may be seen as free variables, then we should
write the above as

α̃(φ, ε) = {β ∈ ΠI | α ∼=ε β} (4.61)

to emphasise that the set of individuals in the equality environment is depen-
dent on these two parameters.

Note that we will drop the subscript ε from ∼=ε and write just ∼= below
since we will not use the ∼= symbol for any other purpose.

There are obvious parallels here with fuzzy logic, and fuzzy sets, as first
described by Lotfi Zadeh in 1965 [Zad65]. For an excellent introduction
to fuzzy modelling, see e.g. [Bez93]. In fuzzy logic we also consider the
truth value of a proposition to be dependent on the relative “strengths” of
its constituents, so that for instance, two elements may be considered equal
if they are “close enough”, as determined by the fuzziness of the logic in
question.

The reproduction rate may now be characterised for an equality environ-
ment. This definition essentially parallels the one in [BT95].

Definition 46 (Reproduction rate) The reproduction rate rI for a given fit-
ness φ and equality environment ε is the ratio of the number of individuals
within the equality environment for an interval to the corresponding number
in the preceding interval. Formally, given the equality environment parame-
ters ε and φ and equation 4.61 we have the following definition for rI .

rI(α) =
|α̃I |

|α̃I©|
(4.62)

From a temporal point of view the selection intensity above is not mean-
ingful. Instead, as the basic idea behind the selection intensity, namely the
progress toward fitter and fitter individuals simultaneously implies that the
existing individuals will be more and more difficult to replace. This, in turn,
implies that the age will increase – and that the proportion of survived indi-
viduals from a previous interval will increase. We define the survival rate as
follows.

Definition 47 (Survival rate) The ratio of the number of individuals from
the previous interval still surviving in the current interval to the current pop-
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ulation size is called the survival rate RI . Using equation 4.5 we write

RI =
|SI

α ∩ SI©

α |

|SI
α|

(4.63)

where I is the current interval.

Since RI will be a value from 0 (none survived) to 1 (all survived) we
define the selection intensity simply as follows.

Definition 48 (Selection intensity) The selection intensity SI is

SI = 1 − RI (4.64)

where RI is the survival rate.

Above the takeover time is defined as the time before the population con-
sists of at least |Π| − 1 copies of the best individuals, measured using the
fitness [GD91]. In our context this implies that the corresponding fitness
space individuals should belong to the same equality environment since they
by definition do not have equal fitnesses.

Before continuing we need to define the age concepts relating to our for-
malism of the genetic algorithm.

Definition 49 (Ages) The age a(α) of an individual is the number of consec-
utive base intervals it has belonged to the (real) population. The age a(ΠI)
of a population is the number of base intervals since the initial population.

We may calculate the mean age of a population simply as

a(ΠI) =

∑
α∈ΠI

a(α)

|ΠI |
. (4.65)

Looking at the situation from a fitness perspective, takeover has occurred
when a sufficient number of individuals are in the same equality environ-
ment. At that time, and in following intervals, the fitness profile, i.e. the ac-
tual equality environments present in the population will no longer change,
but stay constant. In other words, the genotypes of the individuals may
change but their fitnesses stay in the same equality environment. What this
means is that since the takeover time as defined by Goldberg and others
[GD91] is dependent on the selection mechanism (and is indeed different
for each one) we cannot define the takeover without specifying the selection
used. However, a characterisation based solely on fitness would not be, pro-
vided the aim is to maintain or improve the fitness of the population. So we
say that takeover has occurred when all individuals in the population belong
to the same equality environment. This is formalised in definition 50.

Definition 50 (Takeover) Takeover has occurred when all individuals be-
long to the same given equality environment. Formally, given an equality
population Ã with its equality environment takeover has occurred when

∃Ã | |Ã| = |Π| (4.66)
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Unfortunately, this equation does not help us in formulating an estimate
for the takeover time (à la Goldberg and Deb in [GD91]). That result de-
pends on the selection mechanism, and assumes a fitness function behaving
in a certain way (either linearly or exponentially). No such assumptions are
possible here.

We now have the machinery in place for analysing the genetic algorithm
from a temporal point of view. However, there is a major problem that may
be addressed from this viewpoint: premature convergence, and the corre-
sponding loss of diversity; see e.g. [Gol89]. There are several ways of allevi-
ating this problem. Some have used fitness scaling [Gol89], needing a lot of
effort to tune properly. Fitness sharing, also due to Goldberg, as well as nich-
ing [Mah95] have also been tried. Methods combining simulated annealing
with genetic algorithms have recently been reported [MYT+95].

To deal with the problem in this context a novel selection method, based
on temporal parameters, suggests itself. This temporal selection method will
be described in the next chapter.
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5 THE GENETIC ALGORITHM AND TPL

This chapter will examine the genetic algorithm, its behaviour and character-
istics using the formalism described in the previous chapters. We will show
that the temporal and probabilistic approach, using TPL, is a viable alterna-
tive for the formalisation of the genetic algorithm, as well as that it provides
us with a good tool for better understanding the behaviour of the genetic
algorithm.

This chapter proceeds as follows. We will first describe temporal selec-
tion, with its two main variants. Then we will look at conditions for optimum
using the new formalism, and thereafter show the connection between the
statistical probability as formulated earlier and the average fitness of the pop-
ulation in a genetic algorithm. Then we will show necessary conditions for
achieving optimum in terms of TPL, and prove that they hold in one class of
genetic algorithms.

5.1 TEMPORAL SELECTION

Basically, the problem is that the genetic algorithm is intended to find optima
(minima or maxima depending on the problem), which it does very well –
regardless of whether they are local or global ones. As we are not interested
in local optima we must somehow ensure that it doesn’t converge too fast
to one, but instead, having found one continues to explore other regions
regardless of the fact that a putative optimum may have been encountered.
The phenomenon of premature convergence (to local optima) is prevalent in
the standard (canonic) genetic algorithm, and the standard way of alleviating
the problem is to scale the fitness function so that small deviations in real
fitness give rise to large changes in the function’s value - thus discriminating
between values with a very fine comb.

We wish to take another approach, superficially similar to Goldberg [Gol90]
and Mahfoud [Mah93], where we instead lump values together into an equal-
ity environment. This is also similar to Jones’ idea of neighbourhoods in the
fitness landscape [Jon95]. In this work the idea is simply that we will consider
the individuals equal within the equality interval, and select on the basis of
their ages instead. We also make the assumption that the equality interval
ε � 1, i.e it is but a fraction of the whole fitness range [0,1]. We’ll describe
the case with just two values, which may readily be generalised.

In order to be able to choose individuals inside the equality interval, we
need to consider some other criterion beside their fitnesses. We choose their
ages, as defined in Definition 49.

So, when selection occurs, if two fitnesses are considered equal, we have
to determine which individual survives. In this circumstance we have two
cases.
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Definition 51 (Time-progressive) When the newer individual survives to the
next generation we call selection time-progressive. We can also call it fitness-
conservative, indicating that the fitness is preserved even if the individual is
not.

Definition 52 (Time-conservative) When the older individual survives to
the next generation we call selection time-conservative.

Formally, we may describe this selection mechanism as follows. Given a
population Π with two individuals α and β in the same equality environment,
we have that α, β ∈ Π ∼= β. In time-progressive selection this implies that
α ∈ Π© iff a(α) ≤ a(β). Correspondingly, in time-conservative selection
α ∈ Π© iff a(α) > a(β). In other words, survival of α depends on its age
a(α). In order for these concepts to become clear, consider example 9.

Example 9 We will make a simplified simulation of the first few generations
of a simple genetic algorithm, with a population of 6 individuals. The situa-
tion is illustrated in figure 5.1.

The figure shows two parallel scenarios: a time-conservative (above) and
a time-progressive (below). We start with an initial population (at left), and
generate offspring (shown immediately to the right of the population). We
want to keep the population constant, so only six individuals are allowed to
survive. Next, new offspring are created (greyed to the right of the popula-
tion). Number 8 of the old and number 10 of the offspring are sufficiently
near in fitness to be considered equal, so we choose one. Here the two par-
allel populations diverge: the conservative one keeps the older, number 8,
whereas the progressive one keeps the younger, number 10. We show one
more generation, where numbers 2 and 13 are considered equal, and are
chosen to survive accordingly. As can readily be seen, the two populations
are starting to show marked differences.

It is also possible to characterise survival in terms of Shoham’s interval
proposition characteristics [Sho88, p. 48ff], with individuals taking the place
of propositions and ‘survival’ denoting propositions being true over longer
and longer, overlapping intervals. However, the formalism developed by
Shoham is largely based on van Benthem [Ben83], and would not materi-
ally add anything to the discussion above (and below) except some more and
somewhat difficult terminology.

However, it should be pointed out that temporal selection as outlined
above only comes into play when there is a collision of fitnesses: in all other
cases another, traditional selection mechanism, such as one of those listed in
table 4.4, should be used. Temporal selection is very much a hybridisation
of an existing selection method to take temporal aspects of the individuals
into account in order to be able to discern between cases otherwise may be
erroneously treated as the same.
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Figure 5.1: Conservative vs. progressive survival
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5.2 OPTIMUM

How then does the genetic algorithm reach its goal, namely find an optimum
(defined as a maximum or minimum, depending on the actual problem at
hand)? In other words, given the initial population Π0, a selection mecha-
nism, and various genetic operators how do we reach an optimal state, with
an optimal population Πopt?

First, let us define fitness optima.

Definition 53 (Local optimum of population) A local optimum of a popu-
lation is a state of the population where the average fitness value of the pop-
ulation is at a maximum, i.e. any change to a fitness value of an individual
will cause the average to decrease.

Note that the definition is dependent on the genetic operators used; with
different operators we may have many or few optima in fitness space.

Definition 54 (Global optimum of population) The highest local optimum
of a population is called the global optimum of the population.

Note that there may be several global optima. These definitions mirror
those of Haataja [Haa95]. It is clear that they do not constitute very practical
definitions; normally, we are interested in finding just one individual with an
optimal fitness, which then constitutes the solution to the actual problem at
hand. However, from a theoretical point of view the meaningful definitions
for populations are, in our opinion, as stated. This also closely parallels the
usage of peaks by Jones in [Jon95], where he defines a φ-peak as a vertex in
the fitness landscape (under the operator φ) where all its neighbours have
fitness values that are less. Jones’ global maximum is then the highest peak.
As stated, the globally optimal population is one where all n = |Π| indi-
viduals occupy the n highest fitness states; a situation that is both extremely
unlikely in practice, and clearly theoretically the globally optimal popula-
tion. In practice, a genetic algorithm has reached its solution when even one
of its individuals has reached fitness optimum; however, this can hardly be
said to be an optimal population in any theoretical sense even if it in all like-
lihood terminate the genetic algorithm. For instance, we often in practice
operate with the average fitness of a population. The highest average fitness
of a population is of course the global optimum given in definition 54.

On the other hand, how can we characterise an optimum population,
in temporal terms? Firstly, it should be optimal with respect to something,
namely its fitness, or rather, the fitness of its members (individuals). Now,
we know that an individual may be replaced by another individual in two
circumstances:

• a fitter individual, if such a one exists

• if not, an older (time-conservative) or newer (time-progressive) individ-
ual
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However, in both cases the fitness does not decrease. Indeed, from a sta-
tistical point of view this characterises the genetic algorithm; although, de-
pending on the selection mechanims chosen less fit individuals have a finite
chance of being chosen. The reason for this is of course to ensure variability
in the population.

Considering the behaviour of the individuals, we treat the time-conservative
and time-progressive cases separately below.

5.2.1 Time-conservative optimum

In this case the older individual survives, if a child individual with the same
fitness competes for survival. In other words, take two competitors α and β.
Without loss of generality, we can assume that α is the older one, and that
β is a new child vying for survival (i.e. a(α) > a(β)). Using definitions 3
and 28 (and for a change explicitly incorporating time t instead of intervals
in order to better illustrate the concept) we write

α = 〈ξα, [tn−k, tn]〉 (5.1)

β = 〈ξβ, [tn−1, tn]〉

α ∼= β

Note that the interval end points are the same: tn, denoting now, and that the
start point for β is tn−1, i.e. a new individual that cannot have existed prior
to the current interval [tn−1, tn]. The corresponding start point for α is an
unknown number of intervals earlier, given by tn−k, and k ≥ 2. Of course, k
must be greater than 1, otherwise both are new child individuals, a case that
cannot occur since new individuals do not compete among themselves, only
with existing individuals in the population. Also note the constraint α ∼= β,
i.e. that they belong to the same equality environment, and consequently
their fitness is considered the same; otherwise there would of course be no
contest and the fitter one would have a greater probability of survival.

Of course, we may also write the above using intervals, perhaps more con-
cisely but less clearly

αI
∼= βJ (5.2)

J v I

J© O I.

Or, in words, the two individuals are α and β, in the same equality envi-
ronment. As indicated by the subscripts they are in the intervals I and J ,
respectively, where β’s interval J is included in α’s interval I in such a way

that J ’s predecessor J© overlaps with I ; i.e. β did not exist at that time, and
is consequently new. This latter condition may be written

J© v I, (5.3)

relying on the fact the © returns the previous base interval, which has to be
included in I to give us the same conditions as in equation 5.1.
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We may then observe that at optimum no individuals get replaced. The
reason is simple: if an individual gets replaced, the only permissible cause
is that the fitness of the new child is higher, in which case we were not at
optimum; if it is lower, there is no contest, and, if it is the same (within the
same equality interval) the older survives, per definition. We formulate the
following theorem to characterise this situation.

Theorem 5 Neglecting mutation, given a population Π, with individuals
α ∈ Π, in a time-conservative genetic algorithm at optimum the following
holds.

∀α ∈ Π | I© v I(α), (5.4)

provided I > I0.

Proof. Equation 5.4 says that the intervals for all individuals in the popula-
tion includes the previous interval. This means that no changes to the inter-
vals have been made since the last interval. This is trivially true, by virtue
of definition 52, equation 5.1, and the foregoing discussion. The latter pro-

vision takes care of the case where I is at the first, initial interval when I©

doesn’t exist. 2

Theorem 5 may be paraphrased by saying that the starting point of the
intervals of all individuals in the population stay the same. The population is
static.

In practice, although this is true, it is a transient situation and is rarely al-
lowed to happen, and certainly not to persist. The reason is that the genetic
algorithm may have become stuck in a local optimum, neglecting to seek
for a possible global optimum; this is the socalled premature convergence
phenomenon [Gol89, Mah95, MYT+95]. We ensure that there always is a
way for the genetic algorithm to proceed by incorporating mutation as a ge-
netic operator, with a very low probability, as has been described previously.
Note that this mutation has to be sufficiently ‘big’ in order to ensure that the
individual in question leaves the local optimum.

5.2.2 Time-progressive optimum

The time-progressive case is more complex. We cannot say, like we did above,
that at optimum the population is static since by definition we will replace an
older individual by a new one, provided they have the same fitness, i.e. are
in the equality environment. We may thus have individuals with lifetimes
(intervals) with any starting value in the optimal population, however, all
with a ‘surviving’ fitness value. This is the reason why we called the time-
progressive fitness-conservative in definition 51 above.

We may thus formulate the following theorem.

Theorem 6 Given a population Π, we first index it on the fitness values giv-
ing each individual an index number from 1 to |Π|. Neglecting mutation,
in the time-progressive case, at optimum the fitness values of each individual

66 5. THE GENETIC ALGORITHM AND TPL



with the same index stays constant from one generation to the next. Not only
the average fitness value, but also the exact distribution of the fitness values
over the individuals stays constant.

Proof. By the definition of time-progressive (definition 51) we either do not
replace an individual, or it is replaced by a new child individual with exactly
the same fitness; so the distribution over the indexed individuals (i.e. the in-
dividual places) stays constant. 2

For the time-conservative optimal population a slightly stronger theorem
holds as well.

Theorem 7 Neglecting mutation, in the time-conservative case, at optimum
both the fitness values of each individual as well as the individual itself stay
constant.

Proof. Trivially true, since this is the definition of a static population. 2

5.3 CONVERGENCE

For a genetic algorithm to work it must converge towards an optimum. Of
course, we must first agree on what an optimum is, as well as what con-
vergence (in terms of the population structure) means. First, let us define
convergence.

Definition 55 (Convergence) With convergence we mean that the average
fitness of the population increases; clearly, in order for this to happen the
fitness of one or several individuals must change. If only one changes, it
must increase; if several, their average fitness must be greater that average of
the rest of the population, so that the whole population’s average fitness may
increase.

Convergence has been studied fairly extensively, but mostly in terms of
the stochastic interpretation of the genetic algorithm; Markov chain analysis
gives some insight into convergence [Rud94]. Summarising from [Fog94a]
and [Fog95a] we have

1. The canonic genetic algorithm [Hol92a] does not converge [Rud94]

2. The simple genetic algorithm (SGA, see [Gol89]) converges when the
population size tends to infinity [Goe95]

3. Elitist versions of the SGA do asymptotically converge to a global opti-
mum [Rud94]

4. Evolutionary strategies and evolutionary programming have asymptotic
global convergence properties [BS93]
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Rather interestingly, Ankenbrandt [Ank90] has investigated the time com-
plexity of genetic algorithms and found that time until convergence is pro-
portional to O(ln|Π|) under several not too stringent assumptions (among
others, that such an algorithm is used that does converge).

In the following discussion, we assume that some genetic operators gener-
ate new individuals, from which the selection operator will choose survivors
with a finite probability. If this is not the case, we will clearly not generate
new individuals for fitness testing at all, but stay with the same population.

In temporal terms, we must again differentiate between the time-conservative
and time-progressive cases.

In both cases, we initially have a situation where there is a high turnaround
of individuals: unfit die and are replaced by fitter ones. As we will show, at
the end, in the time-conservative case, the situation is static: all individuals
survive, and their interval starting points stay the same.

Using previously introduced notation, we may then characterise conver-
gence as follows.

Theorem 8 In a converging time-conservative genetic algorithm population
the number of old individuals will eventually outnumber new. Equivalently,
the virtual population of the previous interval will constitute less than half
the population. Formally, we have that

3

(∣∣∣ΠI©,v

∣∣∣ ≤ |ΠI | /2
)

. (5.5)

Proof. Suppose that the reverse is true. Then, since new child individuals
always outnumber old, surviving individuals, contrary to what the theorem
claims the population will with each interval consist of more new individuals
than old ones. Assume that (as a minimum) we get one additional new indi-
vidual per generation (if we get none the population is not converging, which
is the assumption – and we need at least one for convergence, as pointed out
in definition 55). Then, given a population Π, after |Π| generations all indi-
viduals will be new, replaced ones. So at the end we will have a population
that is replaced each interval in its entirety. Clearly this is not the case at an
optimum, as per theorem 5, so the population cannot converge. Since the
assumption was that it was a converging algorithm, the theorem is true. 2

Rather interestingly, the situation may be characterised by saying that in
a converging time-conservative genetic algorithm, individuals will be slowly
migrating towards inclusion in the equivalence interval, and thus be gov-
erned totally by the characteristics of the algorithm for the equivalence inter-
val: time-conservative or time-progressive.

We may prove the following stronger theorem as well.

Theorem 9 In the time-conservative genetic algorithm the size of the virtual
population will eventually become zero. Formally, we have that

3 (|Πv| = 0) (5.6)
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or equivalently

3 (Πv = ∅) . (5.7)

Proof. The statement that the virtual population will become zero means
that no individuals will be replaced any longer (recall that the virtual popula-
tion is by definition the set of individuals that will exist - i.e. become ‘alive’ -
in the next generation). Suppose this were not the case, i.e. we would always
replace some individuals in the population. Then their fitness would have to
be better (not only as good as) than that of the replaced individuals because
we have a time-conservative algorithm where individuals are only replaced
if their fitness is better, otherwise the older ones survive. Since the possible
population space Sξ is finite or at least denumerable (recall that a chromo-
some ξ has a finite length, and thus there are only a finite number of them,
and that a chromosome consists of genes, and the allele space is finite or at
least denumerable; cf. definition 26 on page 32), we would eventually pick
up the |Π| best individuals. At that time no more replacements may occur,
as per definition 52. This is a contradiction, and the theorem stands. 2

In the time-progressive case this is not true because individuals do get
replaced, even if their fitness is as good as a new individual’s. However, a
similar theorem holds, using the fitness distribution instead.

When the population has converged, we may ask how many individuals
have been examined in order to find the optimum. In other words, recalling
corollary 3, how big did the cumulative virtual population Πchecked become
at convergence?

Theorem 10 The size of the cumulative virtual population Πchecked at gen-
eration n is

|Πchecked| ≤ |Π0| +
n∑

i=0

(Si · |Πi|) (5.8)

where Π0 is the initial population, Πi the population at time i, Si is the se-
lection intensity at time i (see definition 48) and n is the current generation.

Proof. Following theorem 3 we immediately have

|Πchecked| ≤ |Π0| +
n∑

i=1

|Πv,i| (5.9)

Now following the definition of the selection intensity S (definition 48) we
have the size of the virtual population at time i

|Πv,i| = Si · |Πi| (5.10)

which after substitution gives us theorem 10. 2

Taking the more common case of a constant population size, we can for-
mulate the following theorem.
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Theorem 11 The size of the cumulative virtual population in a genetic al-
gorithm with constant population size is

|Πchecked| ≤ |Π0| · (1 +

n∑

i=1

Si) (5.11)

where Π0 is the initial population, Si is the selection intensity at time i (see
definition 48) and n is the current generation.

Proof. Follows directly from theorem 10 by setting |Πi| = |Π0|. 2

If we assume that the selection intensity Si is constant we obtain the fol-
lowing simple relationship.

|Πchecked| ≤ |Π0| · (1 + n · Si) (5.12)

This of course cannot be valid for the full execution of a genetic algo-
rithm, but it may be valid for an appreciable number of generations at the
beginning, when no convergence has yet taken place.

In any case, clearly |Πchecked| is a finite value if we simply stop the algo-
rithm say, after n generations; however, if we use a time-conservative selec-
tion scheme it will also converge toward a finite value since Πv = ∅ according
to theorem 9 at convergence (and thereafter, neglecting possible effects due
to mutation).

This implies that at convergence the following holds for the time-conservative
genetic algorithm

∞∑

i=1

Si ≤
|Πchecked|

|Π0|
− 1 = K (5.13)

where K is some constant depending on the actual parameters of the genetic
algorithm used.

Furthermore, seeing Πchecked as the population that needs to be checked
in order to determine whether we have reached convergence, and the con-
nection with the selection intensity, a measurable quantity, allows us to give
a ballpark figure for how long a genetic algorithm should run before we have
a reasonable chance of success in finding an optimum. What we need is a
figure of the size of Πchecked in terms of other independent parameters. From
Goldberg and Holland we have the following formula.

The population Πchecked that needs to be checked is

n · 2l < |Πchecked| < 3l (5.14)

where n is the number of generations and each chromosome is of size l bits.

This follows directly from Goldberg’s and Holland’s so-called schema the-
orem [Gol89, Hol92a] where the authors show how many individuals are
being examined provided the building block hypothesis and the schema the-
orem are considered valid.
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This means that the result may be used to give an approximate answer: it
defines (just like the authors’ formula) an approximate bound. We can also
immediately formulate the following formula.

The approximate number of generations needed in a generational genetic
algorithm is given by

n <
3l

|Π0|
(5.15)

where n is the number of generations and each chromosome is of size l bits
and where we make the assumption that we ‘physically’ check |Π0| individu-
als each generation; the realistic number is always less or equal to this.

This is shown by direct substitution of |Πchecked| = n·|Π0| in formula 5.14.

Note that the above formulas cannot be called theorems since they are
only valid given the assumption that the controversial schema theorem and
building-block hypothesis are correct.

Example 10 Suppose we have a genetic algorithm with a fixed population
of 100 and a chromosome of length 20. Then the number of generations

necessary to ensure convergence is approximately 320/100 or 3.5·107 (about
35 million).

This gives us an approximate upper bound to the number of generations
necessary; of course, looking at the example, the bound exceeds the capacity
and time available of most current and future systems. However, this does
not imply that an optimal individual has not been found long before; it only
says that this number is (under the assumptions stated) necessary to ensure a
convergent population.

Rather interestingly, this result is in sharp contrast to that of Worden [Wor95].
In his work on the speed limit of evolution, he shows that the rate of increase
of the total genetic information in the phenotype (GIP) is a property of the
population, and is not more that 5 bits per generation for mammals. He
also points out that his results are applicable to genetic algorithms as well,
although he does not derive a value for them. However, the implication is
that, if we assume his formulations are correct for genetic algorithms as well,
and for finite populations (as he assumes), we may improve the genotype by
at most 5 bits per generation, which in turn gives us a lower bound for the
number of generations needed to reach any desired result (or bit pattern).
This would happen if the change is at its maximum of 5 bits.

Assuming a fixed population size we derive from his discussion the for-
mula for the desired number of generations n

l

5
< n <

3l

|Π0|
(5.16)

where l is the length of the chromosome in bits and Π0 is the initial popula-
tion.

Example 11 In the above example 10, having a population size of 100 with
chromosome of 20 bits, we get a lower limit for the number of necessary
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generations of 20/5 or 4. This is a very low number considering the upper
limit of around 35 million generations!

However, this number (4 generations) seems to be borne out in practice as
well; consider Chapter 8, where we show experimental data. For the standard
fitness evolution for the baseline case for the first 10 generations (as shown in
figure 8.3) convergence is clearly discernible and has reached almost its final
value by the 4th generation. This is not appreciably altered by the choice of
selection mechanism, as described in Chapter 8.

A second interesting implication of formula 5.14 is that it gives a upper
limit for the size of the necessary initial population as follows.

The size of the initial population Π0 is given by

2l < |Π0| (5.17)

where the size of the chromosome is l bits. This is obtained by direct substi-
tution of |Πchecked| = n · |Π0| in formula 5.14.

Example 12 In the above example 10, having a chromosome size of 20, the

size of the population need not be larger than 220 or slightly more than 1
million.

It should be noted that these values (from examples 10–12) should not be
taken too seriously as they give extreme values, and are valid only when the
block building hypothesis and schema theorem are considered correct.

5.4 STATISTICAL PROBABILITY AND FITNESS

In order to investigate the connection between the statistical probability and
population fitness, we recall the definition of an optimum (here taken as a
maximum) for a fitness space in a genetic algorithm. Following [RF96] we
have that

φ(α∗) is a local maximum ⇔ (5.18)

∃δ > 0 : ∀α ∈ Sα : |φ(α) − φ(α∗)| < δ ⇒

φ(α) ≤ φ(α∗)

where Sα is the possible space of all individuals and α∗ is the local maximum.
Correspondingly, we have the simpler condition for global maxima

φ(α∗) is a global maximum ⇔ (5.19)

∀α ∈ Sα : φ(α) ≤ φ(α∗)

Before showing an interesting theorem, we recall that in probabilistic logic
a predicate does not necessarily have a value of true or false, but can be
given a probability of being true or false. Of course, once the variables in the
predicate have been assigned values and a possible world where the predicate
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is to be examined has been chosen, the predicate does become a normal
proposition in that world, and will have a normal truth value.

In terms of the probabilistic characteristics of the genetic algorithm, we
can prove the following. We will use the alive predicate from Definition 33
on page 39; recall that alive(x) : φ(x) > 0.

Theorem 12 The average fitness φavg(ΠI) of a population ΠI in an interval
I is equal to the statistical probability [alive(αI)]αI

. Formally,

φavg(ΠI) =

∑
αI∈ΠI

φ(αI)

|ΠI|
= [alive(αI)]αI

(5.20)

where we use |ΠI | to denote the number of individuals in the population ΠI

in interval I and αI is a place-holder for the variable denoting an individual
in the population of ΠI .

Proof. Recalling the direct inference principle (Axiom 7 on page 151) we
have that

prob(alive(αI)) = E([alive(αI)]αI
) (5.21)

where E is the expectation operator. The left-hand side is then the probabil-
ity of any individual αI being alive (i.e, its fitness is greater than zero per the
definition of the alive predicate) in the population; whereas the right-hand
side is a value for the statistical probability for individuals being alive. This
value is constant across the worlds under consideration, and per the defini-
tion of the expectation value (see I12 on page 142) it will be the proportion of
the occurrence of the individuals in the worlds. Since this is constant we may
drop the expectation operator E per P15 on page 146. Now, by definition
(see Definition 29 on page 34) the fitness is the probability of occurrence,
then, for all of them the average value applies, which proves the theorem. 2

In practice, this means that we may use the average fitness in logical for-
mulas and ask interesting questions about the behaviour of the genetic algo-
rithm.

For instance, will the average fitness increase?

Theorem 13 The average fitness increases monotonically. Formally,

φavg(ΠI) ≤ φavg(ΠI©) (5.22)

where φavg(x) is the average fitness of x.

Proof. The monotonicity criterion in our context is

I ≤ I ′ ⇒ φ(αI) ≤ φ(αI′) (5.23)

Using equation 4.57 we obtain the desired result directly. 2

Rather interestingly, this implies that (using theorem 12)

[alive(αI)]αI
≤ [alive(αI©)]α

I©
. (5.24)
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This is intuitively plausible as well since, at convergence (i.e. when either
all individuals stay the same, or their fitnesses stay the same), the average
fitness ceases to increase. Again, note that we are disregarding effects due to
mutation.

The problem is, though, is this necessarily (�) true? Or, in temporal
terms, henceforth (always in the future) true? Since we cannot use the rule
of inference nec from section A.3.5 we know that we cannot infer �A from
A so the conclusion is that we cannot using logic infer that it will always be
true once it becomes true. However, disregarding mutation, this should still
be the case right from the beginning, provided equation 4.57 holds, with its
rather stringent prerequisites, and the selection mechanism is proportional.
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6 AXIOMATISATION OF THE GENETIC ALGORITHM

This chapter will formulate an axiomatisation of the genetic algorithm using
the formalism described in the previous chapters. We will show that, using
TPL, it is a relatively simple matter to axiomatise the genetic algorithm in
several ways depending on the chosen underlying foundational structures.
We will also show that it provides us with a good tool for better understanding
the behaviour of the genetic algorithm. For instance, we will obtain a closed
system, showing only acceptable executions, and it will be complete.

This chapter proceeds as follows. We will first describe a standard axioma-
tisation of groups in order to better understand axiomatisation in general,
before going on to formalise an axiomatisation based on chromosomes for
the genetic algorithm. We will also prove several theorems, some new and
some previously proven in other ways, in order to show the power of the ax-
iomatisation.

6.1 ON AXIOMATISATION

Rather interestingly, it is possible to formulate axiomatisations of the genetic
algorithm patterned on standard usage as exemplified by e.g. the axiomatisa-
tion of groups (see any suitable mathematics text, e.g. [Sto79]).

In order to proceed with the axiomatisation we need a number of primitive
notions. For groups, for instance, following [Sto79] these are an unspecified
set G, a binary operation on G, for which we use multiplicative notation, i.e.,
the operation will be symbolised by · and the value at 〈a, b〉 of this function
on G× G will be designated by a · b, and an element e of G. The axioms for
groups are the following.

∀a, b, c ∈ G | a · (b · c) = (a · b) · c (6.1)

∀a ∈ G | a · e = e · a = a (6.2)

∀a ∈ G ∃b ∈ G | a · b = b · a = e (6.3)

The above is a standard formulation of group theory. We call a·b the prod-
uct of a and b, the element e that has the above property in 6.2 an identity
element, and finally an element b that satisfies 6.3 the inverse of a (relative
to e). We may then proceed to prove interesting theorems using the axioms,
e.g. that there exists exactly one identity element, and that every element has
exactly one inverse. The question is, can something similar be done for the
theory of genetic algorithms?

The answer is yes; we may formulate several distinct axiomatisations of the
genetic algorithm depending on what we see as the primitive notions. The
one that we show here is based on the population as a set of chromosomes,
with an operation to generate new individuals for the next population (i.e.,
members of the set forming the next population).
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Of course, the axiomatisation also assumes the existence of TPL, with its
basic constructs and objects, e.g. a temporal setting with intervals commonly
designated I . We treat this axiomatisation below.

6.2 CHROMOSOME-BASED AXIOMATISATION

The axiomatisation is based on chromosomes, i.e individuals in the popu-
lation. The basic set is the population Π, consisting of individuals a, b, ...,
or chromosomes ξi and intervals; we assume all chromosomes are distinct,
i.e. Π is a set, not a multiset. There are two distinct operations that may be
performed: firstly, one that generates new individuals, and secondly, one that
generates the fitness value for an individual. The former operation is ω corre-
sponding to a composition of the three genetic operators treated previously.
Recall that the question of composability of the various genetic operators
was dealt with starting on page 44, in connection with the full treatment of
the genetic operators, ωγ , ωξ, and ωΠ. In other words, we may substitute
the three operators as follows in order to ‘elevate’ them to operate on pop-
ulations, whilst in reality maintaining the proper (gene, chromosome, and
population) perspective.

ωγ\ωΠ
=sub ωγ (6.4)

ωξ\ωΠ
=sub ωξ (6.5)

ωΠ\ωΠ
=sub ωΠ (6.6)

The last one is of course an identity (as a function seen from its own level
is itself). Then, the general composition of these operators becomes

ω = ωγ ◦ ωξ ◦ ωΠ (6.7)

defining the genetic operation ω, in this case one that operates on popula-
tions.

A moment’s reflection allows us to notice that this may be accomplished
on all levels, i.e. ξ and γ as well as the Π level as described above. Of course,
the actual operations, domains and ranges are totally different on the levels.
Since we will be using the ξ, or chromosome, level, we show this below.

The operation which generates new individuals, i.e. forming a new indi-
vidual not in the current generation, but in the next generation (see page 43)
would be ω\ωξ

. That operation may also be defined as follows (cf. definition
36).

ω :
∏

n

ΠI → ΠI©, (6.8)

where n is the number of parents that generate the offspring, and
∏

is defined
in the usual manner as × . . .×. In order to simplify matters we assume that
the generation of new individuals entails only two parents, and that we thus
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can use the same kind of multiplicative notation as above. The operation
then simplifies to

ω : ΠI × ΠI → ΠI©, (6.9)

which means that we can use the following equivalent notation

a = ω(b, c) ⇔ a = b · c, (6.10)

where a ∈ ΠI© and b, c ∈ ΠI as well as · is used instead of ×. Of course we
may extend this to multiple parents by noting that

a = ω(b, c, d . . .) ⇔ a = b · c · d . . . , (6.11)

which clearly shows how this case can be handled. Note that we do not
imply that any of the equations for groups, e.g. 6.1 applies, even if this looks
superficially the same.

It is important to realise that the three operations above (ωγ , ωξ, and ωΠ)
in a very important sense operate on different levels:

1. ωγ works within the gene (normally same as chromosome), with the
bits forming it; i.e. intra-gene,

2. ωξ works with the genes (chromosomes); i.e. inter-gene, and

3. ωΠ works with the populations; i.e. intra-population.

The actual mechanism on the levels are, in genetic algorithms theory, the
following:

1. for genes: mutation,

2. for chromosomes: recombination (or cross-over), and

3. for populations: selection.

The last one of these is especially important since its ‘tool’, as it were, is the
fitness; the second necessary operation alluded to above is one that generates
the fitness value for an individual as follows; cf. definition 29.

φ : ΠI → [0, 1] (6.12)

The corresponding definition of the average population fitness is

φ(Π) =

∑
α∈Π φ(ξ)

|Π|
(6.13)

or, with the domain emphasised

φΠ : 2Sα → [0, 1] (6.14)

or simply the arithmetic mean of the fitnesses of the individuals in the popu-
lation. We often write φavg(Π) when we want to show this.
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As has been pointed out in the section on selection (see section 4.4 starting
on page 54) selection is performed in such a way that individuals are selected
for in accordance with their fitness, so that the more fitter survive (statistically
speaking) and the less fitter do not. The key point here is that, on the average,
new individuals are fitter than old ones. Repeating equation 4.55, say that

a ∈ ΠI© b ∈ ΠI | P (φ(a) ≥ φ(b)) > 0.5 (6.15)

or, paraphrasing, on the average φ(a) ≥ φ(b).

The first axiom deals with the generation of new individuals in the genetic
algorithm and is the following.

Axiom 2 (GA1 – Axiom of reproduction) New individuals in a population
are produced according to the formula

�(∀a ∈ ΠI© − ΠI ∃b, c ∈ ΠI | a = b · c) (6.16)

Axiom GA1 captures the fact that for any subsequent (next) generation
(i.e. population, or, looking at the situation from a temporal point of view,
interval), the individuals are generated from the current generation (popu-
lation, or interval). We have restricted the axiom to explicitly apply to new
individuals only, hence the quantification over ΠI© − ΠI . Note too that the
axiom does cater for the case where individuals survive from generation to
generation by the fact that the ’reproductive’ function ωξ allows for results
equal to one of the original values (of course allowing for different intervals).
It is important to note that the intended quantification over the individuals
is ∀a ∈ ΠI© ∃b, c ∈ ΠI . . . instead of ∀b, c ∃a . . .. The reasons are that the
latter is trivial because · is a function and that the former guarantees that new
individuals do not appear from nothing. We just have to make sure that new
individuals indeed may do so; see axiom GA2 below.

Note that we say that this is valid in all possible worlds (in the TPL sense);
hence the �.

Examining the axiom, we note that axiom GA1 may instead be written in
a slightly different form, together with a slightly modified assumption for a as
follows.

Axiom 3 (GA1′ – Axiom of reproduction) New individuals in a population
are produced according to the formula

�(∀b, c ∈ ΠI ∃a ∈ ΠI ∪ ΠI,v | a = b · c) (6.17)

In GA1′ we use the property that any individual in the next population
belongs either to the current generation’s real population or its virtual popu-
lation; please refer to the discussion on virtual populations on page 38 to see
that this must be true. However, this axiom is not really that useful, since it
is actually in one sense weaker than GA1: we do not know in which interval
the descendant a will become ‘alive’ since the virtual population ΠI,v encom-
passes all generations. Indeed, we are just saying that a reproduction phase in
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the genetic algorithm generates individuals which may or may not (depend-
ing on the fitness, i.e. probability of occurrence) come into existence at some
unspecified time in the future. However, GA1′ is stronger in the sense that it
does say that all individuals do generate offspring.

One of the things that we have chosen not to take into account in the
axioms above is the problem of the initial population. Where does it come
from? Previously, as we have formalised the genetic algorithm we require
a population Π0 that is not generated by any genetic mechanism or other
functional, but essentially created at random (although randomness as such
is not a requirement; the only requirement is that we need not worry about
how this generation came about). If we wish to be absolutely complete and
take care of this situation we could formulate an axiom for this particular
purpose.

The axiom of the inital population could be written as follows, according
to definition 40.

Axiom 4 (GA2 - Axiom of the initial population) The initial population is
taken as the first population that changes (or evolves). Symbolically,

∃I0, ∀I < I0 | ΠI = ΠI0 (6.18)

This makes it clear that the population may be seen as unchanging up to a
certain interval I0. In this way we avoid the problem of the initial population
altogether.

Note that we might be tempted to write it in the following way instead,
capitalising on the fact that we usually do have a distinguished starting pop-
ulation Π0.

Axiom 5 (GA2′ – Axiom of the initial population) The initial population Π0

does not have a precursor population. In other words, ∃I0 such that @Π
I©
0

.

The formulation of this axiom is problematic – how can we formalise the
non-existence of a population at a certain time? This axiom GA2′ shows that
the algorithm starts from an interval where the individuals have been chosen
in some other way but the mechanism in axiom GA1; i.e. we are referring to
the very first interval I0, or the initial population ΠI0 (or plain Π0).

However, examining GA2 and GA2′ reveals that they contradict each
other; the latter explicitly disallows any populations before the initial one
by making it clear that an individual a cannot be produced by two others
using b · c; whereas the former stipulates that populations do exist before the
initial one, but that they are identical to it. Of course, in the case of GA2′ we
would have to somehow address how the initial population is created by, say,
suitably modifying GA1.

We could also explicitly specify an empty starting population using the
following variant.

Axiom 6 (GA2′′ – Axiom of the initial population) The population ΠI be-
fore the initial population Π0 is empty. In other words,

∃I0, ∀I < I0 | ΠI = ∅ (6.19)
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This means that we must somehow ensure that Π0 can be generated from
the empty population, which perhaps may be accomplished by allowing the
arguments b and c in the product b · c in GA1 to have null values. In other
words, the ω function underlying the product should, for instance, generate
a random individual a in this case. Note that this variant is not compatible
with GA1 as it now stands; GA1 would need rewriting if we chose GA2′′.

With suitable modifications to GA1 to make it commensurate with GA2′

or GA2 ′′, it would be a matter of choice which one of the GA2’s to use;
neither has any bearing for the continued working of the genetic algorithm
except for taking care of the problem of the existence of the first generation.
Below, we have not used this axiom at all in which case we just have to note
that the genetic algorithm starts at some time not further specified.

Let us examine some implications of the axioms. We do this by first prov-
ing some theorems, both ones previously shown and new ones, using the
axioms as well as TPL as described above.

We start by restating and proving theorem 13 using the axioms.

Theorem 14 The average fitness increases monotonically. Formally,

φavg(ΠI) ≤ φavg(ΠI©) (6.20)

where φavg(x) is the average fitness of x.

Proof. Starting from GA1 we note that ∀a ∈ ΠI© ∃b, c ∈ ΠI

�(a = b · c) ⇔ (6.21)

�(a = ω(b, c)) (6.22)

using 6.10. Since, according to how our genetic operators compose, cf. dis-
cussion starting on page 44, we know that, in this case

ω = ωξ\ωξ
(6.23)

and consequently that

ωξ\ωξ
(b, c) = ωΠ\ωξ

(b′, c′). (6.24)

Of course, we cannot simply substitute one function for the other, but we
do know that with b′ and c′ instead of plain b and c , the equivalence certainly
exists. It is important to, so to speak ‘elevate’ our notation to the population
Π level, because then we introduce the selection mechanism.

Substituting this in the previous, and rearranging using basic functional
composition notation we obtain

�(a = ω(b, c)) ⇔ (6.25)

�(a = ωξ\ωξ
(b, c))) ⇔ (6.26)

�(a = ωΠ\ωξ
(b′, c′)). (6.27)

What we have achieved now is to show that although GA1 operates on the
chromosome level, it can always be seen as operating on the population level
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as well, with suitable modifications of the arguments. Furthermore, we can
continue and draw the following conclusion

�(a = ωΠ\ωξ
(b′, c′)) ⇒ �(ΠI© = ωΠ(ΠI)). (6.28)

The implication indicates that what is valid on the chromosome level is also
compatible with the population level since the functions may be composed
to be compatible, as indicated above.

According to the characteristics of the operator ωΠ, we have that, on the
average,

φ(b) ≤ φ(a) (6.29)

φ(c) ≤ φ(a).

This is of course due to the mechanism underlying that of the function ωΠ,
i.e. selection, that ensures that we select individuals for survival according to
their fitness.

If this is the case for any individuals in the populations ΠI and ΠI© then
we can certainly say that

φavg(ΠI) ≤ φavg(ΠI©). (6.30)

Comparing this to Theorem 13, we notice that they are identical, allow-
ing us to conclude that the theorem holds. 2

Rather interestingly, we have the following corollary.

Theorem 15 For a ∈ ΠI© and b ∈ ΠI the following formula holds

�([alive(a)]a ≥ [alive(b)]b). (6.31)

where we use the alive predicate from Definition 33 on page 39; recall that
alive(x) : φ(x) > 0.

Proof. Using Theorem 12 we know that

φavg(ΠI) = [alive(x)]x. (6.32)

Substituting this in equation 6.30 (same as 6.20 in Theorem 6.20) we
obtain

φavg(ΠI) ≤ φavg(ΠI©) ⇒ (6.33)

[alive(b)]b ≤ [alive(a)]a (6.34)

where we have used the individuals a and b from the corresponding intervals
I© and I , respectively.

Noting that equation 6.28 provides the necessary � operator, reversing the
order of the terms, and changing ≤ to ≥ completes the proof. 2

We can also derive another theorem, a new and interesting consequence
of the axioms as the following will show.
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Theorem 16 All individuals of a population Π will eventually reside in a
given equality interval ε.

Proof. According to theorem 15, we have that for a ∈ ΠI© and b ∈ ΠI

�([alive(a)]a ≥ [alive(b)]b). This implies the following sequence

[alive(zI©n )]z
I©

n ≥ . . . ≥ [alive(aI©)]a
I©

≥ [alive(bI)]bI
≥ . . . , (6.35)

where we have included the proper indices to show the interval the various
individuals a, b, . . . z are resident in. n is a number indicating generations
forward in time.

Now, according to theorem 12 we can substitute prob instead of the sta-
tistical probability in the preceding series. These are of course then greater
than zero as well. Summarising, we have that

prob(alive(zI©n )) ≥ . . . ≥ prob(alive(bI)) (6.36)

So the probability will either rise or stay the same for each generation. Clearly
then there is a finite probability that we will come as close to 1 as we desire.
Since at 1 all individuals must have a fitness of 1, the equality interval will be
zero. Recall that our fitness is equated to the probability of occurrence, i.e.
it will certainly be 1 if it is certain that the individual exists. This is contrary
to the normal fitness value in a genetic algorithm, which is determined by
some external function. The implication is that it must have been greater
than zero before this, and in fact that all individuals must have been resident
in any equality interval we care to name, from the maximum of 1 to the min-
imum of 0. Theorem 22 on page 144 gives the link between prob and 3

proving the theorem. 2

This is a remarkable result, showing that in the genetic algorithm the in-
dividuals will eventually all reside in the same equality environment; i.e. the
population has converged. Note, though, that this result does hinge on the
ωΠ operator actually selecting for better and better individuals, on the aver-
age, all the time.

We may rewrite this result as

α̃ = {β | α ∼= β} = Π (6.37)

using the notation of definition 45. Of course, here we also assume (quite
reasonably as well) that convergence is taken as the same as all individuals
staying in the same equality interval, as indeed has been pointed out earlier.
Note that inside the equality interval the normal mechanisms for reproduc-
tion of individuals is superseded by age-based considerations, and hence we
may even say that the (at least the canonic) genetic algorithm is no longer
operative as such inside the equality interval.

Of course, do note that the preceding, i.e. Theorem 16 only applies if we
use time-conservative or time-progressive selection schemes, as described in
section 5.1.

As a corollary theorem, we may also immediately show the following.
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Theorem 17 For the time-conservative case no individuals will be replaced
at convergence. In other words,

3(Πv = ∅) (6.38)

Proof. That this is the case is quickly seen from the following implication,
given α, β ∈ ΠI and the result from theorem 16

3(α ∼= β) ⇒ (6.39)

3(ΠI,v = ∅) (6.40)

This is immediately clear from the definition of the time-conservative case;
when all individuals are in the equality interval no replacements will take
place and the virtual population will consequently stay empty. 2

But this is just theorem 9 - which we have thus derived from the axioms.
This directly implies theorem 8 as follows.

3(ΠI,v = ∅) ⇔ (6.41)

3(|ΠI,v| = 0) ⇒ (6.42)

3(|ΠI,v| ≤ 0) (6.43)

Since it is always true that

0 ≤ |ΠI,v| ≤ |ΠI | (6.44)

then we know that
3(

∣∣∣ΠI©,v

∣∣∣ ≤ |ΠI | /2) (6.45)

because it was true either immediately, or became true during some interval
I or during the virtual population’s continuous shrinking toward 0 (and it will
become 0 as shown above). Thus theorem 8 may also be derived from the
axioms.

6.3 DISCUSSION

We have shown how genetic algorithms may be axiomatised using fairly sim-
ple techniques. In order to gain a fuller understanding of the process, we
have also described various options how we can vary the axioms themselves.

However, it must be pointed out that a foundational approach like the
one outlined in this chapter can only go so far; the genetic algorithm, being
a method for solving problems in real life, needs to be connected to and aug-
mented with problem-specific data (specifically, the fitness function needs
to show the fitness in terms of the requirements at hand) largely making the
theoretical aspects of lesser importance.

But, nevertheless, the above description of the axiomatisation of the work-
ings of genetic algorithms using a general approach represents a promising
avenue for further research.
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7 MODELLING GENETIC ALGORITHMS USING HIGH-LEVEL PETRI
NETS

This chapter takes advantage of the formalism of high-level Petri nets, which
is customarily used to model parallel and distributed systems, to model ge-
netic algorithms. With the help of this formalism the author gives a simula-
tion of the genetic algorithm using Petri nets that is both simple and expres-
sive. We call the new model the Petri net based Genetic Algorithm model,
or PGA model for short.

The chapter proceeds by first introducing Petri nets, and showing an infor-
mal genetic algorithm formalisation using one; then, a formal presentation
follows. Lastly, we will show some comparisons of the standard, or canonic,
formulation of genetic algorithms with the Petri net formalism and show
some similarities and differences, and discuss the importance of the Petri
net model.

The approach to simulating the genetic algorithm in the way described in
this chapter has not been encountered elsewhere and represents an original
contribution to the field.

7.1 PETRI NETS

The concept of Petri nets has its origin in Carl Adam Petri’s dissertation from
1962 [Pet62].

The basic idea behind the concept of a Petri net (the place/transition net
[Rei82]) is fairly simple. It is a graphical and mathematical modelling tool
consisting of places, transitions, and arcs that connect them. Input arcs con-
nect places with transitions, while output arcs start at a transition and end at
a place. In order to characterise the state of the net, as seen from an outside
point of view, we imagine ourselves putting tokens at each place; the current
token distribution of the net is called the marking and is given by the num-
ber (and identity if the tokens are distinguishable) of tokens in each place.
Note that the tokens themselves are an aid in understanding the working
and dynamic behaviour of the net; they do not correspond to any physical
entities, although this distinction is often ambiguous. Transitions, in their
turn, are the active components. They model activities which can occur (i.e.
the transition, being enabled can fire), thus changing the state of the sys-
tem (the marking of the Petri net). Transitions are allowed to fire if they are
enabled, which means that all the preconditions for the activity must be ful-
filled (there are enough proper tokens available in the input places – and we
are discussing the simple place / transition net; more complex behaviour is
exhibited by other classes of Petri nets; e.g. predicate / transition nets below).
When the transition fires, it removes tokens from its input places and adds
some at all of its output places. In the general case, the number and type
of tokens removed / added depends on the cardinality (or arc expression) of
each arc. The sequential firing of transitions in each subsequent marking is
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sometimes called the token game.

Petri nets are a promising tool for describing and studying systems that
are characterised as being concurrent, asynchronous, distributed, or parallel.
As a graphical tool, Petri nets can be used as a visual-communication aid
similar to flow charts, block diagrams, and networks. In addition, with the
aid these models we find it easier to simulate the dynamic and concurrent
activities of systems. As a mathematical analysis tool, it is possible to set
up state equations, algebraic equations, and other mathematical constructs
governing the behaviour of systems and thus better understand the workings
of the net.

For a more detailed description of basic Petri nets and their theory, see
e.g. Reisig [Rei82], or Rozenberg [Roz90, RR98a, RR98b].

Note that the original Petri net does not provide a time component. This
means that, while correctness properties can be verified, performance anal-
ysis is not possible. As a result, Petri nets have been augmented with time.
The most widely used of such augmented nets are Time Petri Nets, Timed
Petri Nets, and Generalised Stochastic Petri Nets (GSPNs) [AMCB84].

The most important high-level Petri nets are of two basic kinds: Predicate
/ Transition Nets (Pr-T nets) and Coloured Petri nets (CP nets). They add
individuals with changing properties and relations to the previous (‘lower-
level’) Petri nets; the individuals are tokens with structure (‘colour’) and, for
instance enhance the net with arcs furnished with expressions.

For more details on high-level nets, see e.g. [JR91], or [RR98a, RR98b].

7.2 BASIC PETRI NET DEFINITIONS

We will be using these Pr-T nets below in our formalisation of the genetic
algorithm as a Petri net. But before going on we will formally define Petri
nets and some of their basic characteristics. We will follow [Gen87, Gen90]
and [Pys96] (based in part on [Rei82]).

A Petri net is a directed graph with two types of nodes, called places and
transitions, respectively. Nodes of one type are connected to nodes of the
other type with weighted arcs. Formally, we define the net as a tuple con-
sisting of a set of places, a set of transitions, and a weight function between
places and transitions, and transitions and places.

Definition 56 (Petri net) A Petri net is a tuple N = (P, T ; F ), where

1. P is a finite set of places,

2. T is a finite set of transitions (P ∩ T = ∅), and

3. F : (P × T ) ∪ (T × P ) 7→ N is a weight function.
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A marking of a net is a function that assigns to each place a natural number
M : P 7→ N. At a marking M a place p has M(p) tokens. An initial marking
M0 assigns to each place an initial token count. A place p is an input place
(or output place) of a transition t, if F (p, t) ≥ 1 (or F (t, p) ≥ 1).

Definition 57 A transition t ∈ T is enabled at a marking M if for all its input
places M(p) ≥ F (p, t).

An enabled transition t at a marking M can fire and yield another marking
M ′ such that ∀p ∈ P : M ′(p) = M(p) − F (p, t) + F (t, p). We denote this
by M →t M ′.

Finally, a marking M ′ is reachable from a marking M if there is a fi-
nite transition sequence (or firing sequence) α such that M →t1 M1 →t2

M2 . . . →t|α|
M ′.

Note that we will define Pr-T nets below; see definition 60.

7.3 FORMAL MODEL USING PETRI NETS

From the preceding section it may be possible to understand how we can
model genetic algorithms with Petri nets. Since Petri nets are excellent tools
for describing parallel and concurrent systems it seems intuitively clear that
it should be possible to model genetic algorithms, which exhibit just these
traits, using these nets.

A formal model of the genetic algorithm using Pr-T nets (the PGA model
alluded to earlier) is formulated in this section. Here we will rely on [JR91]
and especially on Genrich in [Gen87]. We first describe the simple net we
will use (see figure 7.1), and then its components: the places P1, P2, P3,
and P4, and their contents and purpose. Then, we will describe the arc
expressions, followed by the semantics of the net, and the symbolic transition
rules – the whole of which we may interpret as the genetic algorithm, suitably
expressed for this purpose.

Why do we use Pr-T nets and not other nets? The reason is simple: the
basic net (Petri net above) is not rich enough. The Pr-T net’s major difference
is its ability to store more than one token at each place, in contrast to the basic
net’s customary one. This is exactly what we need for the genetic algorithm.
Furthermore, the tokens must be indistinguishable, i.e. treated absolutely
equally from the Petri net’s point of view. In fact, for instance when a token
‘moves’ from one place to another over a transition, the choice, as it were, of
which token is ‘moved’ is non-deterministic (it cannot be otherwise since they
cannot be distinguished from each other): precisely what we require in the
genetic algorithm when, e.g. ‘choosing’ parents, or selecting among equally
unfit (or fit) individuals. We do not need more elaborate token structures
(from a Petri angle) than the ones in the Pr-T net. Of course, we could use
seemingly more complicated Petri nets with e.g. coloured tokens, or timed
nets; however, for our purposes, the Pr-T net suffices.
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7.3.1 The Pr-T net

The objective is to model the genetic algorithm using a Petri net formalism.
We do this by constructing a net with two transitions and four places, as
depicted in figure 7.1. This is an example of a predicate/transition net (Pr-T
net) [Gen87].

In this high-level net we use structured tokens α, β, γ, etc. each mod-
elling one individual in the genetic algorithm. According to definition 28,
we would have that e.g. α = 〈ξα, Iα〉 where ξα is the chromosome for α and
Iα the interval, within which its fitness exceeds zero (c.f. definition 29). In
this way, we connect the fitness φ with the chromosome, and hence the net.

Again, we should be a little careful here: of course, since tokens really are
in a sense imaginary (and the transitions do the work) we should construe
the above as determining the allowable changes that may occur transitioning
from one state to another (i.e. marking) in the form of the token ‘movements’.

Place P1 contains the set of population tokens Π, P2 and P3 are used
to step the algorithm from phase to phase, and P4 contains the set of all
possible tokens, denoting the set of all possible individuals Sα (cf. definition
28 and subsequent text). Transition T1 constitutes the recombination phase
generating new individuals whereas T2 is the selection phase, which selects
according to the fitness criteria which individuals are to survive to the next
generation.

α ΠS −

< > < >

< > < >

P3

P1

P2
< α > + < β >

< γ >

< δ >

T2 T1

< >

< δ > < γ >

Π

P4

Figure 7.1: Genetic algorithm as a Pr-T net

Note how similar this is to fig. 4.10, which depicts the various populations
in the genetic algorithm. The basic flow of the algorithm is as follows (cf. fig.
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7.1). We interpret the net in terms of the genetic algorithm, and describe the
working of the underlying Petri net as if it were a genetic algorithm.

1. two parents α and β are selected at random from P1

2. they are suitably recombined and mutated at T1 generating a descen-
dant individual γ, which is taken from P4

3. the descendant γ and its original parents α and β are put back into the
population at P1

4. the ‘worst’ individual δ is removed from the population at T2 and put
back into P4, and the rest are left at P1

5. the cycle begins anew

Note that this exposition assumes that two individuals will generate a third,
and that these are put back into the population, and, furthermore, that one
is always dropped from the population according to its (inferior) fitness.

Note that, in the description above we imply a sequential sequence; how-
ever, this is by no means given. Indeed, we can easily conceive of a system
with T1 firing continuously, in parallel, generating offspring from all pairs
(in the case of fig. 7.1) simultaneously. We can even postulate that T2 does
the same, removing unfit individuals continuously as well keeping the popu-
lation size |Π| stable.

It is clear that we in this simple way have simulated the workings of a
simple genetic algorithm using the Pr-T net in fig. 7.1. Of course, we have
to further describe the exact operations of the various components of the net.

7.3.2 The places P1, P2, P3, and P4

The places, in a manner of speaking, serve the purpose of storing the tokens
in the Petri net. There are two kinds of tokens in this model, as described in
the following list of the places.

• always in place P1, the high-level tokens denoting the population set
Π = {α, β, γ, . . .} consisting of one token per individual

• initially in place P2, the synchronisation token, denoted 〈 〉 in fig.
7.1,is used to step the net from marking to marking

• the place P3, initially empty in fig. 7.1 is used to move the synchroni-
sation token 〈 〉, described above back to its initial location in P1, thus
stepping the net from marking to marking.

• the place P4, for possible tokens not in Π at the current interval; see
below.

7. MODELLING USING PETRI NETS 89



The only crucial place is thus P1 and to a lesser extent P4; P2 and P3
are simply used to step the net from marking to marking.

We use the fourth place P4 to store all the remaining possible tokens
(i.e. Sα − Π). This place is used to ‘close’ the token universe providing a
comprehensive ontology for the simulation model acting as a ‘source’ and
‘sink’ of newly generated tokens (denoting newborn individuals) and resting
place of removed tokens (denoting unfit individuals selected against in the
genetic algorithm), respectively. However, it is not really needed for the
semantics of the net to work as desired, and as such, it is drawn with dotted
lines in figure 7.1. In a realistic model (like the one we analyse in section 7.4
below) we do not include this fourth place. Instead we let the transition T1
generate suitable new individuals.

Thus, during the simulation there are normally tokens in P1 and in one of
P2 or P3 (but not both). The tokens in P1, the one holding the population,
are structured tokens, as was described in section 7.3.1 above. The internal
structure of the individuals (tokens) play no further role in the exposition of
the Petri net model. The token ‘universe’, as it were, is in P4, as explained
above.

7.3.3 The arc expressions

The arc expressions basically tell the model what should be transformed
(loosely speaking ‘moved’) from place to transition to place, taking it from
a simplistic point of view. In our case we have several expressions, as listed
below.

• the empty expressions 〈 〉 indicate that no individuals of the genetic
algorithm population Π) are being transformed (‘moved’) in it. It is
a high-level token of its own, though, used for synchronisation as de-
scribed in the section above.

• the expression 〈α〉 + 〈β〉 is a pair of tokens denoting two individuals
from the population Π that have been chosen as parents and whose
corresponding tokens are being traced to transition T1 to undergo the
manipulations necessary to produce new tokens (which will denote off-
spring individuals; see below). Selection of the tokens is accomplished
by transition T1 (see below).

• the expression 〈γ〉 is the token (denoting a new individual) being trans-
formed (‘moved’) back into the token population Π having been gen-
erated from α and β. Note that it is taken from P4, the size of which is
thus decreased (the expression is Sα −Π which is dependent on transi-
tion T1 removing and T2 adding tokens denoting newly generated and
removed as unfit individuals, respectively).

• the expression 〈δ〉 indicates that the superfluous token (i.e. denoting
the individual not selected for; rejected by the genetic algorithm as
being unfit according to the problem-specific fitness function) is being
handled.
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In this way, we have labelled all arcs with an expression indicating what is
being transformed (‘moved’) from place to place when the transitions fires.

Rather interestingly, since the genetic algorithm simulation model cre-
ated in this way is closed, we also see a natural explanation for the virtual
population (1 generation ahead, not general) alluded to earlier (cf. theorem
2 on page 40ff): it is the γ’s – recall that we, in order to simplify the discussion
assumed only one descendent, not a set – forming the addition to the current
population at each generation. In other words, we have accounted for whole
ontology of the genetic algorithm by denoting the tokens in this way.

Thinking in Petri net theoretical terms, if we were to construct the reach-
ability graph for the net, we would see the virtual populations emerge very
naturally in the graph. Indeed, if we were to trace the graph forwards, we
would see the future virtual populations (as well as the real ones), and cor-
respondingly, looking backwards we would see where we have been at each
‘generation’. This, of course, provides a very strong indication of the usability
of Petri net analysis of genetic algorithms, as described in this work.

7.3.4 The transitions T1 and T2

The transitions in the PGA model are the components which correspond to
action occurrencies. In this case we have two transitions with the following
roles:

• transition T1 is used for producing new tokens, i.e. denoting individ-
uals in the underlying genetic algorithm. Somewhat loosely speaking
from a genetic algorithm (i.e. interpretation) point of view, it will take
a number (typically two, as indicated in fig. 7.1 the individuals α and
β) of individuals, use them as parents for generating a new individual γ
(taken from the ‘store’ at P4), which is subsequently put back together
with its parents into the population Π. Note that the generation of new
individuals will be in essence non-deterministic since it uses the ωξ

function, which may use random mutation on the gene γ level, or use
random elements in its recombination function at the chromosome ξ
level

• transition T2 is used for pruning the population according to the given
fitness function. It works by accepting the whole population Π (in-
cluding the offspring and its/their parents from transition T1), and re-
moving an equal number of individuals that were produced earlier,
thus keeping the population size unchanged. It will then return the
remaining individuals to place P1. In effect, we will remove the ‘un-
fittest’ individual (individuals) from the population Π. The effect is as
if (in the example case) one individual δ were removed as indicated by
the label on the arc leading from place P1. Note that the selection of
tokens (individuals) is determined by the type of genetic algorithm; in
general, it is some form of randomised selection, e.g. proportional to
the fitness; cf. table 4.4.
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Figure 7.2: General arc expressions in the PGA model

The functions used at the transitions are the already familiar ones govern-
ing the dynamic behaviour of the genetic algorithm.

• In T1, the transition used for generating new individuals in the genetic
algorithm, we use ωξ (cf. definition 36). Note that this is a high-level
definition; ωξ may be any conceivable transformation of the chromo-
somes combined with the generation of one of several new individuals,
cf. the definitions 6.8-6.11 in the discussion on axiomatisation of the
genetic algorithm to see how this is done. Effectively, we are saying
that γ = ωξ(α, β).

• In T2, the transition used for discarding unfit individuals in the genetic
algorithm, we use ωΠ (cf. definition 37). Note that this is a high-level
definition; ωΠ may be any conceivable transformation of the popula-
tion Π to another population Π© (i.e. a population from the next gen-
eration.) Effectively, we are saying that ∃δmin∀δ(δmin ≤ δ).

Do note that the application of the transitions and functions are determin-
istic, not random, even if the functions do contain random, non-deterministic
elements. E.g. the ωΠ function handles the selection of individuals, which
can have random aspects – but some individuals are always selected.

Furthermore, it is important to realise that the general PGA model is not
restricted to the two parents and single offspring (and single discarded indi-
vidual) of figure 7.1 but that in fact is wholly free to use any number that
makes sense from a genetic algorithm point of view. In order to show the
general form of the arcs to / from place P1 in figure 7.2 in which we omit
places P2, P3, and P4 for clarity.

Note that, compared to table 4.3 and figure 4.10 we have used the nota-
tion Π© instead of ΠI© since we do not want to emphasise the interval in this
context. Also note that the above depiction is only true if |Π| = constant at
all times; this is always the case in our model.

7.3.5 Net semantics

In this section we will develop the formal language and its semantics for the
Pr-T nets shown above. For this purpose we have to understand how a Pr-T
net is annotated, and what the annotation signifies.
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Following [Gen87], our approach here is to model the genetic algorithm
in terms of a set of tokens denoting individuals (forming the population) that
is structured by functions and relations. The structure is partially static and
partially dynamic; in the genetic algorithm the order of the creation of the
various subpopulations forming the sequence that defines the next popula-
tion (possibly a whole generation, but maybe just one individual) is the static
part, and the relation isOccupiedBy between the populations (and subpopu-
lations) and individuals forming them forms the dynamic part.

It is important to realise, that the Pr-T net always embodies the use of a
language (for annotating the net) that is used to model a system, in this case
a genetic algorithm. That language is an extension of standard first-order
logic, with extensions for handling the formalism of the net itself with its
places, transitions and arcs. We rely on Genrich [Gen87, Gen90] and also
on Pyssysalo [Pys96, p. 34ff].

In other words, a Pr-T is a Petri net, the places, transitions and arcs of
which are annotated with a set of variable predicates, well-formed formulas,
and symbolic sums of tuples of a first-order structure for a first-order language
L.

We will first formally define the structure and the language used in the
annotation of the Pr-T net. The following definition of the structure is based
on [Gen87, Gen90].

Definition 58 (Structure) A structure is a tuple of objects, R defined as

R = 〈D; f1, f2, . . . , fk; R1, R2, . . . , Rn〉 (7.1)

where D is a non-empty set of individuals called the domain or carrier of R,
fi are functions in D and Rj are relations in D.

In our genetic algorithm setting, we have that the domain D is the set of
all possible individuals Sα after the definition of an individual in the genetic
algorithm (definition 28). The functions fi form the set of genetic operators
Ω (see page 44 and the formulation of the genetic algorithm, equation 4.44
on page 50). The relations Rj form the set of relationships between places
and the populations; in this case there is only one relation, the isOccupiedBy
relation with obvious meaning.

We are now ready for the definition of the vocabulary of the language in
the net; again, we follow [Gen87, Gen90].

Definition 59 (Vocabulary) For each n ≥ 0, a finite set of n-ary operators
(function symbols) and a finite set of n-ary predicates (relation symbols) of
the structure R form the vocabulary of the first-order language L. L consists
of three kinds of expressions: the set of individual terms Lt, the set of first-
order formulas Lf , and the set of symbolic sums LC(n). In addition, there
is an infinite set of variable symbols V in R, disjoint from operators and
predicates. The three kinds of expressions are formed in the following way.

The terms Lt, which are formed as follows.

1. A variable is in Lt.
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2. If f (n) is an n-ary operator and v1, v2, . . . , vn are terms, then f(v1, v2, . . . , vn)
is a term.

3. No other expression is in Lt.

The formulas Lf , which are formed as follows.

1. The constants > (true) and ⊥ (false) are atomic formulas in Lf .

2. If v1 and v2 are terms, then v1 = v2 is an atomic formula in Lf .

3. If P (n) is an n-ary predicate and v1, v2, . . . , vn are terms, then Pv1, v2, . . . , vn

is an atomic formula in Lf .

4. If p1 and p2 are in Lf , then ¬p1 and (p1 ∨ p2) are in Lf .

5. If x is a variable and p is in Lf , then (∃x)p is in Lf .

6. No other formula is in Lf .

The symbolic sums LC(n), which are formed as follows.

1. The constant 0 is in LC(n).

2. If v1, v2, . . . , vn are terms, then the n-tuple 〈v1, v2, . . . , vn〉 is in LC(n).

3. If l1, l2 are in LC(n), then (l1 + l2) is in LC(n).

4. If l is in LC(n) and z denotes a non-negative integer, then zl is in
LC(n).

5. If x is a variable and l is in LC(n), then
∑

x l is in LC(n).

6. No other symbolic sum is in LC (n).

Regarding the symbolic sums, we note that, in order to be able to simplify
net structures with multiple arcs between elements of the net, we need a
representation of the merger of the arcs. We propose to use the symbolic
sums to indicate a linear combination of the constituent expressions; this is
shown in fig. 7.3. In this figure we show a net to be simplified in (a); note
how we consolidate the places Pa, Pb, and Pc to P (as well as Qa and Qb
to Q) and add multiple arrows instead in (b). Also note how we designate
the arc expressions, which are further merged into one arc in (c). Finally, we
note that < a > + < c > can be replaced by < x > and the net further
simplified into (d).

Now we are ready to give a formal definition of the Pr-T net. Let LCΣ(A)
denote a set of symbolic sums of a set A and let A∗ denote the set of all finite
tuples of A.

Definition 60 (Predicate / Transition net) A Predicate / Transition net (Pr-
T net) is a 3-tuple NL = (N, A, M0), where
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Figure 7.3: Notation for multiple arcs and symbolic sums. Based on
[Gen87].

1. N is an underlying Petri net, N = (P, T ; F ) according to definition
56,

2. A is the annotation of N , a 4-tuple A = (AN , AP , AT , AF ), where

(a) AN = R is a first-order structure for L, called the support of N .

(b) AP is a bijection between the set of places P and the set of vari-
able predicates that assigns an arity to each place. The arity is the
size of tuples in that place.

(c) AT : T → Lf assigns a well-formed formula, called a firing con-
dition to each transition. All variables that are outside the scope
of the quantifiers ∃ and ∀ must appear in some symbolic sum that
Af assigns to the arc hitting the transition.

(d) AF assigns to each arc a symbolic sum of LC (n). The arities of all
the symbolic sums of tuples in an arc must equal the arity of the
place which the arc hits.

3. M0 : P → LCΣ(A∗
N) is the initial marking of N . It assigns to each

place a symbolic sum of tuples of the carrier of AN . The size of the
tuples must equal the arity of the place where they are located.

A marking of the net consists of tuples of individuals in the places, which
denote the interpretation of the relation symbols, i.e. the state of the concur-
rent system.

As we have seen, when drawing Pr-T nets we put the firing conditions in-
side the transition squares, arc expressions beside the arcs, and initial mark-
ings inside the circles denoting places; as shown in the previous figures (fig.
7.1 and 7.2).
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7.3.6 Formal definition of a Petri net modelling a genetic algorithm

When modelling the genetic algorithm, as outlined above, the Pr-T net will
have the following components.

Definition 61 (Petri net genetic algorithm) A genetic algorithm is defined
by a Petri net having the following components.

N The Petri net N is as depicted in fig. 7.1. Note that this is an example
only; other nets may model genetic algorithms as well.

A The net annotation A is formed from the vocabulary of definition 59
and is as follows.

AN The structure AN is as defined in definition 58.

AP The predicates AP are P1 : |Π| = m, where m is a constant
integer > 0 denoting the size of the population of the genetic
algorithm. Either P2 or P3 is empty (i.e. the place is empty),
whereas the other one contains the empty token <>. Finally,
P4 : |Sα − Π| = n, where m + n = |Sα| is the size of the set of
possible individuals in the genetic algorithm (i.e. the size of the
genetic space)

AT The firing conditions AT are T1 : ωξ and T2 : ωΠ for the transi-
tions T1 and T2, respectively.

AF The arc expressions (i.e. symbolic sums) AF are as depicted in
fig. 7.1.

M0 Initially, the marking is such that the tokens in P1 denote the inital
population Π0.

This fully describes one simple type of genetic algorithm as a Petri net, in
particular a Pr-T net.

7.4 ANALYSING THE GA USING A PETRI NET

There are many ways of analysing the Petri net: state analysis, dynamic or
static property analysis, and so forth (see e.g. [Pet81]).

In this section we will consider the Petri net given in figure 7.4, which is
the simpler version of the model in figure 7.1 with the place P4 omitted both
for clarity and because its role is not needed in a simulation of the net (recall
that its main advantage is that it closes the token space, i.e. individual space
from an ontological point of view as described in section 7.3.2 on page 90).

In general, the most promising and fruitful approach is the reachability
graph used in reachability analysis.
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Figure 7.4: Genetic algorithm as a Petri net

Definition 62 (Reachability graph) A reachability graph is a directed graph
〈S, T, s; F 〉 with a set of nodes S, called states, a set of edges T , called tran-
sitions, a distinguished start state s ∈ S and a set of terminal or final states
F ⊆ S.

For Petri net representations the reachability graph corresponds to the
transitive closure of the Petri net firing rules over M0, the initial marking.
States of the graph are reachable markings of the Petri net. A transition in
the reachability graph corresponds to the firing of a single Petri net transi-
tion. The start state corresponds to M0. Final states of a reachability graph
correspond to Petri net markings in which all of the marked places model the
termination of a task.

For the net model in figure 7.4, the reachability graph is extremely simple,
and is given in figure 7.5. Notice that the uppermost node is s, the starting
state node. There are no final state nodes, as the net is cyclic.

To see the components of the graph explicitly, we have the following graph
definition.

{〈P1 : Π, P2 :<>〉, 〈P1 : Π, P3 :<>〉}, (7.2)

{T1, T2},

〈P1 : Π, P2 :<>〉;

{}〉

where we have put the components of the graph (which from definition 62 is
〈S, T, s; F 〉) on separate lines for clarity.

The graph is, as pointed out, very simple: there are just two markings:
either P2 or P3 has the empty token, with P1 always having the Π tokens.
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P3: < >
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Figure 7.5: Reachability graph

It is perhaps more instructive to consider the internal ‘microstates’ that P1
is involved in in order to gain an understanding of what is happening here.
They are shown in figure 7.6.

As can be seen, we have decomposed the T1 transition involving P1 so
that the generation of γ can be clearly distinguished. However, we can still
notice that the number of tokens, i.e. the marking of P1 does not change,
which is the essence of the reachability graph of equation 7.2. Only the
markings at P2 and P3 change.

In order to gain an insight into the simulation and analysis of the net, we
have analysed the net model using ������� , the Pr-T net reachability analysis
tool developed at the Helsinki University of Technology by Varpaaniemi et.
al. [VHHP95].

The tool we used, ������� demands a text file that describes the net. For this
model, the description of the net is contained in a file called � ��� ���
	 , which
is reproduced in figure 7.7.

The net description is similar to a program in the C language, and the tool
is indeed implemented as a C preprocessor generating C code for a reacha-
bility tool specific to the net being analysed. The first line defines a macro to
indicate the generation of new individuals (an ω function on the individuals
α and β). The three places P1, P2 and P3 are defined; P1, the popula-
tion, is marked with 10 (in this simple example) tokens (i.e. individuals in
the genetic algorithm), whereas P2 is marked with the empty synchronisa-
tion token used for stepping through the net. P3 is left empty. Finally, the
two transitions T1 and T2 are defined. In each transition we have defined
the arcs inwards ( � � ) and outwards ( 	�
 	 ), each with the places where the arc
originates and the function label indicating the token ‘movement’. In addi-
tion, T1 has a computing block that computes the new value for γ from its
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< α > + < β >

< α > + < β >

< α > + < β > + < γ >

< α > + < β > + < γ >

< α > + < β > + < γ >

Π

P1

< δ >

< α > + < β >

T1’

T1’’

T1’’’

P1’

P1’’

Figure 7.6: Transitions internal to P1 and T1

parents α and β.

Rather interestingly, there are many ways to enhance the net model to
provide a more faithful model of the genetic algorithm. The improvements
would provide such things as a more detailed selection phase (compared with
figure 7.1 or figure 7.4), a termination clause, either based on generations (a
counter) or fitness value (implemented as a gate in ������� , see [VHHP95]).
None of these are essential from the modelling point of view, although they
do make analysing the Petri net easier from a simulation point of view. The
abovementioned improvements are sketched in figure 7.8. Note that we
could have included our ‘microstates’, as well called them, from figure 7.6
but have chosen not to do so.

To explain the improvements further, we list the places and transitions
below with descriptions.

• P1 holds the population Π as before

• P2 holds the generation counter; initially marked

• P3 holds the generation counter; initially unmarked

• PT holds the termination token (individual), initially unmarked

• T1 is the generation transition as before. It accepts individuals α and
β and produces the offspring γ using the ω functions as described in
the previous chapters and as shown in the ������� net description file in
figure 7.7

• T2 removes the unfit individual δ, almost like before as well as incre-
ments the generation counter n

7. MODELLING USING PETRI NETS 99



��� ��� � ��� 	�� � � ���
	���
�� ���
	���
���	���
��������

����� �! 
� � � ��" �$# �%� � �%�'&��(�������� �! 
� �!)���" �$# � �(�������� �! 
� ��*
� 	�+ � ��,�-.�

� � / � �0��#�� � �1��2 ���
�3�4#��65 �
	����(�87 ��) �9# � �(�:7<;
	�
 	 / � �0��#�� � �1��2 ���
�3�4#��65 �
	����(�=�4#�� � � ��� ���(�87 ��* ��#�� �(�:7>; 	1� � / � � �?� �A@ 	�� � � ��� � �'��2 �:��5�� 	����07CBD � � � 	E�F�G7H;� �
� � 	?+

� 	�+ � ��,�- )
� � / � �0��#�� � � � 	����(�87 �!* �9# � �(�:7<;
	�
 	I/ �!) ��#�� �(�87C;� �
� � 	?+

Figure 7.7: PROD net file � ������� 	 for the net in 7.4

• T3 selects the unfit individual δ from the whole population Π using
the selection criteria and functions described in the previous chapters

• T4 accepts an individual τ from the population Π and checks whether
a termination value has been reached; if so, it passes the token τ on to
the termination place PT

As we notice, this model is already very close to the canonic genetic algo-
rithm as described in the previous chapters, the main difference being that
it is strictly speaking not generational, and that the termination value check
takes place continuously (T4 fires all the time until a high enough value has
been reached). Recalling that Petri nets are widely used in net simulation
and analysis, it is expected that this model may be further enhanced for prag-
matic reasons to provide various functions deemed necessary for any number
of reasons; however, these fall outside the scope of this work and have not
been investigated.

In a Petri net, there are a number of characteristics that are formulated in
order to better understand the net. These are treated below [Rei82].

• Liveness. A net is live if every transition can always occur again, or
more precisely, if from any reachable marking it is possible to reach
some marking that enables the transition. Looking at the net in figure
7.4 it is clear that it is live; the net in figure 7.8 is not since transition
T4, once occurred cannot occur again. Alternatively, depending on
the definition of the place PT , can only occur until PT ’s capacity is
not exhausted. If PT does not have an upper bound, then the net is of
course live.

• Boundedness. A net is bounded if each place has an upper bound, or
token capacity. Clearly, the nets in figures 7.4 and 7.8 are bounded.
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Figure 7.8: More complete genetic algorithm as a Petri net

If the place PT in 7.8 does not have an upper bound then that net is
unbounded.

• Deadlock-freedom. A net is deadlock-free if every reachable marking
enables some transition. Again, both our nets are clearly deadlock-free.

• Reversibility. A net is reversible if it can always reach its initial mark-
ing; in our cases the net in figure 7.4 is reversible, whereas the net in
figure 7.8 is not. If a token gets to PT , it is never removed, and thus
the initial marking cannot be reached again. Execution of a reversible
net is cyclic.

7.5 GENETIC ALGORITHM COMPARISONS

In order to show the expressiveness of the PGA model we develop compar-
isons between the most common genetic algorithms and their PGA counter-
parts.

We may develop an understanding of the various types of genetic algo-
rithms by listing their main characteristics and show the correspondencies in
the standard formulation and the Petri net based formulation.

We will examine some of the following characteristics, listed in table 7.1.
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Characteristic Description
Selection mechanism Various types, e.g. proportionate or linear

selection
Elitism Best (one or several) is saved
Recombination Various types, e.g. one- and two-point, uniform

recombination (crossover)
Mutation Various types and rates
Fitness Function determining which survive to the next

generation
Convergence State when population fitness tend to stay

unchanged from generation to generation
GA type: Generational Whole population renewed each generation
GA type: Steady-state Less than whole generation renewed each

generation

Table 7.1: Genetic algorithm characteristics

7.5.1 Selection and elitism

Selection is the mechanism by which parents are chosen in the traditional ge-
netic algorithm; this is handled in various ways, a number of which are listed
in table 4.4 on page 55 together with some important selection parameters
in table 4.5 on page 55.

In terms of the Petri model of the genetic algorithm, these are handled
by the arc expression from P1 to T1. Note though, that the arc expressions
merely tell the transition function which individuals it may act on; in this
sense it is really part of the transition function, not the actual arc expression.

Elitism is the pragmatic exception of certain well-fit individuals to forego
selection, and go straight to the next generation unchanged, and without any
further ado. In one way it defeats the whole genetic algorithm; in another
way it ensures that good individuals that have been found by chance early on
in the evolution of the population do not disappear.

7.5.2 Recombination and mutation

In the traditional genetic algorithm this is handled within the ωξ functions.
There are many mechanisms; see e.g. [Gol89] or [BT95] for details on both
selection and recombination.

In the Petri net model of the genetic algorithm these are handled by the
transition function in T1 (refer to fig. 7.1). Also see the paragraph on conver-
gence below.

7.5.3 Fitness

In the traditional genetic algorithm, the fitness function is part of the de-
termination of which individuals survive to the next generation. It is always
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problem-dependent, and may be quite complicated since it has to determine
the sometimes minute differences between individuals. Earlier, see page 56
we introduced one possible way of going forward with the help of equality
environments; many more exist.

In the Petri net model the fitness function is built into the transition func-
tion at T2, as pointed out in the description of the Pr-T net in section 7.3.1
on page 88. This means that it may be applied continuously during the evo-
lution of the population, every time new individuals are generated by T1;
recall that the condition for its application is that |Π| increases, which it must
not do.

7.5.4 Convergence

Convergence is the tendency of the population of subsequent generations
to stay the same, from a population fitness point of view. In the traditional
genetic algorithm it is not a function or mechanism, but rather a problem-
dependent state that may or may not be reached during the course of the
evolution of the population.

In terms of the Petri net model convergence may be seen in two ways

• transition T2 always removes the tokens denoting new individuals gen-
erated by transition T1 effectively keeping the token set at P1 static
(indicating that the population they denote is static as well), or

• transition T2 always removes tokens denoting individuals with exactly
the same fitness value as the ones that were generated by transition T1.

It is easily seen that these two cases correspond to the time-conservative
and time-progressive selection mechanisms; see definitions 51 and 52 on
page 61.

7.5.5 Genetic algorithm type

Traditionally, we have the generational and steady-state types of genetic algo-
rithms; see chapter 2 starting on page 9.

In the Petri net model we strictly speaking can deal with the two models
with the help of suitable definitions for the transitions. Since T2 fires imme-
diately on changes in the token set size denoting the population Π in place
P1, we obtain a steady-state model with T1 generating one token (denoting
a new individual) only; with a creation of a full size population we obtain a
generational model. Of course, we may have any number in between; using
the definition of generational and steady-state we would call this steady-state
as well (cf. definitions 42 and 43 on page 53).
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7.6 DISCUSSION

We have shown how genetic algorithms may be modelled and simulated us-
ing high-level Petri nets. The Petri net formalism is quite powerful: many
techniques exist for analysis of its static and dynamic properties, as well as
many easy-to-use tools for the same purposes.

However, it must be pointed out that all our nets in this chapter are very
simple from a Petri net analysis point of view; indeed, we can analyse them
by hand since the number of places and transitions is so small. A tool like
��� ��� , mentioned above, comes into its own only when we reach hundreds or
thousands of places and transitions. Clearly, we are very far from this in our
models.

But, nevertheless, the above description of the simulation of the workings
of genetic algorithms using high-level Petri nets represents a promising av-
enue for further research.
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8 INVESTIGATING THE TEMPORAL GA

This chapter will investigate the temporal aspects of the genetic algorithm, its
behaviour and characteristics using the parameters and formalism described
in the previous chapters. We will show that the temporal and probabilistic ap-
proach, using a modified standard implementation of the genetic algorithm,
the SUGAL Genetic Algorithm Package [Hun95b, Hun95a].

This chapter proceeds as follows. We will first briefly describe the standard
SUGAL package. Then we will describe the test procedure, and, finally, we
will show results both for the standard and temporal selection and discuss the
results comparing them with the standard algorithm.

We will then discuss the application of the genetic algorithm (exemplified
by SUGAL) on a real, NP-hard problem: the travelling salesperson. This
section will describe the behaviour of the genetic algorithm with standard
selection mechanisms, and then with temporal ones, ending with discussing
the results obtained.

8.1 THE SUGAL PACKAGE

SUGAL is further described by Andrew Hunter in his SUGAL 2.1 User Man-
ual [Hun95b] and SUGAL 2.1 Programming Guide [Hun95a].

It is a software package, written in the C computer language, designed
for experimentation with genetic algorithms and related techniques. It is
intended to be used in genetic algorithms research; consequently the ma-
jor emphasis is on providing a large number of options, on configurability
and extendibility. Efficiency is considered important but has been sacrificed
where it would conflict with the above requirements.

Note that the SUGAL genetic algorithm subsumes most of the GA models
which exist as subsets of its functionality, and can be extended to model those
it doesn’t subsume. Certainly the Holland/Goldberg/DeJong models, Whit-
ley’s Genitor, and Fogel’s real parameter model are covered (and extended to
arbitrary datatypes), along with other more obscure versions. SUGAL breaks
the features of the various algorithms into separate parts, so that an extremely
extensive range of hybrids of the standard models is also available. This is
one of the main reasons why it was chosen for this investigation by the au-
thor. Aspects of evolutionstrategie are not covered (e.g. where the mutation
rates change which are themselves mutated).

The main characteristics of SUGAL in terms of the run of the genetic
algorithm and its parameters are as follows [Hun95b].

1. Chromosomes are strings of bits. In our setting we have used a length
of 10 bits per chromosome.

2. Chromosomes are randomly initialised, with each bit having a 50/50
chance of being set or cleared.
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Parameter Type Value
Replacement method uniform

condition unconditional
rate 1
elitism no

Population size 20
generations 100

Crossover type two-point
rate 0.60

Mutation type invert bit
rate 0.01

Chromosome bits 10

Table 8.1: Standard GA parameters

3. The entire population is replaced by its children on each generation.
We have used a population size of 20 and tested for 100 generations.

4. Parents are randomly selected to produce children using the roulette
wheel method. Each time a parent is needed, one is randomly chosen
from the population. The chance of selection as a parent is proportion-
ate to a chromosome’s normalised fitness (see below). This means that
better chromosomes will generally produce more children, although
the stochastic nature of the process means that sometimes they won’t,
and sometimes poor solutions will produce children.

5. All children are produced by crossover of two parents; two children
are produced simultaneously. Two-point crossover is used; this means
that the two parent chromosomes are joined at two randomly selected
crossover points somewhere along the length of the chromosome, and
swap the sections on either side.

6. Once children have been produced, they may be subjected to muta-
tion. The average number of mutations is 0.5 per child (some chil-
dren may experience a number of mutations, while others experience
none). If a mutation occurs, a randomly selected bit in the chromo-
some is inverted: that is, its value is flipped.

Fitnesses are normalised internally to the range [0, 1] in order to make
them comparable; however, note that this also means that when we introduce
our temporal selection methods the equality interval will also have a value
between 0 and 1 (inclusive).

The main parameters used when running the genetic algorithm produc-
ing the results shown in figures 8.1, 8.2, and 8.3 are listed in table 8.1. We
will use the same parameters whenever appropriate in the tests below as well.
Especially note that elitism is turned off.

In general, SUGAL uses the following baseline genetic algorithm. Note
that, as has been pointed out before SUGAL is extremely versatile and may
be used to mimic virtually any of the standard types of genetic algorithms,
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so clearly it is of paramount importance to choose a set of parameters that
are both widely used and meaningful for standard work as well as for our
modified algorithm with temporal parameters in addition to the ones in the
normal package.
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As can be seen, this is very much the canonical generational genetic algo-
rithm, as described by Holland [Hol92a] and Goldberg [Gol89].

8.2 SUGAL TEST RUNS

Now when we have a basic understanding of the package, this section first
deals with the test problems used and then provides an overview of the tests
performed. We then detail the temporal selection method tests and their
results.

8.2.1 Test functions

The modified SUGAL package was run using the widely used De Jong test
functions [DJ75]; see table 8.2. It is possible to devise particular problems
which are suited to particular search methods, including the various types
of genetic algorithm [Hun95b, WM95]. An implication of this is that, if we
discover a particular form of algorithm to be good at solving a particular prob-
lem, this doesn’t necessarily mean that it is good for any other problem. It is
thus extremely difficult to make any definitive statements about what versions
of the genetic algorithm are ‘best’. An obvious approach to this problem is
to devise a standard set of test problems (benchmarks), against which various
algorithms can be tested. Kenneth De Jong [DJ75] did precisely this, and his
five test functions are still widely used for genetic algorithm research. They
are very simple functions, designed to exhibit various recognised types of
search landscape, including: continuous/discontinuous, convex/nonconvex,
unimodal/multimodal, quadratic/nonquadratic, deterministic/stochastic, low
and high dimensionality. Although De Jong used binary representation, each
of the functions is actually defined on real numbers: De Jong represented
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Function Definition Features

F1
∑3

i=1 x2
i unimodal quadratic, min at (0,0,0)

F2 100·(x2
1 − x2)

2 + (1 − x1)
2 multimodal

F3
∑5

i=1 int(xi) discontinuous ‘staircase’ function

F4
∑30

i=1 i · x4
i + Gauss high dimensional, stochastic

F5 0.002+
∑5

j=1
1

(j+ � 2

1
(xi−aij))6

extreme multimodality, sharp peaks

Table 8.2: DeJong test functions

each real number parameter as an integer, made up of a number of bits, and
divided through by a constant factor. The five functions are described in
table 8.2.

Note that Gauss is a random variable with a Gaussian (normal) distribu-
tion, mean 0, and standard deviation 1. In F5, the aij ’s are constants, which
in SUGAL can be set programmatically. It is worth remembering that the
DeJong test functions, F1-F5, are extremely simple problems by genetic al-
gorithm standards, and any conclusions drawn from experiments with these
test functions need to be treated with extreme caution. Nevertheless, they
do provide a basis from which to demonstrate various genetic algorithm con-
cepts, and are widely used as a common benchmark.

8.2.2 Baseline tests

In order to provide a baseline from which to evaluate the tests, i.e. without
employing temporal selection consider figure 8.1 depicting a typical run of
function F1 from table 8.2. We show the evolution of fitness over 100 gen-
erations, together with the mean ± the standard deviation. Note that (by
definition) we are minimising the function and that is why we start off with
a high fitness value and optimise it towards 0. We also show the diversity in
figure 8.2, which in this context is defined in a statistically more meaningful
way: it is the mean normalised Hamming distance between all pairs of in-
dividuals in the population. The Hamming distance between two bit strings
is the number of bits that differs between them; normalisation is achieved
by dividing by the number of bits. Thus for a random population it is 0.5
because any two randomly chosen bit strings will differ in approximately half
their bits. This can be clearly seen as the starting value in the figure. The
diversity reaches 0 approximately by the 90th generation indicating a totally
converged population. Note that we have chosen to use linear instead of
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Figure 8.1: Standard fitness evolution for function F1. Baseline case.

logarithmic scale on the vertical axis; even if a logarithmic scale would have
shown differences better in later generations of the run, these differences
matter little, so in order not to emphasise unimportant variations at later gen-
erations we keep the linear scale with its virtually flat curves toward the end
of the runs.

Regarding fitness evolution, we can clearly say that for this problem the fit-
ness has been optimised in the first 10 generations of the run; the three blips
at the 24th, 42nd, and 59th generations are due to mutation and are imme-
diately deselected away. Redisplaying the data for the first 10 generations of
figure 8.1 we obtain figure 8.3. Indeed, fitness has apparently essentially con-
verged by the 4th generation, although we note that there is a small residue
(approximately 0.5) left that the algorithm is unable to optimise away.

The standard fitness evolution for the baseline case for the first 10 gener-
ations is shown in figure 8.3. The convergence is clearly discernible.

8.2.3 Temporal selection tests

We now consider the same tests as before, but now we add the temporal
selection mechanisms described in chapter 4 and 5.

The next figure, 8.4, shows the same but now we use temporal-conservative
selection, with an equivalence interval of 0.1. It is interesting to notice how
convergence has speeded up as evidenced by the smaller standard deviation
and the slightly steeper slope of the mean. Perhaps even more interesting is
to examine the evolution of diversity for this selection; it is shown in figure
8.5.

Comparing this with the corresponding standard one in figure 8.2 we no-
tice how quickly the algorithm converges; a small residue of diversity is left,
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Figure 8.2: Standard diversity evolution for function F1. Baseline case.
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Figure 8.3: The first 10 generations of the standard fitness evolution for func-
tion F1.
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Figure 8.4: Fitness evolution using temporal-conservative selection for func-
tion F1.

however.

It is very interesting to see how diversity changes with different values of
the equivalence interval. This is shown in figure 8.6. We can clearly discern
how diversity decreases with decreasing equivalence interval. The explana-
tion is simple: when fitness is within the equivalence interval the genetic algo-
rithm makes essentially a random choice which individuals survives leading
to statistically speaking no change in diversity at all.

Regarding temporal-progressive selection, it is really exactly the same as
temporal-conservative until we reach the equivalence interval. We choose to
show an expanded view of both kinds of temporal selection in order to show
that the difference will only show up when we near the equivalence interval
(or when a number of individuals start getting selected temporally instead
of unconditionally); see figure 8.7. Using an equivalence interval of 0.1 the
curves start to show differences below a fitness value of 1, with completely
different behaviour below 0.2.

The corresponding curves for the evolution of diversity are shown in figure
8.8.

As a second example, consider figure 8.9 now depicting runs of problem
F4 from table 8.2 shows the difference between the two temporal types of
selection as well as a selection where the improved child replaces its parent.
Unlike figure 8.8, progressive is better at problem F4 whereas conservative
is superior at F1. In order to see how a ‘traditional’ selection mechanism
behaves we have included the simple case of replacement if the child is
improved. Notice how all mechanisms (especially outside the scale of the
diagram, which has been scaled to show the differences) start off identically
but start diverging when more and more individuals reach the equivalence
interval, which for this case was set at 10.
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Figure 8.5: Evolution of diversity using temporal-conservative selection for
function F1.
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Figure 8.6: Diversity as a function of the equivalence interval for function
F1.
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Figure 8.7: Fitness evolution using temporal selection for function F1.
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Figure 8.8: Evolution of diversity using temporal selection for function F1.
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Figure 8.9: Comparison of temporal selection mechanisms for function F4.

We also show the curves for diversity for the same runs, in figure 8.10. As
can be seen, no significant differences may be found.

The virtual population may also be examined at various points of the run
of the genetic algorithm. We have two basic statistics: the actual number of
individuals replaced per generation, and the cumulative number of replaced
individuals up to a generation.

We show these two for the preceding De Jong test function F4 in figures
8.11 and 8.12, respectively.

Quite predictably, the population is initially dominated by replacement
of its constituent individuals; indeed in the beginning all of the probable
replacements take place (recall that we in this scheme generate children that
replace their parents only if better; in a random population they would only
be better half the time, on the average) and we have a replacement rate
of 50%. Quite soon, however, it starts to fall as the population improves,
finally reaching a residual level of around 5%. It is instructive to combine
the cumulative replacement plots for the two temporal selection types with
this ‘if improved’ selection scheme (used in figure 8.12) in order to compare
the diversity evolution and convergence. Refer to figure 8.13.

The conclusions are fairly easy to draw: using the ‘if improved’ selection
scheme we reach (approximately at generation 60) a plateau, where we no
longer explore the space of possible solutions. In other words, the population
has converged, apart from a small percentage due to mutation. However,
this is not the case for temporal selection where the curve of cumulative
replacements is straight, indicating a steady replacement rate. This means
that we do continue to explore the landscape. Looking at the fitness and
diversity data for the same problem, figures 8.9 and 8.10, respectively, we
do not see any substantial differences in performance - all seem to find the
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Figure 8.10: Diversity comparisons for different temporal selections for func-
tion F4.
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Figure 8.11: Replacement per generation for function F4. Baseline case.
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Figure 8.13: Replacement characteristics for function F4.
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fittest individuals, and reach the same kind of diversity. The difference is
thus that the temporal variants replace the individuals in the population with
new ones on a continuing basis, something that is highly desirable in order
to avoid the premature convergence phenomenon. Appropriately modifying
the equivalence interval we may stay at any explorative level desired.

8.3 THE TRAVELLING SALESPERSON

Lastly, let us investigate the behaviour of the simple genetic algorithm here,
with standard selection mechanisms as well as the temporal ones as detailed
above on a real, NP-hard problem.

First, we describe the problem setting, its encoding in the genetic al-
gorithm, and the evaluation function determining the fitness value. Then
we will look at three cases: the genetic algorithm with standard selection
mechanims, with temporal-conservative, and with temporal-progressive. Fi-
nally, we will discuss the results.

8.3.1 The problem setting

We will investigate in some depth a travelling salesperson (TSP) problem
with 75 cities. Briefly, this entails finding a path through 75 points (cities)
such that each point is visited only once, and such that the length of the path
is minimised; the actual problem in question is depicted in figure 8.14. It is
well-known that the general case is an NP-complete (NP-hard) problem, and
as such cannot be solved in polynominal time. Indeed, for a TSP problem
with 75 cities, the number of possible paths through them is an astronomical

number, namely, for n cities (n−1)!
2

which for 75 cities is approximately 1.65 ·
10107.

The generic settings of the genetic algorithm are as follows, see Table 8.3.

As can be seen, the structure of the chromosome is fairly simple: it is a
permutation of the coordinate pairs (x, y) for the cities. The fitness function
is consequently also simple: it is the total length of the round trip, includ-
ing returning to the starting point. Since the chromosome consists of pairs
of coordinates we will ensure that crossover returns valid routes (i.e. with all
cities, no duplicates or omissions) by first doing the crossover, and then scan-
ning and replacing cities that are duplicated, effectively turning a two-point
crossover into a multi-point. As a matter of fact, SUGAL offers several varia-
tions on the theme, with three different crossover types (for details, the source
code for SUGAL is well commented in this regard).

Likewise, mutation must also take the special structure of the chromo-
some into consideration by always ensuring that it returns a valid route. SU-
GAL offers two mutation variations: swapping, where two cities are randomly
swapped in the chromosome, and inversion, where a part of the chromosome
is reordered by inverting its order of cities. Both of course return valid routes.
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Figure 8.14: A Euclidean TSP problem with 75 cities.

Parameter Type Value
Selection method tournament, size 2

fitness normalisation reverse scale
Replacement method uniform

condition if improved
rate 1
elitism yes

Population size 20
generations 5000

Crossover type multiple
rate 1 per chromosome

Mutation type swap
rate 1 per chromosome

Chromosome structure x and y coordinate of city

Table 8.3: Standard parameters for the TSP problem.
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Figure 8.15: TSP with 75 cities, standard selection and other parameters as
in table 8.3: Fitness evolution

In these parameters we have endeavoured to find the ones that give a
solution that converges quickly; as we shall see, this is a matter of experimen-
tation and tinkering with the settings of the genetic algorithm, since results
vary widely with the settings. Also note that, whilst most tests have been per-
formed up to the 5000th generation, the algorithm has been used with other
values as well; these cases are noted in the text below.

8.3.2 Standard tests

The standard selection mechanism gives the following results; for the fitness
evolution (see Fig. 8.15), and for the diversity evolution (see Fig. 8.16). In
this base case the solution found had a length of 809 after 5000 generations.

As can be seen, the diversity rapidly declines to become zero at approxi-
mately the 2000th generation. Rather interestingly, this can be significantly
enhanced using more frequent mutation. This case is exemplified by the fol-
lowing two corresponding figures for a setting of multiple mutations, namely
the previous swap as well as an inversion operation. See Fig. 8.17 and 8.18,
for the fitness and diversity plots, respectively.

It is clearly visible how the frequent mutation prevents diversity from
ever becoming zero, and, consequently, the genetic algorithm may explore a
larger space of possible solutions and reaches a better solution. Incidentally,
the found solution had a length of 717.
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Figure 8.16: TSP with 75 cities. standard selection and other parameters as
in table 8.3: Diversity evolution
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Figure 8.17: TSP with 75 cities, standard selection, parameters as in table
8.3 but with multiple mutation (inversion and swap): Fitness evolution.
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Figure 8.18: TSP with 75 cities, standard selection, as in table 8.3 but with
multiple mutation (inversion and swap): Diversity evolution.

8.3.3 Temporal-conservative tests

Having studied the test results from the temporal-conservative selections tests,
it must be said that this particular method of selection does not seem to offer
any advantages over the more traditional methods, such as roulette wheel
selection or tournament selection, which was employed in the standard tests
discussed above.

The results can be studied in figure 8.19, for the fitness evolution case, and
figure 8.20, for the diversity evolution. As before, the diversity is certainly
preserved, but, since no new individuals are being generated and put into
the population as a result, the solution is not reached any quicker than in the
standard case.

Note that in this case we can also avail ourselves of the increased mutation
rate offered by multiple mutations, like the enhanced standard case above.
In this case, we obtain the results shown in figures 8.21 and 8.22, for the
fitness and diversity, respectively.

Comparing the two sets of curves clearly shows the benefit of increased
mutation on the convergence of the algorithm.

8.3.4 Temporal-progressive tests

Studying the results of the temporal-progressive selection tests, the conclu-
sion is clear: this method of selection exhibits the best results of the methods
discussed here, in the context of the SUGAL genetic algorithm.
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Figure 8.19: TSP with 75 cities, temporal-conservative selection and param-
eters as in table 8.3: Fitness evolution.
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Figure 8.20: TSP with 75 cities, temporal-conservative selection and param-
eters as in table 8.3: Diversity evolution.
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Figure 8.21: TSP with temporal-conservative selection, multiple mutation
and parameters as in table 8.3: Fitness evolution
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Figure 8.22: TSP with temporal-conservative selection, multiple mutation
and parameters as in table 8.3: Diversity evolution
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Figure 8.23: TSP with 75 cities, temporal-progressive selection and parame-
ters as in table 8.3: Fitness evolution.

Not only that; the difference is remarkable: compared with the standard
selection method algorithm we have gone from a length of 809 to one of 630
(approximately), an improvement of almost 23 %.

The results are summarised in figures 8.23 and 8.24, for the base temporal-
progressive case (fitness and diversity, respectively), and for the enhanced
mutation case, in figures 8.25 and 8.26, for fitness and diversity, respectively.

Like before, note that in this case we can also avail ourselves of the in-
creased mutation rate offered by multiple mutations, like the enhanced stan-
dard case above. Again, in this case, we obtain the results shown in figures
8.25 and 8.26, for the fitness and diversity, respectively.

Again, comparing the two sets of curves clearly shows the benefit of in-
creased mutation on the convergence of the algorithm.

8.3.5 Results

The best found result had a length of approximately 558, after 31,000 gener-
ations; see figure 8.27. This solution used temporal-progressive selection, the
multiple mutations above, as well as tournament selection of parents. Elitism
plays a small, but still positive role, and was turned on. The effect was of the
order of 2 % (10 units). We also tried varying the equivalence interval, but a
value of 10 seemed fairly optimal as results deteriorated with both larger and
smaller values.

Compare this solution with the optimal one, found by the concorde pro-
gram from the W. M. Keck Center for Computational Discrete Optimization
at Rice University, Houston, Texas. That solution had a length of 535; see
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Figure 8.24: TSP with 75 cities, temporal-progressive selection and parame-
ters as in table 8.3: Diversity evolution.
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Figure 8.25: TSP with 75 cities, temporal-progressive selection, parameters
as in table 8.3, but with multiple mutation (inversion and swap): Fitness
evolution.
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Figure 8.26: TSP with temporal-progressive selection, parameters as in table
8.3, but with multiple mutation (inversion and swap): Diversity evolution.
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Figure 8.27: TSP with temporal-progressive selection, parameters as in table
8.3, but with multiple mutation (inversion and swap): The GA solution.
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Figure 8.28: TSP problem with 75 cities: The optimal solution

figure 8.28. As can be readily seen, the solutions are fairly close to each
other, and the result as found by the genetic algorithm is only about 4 % off,
an impressive result by any standards for a non-optimised, general-purpose
algorithm on this difficult problem.

The question naturally arises, why does temporal-progressive selection
work so well? The answer, we believe, hinges of the fact that it both en-
hances diversity by preventing premature convergence, and that it makes the
genetic algorithm explore new regions of the genetic landscape even if the
fitness of the solution is good.

8.4 TEMPORAL SELECTION: A DISCUSSION

Temporal selection mechanisms seem to offer a viable alternative to tradi-
tional methods. Not because they supplant them - on the contrary, they can-
not be used without a traditional method as a basis. The introduction of an
equivalence interval together with temporal selection indicating where the
selection should be modified on a temporal basis is a viable tactic to increase
exploration of population and individual space, as well as ensuring that the
premature convergence problem is avoided.

By examining, ideally in real-time, the actual number of replaced individ-
uals it is fairly easy to determine when the genetic algorithm starts to con-
verge. Even better, we should consider plotting the evolution of the virtual
population (both the 1-generation and the cumulative one), although it may
necessitate a modification to whatever implementation of the genetic algo-
rithm we use in order to store the two numbers (sizes). There are a number
of reasons for doing so:
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• we can determine convergence, since the size of the virtual population
steadily decreases, or lim |Π1

v| = 0 as we near convergence, depend-
ing on temporal selection and the size of the equivalence interval. In
particular, note the phenomenon near the border of the equivalence
interval: we won’t really get nearer convergence than this.

• we can check the size of the cumulative virtual population against the-
ory in order to determine accuracy.

Note that if the equivalence interval ε = 0 we have a standard, non-
temporal selection, regardless of other parameters. In other words, all tempo-
ral selections get arbitrarily close to their non-temporal counterparts as ε goes
to zero.

In view of the tests above it is also clear that temporal selection is no
panacea: in general we cannot in the light of these empirical investigations,
even if somewhat simplistic, make the conclusion that it will make the ge-
netic algorithm converge faster, or produce better individuals in the general
case. Sometimes it certainly will do so (cf. F1 above), but not always (F4
above). However, its utility is in providing a valuable means for checking the
progress of the genetic algorithm and to ensure a healthy balance between
exploration and exploitation. If we decide to use temporal selection we have
not in the experiments related above really seen any substantial differences
in the utility of the two types, conservative and progressive, respectively, mak-
ing it necessary to choose on a case by case basis which one to use. The real
problem of the travelling salesperson proves to be an excellent case where
temporal-progressive selection seems particularly beneficial.
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9 CONCLUSIONS

This work treats the genetic algorithm from two unusual viewpoints: namely
that of time, in the form of a formalisation of time based on temporal inter-
vals, and, to a lesser extent, that of probabilistic logic in the form of statements
the truth value of which are probabilistic, i.e. uncertain.

This novel formalisation in modelling the genetic algorithm necessitates a
careful redefinition of all the concepts in normal genetic algorithms: genes,
individuals, populations and so on, as well as requires a reformulation of
the normal genetic algorithm process itself to take into account both the
temporal and probabilistic aspects so central to the genetic algorithm.

Following two introductory chapters on the problems with genetic algo-
rithms and a brief exposure to the standard formalisations of genetic algo-
rithms (especially the well-known schema theorem due to Holland and Gold-
berg) we have included an introductory chapter on the foundations of the
logics in order to lay the groundwork and make the understanding of the fol-
lowing chapter easier. That chapter contains one of the central themes of
this work: the redefinition of the genetic algorithm in temporal terms.

This redefinition of the genetic algorithm introduces several interesting
concepts: that of a virtual population, and that of virtual genetic operators. It
is shown how these enhance the understanding of the temporal progression
and workings of the genetic algorithm. One of the more interesting concepts
is also the probabilistic fitness (definition 29): an individual’s probabilistic fit-
ness is its probability of occurrence in a population within any given interval:

φξ = p(αI) (9.1)

where αI denotes an agent with chromosome ξ within the interval I . We
also emphasise the difference between phenotypic and genotypic fitness, and
formulate the Central Assumption of the genetic algorithm: that these have
a one-to-one relationship.

Regarding the virtual population we prove the following theorem (theo-
rem 2): that for a 1-generation virtual member αI of a population ΠI the
following holds

©alive(αI) (9.2)

where alive(αI) : φ(αI) > 0 is the function defined on page 39.

Having laid the foundations for discussions about the actual genetic algo-
rithm itself, the second central topic of this work explains the genetic algo-
rithm process both in terms of temporal concepts as well as in probabilistic
terms. Some of the most important parameters in explaining and examining
the genetic algorithm are reformulated using the temporal and probabilistic
constructs defined earlier. It is shown how the newly formulated constructs
may be used to examine some of the most important characteristics of the
genetic algorithm: its convergence, the existence of optima and parameters
for testing populations nearing convergence.
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As a major contribution, we also show how a new form of selection mech-
anism may be defined using the temporal aspects of the genetic algorithm;
the advantages and disadvantages as well as genetic algorithm characteristics
in view of the new temporal selection mechanisms are treated in sufficient
detail to ascertain their usefulness. The main temporal selection types are the
conservative one, where the older individual survives (should they otherwise
be considered equal), and the progressive one, where the newer individual
survives to the next generation. The crucial concept of a fitness equivalence
interval (or equality interval) underlying the temporal selection mechanisms
is explained; individuals considered equal are collected together into equality
intervals.

One of the main theorems relates the average fitness to the statistical prob-
ability (theorem 12): the average fitness φavg(ΠI) of a population ΠI in an
interval I is equal to the statistical probability [alive(αI)]αI

. Formally,

φavg(ΠI) =

∑|ΠI |
i=1 φ(αI,i)

|ΠI|
= [alive(αI)]αI

(9.3)

where we use |ΠI| to denote the number of inviduals in the population ΠI

in interval I .

Furthermore, it is shown that the genetic algorithm may fairly simply be
axiomatised. The axiomatisation is based on the standard methodology em-
ployed when e.g. the axiomatisation of the theory of groups is conducted.
One of the major results of this chapter is the easy derivation of several theo-
rems earlier introduced; also, a new result is presented: it is shown that in the
genetic algorithm all individuals end up in the same equality environment.
Formally,

3(a ∼= b) (9.4)

where a ∈ ΠI© and b ∈ ΠI . This chapter may be seen as application of the
formalistic approach to the genetic algorithm.

As an interesting topic, we have also included a chapter on modelling the
genetic algorithm using high-level Petri nets (specifically, predicate / transi-
tion nets, Pr-T nets). This should be seen as a simulation of the workings of
the genetic algorithm, and represents an original contribution of this work.
We are convinced that this simulation approach is but a first step to a more
comprehensive exposition of the possibilities of a combination of the theory
of genetic algorithm with that of Petri nets, especially in view of the parallel
nature of both the genetic algorithm and the Petri net.

Finally, a concluding chapter contains experiments and discussions us-
ing an experimental setup with an implementation of the genetic algorithm
that has been modified in order to test the preceding concepts in practice. It
shows how the newly formulated selection mechanisms work on the standard
benchmark problems, the so-called De Jong functions, and shows how some
of the parameters may be determined in real genetic algorithms. It is shown
how the temporal selection mechanisms may offer advantages in overcoming
some of the traditional problems affecting genetic algorithms, chiefly that of
premature convergence. This chapter also emphasises the importance of tai-
loring the genetic algorithm to the problem at hand by showing how the two
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types of temporal selection, progressive and conservative, are advantageous
and disadvantageous on selected problems: no overall rule may be formu-
lated to ascertain in advance which selection mechanism one should prefer.
The temporal mechanisms are also compared with traditional mechanisms,
and it is underlined how they work together using the equivalence interval.
In particular, these mechanisms are shown to bear especial relevance to the
well-known problem of the travelling salesperson (TSP), which, as shown in
the concluding chapter seems to benefit from the temporal selection mecha-
nism (and more so its temporal-progressive variant) than perhaps a priori one
would have been led to believe.

It is clear that whilst the formalism in this work may be seen as a fairly
detailed exposition of this approach to modelling the genetic algorithm with
respect to time, in order to address real problems the model must incorporate
less abstract features from real implementations of genetic algorithms.

We are convinced that the formalism outlined in this work, based on tem-
poral probabilistic logic, axiomatisation, and Petri nets is pregnant with excit-
ing possibilities and will prove to be a significant step forward in modelling
the genetic algorithm.
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A TEMPORAL PROBABILISTIC LOGIC (TPL)

This chapter formalises a combination of first order logic with the two prob-
abilistic logics, namely propositional probabilistic logic and statistical prob-
abilistic logic as well as temporal logic into a unified temporal probabilistic
logic (which we shall abbreviate TPL).

The TPL described here is based on three logics: standard first order logic,
temporal interval logic as outlined in Chapter 3 starting on page 15 and prob-
abilistic logic as outlined by Bacchus [Bac90]. For a similar approach to
combining probabilistic and temporal reasoning, see for instance Haddawy
[Had94, Had96].

The chapter first introduces the formal syntax of TPL in a conventional
way. Then the semantics is dealt with, followed by proof theory. We give
some interesting theorems at various places in the text where we feel that
it would illuminate the exposition; also, some are needed in the main text
when we formalise the structures and workings of the genetic algorithm.

The objective is for the logic to be useful; in our case to enable us to anal-
yse, discuss, and draw conclusions from interesting aspects of the workings of
the genetic algorithm.

Note that we restate some definitions and axioms since we feel that we
should make the chapter as self-contained as possible.

A.1 SYNTAX

The following presentation of TPL first defines the symbols of the logic.
Then rules are given which specify the strings of symbols that form the well-
formed formulas. In the main, this presentation closely follows [Bac90], apart
from the addition of temporal constructs.

The letters n and m are used as meta-variables denoting natural numbers
(i.e. n, m ∈ N).

A.1.1 Symbols

We start with a set of function and predicate symbols.

a. For every n ≥ 0 a set of n-ary function symbols (f, g, h, . . .). Constant
symbols are 0-ary function symbols.

b. For every n > 0 a set of n-ary predicate symbols (P, Q, R, . . .).

The function and predicate symbols may be of three types: object symbols,
time interval symbols and numeric symbols. The object symbols typically
describe some domain of interest, whereas the temporal symbols designate
time durations (periods).
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We should also include the distinguished symbols of the logic itself, i.e.
those symbols that are the same irrespective of the domain being described.
The symbols are listed in Table A.1.

S1. The usual parentheses ‘(’ and ‘)’ used for grouping.

S2. The binary object predicate symbol =o.

S3. The numeric constants -1, 0, and 1.

S4. The binary numeric predicate symbols <n and =n.

S5. The binary numeric function symbols + and ×.

S6. The binary time interval predicate symbols <t, =t and v.

S7. The connectives ∧ and ¬.

S8. The quantifier ∀.

S9. The temporal quantifiers ©, � and 3.

S10. The sentential probability operator prob.

S11. ‘[’ and ‘]’ surrounding a term together with a subscripted set of place-
holder variables.

S12. The letter E used as an operator denoting the expectation value of a
statistical probability

S13. A set of numeric variables, a set of time interval variables and a set of
object variables.

S14. A set of user-defined function symbols.

S15. A set of user-defined predicate symbols.

Table A.1: Symbols in TPL

We restrict the number of symbols to be at most countably infinite. We
also omit the subscript denoting the sort when no confusion exists; e.g. we
write = instead of =o, =n, or =t and likewise for < and >.

Note that the user-defined function symbols map object variables to num-
bers; they may be call measuring functions and are known in statistics as
random variables. For example, we may wish to discuss the weight of various
people using a weight function. For details, see [Bac90, p. 84f].

Finally, a rigid term is one that stays the same in all possible worlds; e.g.
the numbers.
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A.1.2 Formulas

The formulas of the language LTPL are strings of symbols formed by the
following recursive rules, given in table A.2. There are no other formulas.

F1. A single object variable or constant is an o-term.

F2. A single numeric variable or constant is an f-term.

F3. A single temporal variable or constant is a t-term.

F4. If f is an n-ary object function symbol and t1, . . . , tn are o-terms, then
ft1, . . . tn is an o-term.

F5. If g is an n-ary temporal function symbol and t1, . . . , tn are t-terms,
then gt1, . . . tn is a t-term.

F6. If f is an n-ary numeric function symbol and t1,. . . ,tn are f-terms, then
ft1,. . . ,tn is an f-term.

F7. If P is an n-ary object predicate symbol and t1, . . . , tn are o-terms, then
Pt1, . . . , tn is a formula.

F8. If Q is an n-ary temporal predicate symbol and t1, . . . , tn are t-terms,
then Qt1, . . . , tn is a formula.

F9. If P is an n-ary numeric predicate symbol and t1,. . . ,tn are f-terms, then
Pt1,. . . ,tn is a formula.

F10. If α is a formula, then so is ¬α.

F11. If α is a formula, so are ©α, �α and 3α.

F12. If α and β are formulas, then so is α ∧ β.

F13. If α is a formula and x is a variable of any of the three types, then ∀x.α
is a formula.

F14. If α is a formula, then prob(α) is an f-term.

F15. If α is a formula and ~x is a vector of n object variables, then [α]~x is an
f-term. These terms are called statistical probability terms.

F16. If t is a statistical probability term or rigid f-term, then E(t) is an f-term.

F17. If α and β are formulas, then prob(α|β) is an f-term. These terms are
called conditional probability terms (for propositional probabilities).

F18. If α and β are formulas, then [α|β]~x is an f-term. These terms are called
conditional probability terms (for statistical probabilities).

Table A.2: Formulas in TPL
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This definition of formulas is different from the standard first-order logic
definition in that it allows for numeric and temporal terms to be formulated
from already existent formulas. Note that the expectation operator E acts
syntactically as a monadic function. Its semantic interpretation is different
from ordinary functions, as we shall see below.

A.1.3 Definitions for numeric and standard extensions

As the intention is not to duplicate well-known work on standard first-order
logic, suffice to say that the connectives ∨, →, ∃ and ≡ may be defined in
the usual way. For instance, ∃x.α(x) is defined as ¬∀x.¬α(x).

We also write all numeric binary function symbols, like ‘+’, ‘−’, etc. in
the more readable infix form, using standard conventions of precedence and
parentheses as required to disambiguate whenever necessary.

Furthermore, we also write multiple quantified variables together, e.g.
∀xy.α will abbreviate ∀x.∀y.α.

It is also convenient to introduce the following abbreviations for numeric
terms.

Definition 63 The binary numeric inequality functions are defined as be-
low.

a. x ≤ y =df (x < y) ∨ (x = y)

b. x ≥ y =df ¬(x < y)

c. x > y =df y < x

d. x ∈ [y, z] =df y ≤ x ∧ x ≤ z

We restate the following useful definition for certainty.

Definition 64 (Certainty) Certainty, or an abbreviation for probability one,
is defined as follows.

cert(α) =df prob(α) = 1 (A.1)

The conditional probabilities alluded to in Table A.2 are defined in almost
the usual way as follows. These are adapted from Bayes’ theorem, (see e.g.
[Pap65]).

Definition 65 (Axiom of propositional conditional probabilities)

prob(β) 6= 0 → prob(α|β) × prob(β) = prob(α ∧ β)
prob(β) = 0 → prob(α|β) = 0

(A.2)

Definition 66 (Axiom of statistical conditional probabilities)

[β]~x 6= 0 → [α|β]~x × [β]~x = [α ∧ β]~x
[β]~x = 0 → [α|β]~x = 0

(A.3)
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Note that these definitions explicitly defines the case where the condition-
ing formula has probability zero, contrary to normal practice that leaves it
undefined.

Note that these are later restated as two of the probability axioms of TPL.

A.2 SEMANTICS

In order to interpret our formulas in the language we need to define appropri-
ate structures for them, first for temporal and then for probabilistic formulas.
We then turn our attention to the interpretation of the formulas.

Note that we repeat some of the definitions for temporal logic from the
earlier chapter in the interest of clarity and completeness.

A.2.1 Temporal structures and definitions

The temporal side of TPL is more complex, and needs to be defined carefully
from the ground up. We rely on van Benthem [Ben83].

First we define an interval.

Definition 67 (Interval) An interval is a time duration between two time
points, the start and end time, respectively. It is defined as follows

I =df [m1, m2] =df {m ∈ Z | m1 ≤ m ≤ m2} (A.4)

where m1, m2 ∈ Z and m1 < m2.

Note that this definition disallows ’null’ intervals of the form [m, m].

We also need to differentiate between intervals that may contain subinter-
vals and those that may not.

Definition 68 (Base interval) An interval I = [m1, m2] is a base interval iff
the following holds:

I = [m, m + 1] (A.5)

where m = m1, and thus m2 = m1 + 1.

van Benthem calls these atomic, or minimal, and does not deal with them
further. All other intervals may be called composite. It should also be noted
that intervals are normally convex, i.e. uninterrupted, as pointed out by van
Benthem, op. cit. p. 68. We omit the specifier base or composite whenever
the distinction does not matter. The definition above of intervals is similar to
Schwartz, et.al. [SMSV83], Shoham [Sho88] and Sandewall [San94a].

We denote the set of all intervals I, i.e. I ∈ I.

The concept of time is informally defined using interval structures. We
choose the following general structure.
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Definition 69 An interval or period structure is the triple 〈I,v, <〉 of a non-
empty set I carrying two binary relations v ‘inclusion’ and < ‘precedence’.

In addition, we can define the basic operation ‘inclusion’ between two
intervals.

Definition 70 (Inclusion) Given two intervals I1 = [m1, m2] and I2 = [m3, m4]
we say that I1 includes I2 when the starting point m2 is not less than that of
m1 and at the same time the end point of m2 is not greater than that of m1.
Denoting inclusion by the symbol v we have formally

I2 v I1 iff m1 ≤ m3 ∧ m2 ≥ m4. (A.6)

As pointed out in the introductory chapter, we follow van Benthem strictly
here; in our setting we could simply equate v with ⊆, and thus dispense with
this definition altogether, and rely on definition 4. We choose to follow van
Benthem’s usage here; the reader may treat v as synonymous for ⊆.

We then define the interval, or period structure INT(Z) we are actually
going to use based on the integers as follows.

Definition 71 (Interval structure) An interval structure INT(Z) is the tuple

〈I,⊆, <〉 (A.7)

where

I consists of all non-empty closed integer intervals [m1, m2]

⊆ is set-theoretic inclusion

< is defined by setting [m1, m2] < [m3, m4] if m2 ≤ m3.

Note that we, in line with the above definition, intend that

[m1, m2] > [m3, m4] if m2 > m3. (A.8)

The intervals are of course equal if m1 = m3 and m2 = m4, and the ≤ and
≥ cases are defined accordingly.

Also note that in the definition above the internal structure of time is not
specified: it may be linear or branching. However, the view of time we use
in this work is one modelled on the integers, Z, and is linear.

Finally, in order to simplify the axioms below we restate the overlap rela-
tions

Definition 72 (Overlap)

zOy =df ∃u.u v z ∧ u v y (A.9)

For convenience, we also define a temporal relation giving the next base
interval.
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Definition 73 (Next interval) The next base interval y from an interval x is
the one that satisfies

x < y (A.10)

@ z.x < z < y

where z is an interval.

Analogously, we define the previous interval as follows.

Definition 74 (Previous interval) The previous base interval y from an in-
terval x is the one that satisfies

y < x (A.11)

@ z.y < z < x

where z is an interval.

For temporal objects x we use the syntax x© for the next (base) interval

relative to x and x© for the previous. For predicates α, we use ©α and ©(α),
respectively. We can also readily extend this syntax for several intervals in the
future (or past) using powers; e.g. for n in the future we could write ©n(α)
instead of the clumsier ©© . . .©, where © is repeated n times.

A.2.2 Possible worlds

Below, we assign probabilities to distributions over a field of sets of interpre-
tations or truth valuations of the language. These different interpretations
can be viewed as being different possible worlds, where each possible world
assigns a truth value to all of the formulas of the language, and the set of
formulas which are assigned true varies from world to world. If a formula is
assigned true at a particular possible world, we say that it satisfies the formula.

With a probability distribution over a field of sets of possible worlds we
can assign a probability to every formula of the language, as we shall see.
The probability of a formula becomes the probability of the set of possible
worlds that satisfy the formula.

For more details, see Bacchus [Bac90, p. 33ff].

A.2.3 Temporal probability structure

Combining the preceding temporal structure with Bacchus [Bac90] we de-
fine the TPL structure as follows.

Definition 75 (Temporal probability structure) The temporal probability struc-
ture M is defined by the tuple

〈O, S, ϑ, µS, µO, INT (Z)〉, (A.12)

where
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O is a set of individuals representing objects that one wishes to describe
in the logic. O corresponds to the domain of discourse in ordinary
first-order logic.

S is a set of states or possible worlds.

ϑ is a function that associates an interpretation of the language with each
world. For every s ∈ S, ϑ(s) is an interpretation that assigns to every
n-ary object predicate a subset of On. It also assigns to every n-ary ob-
ject function symbol function a function from On to O, as well as to
every n-ary measuring function symbol a function from On to R, to ev-
ery n-ary numeric predicate a subset of Rn, and to every n-ary numeric
function a function from Rn to R. In addition, it assigns to every n-ary
temporal function a function from INT (Z) to INT (Z), as well as for
all quantifier predicates, whether first-order logic or temporal, a truth
value true or false. For example, it maps the 0-ary object function
symbols, the constants, to particular individuals in O. We do not re-
quire that the object function symbols be rigid, with the exception of
the distinguished symbols (e.g. +, −, × 1, -1, and 0), i.e. on these sym-
bols ϑ(s) is independent of the world s. Also, the predicate symbols
< and = are rigid. Of course, all logic symbols (e.g. ∨, ∧ and ¬ and
derivatives) are rigid as well.

µS is a discrete probability function on S. In other words, µ is a func-
tion that maps the elements of S to the real interval [0,1] such that∑

s∈S µS(s) = 1. This function defines a probability distribution over
the subsets of S in the following way: for every A ⊆ S we define
µS(A) =

∑
s∈ µS(s). With a discrete probability function every subset

of S will have a probability, but also all except a denumerable number
of worlds in S will have zero probability.

µO is a discrete probability function over O, i.e. for A ⊆ O, µO(A) =∑
o∈A µO(o) and µO(O) = 1. In other words, µO is similar to µS

above.

INT (Z) is the temporal structure from the preceding section.

Using this definition of the TPL temporal structure, we may formulate
the interpretations of the formulas in TPL using the structure and its compo-
nents.

A.2.4 Interpretation of the formulas

The truth value assigned to a formula in LTPL will depend on three items:
the semantic structure or model M , which determines the probability distri-
butions µS and µO, the interpretation function ϑ, and the domain of objects
O; the current world s ∈ S where S is the set of all possible worlds; and the
variable assignment function v (which maps variables to individual objects)
as described in the previous section.
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Inductively, we assign a truth value true to α if M |= α. We write t(M,s,v)

for the individual denoted by the term t in the triple.

Table A.3 contains all the basic interpretations we allow in LTPL. This
is a fairly standard interpretation of formulas with the possible exceptions
of I10 and I12 giving an interpretation for the probability and expectation
operators, respectively, as well as all of the temporal interpretations I13–I15.

It should be noted that, although the table is based on Bacchus [Bac90],
it is carefully extended and consolidated from the various tables used by Bac-
chus quite extensively to take into consideration the temporal objects and
operators and their ramifications.

I1. If x is a variable of any type, then x(M,s,v) = v(x). Variable assignment
determines interpretation of variables independently of s.

I2. If f is an n-ary function symbol of any type, and t1, . . . , tn are terms of
the same type, then

f(t1, . . . , tn)
(M,s,v) = fϑ(s)(t

(M,s,v)
1 , . . . , t(M,s,v)

n )

I3. If P is an n-ary predicate symbol of any type, and t1, . . . , tn are terms
of the same type, then

(M, s, v) |= P (t1, . . . , tn) iff 〈t
(M,s,v)
1 , . . . , t(M,s,v)

n 〉 ∈ P ϑ(s)

In addition, if P is a numeric predicate symbol, then P ϑ(s) = P ϑ(s′) for
all s, s′ ∈ S. That is, the numeric predicates are rigid.

I4. If t and t′ are terms of the same type, then

(M, s, v) |= (t = t′) iff t(M,s,v) = t′(M,s,v)

I5. For every formula α

(M, s, v) |= (¬α) iff (M, s, v) 2 α

I6. For every pair of formulas α and β

(M, s, v) |= (α ∧ β) iff (M, s, v) |= α and (M, s, v) |= β

I7. For every formula α and object variable x

(M, s, v) |= ∀x.α iff (M, s, v[x/o]) |= α for all o ∈ O,

where v[x/o] is the variable assignment function identical to v except
that it maps the variable x to the individual o.

I8. For every formula α and numeric variable x

(M, s, v) |= ∀x.α iff (M, s, v[x/r]) |= α for all r ∈ R,

where v[x/r] is the variable assignment function identical to v except
that it maps the variable x to the real number r.
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I9. For every formula α and temporal variable x

(M, s, v) |= ∀x.α iff (M, s, v[x/t]) |= α for all t ∈ INT (Z),

where v[x/r] is the variable assignment function identical to v except
that it maps the variable x to the temporal interval t.

I10. For every formula α, the f-term created by the probability operator
prob(α) is given the interpretation

(prob(α))(M,s,v) = µS{s
′ ∈ S : (M, s′, v) |= α}

I11. For every formula α, the f-term created by the statistical probability
operator [α]~x is given the interpretation

([α]~x)
(M,s,v) = µn

O{~a : (M, s, v[~x/~a]) |= α},

where ~x and ~a are n-ary vectors of object variables and individual ob-
jects, respectively.

I12. Every f-term E(t) created by the expectation operator E is given the
interpretation

E(t)(M,s,v) =
∑

s′∈S

µS(s′) × t(M,s′,v)

i.e., the weighted average of the operand across the different possible
worlds.

I13. For every formula α and temporal objects x and y (i.e. intervals)

(M, s, v) |= �α iff ∃s′ ∈ S so that (M, s′, v) |= α for ∀y(M,s′,v) ≥ x(M,s′,v),

where x(M,s′,v) fixes α to a world where it is valid in x.

I14. For every formula α and temporal objects x and y

(M, s, v) |= 3α iff ∃s′ ∈ S so that (M, s′, v) |= α for ∃y(M,s′,v) ≥ x(M,s′,v),

where x(M,s′,v) fixes α to a world where it is valid in x

I15. For every formula α and temporal object x

(M, s, v) |= ©α iff ∃s′ ∈ S so that (M, s′, v) |= α for x©,(M,s′,v),

where x© is the next interval from x and the rest of the superscript fixes
the object in the correct world s′ .

Table A.3: Interpretations in TPL

Considering the interpretations in table A.3, we can formulate the follow-
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ing interesting theorem connecting the, so to say, probabilistic and temporal
sides.

Theorem 18 Given a formula α and M |= α in TPL, the following holds

|= 3α ⇒|= prob(α) > 0. (A.13)

Proof. Recalling the right-hand side of the formula defining the interpre-
tation of the probability operator prob (see I10 in table A.3), reproduced
below,

µS{s
′ ∈ S : (M, s′, v) |= α} (A.14)

the subset of worlds from S modelling α will then form (with the help of µS)
a probability distribution that will give prob its value.

Now, comparing this to the definition of eventuality, I14 in table A.3

∃s′ ∈ S so that (M, s′, v) |= α for ∃y(M,s′,v) ≥ x(M,s′,v), (A.15)

where x and y are temporal objects, we notice that when y (recall that y is a
temporal object, so when is the correct word), then we have, in fact, found a
world (or set of worlds) where M is modelling α, and where prob will have a
value, and thus be valid. 2

Theorem 19 Given a formula α and M |= α in TPL, the following holds

3α ⇒ prob(α) > 0 (A.16)

¬3α ⇒ prob(α) = 0 (A.17)

Proof. Since we have a world (or set of worlds) M modelling α, then
prob will have a value according to theorem 18. If 3α is true that subset
obviously is nonempty, prob must have a nonzero value as demanded. Con-
versely, when it is empty, no worlds exist and 3α is false and the value of
prob(α) is zero. 2

Looking at the situation from an intuitive perspective, it comes as no sur-
prise that 3α ⇒ prob(α) > 0 – if something is eventually true, it is clearly
true in a possible world; then of course prob will be nonzero according to its
definition see I10 in table A.3.

We have the following straightforward corollary theorem.

Theorem 20 Given a formula α and M |= α in TPL, the following holds

�α ⇒ cert(α). (A.18)

Proof. Since �α means (see I13 in table A.3) that α is true in all possible
worlds, clearly it is valid in all possible worlds, and recalling the interpreta-
tion of prob (see I10 in table A.3), then prob(α) = 1, which according to
definition 64 is equal to cert(α). 2

An interesting question is, can theorem 18 be reversed? In other words,
what can be said about |= 3α ⇔|= prob(α)? It turns out that this is possible
under some stringent restrictions.
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Theorem 21 Assuming the non-rigid objects in O defining s ∈ S (the cur-
rent world set) are all temporal then the following holds

|= 3α ⇔|= prob(α) > 0. (A.19)

Proof. The implication ⇒ case is already covered by theorem 18, so it
remains to show that ⇐ holds. This can be seen by considering the defini-
tions of the two cases, I10 and I14 in table A.3. Since the assumption is that
all non-temporal objects are rigid, i.e. the same in all possible worlds, this
means that we only have temporal objects that may change. Then clearly the
implication stands. 2

As an immediate consequence we can state the following.

Theorem 22 Given a formula α and M |= α in TPL, and assuming the non-
rigid objects in O defining s ∈ S (the current world set) are all temporal the
following holds

3α ⇔ prob(α) > 0 (A.20)

¬3α ⇔ prob(α) = 0 (A.21)

�α ⇔ cert(α). (A.22)

Proof. An immediate consequence of theorems 19, 18, and 21 and their
proofs. 2

A.3 PROOF THEORY

In order to examine proof-theoretic properties of TPL we must present an
axiom system for all formulas. We do this separately for the different compo-
nents of the logic.

A.3.1 First-order logic axioms

Here we may use any axiomatisation of first-order logic with equality as a
basis [Bac90]. In the following list α, β and γ are formulas. The axioms are
listed in table A.4.

PC1. α → β → α

PC2. (α → β → γ) → (α → β) → α → γ

PC3. (¬α → β) → (¬α → ¬β) → α

PC4. ∀x.(α → β) → (∀x.α → ∀x.β)

PC5. ∃y.prob(y = t) = 1 → (∀x.α → α(x/t)), where t is any term of the
same type as x, free for x in α, and α(x/t) is the result of replacing all
free occurrences of x in α by t
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RGV ∃y.prob(y = t) = 1 for every rigid term t. Among these are e.g. -1, 0,
1, i.e. numeric variables, as well as object and temporal variables

EQ1. t = t, where t is any term

EQ2. t1 = tn+1 → . . . → tn = t2n → ft1 . . . tn = ftn+1 . . . t2n, where f is
any n-ary function symbol, and t1, . . . , t2n are terms of compatible type

EQ3. t1 = tn+1 → . . . → tn = t2n → Pt1 . . . tn = Ptn+1 . . . t2n, where P is
any n-ary predicate symbol, and t1, . . . , t2n are terms of the same type

Table A.4: First-order axioms in TPL

The first three are axioms that generate all propositional tautologies, and
the last three are axioms for reasoning with equality.

A.3.2 Numeric axioms

Following Bacchus [Bac90] we do not attempt to capture the full behaviour
of these real-valued terms; instead we use the axioms of a totally ordered field
to capture a large part of it.

Here all variables are numeric and universally quantified, unless the ex-
istential quantifier is explicitly used. The list of numeric axioms is in table
A.5.

N1. x + (y + z) = (x + y) + z

N2. x + 0 = x

N3. x + (−1 × x) = 0

N4. x + y = y + x

N5. x × (y × z) = (x × y) × z

N6. x × 1 = x

N7. x 6= 0 → ∃y.(y × x = 1)

N8. x × y = y × x

N9. x × (y + z) = (x × y) + (x × z)

N10. ¬(1 = 0)

N11. ¬(x < x)

N12. x < y → (y < z → x < z)

N13. x < y ∨ x = y ∨ y < x
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N14. x < y → x + z < y + z

N15. 0 < x → (0 < y → 0 < x × y)

Table A.5: Numeric axioms in TPL

A.3.3 Probability axioms

The probability axioms from [Bac90] are summarised in below, in table A.6.
They come in three groups: propositional, statistical, and combined proba-
bility axioms.

P1. prob(α) ≥ 0

P2. prob(α) + prob(¬α) = 1

P3. prob(α ∧ β) + prob(α ∧ ¬β) = prob(α)

P4. α → prob(α) = 1 if all non-rigid function and predicate symbols in
α occur inside of a propositional probability operator

P5. ∀x.prob(α) = 1 → prob(∀x.α) = 1

P6. ∀x1 . . .∀xnα → [α]~x = 1 where ~x = 〈x1, . . . , xn〉 is a vector of object
variables.

P7. [α]~x ≥ 0

P8. [α]~x + [¬α]~x = 1

P9. [α ∧ β]~x + [α ∧ ¬β]~x = [α]~x

P10. [α]~x = [α(xi/z)]~x(xi/z) where z is an object variable that does occur
in α, and ~x(xi/z) is the new vector of object variables 〈x1, . . . , xi−1,
z, xi+1, . . . , xn〉

P11. [α ∧ β]〈~x,~y〉 = [α]~x × [β]~y if none of the free variables of α are in ~y,
none of the free variables of β are in ~x and ~x and ~y are disjoint. This
enforces the product measurement constraint.

P12. [α]~x = [α]π(~x) where π is any permutation of {1, . . . , n} and π(~x) is
the permuted vector ~x, i.e. π(~x) = 〈xπ(1), . . . xπ(n)〉

P13. ∀x.∃r.prob([y = x]y = r) = 1

P14. ∃r.prob(r = E(t)) = 1

P15. If t is rigid, then E(t) = t

P16. cert(t ◦ t′) → E(t) ◦ E(t′) where

◦ ∈ { “ = ”, “ < ”, “ > ”, “ ≤ ”, “ ≥ ”}
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P17. E(t) = 0 ≡ cert(t = 0)

P18. E(t) = 1 ≡ cert(t = 1)

P19. E(t + t′) = E(t) + E(t′)

P20. If r is rigid, then E(r × t) = r × E(t)

P21. If r is rigid and non-zero, then E(t/r) = E(t)/r

P22. Axiom of propositional conditional probabilities
prob(β) 6= 0 → prob(α|β) × prob(β) = prob(α ∧ β)
prob(β) = 0 → prob(α|β) = 0

P23. Axiom of statistical conditional probabilities
[β]~x 6= 0 → [α|β]~x × [β]~x = [α ∧ β]~x
[β]~x = 0 → [α|β]~x = 0

Table A.6: Probability axioms in TPL

Axiom P5 is the propositional probabilistic analogue of the Barcan for-
mula; P13 is the one for statistical cases. The former captures the fact that
the set of possible objects O did not vary across possible worlds; the latter
the fact that the domain probability function µO is invariant across possible
worlds.

Axiom P6 says that if a set of satisfying instantiations of a formula contains
all the vectors of On then the probability of this set is 1 thus capturing the
relationship between the universal quantifier and the statistical probability
terms.

Axioms P7–P9 express the usual behaviour of probabilities.

Axiom P10 captures the fact that variant probability terms are equivalent.

Axiom P11 enforces the product measure constraint. For details see Bac-
chus’ soundness proof [Bac90, p. 100].

Axiom P12 captures the property that product measures are invariant un-
der permutations.

Axioms P14–P21 capture properties of the expectation operator E. Note
that all of these may be derived from the semantics of the operator; however,
as Bacchus notes [Bac90, p. 136], by adding them as axioms we may reason
with the expectation operator.

Axioms P22–P23 dealing with conditional probabilities explicitly defines
the case where the conditioning formula has probability zero, contrary to
normal practice that leaves it undefined.

As shown by Bacchus [Bac90, p. 103ff], there are many interesting tau-
tologies and reasoning possible with the probability axioms. Some lemmas,
e.g. Bacchus’ Lemma 34 [Bac90, p. 107] show that certain complex proba-
bility terms may be simplified.
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Theorem 23 (Bacchus’ Lemma 34) If no xi ∈ ~x which appears in α ∧ β is
free in λ then

|= [β ∧ λ]~x 6= 0 → [α|β ∧ λ]~x = [α|β]~x. (A.23)

Proof. The variables in ~x can be divided into two disjoint subsets ~z and
~y. The subset ~z contains the variables that appear free in α ∧ β, while ~y
contain the variables that appear free in λ. By axiom P11, [α ∧ β ∧ λ]~x =
[α ∧ β]~z× [λ]~y, and [β∧λ]~x = [β]~z× [λ]~y. Hence, the conditional probability
[α|β ∧λ]~x = [α∧β]~x/[β]~x. Furthermore, since the variables ~y do not appear
in α∧β we can add these extra random designators obtaining [α∧β]~x/[β]~x =
[α|β]~x as required.

The fact that [β ∧ λ]~x > 0 → [λ]~y > 0 allows us to cancel this term in the
conditional probability. 2

A.3.4 Temporal axioms

We base our logic on the following axioms using the relations mentioned
above. We summarise van Benthem’s theorem I.3.1.6, [Ben83, p. 72ff].

Theorem 24 Up to isomorphism, INT (Z) is defined by the first three groups
of axioms in table A.7.

Note that in MOND in table A.7 we use the union operator ∪ which
for intervals is problematic (since intervals are not necessarily following each
other). Following van Benthem we take the stand that the union of x and y
implies that all intermediate durations (if any) are part of the union.

Proof. See van Benthem [Ben83, p. 72f] and Masini [Mas93, p. 17f]. 2

As noted by van Benthem, though, that this theorem and its proof do not
yield a recursive first-order axiomatisation for the theory of INT (Z) the rea-
son being axiom FOUND, which is not recursive, because a consequence
of FOUND is that it implies the existence of base intervals (definition 68
above). In other words, it is not possible to have an infinite chain of inclu-
sive intervals; at some time we will find the base interval with no inclusive
intervals.

In order to be able to reason about the future (and the past) we need the
frequently used next and future accessibility modalities. There are four of
these: © � ,©3, � and 3. Following Masini [Mas93] we have the follow-
ing intuitive meanings, as shown in table A.8. We will omit the index from
© whenever we do not need to emphasize the possibility of branching time
(which we do not use in this work); thus © � is the more common interpre-
tation and the one we denote when omitting the subscript. We also note that
� may be seen as a ‘henceforth’ operator, and 3 as an ‘eventually’ operator
[Ben83, p. 156] [MP91, MP93]. This behaviour is captured in the following
two definitions which are another versions of axioms I13 and I14.
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For <:
TRANS(<) ∀xyz.x < z < y → x < y) transitivity
IRREF(<) ∀x.¬x < x irreflexivity
SUCC ∀x∃y.y < x, ∀x∃y.x < y succession
NEIGH ∀xy.x < y → ∃y.x < y ∧ ¬∃z.x < z < y

∀xy.y < x → ∃y.y < x ∧ ¬∃z.y < z < x neighbourhood

For v:
TRANS(v) ∀xyz.x v y v z → x v z transitivity
REF(v) ∀x.x v x reflexivity
ANTIS ∀xy.x v y v x → x = y anti-symmetry
CONJ ∀xy.xOy → ∃z v x.z v y ∧ ∀u v x.u v y → u v z conjunction
DISJ ∀xy.∃z w x.z w y ∧ ∀u w x.u w y → u w z disjunction
FREE ∀xy.∀z v x zOy → x v y freedom
DIR ∀xy∃u.x v u ∧ y v u upward

directedness

For <,v:
MON ∀xy.x < y → ∀u v x.u < y left monotonicity

∀xy.x < y → ∀u v y.x < u right monotonicity
MOND ∀xy.x < y → ∀z.z < y → x ∪ z < y

∀xy.y < x → ∀z.y < z → y < x ∪ z

CONV ∀xyz.x < y < z → ∀u.(x v u ∧ z v u) → y v u convexity
LIN∗ ∀xy.x < y ∨ y < x ∨ xOy linearity
FOUND For no x is there a descending sequence

x w y1 w y2 w . . .

in which every two successive periods are distinct. well-foundedness

For the modal temporal operators:
K1 ©(α → β) → (©α → ©β)
K2 �(α → β) → (�α → �β)
t1 �(α → ©α) → (α → �α)
t2 �α → ©�α

t3 �α → ©α

t4 �α → 3α

4 �α → ��α

T �α → α

Table A.7: Temporal axioms

© � A means A is true in each possible next time.

©3A means A is true in some possible next time.

�A means A is true in each possible accessible future.

3A means A is true in some possible accessible future.

Table A.8: Accessibility modalities in TPL
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Definition 76 (Henceforth) We say that �A is true at a moment t iff A is
true at ∀t′ such that t ≤ t′. In other words, t′ is later than t.

Definition 77 (Eventually) We say that 3A is true at a moment t iff A is
true at some t′ (or ∃t′) such that t ≤ t′.

It is easy to show that �A implies 3A.

Theorem 25 �A implies 3A.

Proof. Since �A means that A at time t is true for all t′ > t. Since we clearly
have for all formulas B

∀t.B → ∃t.B (A.24)

then we have that at time t there exists a future time t′ where A is true
(namely all of them because �A). This is the definition as stated above for
3A and we have that �A → 3A as demanded. 2

We incorporate these into our logic using the axioms in the fourth section
in table A.7 [Mas93, p. 17f].

A.3.5 Rules of inference

We also need to show explicitly which rules of inference we support in our
logic. They are listed below in table A.9 [Bac90, Mas93].

MP. From α and α → β infer β (Modus ponens)

UG. From α infer ∀x.α (Universal generalisation)

PE. From α ≡ β infer prob(α) = prob(β) (Probability of equivalents)

Table A.9: Rules of inference in TPL

However, we cannot add the common necessity rule of inference nec to
the table of rules above since its meaning would be that a true statement
remains true for all future times; this is something that we cannot allow since
statements are time-dependent. In other words, from A we cannot infer �A.
Vice versa is allowed by axiom T in table A.7; i.e. from �A we can infer A
as well as 3A using theorem t3 and t4.

A.4 THE DIRECT INFERENCE PRINCIPLE

As pointed out by Bacchus [Bac90, p. 139], what we now have is a logic
capable of dealing with propositional and statistical probabilities, as well as
temporal propositions. However, in this combined logic there is no intrin-
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sic relationship between the two kinds of probabilities. They simply coexist
without any necessary interaction.

As already pointed out, Bacchus notes that, although the types of prob-
abilities are distinct, there is clearly a connection between them, which is
most clearly apparent in actuarial situations, which often equate the two. A
good example is an insurance company quoting a rate based on statistical
information for an actual person.

This leads us to a very important principle: that of direct inference, from
statistical probability to propositional.

Given a fixed statistical probability language Lstat extended with the propo-
sitional probability operator prob and the expectation operator E in order to
be able to express agents’ beliefs in propositions, we obtain a combined lan-
guage Lcomb, as developed above. Now, given a finite knowledge base KB
expressed as a conjunction of formulas, we can see KB as the belief base of
the agent: everything the agent has accepted. This includes assertions about
particular individuals as well as general logical relationships between prop-
erties, and statistical information. In order to formulate the direct inference
principle, we restate definition 21. Note that, following Bacchus we equate
degrees of belief with probability; i.e. fully believed entails certainty.

Definition 78 Let α be a formula of Lstat and KB be a finite set of objective
formulas from Lstat that are fully believed. If 〈c1, ...cn〉 are the n distinct ob-
ject constants appearing in KB and 〈v1, ...vn〉 are n distinct object variables
not appearing in KB, then let KB~v (and α~v) denote the new formula, which
results from textually substituting ci by vi in KB (and in α) for all i.

The direct inference principle is then as follows (restated from definition
22). Note that we give it the status of an axiom, although Bacchus always
refers to it as a principle.

Axiom 7 The direct inference principle is given by

prob(α) = E
([

α~v | KB~v
]
~v

)
. (A.25)

This is then the agent’s belief in α, given that cert ([KBv]~v > 0), and that
the propositional and statistical probabilities are consistent.

As shown by Bacchus, [Bac90, p.152ff], the following important theorem
is true.

Theorem 26 (Bacchus’ Theorem 51) prob(α) = 1 is a logical consequence
of the direct inference principle iff (if and only if) KB |= α.

Proof. Say that KB |= α. This means KB → α is valid; it is satisfied by every
world in every combined probability structure. Hence, if < c1, . . . , cn >
are the the constraints that appear in α ∧ KB, then no matter what their
denotation is in a particular world, KB → α will be satisfied by that world.
Therefore, ∀~v.(KB → α)~v will also be satisfied by every world: it also will be
valid. Then from the properties of the statistical terms we obtain the validity
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of [(KB → α)~v]~v = 1, and [α~v|KB]~v = 1. Since this last is valid it is
satisfied by every world, i.e., cert([α~v|KB]~v = 1), and hence we have that
E([α~v|KB]~v) = 1. Thus we obtain prob(α) = 1 as a logical consequence
of the direct inference principle.

In the opposite direction if KB 6|= α, then ∃~v.(KB → α)~v is satisfiable.
Hence, [α~v|KB]~v < 1 and so is E([α~v|KB]~v) < 1. Therefore, prob(α) = 1
is not a logical consequence. 2

A.5 SOUNDNESS, COMPLETENESS, AND CONSISTENCY

We have presented a formalisation of a logic, temporal probabilistic logic. As
stated, this logic is a combination of three logics: standard first order logic,
probabilistic logic, and temporal logic.

Is this combined logic sound, i.e., are all formulas deducible from it valid,
and complete, i.e., are all valid formulas deducible from it? Furthermore, is
it consistent, i.e., given a (deducible) formula α, its negation ¬α must not be
deducible.

Briefly, following Bacchus [Bac90, p. 132] we can show that the com-
bined logic of first order, propositional and statistical probability logic is
sound. Van Benthem shows that interval-based temporal logic is sound as
well. In order to show that these indeed hold for the combination of all three
we formulate the following theorems for soundness and consistency.

Theorem 27 TPL is sound.

Proof. Since the only problem area is the constructs in the combined lan-
guage that cross the border from temporal logic to Bacchus’ logic (and vice
versa) we have to show that these do not introduce formulas that are not valid
into TPL. Following Epstein [Eps90] we rely on the properties of the Syn-
tactic Consequence Relation, and show that, given a formula α, if there is
a sequence α1, ..., αn where each αi is either an axiom, in TPL, or a conse-
quence of some of the previous αn ’s using a rule of the system or a derived
rule, and αn = α, then TPL` α. Since this has been shown by Bacchus for
the combination of first order, propositional and statistical probability and
Bacchus’ extensions to first-order logic (the constructs prob, [ ] and E) all
generate f -terms (refer to table A.2), which are handled by his logic, Bac-
chus’ logic cannot generate formulas containing temporal constructs, and is
thus sound (i.e. no nonvalid formulas can be deduced from it).

The same is true going from temporal formulas, since, referring to the
same table, we cannot deduce anything but formulas valid in first-order logic,
as shown by van Benthem. The combination is thus also sound. 2

What we have shown above is that the combination of sound logics is itself
sound, a result that is intuitively true.
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Theorem 28 TPL is consistent.

Proof. As pointed out above, Bacchus has shown that the combined logic
of first order, propositional and statistical probability logic is consistent; simi-
larly, van Benthem has shown that interval temporal logic is consistent. Since
non-consistency only then can be introduced in the combination of the two
by constructs spanning the logics in question, we have a situation exactly
analogous to the one for soundness. It is thus clear that given a formula α, its
negation ¬α cannot be deduced; the combination logic is thus consistent.2

However, as Bacchus notes [Bac90, p. 62], Abadi and Halpern have shown
that propositional probability logic is not complete, which is clear because
the set of valid formulas do not form a recursively enumerable set. As van
Benthem also points out, this is true for temporal logic as well. The same is
then immediately true for our combined logic.
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