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ABSTRACT: A simple, parallel programming language is introduced and
an operational semantics for it is developed. The language combines the
syntax of C and Java together with the communication primitives taken from
PROMELA.

A verification method for specifications given in the language is developed
for detecting the violation of temporal reachability and safety properties. The
method is known as Bounded Model Checking (BMC) where the idea is to
reduce the model checking problem to propositional satisfiability.

A compact boolean encoding of parallel programs is devised, together with
the proofs of its soundness and completeness. Encoding of the reachability
and safety properties is developed and finally semantical models for strength-
ening the encoding are discussed.

KEYWORDS: bounded model checking, verification, concurrent program
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1 INTRODUCTION

Semiconductor packaging densities and speeds tend to follow the trend de-
fined by Moore’s law [27]. At the same time, the human productivity in soft-
ware and hardware design has only enjoyed a more modest growth rate. This
has caused a situation in which the ability to relegate even more complex
tasks to computers is not limited by computing speeds or memory capacities
but rather the ability to design and implement complex systems with suffi-
ciently high degree of confidence on their correctness.

Hardware and software systems are nowadays used in places where failure
or down time are not options, e.g., air traffic control systems and medical
equipment. Therefore, a growing amount of time and effort has to be in-
vested to ensuring correctness. In addition, the costs of correcting errors grow
rapidly the later in the design process they are found. This is the problem of
design validation and it is a major challenge for the industry [11].

Today, most industrial key players still practise simulation and testing as
the main method for design validation. Even though effective in the early
stages of the development, subtle bugs requiring improbable but possible
interactions and/or long operating times may escape the testing sieve. Fur-
thermore, testing only guarantees that the demands in the set of chosen test
cases are met, not the more general notion that a certain property is provably
true. Similarly, simulation can rarely guarantee that bugs may not remain in
the product.

Formal methods provide an attractive alternative to the traditional meth-
ods. Where in simulation and testing some of the possible behaviors of the
system are explored, formal verification methods exhaustively search all pos-
sible execution paths for a violation of a property. Thus, assuming that the
verification is correctly conducted, a positive answer is a guarantee for the
verified property to hold.

Whereas testing is normally conducted on the actual product, formal
methods operate on abstract models, typically state-transition systems. The
principal formal methods used are deductive verification and model check-
ing. Deductive verification uses axiom systems and inference rules to prove
properties of the abstraction. Its successful application requires expertise in
logical reasoning and considerable experience. Furthermore, it cannot be
easily automated even though software tools can be used to propose ways of
proceeding from the current stage of the proof and to ensure that the proofs
obtained are correct. Deductive verification has the benefit that it is possi-
ble to reason about potentially infinite state spaces. Currently, the method is
only used in critical systems, in which enough resources can be invested for
the verification of correctness.

Model checking is most commonly applied to finite state systems. The
artifact being analyzed is modelled as a mathematical structure consisting
of states and a transition relation between pairs of states (Kripke structures).
The restriction to finite state spaces carries the benefit that model checking
can be largely automated and even implemented using algorithms with rea-
sonable efficiency. Furthermore, the limitation to finite state spaces is not
too restricting, since many interesting applications, like hardware controllers

1. INTRODUCTION 1



and communication protocols remain amenable to analysis. Finally, in case
of a property violation, model checking gives a counterexample, i.e. a path
conflicting with the desired property, helping the verification engineer in
locating the source of the problem.

As this report is about a model checking technique, the central develop-
ment steps of the field are traced more minutiously in what follows. The
quintessential problem is the explosion of the state space, i.e. systems with
realistic complexity create state spaces so large that even with Moore’s law
present, the memory capacities of computers are not large enough to store
them. The steps outlined below are ways of handling the problem and push-
ing the limit of what is possible further.

1.1 EXPLICIT STATE REPRESENTATIONS

The first model checking algorithms were independently proposed in the
early 1980s by Clarke and Emerson [10] in the USA and Quelle and Sifakis
in France [11]. They presented an algorithm for verifying properties ex-
pressed in computation tree logic (CTL, see Chapter 4). An implementation
of the algorithm was provided in a tool named Extended Model Checker
(EMC). The state space in the models extracted from the specifications were
represented using adjacency lists and the system was able to verify state graphs
with up to 105 states. This together with the speed of 100 states per second
are modest figures with today’s standards. However, the system has been used
to detect several previously unknown errors in published circuit designs [11].

The model checker SPIN, released in 1991 by Gerald Holzmann, is a
tool for specifying systems having concurrent components that can commu-
nicate via shared variables and message buffers. Its exhaustive search mode
is also based on the explicit representation of states. However, the tool also
contains a so called supertrace mode, in which the states are represented
using hash values. Using it, exhaustiveness is of course sacrificed, but with
sufficiently large hash tables a high coverage is attainable. The SPIN model
checker has been used in the verification of many real products and it also
provides the basis for a lot of research within the model checking commu-
nity. One contributing factor to this may be that the design choices and the
actual implementation are well documented in [16]. The implementation
of the ideas presented in this report is also strongly influenced by the SPIN
documentation.

1.2 SYMBOLIC METHOD

By 1987 one million states was the practical limit for the state spaces suitable
for model checking. In fact, many formal methods researchers predicted that
the method would never be practical for large circuits and protocols [26].
Much larger state spaces became feasible, when Kenneth McMillan, then
a graduate student at Carnegie Mellon University, devised a more compact
representation for the state transition graphs used in the models. Instead
of explicit adjacency lists the transition relation could be encoded symbol-
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ically as a boolean formula. Furthermore, Ordered Binary Decision Dia-
grams (OBDDs), provide a compact form to represent them and OBDDs
can be efficiently manipulated [7].

McMillan implemented the SMV model checker based on the above idea
as part of his doctoral dissertation. An SMV program is a description of hierar-
chical communicating finite state machines together with the specifications
to be verified. The system extracts the symbolic representation of the state-
transition system and uses OBDD based search algorithms to check whether
the specifications are met. Based on the initial ideas, it was possible to verify
state spaces up to 1020 and with various refinements, the limit was pushed up
to 10120 states [11].

1.3 BOUNDED MODEL CHECKING

Though being a major improvement, problems remained in the BDD based
approach as well. When systems grew larger, the BDDs also became too large
for available computers. In addition, the size of the BDDs depends heavily
on a suitable variable ordering, the generation of which may consume a lot
of time and require manual intervention. The practical limits of the BDD
model checkers lie in hundreds of state variables.

In 1999 Biere, Cimatti, Clarke and Zhu presented an another approach
to the problem [3]. The technique, coined as Bounded Model Checking
(BMC), reduces the model checking problem to propositional satisfiability
(SAT). The translation is such that the propositional formula has a model iff
the system model has a behavior violating the property to be verified. The
term bounded refers to the fact that the length of the counterexamples is
limited by a parameter k. The authors show that BMC for Linear Temporal
Logic (LTL) can be reduced to propositional satisfiability in polynomial time.

Bounded model checking has several important advantages. Firstly, the
best SAT solvers are capable of handling thousands of state variables. Sec-
ondly, the ordering of variables is not of crucial importance, usually default
splitting heuristics suffices. Thirdly, due to the depth first nature of SAT
search procedures counterexamples are often found very fast. In addition,
they are of minimal length. And finally, BMC requires less space than the
BDD based approach [3].

The disadvantage with the technique is that with the limit k, completeness
is naturally sacrificed. That is, a positive answer stating that the desired prop-
erty holds is not conlusive, since the violating behavior could be detected, if
the bound was increased.

BMC has already been applied to finding bugs in the Power PC and Al-
pha microprocessor designs [4, 5] with encouraging results. This report uses
the same idea, but the application domain is a small parallel programming
language.
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1.4 EXPRESSING PROPERTIES

When conducting exhaustive verification, besides the representation of the
model, the language in which the properties the system should fulfill are
expressed is of crucial importance. Obviously, it should be formally defined
and unambiguous and yet be able to easily and understandably express the
properties provided by the engineer typically thinking in a natural language.

To eliminate the ambiguity of natural language arguments, the verifier
may formalize the desired properties using first-order logic. Thus, for in-
stance, for an elevator system, a property stating “pressing the button at floor
1 at time t (predicate pr1) will eventually lead to the cabin arriving to that
floor (predicate arr1)” may be formalized as:

∀t(pr1(t) → ∃t′(t′ > t ∧ arr1(t′)))

The above notation, however, has the problem of being fairly cumber-
some, a fact emphasized in more complex properties. Pnueli proposed in
1977 [6] that another formalism, called temporal logic might be better suited
for expressing the properties typical in the verification process.

1.5 CONTRIBUTIONS

This report presents a simple, parallel programming language and defines its
operational semantics. The main contribution is a presentation of its boolean
encoding for bounded model checking. The encoding is proven both sound
and complete with respect to the prefixes of the legal execution sequences of
the language. In addition, an encoding of reachability properties is presented
and a known technique for translating safety properties to reachability ones is
discussed. Finally, an enhancement to the language and semantical models
capable of abstracting away intermediate states with the necessary modifica-
tions to the encoding are presented.

1.6 RELATED WORK

The seminal paper coining the term bounded model checking is [3]. The
authors present results of an implementation accepting a subset of SMV as
its input language. The language is rather hardware-oriented, a program
containing low-level descriptions of communicating finite state machines.

Another approach utilizing SMV is in [2]. The idea is to translate Promela
specifications to the input language of SMV to provide the possibility of
choosing “different logics and verification methods as needed”. Their idea
does not contain the concept of bounded model checking per se, but com-
bined with the efforts above and in the NuSMV [9] project the relevance to
the present work is evident.

The software design group at the Massachusetts Institute of Technology (MIT)
has a project in which a lightweight object modelling notation called Alloy
has been developed [17]. The language is accompanied by a constraint solver
to find bugs in specifications [18]. The solver also operates by translating the
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problems to boolean formulae, the constraints being the maximum number
of loop executions and heap objects. The application domain, however, is
not the analysis of concurrent software as in the present work, but rather ob-
ject models.

1.7 OUTLINE OF THE REPORT

Chapter 2 presents the SPINB syntax together with its operational seman-
tics. In Chapter 3 the boolean encoding (translation to propositional logic)
of SPINB programs is discussed. It is further divided into the presentation
of the arithmetical elements and then the actual encoding of the statement
types. The chapter also proves the soundness and completeness of the cho-
sen approach with respect to the operational semantics presented in Chap-
ter 2. Chapter 4 elaborates on temporal logic, presents a taxonomy on the
typical verification properties and the translation of the chosen reachability
formulae to propositional logic. Chapter 5 presents an augmentation of the
language allowing nondeterministic choice. In addition, semantical models
capable of abstracting away unnecessary intermediate states and their rela-
tion to the interleaving model are discussed. Some ideas of how the SPINB
encoding ought to be modified to accommodate them are presented together
with thoughts on future work.
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2 SPINB PROGRAMMING LANGUAGE

The key advantage of model checking is the provision of automated algo-
rithms for exhaustive verification. However, to fully realize the benefits for
the broadest possible audience of industrial engineers, the modelling lan-
guage and the formalism used for expressing the properties would have to
be familiar and intuitive. SPINB aims at achieving this goal by providing a
C-style syntax for control structures combined with elements of SPIN per-
taining to process initialization and interprocedural communication. The
specifications written in the language are analyzed for the violation of reach-
ability properties.

The language supports basic integer arithmetic having two variable types,
int and short. In principle, their value range could be the same as in
modern computer architectures. However, it is presumed that in the target
domain, protocol software, the variables are simple counters not assuming
very large values. Therefore, in a typical implementation their width would
be restricted to match the needed range, since the unnecessary bits would
needlessly complicate the formula given to the SAT solver.

Similarly, domain considerations have led to the decision of not support-
ing floating point arithmetics (together with the recognition of the difficulties
such data types may entail). The control flow constructs implemented are
while and if...else if with the semantics similar to those of C [20] and
Java. In addition, unconditional jumps to labels are supported.

Interprocedural communication is realized through either shared global
variables or FIFO queues. The syntax of the queue declarations are adopted
from SPIN [16]. Thus, the following statement chan i = [2] of {int,

int}; declares a queue named i having the capacity of two and carrying
messages consisting of two integers. The queue send and reception com-
mands use the operators ! and ?, respectively. The command i!1,2;, for
instance, sends a message to the queue declared above. For the complete
syntax in Backus-Naur form refer to Table A.1 in Appendix A.

Example 1 Consider a parallel program modelling the traditional producer
- consumer problem with a counter counting the messages sent. The SPINB
syntax of the program would be the following.

chan i = [2] of {int};

int p() { int q() {

int a; int b;

i!2; i?b;

a = a + 1; goto q0;

goto p0; }

}

init {

run p();

run q();

}
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2.1 OPERATIONAL SEMANTICS

In order to a programming language to be precisely determined, the syntax
description will have to be accompanied by some way of determining the
“meaning” of syntactically valid programs, i.e. program semantics. Tradi-
tionally, these descriptions were informal, expressed in a narrative form us-
ing natural language instead of a rigorous formal notation [28]. However,
the vagueness and ambiguities of natural language arguments have proven
the approach unsatisfactory. The approach of this report is to define the se-
mantics of SPINB programs using the operational approach, i.e. describe
the possible execution sequences of valid programs utilizing an abstract ma-
chine. The ideas and the notations with the necessary modifications are from
Kröger [22].

As the data types SPINB programs operate with are integers, a formal lan-
guage for there their manipulation is needed. Associate with each SPINB
program Π a classical first order language Lp with the following elements:

1. Variables (integer or queue) formed from the declarations of Π.

2. Constant symbols corresponding to the capacities of the declared queues.
(for queue q, qcap is used)

3. For each queue, a variable telling the number of used slots. (for queue
q, ql is used)

4. The binary functions {+,−, ∗, /,%}.

5. The binary relations {=, <,≤, >,≥, 6=}.

6. The unary function −.

7. The symbols ¬,→ and ∀.

The introduction of integer variables has to take into account the possibil-
ity of the lengths of the queues being greater than one as well as nontrivial
integer arrays. The queues have a “second dimension” in that the messages
may be longer than a single variable. The discussion below uses the notation
xnm to refer to the message element m in the queue position n.

To define the semantics of such a language, its structure S has to be de-
fined. The structure consists of the following elements:

1. A set |S| 6= ∅, called universe.

2. For every n-ary function f ∈ Lp its interpretation S(f):|S|n → |S|.

3. For every n-ary relation r ∈ Lp its interpretation S(r) ⊂|S|n.

Let the universe for the languages associated with SPINB programs be the
set of integers Z2n , where n is the width of the integer type. The interpreta-
tion of the binary functions +,−, ∗, / and % as well as the unary function−,
will be those of traditional integer arithmetics in the field Z2n . Similarly, the
binary relations will be interpreted according to the ordering of integers.
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The relation of the above definitions to the SPINB syntax is that the ex-
pressions used, for instance, in statements like var = expr; will be precisely
the terms of the language Lp and the boolean conditions used in if(cond)

and while(cond) will be a subset of the formulae of Lp. However, this re-
quires one addition to Lp, namely the introduction of a constant symbol for
each element of the set |S|, i.e. each integer.

To be able to uniquely identify the execution points of SPINB programs,
the operational semantics assumes each statement in a program to be uniquely
labelled. In the definitions below, the letters α and β are typically used. In
addition, each parallel component is assumed to terminate to a unique label
fl, serving the purpose of detecting finished components.

Each parallel component Πi of a SPINB program may be regarded as
a statement sequence. Let Mψ be the set of labels occurring in the state-
ment sequence ψ (including the label fl denoting termination) and F(Lp)
be the set of formulae of the language Lp. To prepare the definition of valid
execution sequences, the following sets are associated with each statement
sequence ψ:

• entry(ψ) ∈Mψ

• trans(ψ) ⊂Mψ ×F(Lp)×Mψ

• exits(ψ) ⊂Mψ ×F(Lp)

Their intuitive meaning is that the set entry(ψ) is the first label in a state-
ment sequence, the set trans(ψ) describes the conditions that must be ful-
filled for the execution in ψ to proceed from a label to another, and the set
exits(ψ) tells the requirements for a statement to terminate.

The sets are then defined inductively based on the statement type. In the
definition, the set E contains the statements of the type var = expr; and Q
is the set of queue manipulating statements.

1. ψ ≡ α : x ∈ E
entry(ψ) = α
trans(ψ) = ∅
exits(ψ) = (α,>)

2. ψ ≡ α : x!y;∈ Q
entry(ψ) = α
trans(ψ) = ∅
exits(ψ) = (α, xl < xcap)

3. ψ ≡ α : x?y;∈ Q
entry(ψ) = α
trans(ψ) = ∅
exits(ψ) = (α, xl > 0)

4. ψ ≡ α : if(cnd1) ψ1 else if(cnd2) ψ2 . . .else ψn
entry(ψ) = α
trans(ψ) =trans(ψ1) ∪ · · · ∪ trans(ψn)∪
{〈α, cnd1, entry(ψ1)〉, 〈α,¬cnd1 ∧ cnd2, entry(ψ2)〉,
〈α,¬cnd1 ∧ ¬cnd2 ∧ . . . , entry(ψn)〉}
exits(ψ) =exits(ψ1)∪ exits(ψ2)∪ . . .∪ exits(ψn)
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5. ψ ≡ α : goto β;
entry(ψ) = α
trans(ψ) = {〈α,>, β〉}
exits(ψ) = ∅

6. ψ ≡ ψ1; ψ2, where ψ1 is an unlabelled statement and ψ2 a statement
sequence.
entry(ψ) = entry(ψ1)
trans(ψ) =trans(ψ1) ∪ trans(ψ2) ∪
{〈β, cond1, entry(ψ2)〉 | (β, cond1) ∈ exits(ψ1)}
exits(ψ) = exits(ψ2)

7. ψ ≡ fl :, where fl is the finishing label.
entry(ψ) = fl
trans(ψ) = ∅
exits(ψ) = ∅

The if statement in the list above is given in its most complex form.
The simplifications for the other cases are straightforward. Notice that the
constructs for the while statement are not given. This is because it can be
regarded as a shorthand definable by the constructs given above. The trans-
lation is given in Figure 2.1.

L1: while (c1) {
stmt 1;
...
stmt n;

}

L1: if (c1) {
stmt 1;
...
stmt n;

goto L1;

}

Figure 2.1: While as a shorthand.

In order to define the execution sequences, one further concept is needed.
Let program Π have p parallel components. A program state for Π is a (p+2)-
tuple η = (µ, λ1, . . . , λp, κ) where:

• µ assigns a value to every program variable (an element of the universe
of La).

• λi ∈Mψi

• κ ∈ {0, . . . , p}

Informally, µ describes the memory state of the computation, the λi:s are
the labels of the elements of the respective components to be executed next
(control flow) and κ gives the component to be scheduled next, with the
special value 0 denoting the last state of the execution.

With the variable valuation µ, it is possible to obtain a value for every term
of the language Lp and a truth value for its every formula. For the term t and
the formula f , these are usually denoted Sµ(t) and Sµ(f), respectively.
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Definition 1 A program state η = (µ, λ1, . . . , λp, κ) yields the program state
η′ = (µ′, λ′1, . . . , λ

′
p, κ

′), if the following properties hold:

• if κ = i, then trans(pi) contains an element 〈λi, cond, λ′i〉 such that
Sµ(cond) evaluates to true and all for all k 6= i, λ′k = λk.

• if κ = i and λi is a statement not in E ∪ Q then µ′ = µ.

• if κ = i and λi is of the form x = e;∈ E then µ′(x) = Sµ(e) and
for all other variables y other than x, µ′(y) = µ(y).

• if κ = i and λi is of the form x!(e0, . . . , en) ∈ Qs then
µ′(xxl0) = Sµ(e0), . . . , µ

′(xxln) = Sµ(en),
µ′(xl) = µ(xl) + 1 and
for all variables y 6∈ {xxl+1i, xl}, µ′(y) = µ(y).

• if λi is of the form x?(y0, . . . , yn) ∈ Qr then
µ′(y1) = x00, . . . , µ

′(yn) = x0n,
µ′(x00) = µ(x10), . . . , µ

′(x0n) = µ(x1n), . . . µ
′(x(xl−1)n) = µ(xxln),

µ′(xl) = µ(xl)− 1 and for all variables
y 6∈ {y1, . . . yn}∪{xij|0 < i < xl−1, 0 < j < n}∪{xl}, µ(y′) = µ(y)

The definition above models the effects of an executed statement on the
memory state and the control flow. From the first item above it can be seen
that the execution of a statement not manipulating the variables or queues
causes no changes in µ. The second property says that execution of an assign-
ment statement causes the variable in the left hand side to change its value
to what is obtained by evaluating the expression on the right hand side. No
other variable is changed.

The queue send operation causes the values of the expressions in the ex-
pression list to be copied to the queue slot pointed by the xl variable whose
value is incremented. The variables other than pertaining to the queue oper-
ated on retain their value.

The queue reception operation causes the message in the first queue slot
to be copied to the variables listed in the operation. In addition, the values in
the queue are shifted down so that the message in the second slot is moved
to the first etc. The value of xl is then decremented. The definition of an
execution sequence is based on the previous definition:

Definition 2 An execution sequence of Π (w.r.t. S) is a (finite or infinite)
sequence WΠ = {η0, η1, . . . } of program states with the following properties:

• η0 = (µ0, α
1
0, . . . , α

p
0, κ0) where µ0 assigns the initial values to the vari-

ables and the αi0 denote the labels of the first statements in each com-
ponent. The initial values are assigned according to the declarations in
the program text. If a variable is not given a value, it is initialized to
zero.

• For any consecutive pair ηj and ηj+1 of program states, ηj yields ηj+1

• if WΠ is finite, its last state is of the form η = (µ, λ1, . . . , λp, 0), and
no other value for the scheduling component would yield any program
state.
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For the purpose of bounded model checking, a finite prefix of a potentially
infinite execution sequence is defined as follows:

Definition 3 An execution sequence of Π (w.r.t S) of length k consists of k
program states that form a prefix of an execution sequence.

Example 2 Consider the previous example. Here the same program text is
given with the labels needed for the definitions of the operational semantics.

chan i = [2] of {int};

int p() { int q() {

int a; int b;

p0: i!2; q0: i?b;

p1: a = a + 1; q1: goto q0;

p2: goto p0; fq:

fp: }

}

init {

run p();

run q();

}

The set trans(p) and trans(q) can be constructed from the inductive defi-
nitions with the following results:

trans(p) = {〈p0, il < 2, p1〉, 〈p1,>, p2〉, 〈p2,>, p0〉}
trans(q) = {〈q0, il > 0, q1〉, 〈q1,>, q0〉}

Since neither component is supposed to terminate, the finishing labels do
not appear in any transition. Consider next the possible execution sequences
of this program. Initially, its memory state µ0 is defined as follows:

µ0 = {i00 = 0, i10 = 0, il = 0, icap = 2, a = 0, b = 0}

The control flow positions point to p0 and q0, the first statements. To
complete the initial state consider the available transitions in trans(p) and
trans(q). In trans(p) the transition from p0 to p1 can be taken because il < 2
evaluates to 0 < 2. However, in trans(q) the transition from q0 is not possible
because il > 0 evaluates to false. Thus the only possible initial state is:

η0 = (µ0, p0, q0, p)

Executing then the first statement in p gives, following the rules of the
operational semantics, the following memory state:

µ1 = {i00 = 2, i10 = 0, il = 1, icap = 2, a = 0, b = 0}

In addition, the label p1 is reached. In this state, both p and q can be
scheduled (due to the boolean conditions in the transitions 〈p1,>, p2〉 and
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〈q0, il > 0, q1〉 evaluating to true). Assuming p is scheduled again, the sec-
ond execution state is:

η1 = (µ1, p1, q0, p)

Executing the statement pointed to by p1, the memory state becomes:

µ2 = {i00 = 2, i10 = 0, il = 1, icap = 2, a = 1, b = 0}

Let q be the scheduled component in the state 2 (possible by the argument
above). Then the execution state η2 is:

η2 = (µ2, p1, q0, q)

Executing the queue read statement pointed to by q0 leads to a state where
the control flow of q advances to q1 and the memory state is the following:

µ2 = {i00 = 0, i10 = 0, il = 0, icap = 2, a = 1, b = 2}

Due to the components not terminating, the execution sequence above
can be extended ad infinitum.

12 2. SPINB PROGRAMMING LANGUAGE



3 THE BOOLEAN ENCODING

The key idea in Bounded Model Checking (BMC) is to translate the system
model and the specification to a propositional formula having a satisfying
truth assignment if and only if the system model has a behavior that violates
the specification. Such a translation is based on unrolling the transition rela-
tion of the system and thus in order to obtain a finite formula the amount of
transitions has to be limited. Therefore, the process has an additional param-
eter giving the upper bound to the counterexamples produced. This chapter
presents the translation of SPINB programs to boolean formulae together
with establishing the soundness and completeness of such an encoding with
respect to the finite prefixes of the execution sequences defined in the oper-
ational semantics. The discussion is complemented in the next chapter with
a description of the translation of the class of considered properties.

The key ideas have been adopted from Kautz and Selman [19]. Following
their approach the formulae used are given using predicates and variables to-
gether with universal and existential quantification. This is done for clarity
and is not contrary to the description of a translation to a propositional for-
mula as the predicates can straight forwardly be translated to propositional
atomic formulae by grounding them over the (finite) quantifications. The
universal quantifier translates to a conjunction. For instance, the formula
∀t p(t) is the same as p(0)∧ · · ·∧ p(k), assuming the possible values for t run
from zero to k. Similarly, the existential quantifier translates to a disjunction.

In addition, a notational shorthand of the following type is applied:

[n,m]{a1, . . . , ai}

The sentence above is satisfied by a truth assignment, if and only if the
amount of true atomic statements in the set {a1, . . . , ai} is in the range given
by the numbers n and m (the lower and the upper bound, respectively). All
the formulae of this form can be expressed using traditional propositional
logic. The only combination used in this work is that both n and m have
the value one. In propositional logic, this translates to a disjunction (so that
at least one of them is true) together with negated conjunctions with the
different pairs of literals, ruling out models in which two or more of them
would be true.

The encoding involves two rather orthogonal issues. First is the encoding
of the binary relations and the arithmetic operations, the elements of the
language Lp. The second part is the correct maintenance of the control
flow that can further be divided to two parts. The “local” part consists of
propositional formulae pertaining only to a single statement, modelling how
the control flow advances when a statement is executed. The “global” part
collects elements from several statements in demanding, for instance, that
only a single statement in a component may be executable at any time point.

The classification above is given to clarify the elements of the encoding
and to explain the order of the discussion below. The chapter commences
with a brief description and justification of the SPINB predicates. Then, the
encoding of the binary relations and the arithmetic operations is analyzed.
The translation of the different statement types completes the boolean for-
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mula and the process is illustrated by working through a simple example.
The chapter concludes with the proofs of soundness and completeness of the
encoding.

3.1 SPINB PREDICATES

The predicates used in the translation are described in Table (3.1). The key
issues in the verification of SPINB programs are the maintenance of the cor-
rect control flow (i.e. statements may not be executed in an incorrect order
with respect to the program text) and the correct values of the variables. The
correct control flow is maintained using three predicates. The first one gives
the position of the control flow within a component and the second one the
component chosen for execution (analogous to the position elements λi and
the scheduling element κ in the operational semantics, respectively). The
third one denotes the successful termination of a component.

The values of the variables are represented using a binary encoding, for
instance the xit refers to the bit i of the variable x in the state t. Sometimes
the notation is abbreviated by using xt to refer to the entire vector. Thus,
a separate predicate is not needed. However, a correct queue manipulation
requires the knowledge of the available slots. This is the purpose of the qu-
predicate. The limiting values of zero and the queue capacity carry a special
role, denoting an empty and a full queue, respectively.

Table 3.1: The predicates of SPINB translation.

Predicate Meaning
p(la, t) The control flow has reached label la at time t.
ac(p, t) The component p was active at time t.
f(p, t) The component p has finished by time t.
qu(q, i, t) i slots of the queue q are used at time t.

3.2 BINARY RELATIONS

The output of the translation of a SPINB program can be regarded as a sym-
bolic encoding of all the possible interleaving executions of the program.
Therefore, the possibilities of making inferences about the actual values of
the variables are limited compared to the operational semantics that mod-
els the executions explicitly with all the variable values known. Rather, the
encoding represents them as formulae having models if and only if the de-
sired binary relation holds. In the following the binary relations of Lp are
presented using the notational convention of relating the expressions l and r
each being n bits wide, the numbering of the bits starting from 1 (the least
significant bit). A single bit is referred to using a subscript (as in li). Notice
that the encodings describe the general case, where both of the operands are
unknown. If one of them is a constant, the equations can often be drastically
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simplified by straight forward manipulation according to the rules of proposi-
tional logic. The encodings are adopted from standard material of hardware
design, also previously applied for formal verification (see, e.g. [35]).

3.2.1 Equality

This is probably the most obvious case. Two expressions are equal, if and
only if all their bits are equivalent. Put more formally:

(l = r) ≡def

∧
1≤i≤n

(li ↔ ri)

3.2.2 Less Than (with Equality)

The relation is a bitwise comparison. The relation l < r is true if the most
significant bit of l is zero and the same bit in r is one. Otherwise, if they are
the same, the comparison will have to be extended to the next significant bit
and apply the same reasoning recursively. As a formula:

l < r ≡def (En ↔ (ln ↔ rn))∧
(Ln ↔ (¬ln ∧ rn))∧∧
0<i<n

(En−i ↔ (En−i+1 ∧ (ln−i ↔ rn−i))∧∧
0<i<n

(Ln−i ↔ (En−i+1 ∧ (¬ln−i ∧ rn−i))∧∨
0<i≤n

Li

The encoding above uses two sets of temporary bits, the variables Ei have
the meaning that the bits from the most significant one to the bit i are equal.
A variable Li is true if and only if all the bits from the most significant one
to the bit i + 1 are equal, the bit li and ri are zero and one, respectively. If
any one of the variables Li are true, the condition holds. The encoding of
the relation with equality requires only the following modification.

L1 ↔ (E2 ∧ (¬l1 ∨ r1))

It states that if all the bits until the least significant position have been
equal, the only possibility of the predicate to be violated occurs if the least
significant bits in the left and right operands have the values one and zero,
respectively.

The introduction of 2n temporary variables may be disturbing. However,
the representation above is to clearly show the reasoning behind the en-
coding. One may of course trivially replace the temporary variables with
their definitions the tradeoff being ever longer formulae containing identi-
cal constituents. The issue probably also depends on the actual width of the
operands and the knowledge of the heuristics of the SAT solver.
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3.2.3 Other Relational Expressions

The encoding of the remaining relational expressions is based on the encod-
ings above and related by the following rather trivial equations:

l 6= r ≡ ¬(l = r)
l > r ≡ r < l
l ≥ r ≡ r ≤ l

3.3 ARITHMETICS

SPINB supports the standard mathematical operations of addition, subtrac-
tion, multiplication, integer division and modulo. The operations obviously
differ from the relational operators in that instead of merely having a truth
value they have a result. Therefore the notational conventions have to be
extended for the result bits. The result is given in a bit vector x1, . . . , xn,
corresponding to the expression x = l op r. The results of the arithmetic
operations may be wider than the width of the variable to which the results
is to be stored. SPINB handles the event by simply ignoring the excess bits
(so actually the results are (mod 2n) where n is the width of the result vari-
able). A similar discussion as in the case of binary relations applies here as
well, the equations can be simplified if one of the operands is a constant. It
should be noted that several VLSI designs exist for implementing the arith-
metic operations. Any one of them could form the basis for the definitions
below. The ones selected, albeit not the most effective, are presented due to
their simplicity, manifested by analogies to elementary school algebra.

3.3.1 Constant

The simplest arithmetic expression that can be set to a variable is a constant.
The encoding simply represents the value as a binary number and sets the
variable equivalent the encoding thus obtained.

3.3.2 Addition

The presentation is a formula describing a base two variant of the standard
algorithm taught at elementary school with the each bit possibly toggling a
carry bit to be set. The carry bits are propagated to the direction of higher
order bits. Formally:

x = l + r ≡def (x1 ↔ (l1 ⊕ r1)) ∧ (c1 ↔ (l1 ∧ r1)) ∧∧
2≤i≤n

(xi ↔ (li ⊕ ri ⊕ ci−1)) ∧∧
2≤i≤n

(ci ↔ ((li ∧ ri) ∨ (ci−1 ∧ (li ∨ ri))))
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3.3.3 Subtraction

Subtraction can be encoded as follows:

x = l − r ≡def (x1 ↔ (l1 ⊕ r1)) ∧ (c1 ↔ (¬l1 ∧ r1)) ∧∧
2≤i≤n

(xi ↔ (li ⊕ ri ⊕ ci−1)) ∧∧
2≤i≤n

(ci ↔ ((li ∧ ri ∧ ci−1) ∨ (¬li ∧ (ri ∨ ci−1))))

3.3.4 Multiplication

The encoding of multiplication follows also the traditions of elementary school.
The algorithm is based on first multiplying each single bit in the right operand
with the entire left, the result being stored to temporary variables. The binary
single bit multiplication is trivially a simple ∧, the result being one only if
and only if both the operands are. The temporary results are then appropri-
ately added (the bit position j in the right operand causes an j-bit shift in the
left) to obtain the final result. In the formula below the terms Tij refer to the
bit storing the temporary result obtained from the single bit operation li× rj .
The additions are denoted using the

∑
sign, encoded using the formula in

Section (3.3.2). The term Tj refers to the bit vector {Tnj . . . T1j}. Repeated
additions (sums having more than two terms) can be encoded by first com-
puting the results of the addition of first two terms into temporary variables
and then summing that result with the third etc.

x = l ∗ r ≡def

∧
1≤i,j≤n

(Tij ↔ li ∧ rj) ∧ (x↔
∑

1≤j≤n

Tj << (j − 1))

To further clarify the concept, the elementary school algorithm is illus-
trated in Figure 3.1.

l4 l3 l2 l1

r4 r3 r2 r1×

T41 T31 T21 T11

T32 T22 T12

T23 T13

T14+

x4 x3 x2 x1

Figure 3.1: Multiplication with four bits.

3.3.5 Division and Modulo

The encoding of division utilizes also previously defined operations, namely
subtraction and the comparison for less than or equality. The operation starts
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from an initial position in which the bits of the divisor are shifted left n − 1
bits. The bits in the quotient are then determined by shifting it right one bit
at a time. The bit will be one if the shifted divisor is less than the dividend
and zero otherwise. If the bit is one, the shifted divisor will be subtracted
from the dividend. For clarity, the operation is presented in a procedural
form as follows:

x = l/r ≡def

Let

remn = {0, . . . , 0, ln, . . . l1} (n zeros)

divn = {0, rn, . . . , r1, 0, . . . , 0} (n− 1 zeros)

xi = divi ≤ remi

if(xi) { remi−1 = remi − divi }
else { remi−1 = remi }
divi−1 = divi >> 1

in {xn, . . . , x1}

The if-else-structure can be encoded with implication and conjunction:

xi → (. . . ) ∧ ¬xi → (. . . )

The result of the remainder operator (x = l % r) can be obtained from
the same procedure by setting x equivalent to rem1.

3.4 STATEMENTS

The execution of all the different statement types is triggered by the control
flow having reached that statement and the component the statement is in
being active. Therefore, the equations modelling the different types have a
common part p(la, t) ∧ ac(p, t) → . . . . Their effects, however, vary. Since
the boolean expressions in SPINB do not have side effects, the only statement
types affecting variable values are the assignments and the queue operations
whereas if...else, while and goto only affect the control flow.

One central issue in the encoding of planning problems using proposi-
tional satisfiability [19] as opposed to for instance logic programs is the ten-
dency to obtain formulae having many models not corresponding to real ex-
ecutions. This is a result of only encoding the effects of the operations in
the particular problem domain. Applied to the SPINB translation, one ex-
ample would be the case of the executed statement being an assignment to a
variable. Only encoding the effects would lead to the variable to be assigned
to have the correct value in the next step. However, if the models were not
in some way restricted the other variables could assume any combination
of values and the truth assignment would still form a valid model. This is
known as the frame problem [25] and the necessary frame axioms are pre-
sented together with the encodings of the statement types. Referring to the
classification into local and global elements, the effect part of the statement
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is local whereas the frame axioms may involve several statements thus being
global.

As stated in the beginning of the chapter, the evaluation of the binary
relations and the arithmetic expressions is an orthogonal issue to the main-
tenance of the control flow. As the arithmetic encodings have already been
discussed, the following presentation assumes their encoding to be given by
a partial function from the terms and formulae of Lp to boolean formulae.
When stating, for instance, that the variable x will have the value equal to
the result of the expression e1 in the state t the notation enc(xt = e1) is used.
Similarly with boolean conditions, the condition c1 is encoded to enc(c1)
and if several conditions are combined with boolean connectives, the com-
plete encoding applies the enc function to the atomic parts and combines
them with the appropriate connective. Thus, the condition enc(c1 && c2)
translates to enc(c1) ∧ enc(c2).

3.4.1 Assignments

According to the SPINB grammar an assigment statement is of the form
x = expr, where x refers to a variable capable of storing integer values and
expr is an arithmetic expression. Intuitively, the execution of such a state-
ment causes the symbolic evaluation of expr using the techniques in the
previous section. The results of the evaluation are then set to the binary en-
coding of x.

p(la, t) ∧ ac(p, t) → (enc(xt+1 = expr)) (3.1)
where la is the label of the statement

t is the state and

p is the component containing la

xt+1 is the value of x at time t+ 1

The execution of an assignment statement also affects the control flow in
that it will render the next statement amenable to execution.

p(la, t) ∧ ac(p, t) → p(lb, t+ 1) (3.2)
where la is the label of the statement

t is the state.

p is the component containing la

lb is the label of the next statement

One problem still remains. Namely, were the statement la not executed
in time step t the preconditions of the implications would be false and the
consequenes could therefore assume any combinations of truth values. One
attempt in solving the problem could replace the implications with equiv-
alences in the formulae above. However, this would limit the models too
much, since, for instance, in the case of a constant expression, there may
be other statements setting x to the same value and furthermore, in some
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other execution one of them could be executable in the same state. The re-
quirement can be formulated by demanding that either the variable retains
its value or some statement modifying it is executed. This translates to the
following disjunction, where the . . . in the end illustrate the fact that the dis-
junct has to contain all the statements capable of modifying the variable x
in the state t. Following the introduced classification, this is a global frame
condition.

(enc(xt+1 = xt) ∨ ((ac(p, t) ∧ p(la, t)) ∨ . . . ) (3.3)

A similar problem arises with Formula (3.2) where restrictions are required
in order to maintain the correct control flow. If the implication was changed
to an equivalence, the results would be incorrect due to the fact that the
label pb could also be reached by it being a target of an unconditional or
conditional jump. A formula similar to (3.3) could be used here too. How-
ever, in order to handle other issues pertaining to control flow, the following
construct is used:

[1, 1]{p(la, t), p(lb, t), . . . , p(ln, t))|{la, lb, . . . , ln} ∈ p} (3.4)

As already stated, Formula (3.4) is a shorthand restricting the amount of
true elements in the set to precisely one. The meaning is to reject models
where several statements within one component were possible, i.e. to disal-
low a split control flow.

3.4.2 Conditional Execution

An if ...else structure is encoded using the techniques for relational ex-
pressions. Similarly, as in the discussion of the operational semantics, the
structure is presented in its most complex form, simplifications being easy.
Assume a structure of the form:

la: if(c1) { lb: } else if(c2) { lc: } ...else { ln: }

According to the operational semantics, the boolean conditions are simulta-
neously evaluated and the block of the first one evaluating to true is chosen.
The situation can be taken care of with the following formulae.

(p(la, t) ∧ ac(p, t)) → (enc(c1) ↔ p(lb, t+ 1)) (3.5)
(p(la, t) ∧ ac(p, t) ∧ ¬p(lb, t+ 1)) → (enc(c2) ↔ p(lc, t+ 1)) (3.6)

(p(la, t) ∧ ac(p, t) ∧ ¬p(lb, t+ 1)∧¬p(lc, t+ 1) ∧ · · · ) → p(ln, t+ 1)
(3.7)

In the formulae above all the elements have the common fragment reflect-
ing the requirement of simultaneous evaluation (p(la, t) ∧ ac(p, t)). How-
ever, the expressions occurring earlier in the program text are prioritized,
by having in each subsequent formula the precondition that no previous ex-
pression has been evaluated to true (this is the significance of the predicates
¬p(lb, t + 1) etc.). If the structure contains no unconditional else-block in
the end, Formula (3.7) has to point to the first statement after the structure.
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3.4.3 Unconditional Jumps

Unconditional jumps are probably the easiest to encode. If the control flow
has reached a goto statement, this implies that it will reach its target (in-
ferrable from the program text) in the next state:

p(la, t) ∧ ac(p, t) → p(lb, t+ 1)

where la is the label of the statement

t is the time step.

p is the component containing la

lb is the label of the jump target

The predicate expressing the control flow to have reached the statement
has to be added to the set of Formula (3.4) restricting the control flow.

3.4.4 Conditional Execution with a Loop

The encoding of the while structure follows its definition as a shorthand for
an if with a single condition and an unconditional jump in the end. The
encoding exploit Formulae (3.5, 3.7 and 3.8).

3.4.5 Queue Manipulations

Queue statements are similar to the assignments in that they may modify a
variable. In addition, they provide the means for communicating compo-
nents to synchronize. This is achieved by blocking a component in a read
statement if the channel is empty and conversely a send statement blocks if
the channel is full.

As in the operational semantics, additional elements are needed for the
correct maintenance of the queue status. Namely, predicates to indicate how
many slots of the queue are occupied with zero resembling the empty queue
and queue capacity (statically declared in the program code) corresponding
to a full queue. In the formulae below, the usage predicates are denoted
qu(q, n, t) meaning that n slots of queue q are used at time t. Then obviously
qu(q, 0, t) means an empty queue and a special symbol qc is used to denote
queue capacity (the predicate full is then qu(q, qc, t)). A slot of the queue is
denoted with a subscript (as in qit, first the slot number and then the state1).
The queue send and reception statements are assumed to be of the form q!x
and q?x where x denotes the variable list containing the message to be sent
or the storage to which the read message is saved, respectively. In case of a
send statement the message could also be a constant, the variable being the
more general case.

Queue Send
To recognize the demand of the queue not being full when material is sent,
to correctly advance the control flow and require the component to be active,

1Notice, that in a complete presentation a third element describing the bit would be
needed. However, this detail is omitted.
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the following formula is needed:

p(la, t) ∧ ac(p, t) → ¬qu(q, qc, t) ∧ p(lb, t+ 1) (3.8)
where la is the label of the send statement,

t is the state,

p is the parallel component containing la,

q is the queue manipulated,

qc is the capacity of q,

lb is the label of the next statement.

To copy the message to the correct slot and to maintain the predicates
describing queue usage, the following statements are needed:

p(la, t) ∧ ac(p, t) →∧
0≤i≤qc−1

(qu(q, i, t) → enc(q(i+1)(t+1) = xt) ∧ qu(q, i+ 1, t+ 1))

(3.9)

p(la, t) ∧ ac(p, t) →∧
1≤i≤qc

(¬qu(q, i, t+ 1) → enc(qi(t+1) = qit)) (3.10)

The first formula has the intuitive meaning that if the send statement is
executed, then the message is copied to the first available slot and the usage
parameter is incremented. The second is to maintain the queue contents of
the slots not manipulated. The formula does the unnecessary restriction of
maintaining the contents past the current usage count. However, this leads
to a more compact representation.

An alert reader may have noticed a problem with Formula (3.9). Namely,
so far the queue usage parameter have not been constrained in any way and
a valid model may contain several conflicting usage counts. This in turn,
could lead to the message to be sent to be copied to several queue slots. The
problem is resolved by the following formula:

[1, 1]{qu(q, 0, t), . . . , qu(q, qc, t)} (3.11)

As in the case of restricting the control flow, this limits the amount of true
usage parameters to precisely one in each state .

Analogous to the assigments to normal integer variables, if a queue is not
operated upon, the slots retain their values from the previous state and the
usage parameters remain unaltered.

∧
0≤i≤qc (enc(qi(t+1) = qit) ∧ (qu(q, i, t+ 1) ↔ qu(q, i, t)) ∨

((p(la, t) ∧ ac(p, t)) ∨ . . . ) (3.12)

To correctly maintain the control flow, the queue send statements will
also have to be in the control flow restriction set of Formula (3.4).
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Queue Receive
A successful queue reception requires the queue not to be empty and implies
a progress in the control flow:

p(la, t) ∧ ac(p, t) → ¬qu(q, 0, t) ∧ p(lb, t+ 1) (3.13)
where la is the label of the receive statement,

t is the time step,

q is the queue manipulated,

lb is the label of the next statement.

The message is copied from the first queue slot to the variable(s) the mes-
sage is to be stored:

p(la, t) ∧ ac(p, t) → enc(xt+1 = q1t) (3.14)

Probably the most complex element in the statement is the operation on
the usage parameter and the values in the slots. Firstly, a reception requires
a formula implying that that after the statement one more slot is available.
Secondly, all the elements will have to be shifted forward by one element, so
the message in slot 2 becomes the message in slot 1 etc. The issue can be
taken care of with the following formulae:

p(la, t) ∧ ac(p, t) →
∧

1≤i≤qc

(qu(q, i, t) → qu(q, i− 1, t+ 1)) (3.15)

p(la, t) ∧ ac(p, t) →
∧

0≤i≤qc−1

(enc(qi(t+1) = q(i+1)t)) (3.16)

The same frame conditions as for the queue send statement apply also to
the queue reception statement (see Formulae (3.11, 3.12 and 3.4)).

3.5 THE BIG PICTURE

In the sections above the encoding of the different statement types was given
together with a discussion about the necessary and sufficient constraints to
the modelling. This section discusses the missing pieces required for the
complete picture of the interleaving execution model. The encoding is illus-
trated by working through a simple example.

3.5.1 The Time Argument and the Interleaving Model

Firstly, it should be noted that in the formulae above, the treatment of the
time argument present in every predicate has been rather abstract. To con-
cretize it a lower and an upper bound to the possible states during which
a statement can be executed is needed. Obviously, it is possible to encode
each statement from the initial state to the upper bound k, giving the length
of the counterexample, but this would lead to redundant formulae (implica-
tions where the precondition would be false in every model). This can be
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easily improved by local control flow analysis. Assume a control flow graph
of a component is constructed [1]. Then, the earliest possible state for a node
can be inferred by choosing the lowest figure from the set of values of its im-
mediate predecessor and adding one. This is also the approach taken in the
encoding of SPINB. The analysis does not help in determining the upper
bound though, since it is dependent on the operations of the other concur-
rent components. Therefore, the encoding conservatively assumes the upper
bound to be k.

Secondly, even though the discussion so far has involved the concept of an
interleaving execution model, it has not been present in the encoding. The
formulae needed are similar to Formula (3.11), i.e. cardinality constraints
restricting the amount of active components to precisely one. This has to
apply for every state. ∧

0≤t≤k

[1, 1]{ac(p1, t), . . . , ac(pn, t)} (3.17)

Thirdly, a frame condition is needed to maintain the control flow in the
same position in a component not chosen for execution. The quantification
of the labels ∀la obviously refers to the statements within one component.

∧
0≤t≤k

(∀p(∀la|la ∈ p)(ac(p, t) ∨ (p(la, t+ 1) ↔ p(la, t)))) (3.18)

3.5.2 Initialization and Termination

The discussion so far has not been concerned with the initial memory state
and the control flow. The initial memory state consists of the values of the
variables and the queue contents. Obviously, when an execution starts each
queue should be empty. Therefore, the following formula is needed.

∀q(qu(q, 0, 0)) (3.19)

The cardinality constraint (Formula (3.11)) enforces the other usage pred-
icates to be false. The initial values of the queue variables do not have to be
restricted since an empty queue is not read and a send operation is guided
by the usage predicates. SPINB assumes, however, that the local and global
variables, unless stated otherwise in the program text, are initialized to zero.
The encoding trivially sets the bits to zero at time zero.

What remains is the issue of the parameters to the concurrent compo-
nents. Recall that a syntactically valid SPINB program must contain an init-
block initializing the concurrent components (e.g. it may contain a state-
ment of the form run p(2, 5);). The syntax was limited to constant ar-
guments. This makes the encoding easy, since the only thing is to set the
symbolic elements equal to the constant arguments. That is, assuming a dec-
laration of the form p(int i, int j) {...} and 4-bit integers:

¬i40 ∧ ¬i30 ∧ i20 ∧ ¬i10 ∧ j40 ∧ ¬j30 ∧ ¬j20 ∧ j10

It should be stated that there is often the need to conduct the verification
on more than one combination of parameter values or even them all. In
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SPINB this can be achieved by relaxing the initialization formulae, in the
first case by encoding the desired combinations as a boolean formula stating
the required condition and if the entire set of possible values were needed,
the initialization would not demand anything from the variables in the initial
state. Obviously, the syntax would have to be modified to allow this.

The issue of termination concerns the case when a particular component
finishes within the bound. If this was not considered, the cardinality con-
straint above could be satisfied by choosing an already completed compo-
nent to be scheduled, thus effectively idling or incorrectly resuming execu-
tion from an arbitrary position. The issue is resolved by having statements
from which a component may terminate set a special atomic formula f(p, t),
true. Then, a component being active would imply that f(p, t) would not be
true thus denying idling models. The formula is formalized as follows:∧

0≤t≤k

∀p(ac(p, t) → ¬f(p, t)) (3.20)

Furthermore, in order to avoid models, where f(p, t) would be set without
there being a real cause, the predicate has to be added to the constrained set
in Formula (3.4) and to the set of Formula (3.18) to be maintained once
having become true.

3.5.3 The Complete Formula

The complete encoding is a conjunction of all the elements presented in the
chapter. In estimating its efficiency, the following result can be given:

Lemma 1 The encoding of a concurrent SPINB program is a conjunction
of O((l + v + p) ∗ k) formulae where l is the number of statements, v is
the number of variables, p is the amount of parallel components and k is the
bound.

Proof: The term l ∗ k stems from the fact that the effects of the state-
ments have to be encoded for k states in the worst case. For each of them
a constant number of statements is required. The same bound applies to
the requirement of only one statement being amenable to execution in each
time step. The term v ∗ k is caused by the need to maintain variable values
if they are not modified (Formula (3.3)). The last term, p ∗ k comes from the
requirement of maintaining the control flow in inactive components and not
allowing finished components to be active. The initial conditions add only a
constant number of elements. 2

The lemma above would not be very useful per se, since the conjuncts
could be of arbitrary complexity. In the case of the SPINB encoding this
could indeed be the case since unrestricted arithmetic expressions are al-
lowed in assignments. However, it is assumed that those do not occur in
practise and it should be noted that the presented encodings grow only poly-
nomially with respect to the number of arguments. The length of the con-
juncts maintaining the values of the variables and control flow are limited by
the number of places in which a variable can be modified and the number of
statements in a component, respectively.
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3.5.4 An Example

Figure 3.2 shows a simple SPINB program with the labels used in the encod-
ing displayed for clarity. Notice also that the component p could be regarded
as being initially written using a while statement and then manipulated for
encoding to the presented form. In the following, the encoding of the pro-
gram for executions of three steps is constructed assuming integer variables 4
bits wide. Since neither of the parallel components do not have any parame-
ters, the initializations reduce to setting i and j to zero and to setting the first
statements in both components schedulable.

int i,j;

int p() { int q() {

pa: if (j < 4) { qa: if (i > 1) {

pb: i = i + 1; qb: j = 4;

pc: goto pa; }

} qc: j = 2;

fp: fq:

} }

init() {

run p();

run q();

}

Figure 3.2: A simple example

(¬i40 ∧ ¬i30 ∧ ¬i20 ∧ ¬i10 ∧ ¬j40 ∧ ¬j30 ∧ ¬j20 ∧ ¬j10) (3.21)
p(pa, 0) ∧ p(qa, 0) (3.22)

When the effects of the statements are then encoded, it is first noticed
that the control flow may reach pa from the initial state on (indeed, it is
required by the initialization). The encoding is based on the equations in
Section (3.4.2). However, the comparison is now between an unknown vari-
able and a constant resulting in an easier encoding since the bits of the right
operand are now known. In fact, the encoding of j < 4 requires only that
the two most significant bits of j are zero. If the condition is not met the
component terminates, thus setting the f -predicate.

p(pa, 0) ∧ ac(p, 0) → (¬j40 ∧ ¬j30 ↔ p(pb, 1)) (3.23)
(p(pa, 0) ∧ ac(p, 0) ∧ ¬p(pb, 1)) → f(p, 1) (3.24)

p(pa, 1) ∧ ac(p, 1) ∧ (¬j41 ∧ ¬j31 ↔ p(pb, 2)) (3.25)
(p(pa, 1) ∧ ac(p, 1) ∧ ¬p(pb, 2)) → f(p, 2) (3.26)

p(pa, 2) ∧ ac(p, 2) ∧ (¬j42 ∧ ¬j32 ↔ p(pb, 3)) (3.27)
(p(pa, 2) ∧ ac(p, 2) ∧ ¬p(pb, 3)) → f(p, 3) (3.28)
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The statement pb then is an assignment the right side incrementing the
value of i. Following then the encoding in Section (3.4.1), the result of
the arithmetic expression has to be evaluated to temporary variables. No-
tice again that since the other element of the addition is one, the encoding
is a bit simpler than the general case. The control flow will advance to the
label pc. Since the if condition has to be evaluated before the statement can
be executed, the earliest state for it is 1.

p(pb, 1) ∧ ac(p, 1) →((T11 ↔ ¬i11) ∧ (c11 ↔ i11)∧
(T21 ↔ (i21 Y c11)) ∧ (c21 ↔ (i21 ∧ c11))∧
(T31 ↔ (i31 Y c21)) ∧ (c31 ↔ (i31 ∧ c21))∧
(T41 ↔ (T31 ∧ c31))) (3.29)

p(pb, 1) ∧ ac(p, 1) →((i12 ↔ T11) ∧ (i22 ↔ T21)∧
(i32 ↔ T31) ∧ (i42 ↔ T41)) (3.30)

p(pb, 1) ∧ ac(p, 1) → p(pc, 2) (3.31)

p(pb, 2) ∧ ac(p, 2) →((T12 ↔ ¬i12) ∧ (c12 ↔ i12)∧
(T22 ↔ (i22 Y c12)) ∧ (c22 ↔ (i22 ∧ c12))∧
(T32 ↔ (i32 Y c22)) ∧ (c32 ↔ (i32 ∧ c22))∧
(T42 ↔ (T32 Y c32))) (3.32)

p(pb, 2) ∧ ac(p, 2) →((i13 ↔ T12) ∧ (i23 ↔ T22)∧
(i33 ↔ T32) ∧ (i43 ↔ T42)) (3.33)

p(pb, 2) ∧ ac(p, 2) → p(pc, 3) (3.34)

The goto statement labelled pc is then encoded using the formula in
Section (3.4.3). The earliest state for it to be executable is two and a with the
given bound a single formula suffices:

p(pc, 2) ∧ ac(p, 2) → p(pa, 3) (3.35)

Moving on the component q the statement q0 is encoded similarly than
the statement pa. Again the boolean condition is easier than the general
setting due to the comparison with a constant. The condition i > 1 is true if
one or more of its three most significant bits are one. In this case, the if-block
is followed by the statement qc.

p(qa, 0) ∧ ac(q, 0) → ((i40 ∨ i30 ∨ i20) ↔ p(qb, 1)) (3.36)
(p(qa, 0) ∧ ac(q, 0) ∧ ¬p(qb, 1)) → p(qc, 1) (3.37)

p(qa, 1) ∧ ac(q, 1) → ((i41 ∨ i31 ∨ i21) ↔ p(qb, 2)) (3.38)
(p(qa, 1) ∧ ac(q, 1) ∧ ¬p(qb, 2)) → p(qc, 2) (3.39)

p(qa, 2) ∧ ac(q, 2) → ((i42 ∨ i32 ∨ i22) ↔ p(qb, 3)) (3.40)
(p(qa, 2) ∧ ac(q, 2) ∧ ¬p(qb, 3)) → p(qc, 3) (3.41)
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The statement qb assigns a constant to the variable j. Since the condition
of the statement qa must in any case be evaluated before the control flow can
reach it, the effects are modelled from the state one.

p(qb, 1) ∧ ac(q, 1) → ¬j42 ∧ j32 ∧ ¬j22 ∧ ¬j12 (3.42)
p(qb, 1) ∧ ac(q, 1) → p(qc, 2) (3.43)
p(qb, 2) ∧ ac(q, 2) → ¬j43 ∧ j33 ∧ ¬j23 ∧ ¬j13 (3.44)
p(qb, 2) ∧ ac(q, 3) → p(qc, 3) (3.45)

The encoding of the statement qc is identical except for the label and the
value of the constant. Since it is the last statement, its execution will set the
f -predicate. It should be noted that since the execution of qb is conditional,
the first state qc may be executed is also one.

p(qc, 1) ∧ ac(q, 1) → ¬j42 ∧ j32 ∧ j22 ∧ ¬j12 (3.46)
p(qc, 1) ∧ ac(q, 1) → f(q, 2) (3.47)
p(qc, 2) ∧ ac(q, 2) → ¬j43 ∧ j33 ∧ j23 ∧ ¬j13 (3.48)
p(qc, 2) ∧ ac(q, 2) → f(q, 3) (3.49)

Having thus completed the encodings of the statements it is the time to
address the frame axioms. In this case the values of i and j will have to be
maintained if not manipulated and the control flow in inactive components
has to remain in the same position. Furthermore, the control flow within p
and q has to be unambiguous in all states.

((i41 ↔ i40) ∧ (i31 ↔ i30) ∧ (i21 ↔ i20) ∧ (i11 ↔ i10))

∨ (ac(p, 0) ∧ p(pb, 0)) (3.50)
((i42 ↔ i41) ∧ (i32 ↔ i31) ∧ (i22 ↔ i21) ∧ (i12 ↔ i11))

∨ (ac(p, 1) ∧ p(pb, 1)) (3.51)
((i43 ↔ i42) ∧ (i33 ↔ i32) ∧ (i23 ↔ i22) ∧ (i13 ↔ i12))

∨ (ac(p, 2) ∧ p(pb, 2)) (3.52)

((j41 ↔ j40) ∧ (j31 ↔ j30) ∧ (j21 ↔ j20) ∧ (j11 ↔ j10))

∨ (ac(q, 0) ∧ (p(qb, 0) ∨ p(qc, 0))) (3.53)
((j42 ↔ j41) ∧ (j32 ↔ j31) ∧ (j22 ↔ j21) ∧ (j12 ↔ j11))

∨ (ac(q, 1) ∧ (p(qb, 1) ∨ p(qc, 1))) (3.54)
((j43 ↔ j42) ∧ (j33 ↔ j32) ∧ (j23 ↔ j22) ∧ (j13 ↔ j12))

∨ (ac(q, 2) ∧ (p(qb, 2) ∨ p(qc, 2))) (3.55)

ac(p, 0) ∨ ((p(pa, 1) ↔ p(pa, 0)) ∧ (p(pb, 1) ↔ p(pb, 0))∧
(p(pc, 1) ↔ p(pc, 0))) (3.56)

ac(p, 1) ∨ ((p(pa, 2) ↔ p(pa, 1)) ∧ (p(pb, 2) ↔ p(pb, 1))∧
(p(pc, 2) ↔ p(pc, 1))) (3.57)

ac(p, 2) ∨ ((p(pa, 3) ↔ p(pa, 2)) ∧ (p(pb, 3) ↔ p(pb, 2))∧
(p(pc, 2) ↔ p(pc, 1))) (3.58)
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ac(q, 0) ∨ ((p(qa, 1) ↔ p(qa, 0)) ∧ (p(qb, 1) ↔ p(qb, 0))∧
(p(qc, 1) ↔ p(qc, 0))) (3.59)

ac(q, 1) ∨ ((p(qa, 2) ↔ p(qa, 1)) ∧ (p(qb, 2) ↔ p(qb, 1))∧
(p(qc, 2) ↔ p(qc, 1))) (3.60)

ac(q, 2) ∨ ((p(qa, 3) ↔ p(qa, 2)) ∧ (p(qb, 3) ↔ p(qb, 2))∧
(p(qc, 3) ↔ p(qc, 2))) (3.61)

ac(p, 0) → ¬f(p, 0) (3.62)
ac(p, 1) → ¬f(p, 1) (3.63)
ac(p, 2) → ¬f(p, 2) (3.64)

ac(q, 0) → ¬f(q, 0) (3.65)
ac(q, 1) → ¬f(q, 1) (3.66)
ac(q, 2) → ¬f(q, 2) (3.67)

[1, 1]{p(pa, 0), p(pb, 0), p(pc, 0), f(p, 0)} (3.68)
[1, 1]{p(pa, 1), p(pb, 1), p(pc, 1), f(p, 1)} (3.69)
[1, 1]{p(pa, 2), p(pb, 2), p(pc, 2), f(p, 2)} (3.70)
[1, 1]{p(qa, 0), p(qb, 0), p(qc, 0), f(q, 0)} (3.71)
[1, 1]{p(qa, 1), p(qb, 1), p(qc, 1), f(q, 1)} (3.72)
[1, 1]{p(qa, 2), p(qb, 2), p(qc, 2), f(q, 2)} (3.73)

To complete the encoding and enforce the interleaving model of execu-
tion it is required that precisely one component is active in all states:

[1, 1]{ac(p, 0), ac(q, 0)} (3.74)
[1, 1]{ac(p, 1), ac(q, 1)} (3.75)
[1, 1]{ac(p, 2), ac(q, 2)} (3.76)

The complete encoding is then the conjunction of the elements above. To
show that it bears resemblance (without claiming anything about soundness
and completeness) one complete model is discussed.

Formula (3.74) requires that precisely one component has to be active.
Assume that it is p, thus setting ac(p, 0). In addition j was initially set to
zero. Therefore the preconditions for the Formula (3.23) are met and the left
side of the implication evaluates to true. Therefore, p(pb, 1) has to be set (so
the control flow in p advances). The cardinality constraint in Formula (3.69)
enforces ¬p(pa, 1),¬p(pc, 1) and ¬f(p, 1). Since the component q is not
active Formula (3.59) requires its control flow to remain in the same position.
Since no variable is changed, Formulae (3.50 and 3.53) will cause the values
of the variables to be carried over to the next step.

Assume that p is the component scheduled also in the second state, cor-
responding to ac(p, 1) being true. Since p(pb, 1) was set to true the state-
ment pb will be executed, its effects being modelled in Formulae (3.29, 3.30
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and 3.31). Their evaluation corresponds to the incrementation of the vari-
able i leading to i12 to be included in the model. The control flow is again
advanced reaching pc in state 2. Formula (3.60) will cause the control flow of
q to be carried over from the previous state thus p(qa, 2) will be true. Since
j is not changed, Formula (3.54) will demand the value to remain the same.

For the last step, assume the component q is chosen. Thus ac(q, 2) will
be set to true and ac(p, 2) to false. Since q is active and the control flow
is at qa, the statement pointed to will be executed based on Formulae (3.40
and 3.41). Since i was incremented to 1, the most significant bits will be zero
and the negative condition will prevail. This will cause p(qc, 3) to be set to
true and the three steps have been taken.

Consider the possibility of the presented true atoms leading to contradic-
tion (an unsatisfied conjunct) and thus not being a model. Firstly all the car-
dinality constraints were satisfied, Formulae (3.74, 3.75 and 3.76) by choice
and Formulae (3.68–3.73) by the fact that the description required only a
single p-predicate to be true. The statements encoding the effects of the not
executed statements were also satisfied due to their preconditions not being
met. Neither were any conflicts found in satisfying the frame axioms. Since
neither component finished, all the f -predicates are false and thus Formu-
lae (3.62–3.67) are satisfied.

In order to express an execution in terms of the operational semantics, the
sets trans(p) and trans(q) will have to be collected. Following the inductive
defitinition in Chapter 2 the following sets are obtained:

trans(p) = {〈pa, j < 4, pb〉, 〈pb,>, pc〉, 〈pc,>, pa〉}
trans(q) = {〈qa, i > 1, qb〉, 〈qa,¬(i > 1), qc〉, 〈qb,>, qc〉, 〈qc,>, fq〉}

In this case the program state is a 4-tuple (µ, λp, λq, κ). The following list
gives the complete execution the model describes:

0. (µ0, pa, qa, p), µ0(i) = µ0(j) = 0

1. (µ0, pb, qa, p)

2. (µ2, pc, qa, q), µ2(i) = 1, µ2(j) = 0

3. (µ2, pc, qc, 0)

The initial memory state µ0 assigns the initial values to the program vari-
ables. In this case, µ0(i) = µ0(j) = 0. The elements λp and λq will be
pa and qa, respectively, and since the first statement executed was chosen
from p the scheduling component κ will be p. Since the statement in p is
of the form while, not modifying any variables, the next program state will
be (µ0, pb, qa, p). Remember that the change from pa to pb in λp required
the existence of an element 〈pa, cond, pb〉 ∈ trans(p) such that cond holds.
Indeed, the element 〈pa, j < 4, pb〉 fulfills the requirement.

In the second step, the execution of pb changes the memory state by in-
crementing i. The requirement of an element in trans(p) for the transition
from pb to pc is trivially met by the element 〈pb,>, pc〉 ∈ trans(p).

In the last step, the component q is scheduled and the condition of the
if statement is evaluated. Since µ(i) = 1, the next state is reached by the
transition 〈qa,¬(i > 1), qc〉 ∈ trans(q).
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3.6 SOUNDNESS AND COMPLETENESS

For the encoding of the SPINB programs to fulfill its purpose, on one hand,
the models of the formula should correspond to executions in the operational
semantics and, on the other hand, each execution should have a correspond-
ing model. This section establishes these theorems of soundness and com-
pleteness of the encoding based on an inductive argument.

3.6.1 Soundness

Theorem 1 (Soundness) Let Π be a parallel SPINB program and ϕk be its
boolean encoding with the bound k. Then, if M |= ϕk, M determines an
execution sequence of Π of length k.

Proof: The construction of the execution sequence is provided by a map-
ping g that maps in each state the boolean encoding of the variable values and
queue contents to the memory state µ, takes the labels of the true p predicates
(or the f predicate for a finished component) in each parallel component to
be the control flow positions λi and the component of the true ac predicate
to be the scheduling element κ. For the queues, the value for the last used
queue slot is obtained from the qu predicate.

The proof aims to establish that g is well defined and the set of execu-
tion states obtained forms a valid execution sequence. Firstly, it should be
noted that no unambiguity arises in the mapping of the control flow positions
and the scheduling components. The formula ϕk is a conjunction and for
each state it contains the frame axioms (Formulae 3.4 and 3.17) guarantee-
ing the uniqueness of the control flow positions within each component and
the scheduled component, respectively.

Furthermore, in any model the atomic statements describing the bits of
the variables have to have some truth value. Thus, the mapping g is well
defined in the sense that it is possible fromM to obtain a set of k consecutive
execution states. The proof proceeds by induction on the set of states and
shows that the changes between any consecutive pair of them agree with the
requirements in the operational semantics.

1. Basic Case

The basic case is that the initial state is correctly mapped. The initial-
ization requirements of the boolean encoding demand that the initial
values of the variables appear as conjuncts in ϕk. Thus they have to
be in M and g maps the memory state in the first execution state cor-
rectly. Since ϕk also has the p predicates describing the first statements
in each component as conjuncts they have to be true in M. Thus, as
required by the operational semantics, the control flow elements in the
first execution state are the first statements in each component.

As already stated, the active component in the first state is unique,
and there has to exists one. Furthermore, it may not be a component
starting with a queue receive statement, since the queues are initially
empty. Otherwise, M would not be a model, since Formula (3.13)
would be unsatisfied. Thus, the mapping is well defined and the result
is a possible initial state.
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2. Induction Hypothesis

Assume that the set of execution states form a valid execution sequence
up to the execution state t.

3. Induction Step

By the induction hypothesis the execution state t has a unique active
component (let it be pl) and the corresponding component has an un-
ambiguos control flow position (la) that are obtained from the ac and
p predicates in M. The predicates in the state t imply that certain
atomic statements have to be in M in the state t + 1 for it to be a
model. It is shown that from these demands, the execution state t + 1
given by the mapping g satisfies the conditions of the operational se-
mantics.

Firstly, it can be stated that by induction hypothesis the true p predi-
cates in M in the state t+ 1 in the inactive components have to point
to the same label as in the state t or otherwise, Formula (3.18) would
be violated. In this sense g for the state t+ 1 is correct since this is also
a requirement of the operational semantics.

A second set of requirements depends on the statement type that is
pointed to by the p predicate in the active component. The following
is a case analysis of the possibilities.

(a) Assignment
If the statement to be executed is an assignment of the form
la: x = expr; lb: ..., ϕk will contain Formulae (3.1 and 3.2).
Now the preconditions for both of the implications evaluate to
true in M, so for it to be a model of ϕk, the right sides have to
evaluate to true as well. Thus, the value of the variable x in M
in the state t + 1 has to be the result of enc(xt+1 = expr). As-
suming the enc function to be correct, the mapping of that value
corresponds to a correct modification of the memory state for the
execution state t+ 1.
The second implication mandates p(lb, t + 1) modelling the ad-
vance in the control flow. As stated above, the cardinality con-
straints guarantee it to be unique and thus the control flow ele-
ment for the active component for the execution state t + 1 is
obtained.
For the step between the states t and t + 1 to be correct the set
trans(pl) had to contain a triple consisting of two labels giving
the control flow positions in the states t and t + 1 and a boolean
condition evaluating to true in the state t. For an assignment
like the one above, it contains a triple of the form 〈la,>, lb〉 that
fulfills the requirement.

(b) Conditional Execution
If the statement chosen for the execution is an if ...else com-
pound, Formulae (3.5, 3.6 and 3.7) are in ϕk. The precondition
of the implication (3.5) evaluates to true, requiring the equiva-
lence on the right side to do the same. Assuming the enc function
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to be correct, if c1 is true p(lb, t+ 1) has to be in M, otherwise it
cannot. In the first case, both Formulae (3.6 and 3.7) evaluate to
true and no further requirements on M are posed.
In the second case the precondition for Formula (3.6) is true and
a similar discussion than above applies for the boolean condition
c2. All the conditions in the structure are processed in the same
way and in all cases, M has to contain the p predicate for the first
true condition.
The structure requires the triples 〈la, c1, lb〉, 〈la,¬c1 ∧ c2, lc〉,
. . . , 〈la,¬c1 ∧ ¬c2 ∧ . . . , ln〉 to be in trans(pl). By the induction
hypothesis, the memory state is correctly maintained up to the
tth state. Thus, assuming that the function enc is correct, it will
agree with the structure S and the taken transition will have the
corresponding triple.

(c) Unconditional Jump
If the chosen statement is a goto statement is is encoded using
Formula (3.8). Now, its precondition evaluates to true, so M has
to contain the predicate p(lb, t+ 1). The set trans(pl) contains by
definition the corresponding triple 〈la,>, lb〉.

(d) Queue Send
If the statement is of the form la: q!x; lb: ..., ϕk contains
conjuncts similar to Formulae (3.8, 3.9 and 3.10). They are all
implications, whose left sides evaluate to true. The first formula
mandates that¬qu(q, qc, t) and p(lb, t+1) are both true inM. By
the first, it cannot model a queue send statement to a full queue, a
requirement met by hypothesis, and the second one provides the
means for constructing the control flow element for the active
component in the state t+ 1.
Formula (3.9) implements the message passing and the incre-
menting of the queue usage parameter. The right part of the
implication is a conjunction of implications. By the induction
hypothesis the queue usage is uniquely determined in the state
t and points to the last used queue slot. Thus precisely one of
the latter implications will have its left side true. Thus the right
side of that implication has to evaluate to true in M. Therefore,
it has to contain the queue usage parameter incremented by one
for the state t+ 1 and the first available queue slot has to contain
the value of x. Furthermore, ϕk contains Formula (3.11) for all
queues and all states. Therefore, for M to be a model, all the
other qu predicates in the state t+ 1 have to be false.
Formula (3.10) is again an implication whose left side evaluates
to true in M. Thus the conjunction of implications in its right
side has to do that as well. By the uniqueness of the qu predicate,
in all cases but one, the left sides of the implications evaluate to
true. Thus in all cases but one, the atomic statements encoding
the queue slots have the same values as in the previous step. The
one not having this requirement is the slot set to the value of the
message x by the discussion above.
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By the definition of the set trans(pl), the queue send statement
requires the triple 〈la, ql < qcap, lb〉 to be added. Its condition
will indeed be true, since ql = qcap would imply qu(q, qc, t), not
possible by the discussion above. Furthermore, the queue send
statement is the only way for the value of the parameter ql to in-
crease. Therefore ql > qcap is not possible.

(e) Queue Receive
Assuming a statement of the form la: q?x; lb: ..., the en-
coding ϕk has as conjuncts Formulae (3.13, 3.14, 3.15 and 3.16).
They all are implications whose left sides evaluate to true in M.
The first one, analogously to the queue send statement disallows
models reading from an empty queue. In addition, it requires
p(lb, t + 1) to be true in M. The second one requires that the
binary encoding of x in the state t + 1 will have the value of the
first queue slot in the state t.
The right side of the third one (Formula (3.15)) is again a con-
junction of implications and by the induction hypothesis in ex-
actly one of them the left side is true. Analogously to the queue
send statement, it will require M to contain a queue usage pa-
rameter in the state t+ 1 having a value one less than that in the
state t.
Formula (3.16) requires that in the state t + 1 in M the queue
slots will have the same content as their successors in the queue
in the state t. This models the fact that queue contents have to be
shifted down after reading from it.
For a queue receive statement the triple 〈la, ql > 0, lb〉 had to
be added to the set trans(pl). Its boolean condition is true by a
similar argument than in the case of the queue send statement.

The case analysis above gives certain requirements for M in the state
t+ 1. To show that these do not conflict with the rest of the conjuncts
in ϕk, certain observations can be made. Firstly is the issue of impli-
cations encoding the effects of other possible statements in the state
t. These are satisfied, because their form is an implication and their
left sides evaluate to false in M. Secondly, in all cases precisely one
p predicate was required to be true in M in the state t+ 1. Therefore,
there exists no conflict with Formula (3.4) since it can be satisfied by
setting the rest to false. Finally, by a similar argument, Formula (3.11)
is also satisfied in the state t+ 1.

Thus, the mapping g is well defined for the control flow positions in
the state t + 1. Furthermore, in the transition from the state t to the
state t + 1, the changes in the control flow do not conflict with the
requirements of the operational semantics.

The mapping of the memory state µ was proved correct regarding the
modified variable in assignment statements as well as regarding the
variable pointing the last used queue slot. However, the operational
semantics require all the variables not modified to retain their values.
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It can be seen, that if M |= ϕk , as supposed, this has to apply to it as
well. Otherwise, Formula (3.3) would be violated in the state t+ 1.

The remaining issue is the active component for the execution state
t + 1. It cannot be a finished one, since then Formula (3.20) for the
state t + 1 would be violated. Furthermore, it may not be a queue
send statement to a full queue or a queue receive statement from an
empty queue. Therefore the transition from the state t to t + 1 fully
agrees with the operational semantics and the mapping gives a valid
execution sequence. 2

3.6.2 Completeness

Theorem 2 (Completeness) Let Π be a parallel SPINB program and WΠ its
execution sequence of length k. Furthermore, let ϕk be its boolean encoding
with the bound k. Then, WΠ determines a model M such that M |= ϕk.

Proof: Let h be a mapping from WΠ to a modelM of ϕk. The mapping is
such that for each state it sets the ac predicate corresponding to the schedul-
ing elements κ in the execution states as true and similarly the control flow
positions in each parallel component in each execution state are mapped to
true p predicates. If the component has reached the label denoting termi-
nation, its f predicate is set. The memory state µ in each execution state is
mapped to the binary encoding of the variable values. The proof establishes
that M |= ϕk.

Firstly, it can be easily seen that M satisfies the frame conditions (For-
mula (3.4 and 3.17)) because in all states, precisely one p predicate in each
component and precisely one ac predicate are set to true in each state. Fur-
thermore, Formula (3.18) is also satisfied due the fact that the operational
semantics requires the control flow to remain in the same position in the
inactive components.

Regarding the rest of the conjuncts, an inductive argument is applied.
The induction goes over the execution states of WΠ. It is shown that for any
execution state t, the true elements obtained by the mapping h satisfy the
conjuncts relating to the state t in ϕk.

1. Basic Case

The variables in the memory state µ of the first state in WΠ have their
initial values. The control flow points to the first statements in each
component. When these are mapped, the conjuncts corresponding to
the initialization requirements in ϕk are satisfied.

2. Induction Hypothesis

Assume that the conjuncts having the time argument up to the value t
are satisfied by M.

3. Induction Step

Consider next the conjuncts having the time argument t+1. These can
be divided to the frame conditions, satisfied by the discussion above,
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and the formulae encoding the effects of statements amenable to exe-
cution in the state t.

By the rules of the operational semantics, the transition from the ex-
ecution state t to t + 1 in WΠ corresponds to the execution of the
statement pointed to by the label λ in the active component given by κ
in the execution state t. By the rules of the boolean encoding, ϕk will
contain boolean formulae encoding the effects the execution of that
statement. The following is a case analysis of the different statement
types and in each case it is proven that given the mapping h for the
execution states t and t+ 1, these conjuncts are satisfied.

(a) Assignment
If the statement corresponding to the transition from the execu-
tion state t to t+1 is an assignment like la: x = expr; lb: ...,
h will set p(lb, t+ 1) to true and set the bits of x according to the
value of expr.
The formula ϕk contains the implications given in Formulae (3.1
and 3.2) with their left side evaluating to true in M. For the
implications to be satisfied their right sides have to be evaluated
to true as well. Assuming the correctness of the enc function, the
binary encoding of x in the state t + 1 agrees with that given by
the mapping h and Formula (3.1) is satisfied. Furthermore, h
gave p(lb, t+ 1) and M satisfies Formula (3.2).

(b) Conditional Execution
If the statement corresponding to the transition is an if ...else

structure the label in the execution state t+1 is determined by the
first expression evaluating to true in S. The boolean encoding ϕk
contains the implications given by Formulae (3.5, 3.6 and 3.7).
The left side of Formula (3.5) evaluates to true inM. By the defi-
nition of h and the correctness of the enc function, enc(c1) has a
model if and only if c1 evaluates to true in S. This is precisely the
condition for the control flow to reach lb in the execution state
t+ 1. Thus M satisfies Formula (3.5).
If c1 was indeed true, also Formulae (3.6 and 3.7) are satisfied,
because their left sides evaluate to false. If this is not the case, the
left side of Formula (3.6) evaluates to true and a similar argument
is applied to c2. In this way, the argument can be extended to the
entire structure.

(c) Unconditional Jump
If the transition corresponds to the execution of an unconditional
jump, the encoding contains Formula (3.8) that is satisfied by the
model obtained via the mapping h.

(d) Queue Send
The operational semantics allows a queue send statement of the
form la: q!x; lb: ... to be chosen only if the queue is not
full. The statement causes the control flow to proceed and modi-
fies the memory state by copying the message sent to first available
queue slot and increments the pointer ql giving the last used slot.
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For that statement, ϕk contains Formulae (3.8, 3.9 and 3.10). In
the model giving by the mapping h, the left sides of all of them
evaluate to true. In addition, the mapping h gives ¬qu(q, qc, t) by
rule regarding the queue send statement and p(lb, t + 1) by the
advancement in the control flow. Thus, Formula (3.8) is satisfied.
In the right side of Formula (3.9), all but one implication in their
conjunction are satisfied due to their left side being false. The last
one is satisfied, because the transition in the operational seman-
tics requires the first available queue slot to have the value of x
in the execution state t and h maps this faithfully. Furthermore,
in the execution state t + 1 the queue usage parameter will be
incremented. Thus, assuming i slots were used in the execution
state t, h requires qu(q, i+ 1, t+ 1) to be true in M.
Notice, that h maps all the other queue slots than the one the
message was put, to have the same values in both the states t and
t+1. The one, whose value is changed is precisely the slot pointed
to by the qu predicate in the state t + 1. Thus, Formula (3.10) is
also satisfied.

(e) Queue Receive
If the transition in WΠ is a queue reception statement of the form
la: q?x; lb:, the queue in question has to be non-empty in the
execution state t. Its encoding, ϕk contains the Formulae (3.13 –
3.16), all of whose left sides evaluate to true in M.
As stated above, h maps qu(q, 0, t) to false and since the control
flow advances to the next statement p(lb, t + 1) to true. Hence,
Formula (3.13) is satisfied.
Reading from the queue sets the value of x, the variable to which
the message is read, equal to the first queue slot in the execution
state t + 1. Thus, the model M satisfies the equivalence in the
right side of Formula (3.14) and therefore the entire implication.
Similarly than in the case of a queue send statement, the right
side of Formula (3.15) contains set of implications of which, due
to the uniqueness of the qu parameter, the left side of precisely
one evaluates to true in M. Since in the operational semantics,
the variable pointing to the last used queue slot is decremented,
the qu predicate given by the mapping h causes the right side
of this implication to evaluate to true as well. Thus the entire
implication is satisfied.
In the definition of a queue reception statement, in the state after
its execution the contents of the queue had to be shifted done by
one step. Thus, in M, the right side of Formula (3.16) evaluates
to true and the implication is satisfied.

The analysis above showed that were the active statement of any type,
M satisfies the implications encoding the effects of it. However, ϕk
contains also other implications that correspond to the effects of some
other statement being executed in the state t. These may be active if
some other component was scheduled in the state t or in the case of the
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statement being from the same component, in some other interleaving.
They do not cause conflicts, however, since they are satisfied due to
their left sides evaluating to false in M.

In addition, ϕk contains the frame conditions requiring that the the
values of the variables or the queue parameters retain their values, if
no statement modifying them is executed (Formulae (3.3 and 3.12)).
The model obtained from the mapping h satisfies these as well, since
if a statement does not modify a variable then its value (and its boolean
encoding) is the same in the memory state of the next execution state.
If a modifying statement is executed, then the respective p and ac pred-
icates will be true and the latter part of the disjunction (3.3) satisfied.
Similarly, the operational semantics requires the queue parameters to
be maintained, if no send or receive statement is executed. If such a
statement is executed, the latter disjunct of Formula (3.12) is satisfied
by a similar argument.

The Formulae (3.20) pertaining to the components being finished, re-
main. In the operational semantics, a finished component can never
be scheduled. Thus, the atomic statements ac(pl, t) and f(pl, t) can
never occur in the same state in the model M and the formula is satis-
fied.

In the discussion above, all the conjuncts in ϕk with the time argument
t + 1 were analyzed and found to be satisfied by the model M given
by the mapping h. Therefore, M |= ϕk. 2.
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4 REACHABILITY PROPERTIES

Temporal logic is a formal language that has its roots in the philosophical
studies of the use of natural language. A. N. Prior wanted to investigate an en-
hancement to traditional propositional/predicate logic by allowing sentences
to assume different truth values over time [30]. Already he characterized the
developed system to be applicable in the formalization of the behavior of a
digital computer.

The initial system was based on replacing the modal notion of necessity
(often 2) as “it will always be the case that”, and possibility (3) as “some
time in the future it will be the case that”. These temporal operators have
also been adopted to the systems used in verification (they are typically G,
something holds globally, and F, something holds finally). In addition, the
modern temporal logic systems for computer science may contain the oper-
ator X (something holds in the next state) and the binary operator U (pU q,
p holds until q holds). In general, a temporal logic system does not have to
be restricted to operators only involving the future, but the past can be in-
corporated as well. For instance, G−1 p can be taken to mean that “always
in the past, p holds”. Indeed, even though the most common temporal logic
systems used in verification do not involve past operators, an important class
of properties can be elegantly characterized using them.

To return to the example presented in Chapter 1, the property expressed
in first-order logic can be expressed using the temporal formalism as:

pr1 → Farr1

The reason, why this formalism is well suited for verification is the fact
that the formulae do not involve the explicit notion of time, but still allow
the reasoning of sequences of events. Verification typically abstracts away
details of the artifact being modelled and thus the properties pertaining to
the exact duration of an operation are not very natural. Furthermore, the
analysis typically involves severals iterations with more refined models and
the properties to be verified are supposed to be preserved.

The first actual techniques for using temporal logic in the reasoning about
computer programs were proposed by several researchers, including Burstall [8],
Kröger [21] and Pnueli [29]. Their approaches were based on proving the-
orems that, as stated in Chapter 1, is a process hard to automate and often
difficult to use in practise.

The foundations for model checking were laid, when Clarke and Emer-
son in the USA and Quelle and Sifakis in France discovered independently
that concurrent computer programs could be translated to state – transition
systems so that the infinite paths in the structure corresponded to the con-
current executions of the program. This made it possible to use the model
theoretic approach of modal logic to determine the truth values of the prop-
erties the system should fulfill. Furthermore, the states satifying a temporal
formula could be computed in a time linear in the size of the model and the
length of the formula and the algorithm could be automated.

However, the logical language they used was different from the one in-
formally presented above. In it, the temporal operators G, F, X and U were
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preceded by second-order quantifiers E and A, exists and for all. This tem-
poral logic language is called CTL (Computational Tree Logic), due to the
fact that the executions of the systems are treated as an infinite tree rather
than a set of execution paths. The quantifiers are used to quantify over the
paths starting from inner nodes of the tree. To clarify, one may state, for in-
stance, AXEFp meaning that all the successors of the initial state (AX) are
first states on some path on which in some state p holds (EF p).

The framework not allowing the quantifiers thus reasoning about the events
occurring on a single path is called Linear Temporal Logic (LTL). The mer-
its of the two different viewpoints spawned a discussion that has continued
since the early 1980’s [23, 13, 34]. The following central arguments have
been presented:

• The frameworks are semantically incomparable [23, 24].

• The CTL model checking problem is easier than that for LTL [32].

• Verification engineers find the branching framework unintuitive [31,
34].

The first argument means that there are properties expressible in LTL, but
not in CTL and vice versa. The second one refers to a fact first provided by
Clarke and Sistla [32]. Assuming that the size of the system model is m and
the length of the formula n, CTL model checking can be performed in time
O(mn), whereas for LTL the problem is PSPACE-complete (taking the time
O(m2n) in the worst case). However, it is argued, the temporal properties
are typically not very long, so the theoretical penalty for using LTL does not
occur in real life. In addition, in some real-life verification problems, the
linear framework is actually easier [34].

The third argument is based on industrial feedback of verification using
the two frameworks. For instance, IBM researchers state that “nontrivial
CTL equations are hard to understand and prone to error” [31]. In addition,
Vardi claims that “a perusal of the literature reveals that the vast majority of
the CTL formulas used in formal verification are actually equivalent to LTL
formulas” [34]. Another problem, relating to a core argument for the benefits
of model checking is that the counterexample a model checker generates in
case of property failure, may for some CTL formulae not be linear, but rather
a computational tree.

The properties whose encoding is presented in this report form a subset of
the properties expressible in LTL, adhering to the views that verification en-
gineers tend to think linearly. In addition, in the context of bounded model
checking, the encoding of LTL is polynomial in the size of the formula [3].

4.1 PROPERTY TYPES

Verification using model checking is a task requiring some experience. An
engineer aiming to verify a complex system is bound to reach the limitations
of the available tools and hardware. It is the consensus of the community that
classifying the properties into certain categories provides one way of getting

40 4. REACHABILITY PROPERTIES



the most out of the process. Not only does it help in constructing specifi-
cations with a better structure and fewer involuntary omissions, but it also
helps in recognizing which techniques would be applicable for the particu-
lar problem at hand. Such a classification also provides the justification for
the choice of the subset of LTL formulae whose encoding is presented in this
work.

The verification goals are historically classified into the four following cat-
egories [6]:

• Reachability properties state that some particular state can be reached.

• Safety properties express that, under certain conditions, something
never occurs.

• Liveness properties express that, under certain conditions, something
will ultimately occur.

• Fairness properties express that, under certain conditions, something
will (or will not) occur infinitely often.

From the classes above, the first two are usually the most crucial to system
correctness. For instance, the authors of [6] state that “Such properties there-
fore deserve a more substantial investment in terms of time, priority, rigor,
etc., on the part of the human verifier.”

The present work also concentrates on reachability and safety properties
by giving a boolean encoding for the first category and briefly discussing a
technique that allows safety properties to be reduced to reachability ones.

4.1.1 Temporal Properties and BMC

The discussion above rises the question of how the temporal properties, ana-
lyzed over infinite paths, can be combined with the finite prefixes of execu-
tion sequences obtainable from the boolean translation. Obviously, the last
state of such a prefix seems to have no successor. The gap can be surpassed
by assuming the last state to form a self-loop. Thus, for a property to hold
globally, it suffices that it holds on all states of the prefix.

This kind of analysis provides an approximation of the property. The ap-
proximation improves as the bound (the length of the prefix) in increased.
Due to the LTL model checking problem being PSPACE complete and
BMC being in NP, the existence of a polynomial bound k on the length of
the prefix such that the two problems would be equivalent is unlikely. Some
sufficient bounds with certain restrictions are presented in [3].

4.1.2 Reachability Properties

As stated above, reachability properties express that some particular situation
can be reached, i.e. there exists an execution path on which the situation
occurs. However, the linear time framework used in this report verifies prop-
erties occurring on all paths starting from an initial state (indeed, the LTL
formulae can be conceived of starting with an implicit A quantifier). There-
fore, using this framework, the reachability properties can only be expressed
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in a negative sense, i.e. something is not reachable. Reformulating this in a
language more closely resembling the operators of temporal logic the claim
becomes, on all paths, situation p cannot occur, i.e. its negation must hold
in all states on all paths.

Assuming that the undesired situation is given by the formula p, the LTL
formula naturally is G¬p. Its boolean encoding is then straight forward. As-
sume that the translation is conducted with the bound k and the property p
in the state t is given by p(t), then the formula is:

¬p(0) ∧ · · · ∧ ¬p(k) (4.1)

However, in order to get the counterexample in case of a property vio-
lation, the property has to be negated. The negation of Formula (4.1) is a
simple application of De Morgan’s theorem:

p(0) ∨ · · · ∨ p(k) (4.2)

When Formula (4.2) is combined with the encoding ϕk of the program to
be modelled to a conjunction, the resulting formula has a model if and only
if there exists an execution of the program such that on some state t′, p(t′)
holds, i.e. the undesired state is reached.

The situations given by the formula p may involve statements about the
control flow or variable values. One may state, e.g., that the component pl is
never active with the ac predicate, claim that a certain label is never reached
(the p predicate) or demand that the value of the variable i is never less than
5. Naturally, these can be combined with the connectives of propositional
logic.

4.1.3 Safety Properties

An alert reader may have noticed that the negative reachability properties dis-
cussed above are actually safety properties. However, the informal definition
of a safety property actually included the phrase “under certain conditions”
whereas the properties given above are unconditional. For instance, with
only reachability property one could state a rather strange claim like “the car
never starts” whereas with safety properties one is able to express the more
likely “the car only starts, if the key was inserted in some earlier state”.

The general problem of being able to tell from an arbitrary temporal logic
formula whether or not it is a safety property is a rather tricky one. One
elegant characterization is a syntactic one, safety properties are of the form
Gφ−, where φ− is a past temporal formula (in the loose sense of includ-
ing the present), i.e. only using past temporal operators together with the
boolean connectives [33]. For instance, the safety property given above may
be expressed in the form:

G(starts→ F−1key)

The justification for the type of formulae given above is that when a safety
property is violated, one should be able to instantly notice it. To be able to ar-
gue something in the current state relies only on the accumulated knowledge
of the past events and is independent of the future.
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The discussion above rises the question of how the characterization above
agrees with the fact that the temporal logic systems LTL and CTL do not
contain past operators. Firstly, it should be said that their omission does
not prevent the formalism from expressing the properties, just the elegant
characterization is losed. In addition, in principle it is possible to translate
any formula involving the past to a pure future formula [6]. The translation
is a rather delicate one, though, and if the branching framework is used, the
translation may not be a CTL formula.

In principle, the verification of any property of the type Gφ−1 can be
reduced to handling a reachability property. This is achieved by the intro-
duction of so called history variables to the transitions in the state - transition
graph. These variables are set to true only if the past formula φ−1 holds in a
particular state. For instance, for the formula F−1key above, a history vari-
able h1 could be introduced. It would initially be false, but if a transition
landed on a state on which key would be true, h1 would be set. Other tran-
sitions would leave it unchanged. Using this technique, the property above
translates to the formula G(start → h1) amenable for encoding using For-
mula (4.2). The technique of using history variables can be extended to any
past time formula, by introducing a new variable for any subformula having
a past time temporal operator as its root [6].

4.1.4 Liveness and Fairness Properties

Having thus presented the ideas for encoding the two most crucial prop-
erty types, it should be stated that in principle any LTL formula can be en-
coded [3]. The translation involves the idea of locating when a finite prefix of
an infinite execution in fact forms a loop. However, it introduces a quadratic
number of temporary variables leading to complex formulae. Improvements
on the encoding remain the subject of further work.
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5 ENHANCEMENTS

This chapter presents techniques for enhancing the capacity of the intro-
duced concepts to verification. Firstly, a construct allowing nondetermin-
istic choice is presented. Secondly, semantical models capable of abstracting
away intermediate states not affecting the presence of errors are discussed.

5.1 NONDETERMINISM

The models used in verification are typically abstractions of the artifact being
modelled. They have to contain all the behaviours of the item they model,
but in addition, some executions not possible in reality may be present. It
turns out that abstractions are naturally modelled using a specification lan-
guage having the possibility of nondeterministic choice. In the encoding for
SPINB presented so far, all the elements are completely deterministic. When
a statement is reached, there is only one possibility from where the execution
may continue.

This section presents a structure allowing nondeterministic choice and its
encoding. The syntax is taken from PROMELA. The possible paths to be
taken are guarded by boolean conditions and any path having a true con-
dition may be taken. If all the conditions are false, the entire structure is
skipped.

la:

if

:: (c1) -> lb: ...

:: (c2) -> lc: ...

fi

ld:

Figure 5.1: A simple nondeterministic choice

For simplicity, let the structure have two boolean conditions, c1 and c2 as
given in Figure (5.1), more complex structures following the same scheme.
Nondeterminism can be encoded with the following demands. Firstly, if the
statement is reached, the execution has to continue from one of the labels
lb, lc or ld. This can be formalized with following formula (together with
the cardinality constraint given in Formula (3.4)):

p(la, t) ∧ ac(p, t) → (p(lb, t+ 1) ∨ p(lc, t+ 1) ∨ p(ld, t+ 1)) (5.1)

The nondeterministic choice between the labels following the true condi-
tions can be encoded as follows:

p(la, t) ∧ ac(p, t) → (p(lb, t+ 1) → enc(c1)) (5.2)
p(la, t) ∧ ac(p, t) → (p(lc, t+ 1) → enc(c2)) (5.3)
p(la, t) ∧ ac(p, t) → (p(ld, t+ 1) → ¬enc(c1) ∧ ¬enc(c2)) (5.4)
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Since the statement has been reached, the left sides of all the implications
evaluate to true. Firstly, it should be noted that a path defined by a false
condition (let, e.g. c1 be false) may not be taken, since then enc(c1) would
be false and if p(lb, t+1) would be set, the implication between them would
be false and Formula (5.2) unsatisfied. Consider next the case when both the
conditions would evaluate to true. Then, both the implications p(lb, t+1) →
enc(c1) and p(lc, t + 1) → enc(c2) would be true, independent of their
left sides. However, p(ld, t + 1) cannot be taken. Therefore, together with
the cardinality constraint (Formula (3.4)) guaranteeing the uniqueness of the
control flow, either of the paths can be taken.

5.2 OTHER SEMANTICAL MODELS

Concurrent systems consist of independent components whose actions are
causally and temporally unrelated unless otherwise specified by some means
of synchronization. When the behaviors of such systems are analyzed using
the interleaving model, a single behavior is a totally ordered set of atomic ac-
tions. Concurrently executed actions appear arbitrarily ordered with respect
to each other and the consideration of every such sequence may result in an
extremely large state space [11]. The encoding presented for SPINB adheres
also to the interleaving model.

This section presents two semantical models aiming to reduce the search
space of the SAT solver by abstracting away states, whose evaluation is irrele-
vant with respect to the property being verified. The purpose is to obtain an
encoding that could potentially find property violations that would remain
hidden using the interleaving translation with the same bound. This section
discusses briefly (without formal proofs), how the SPINB encoding could be
modified to accomodate these semantical models. The set of properties is
also restricted to only contain claims pertaining to the memory state.

5.2.1 Independent Actions and Step Semantics

The goal of formal verification is to exhaustively check all the executions of
a concurrent system with respect to a property. An execution consists of an
interleaving of execution steps for the processes [14]. It is often the case that
such a sequence contains consecutive steps that are independent, i.e., their
execution in any order would lead to the same state, and furthermore, the
execution order does not affect the presence or absence of errors. Hence, in
order to reduce the state space, it would suffice to check just one representa-
tive instead of all the orderings as in the interleaving case.

This is the reasoning behind an optimization technique known as model
checking using representatives. Furthermore, the sequence could be short-
ened by abstracting away states within it. This is possible in a semantical
model known as step semantics and it is achieved by allowing any number of
independent actions simultaneously. Since the number could also be one,
step executions contain all the interleavings.

It should be noted that the task of finding out a good independence re-
lation (and thus its complement, the pairs of dependent actions) in a set of
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actions is a non-trivial problem. It is possible to statically infer one from the
program text, but that approach would lead to unnecessary dependencies.
The presentation in this and the following section assumes the relations to
be given and discusses the modifications to the SPINB encoding. In addi-
tion, the adjustments are presented assuming that in any time step, only a
single statement is executed within one component, or using the terminol-
ogy above, all the actions within the same component are dependent.

To modify the encoding to allow several independent statements from dif-
ferent components to be executed in the same step is relatively easy. For-
mula (3.17) has to be modified to allow several components to be active in
the same state: ∧

0≤t≤k

∃p ac(p, t) (5.5)

The existential quantification translates to a disjunction of the ac predi-
cates.

p(la, t) ∧ ac(p, t) ↔ ex(la, t) (5.6)

This definition above is merely a shorthand having the intuitive meaning
that a statement is executed. That happens exactly when the control flow has
reached it and the component it is in is active. The shorthand is used to pre-
vent two dependent actions from occurring in the same time step. This can
naturally be achieved with the following formula (assuming that the state-
ments pointed to by la and lb are dependent):

¬(ex(la, t) ∧ ex(lb, t)) (5.7)

5.2.2 Trace Theory

Allowing any number of independent actions simultaneously, as is the case
in step executions, effectively leads to a situation where several executions
represent the same “concurrent behaviour”. This can introduce search space
adversely effecting the running time of the solver used [15]. This section
sketches, how the SPINB encoding could be modified to produce formulae
that only have satisfying truth assignments corresponding to “truly” different
executions. For that purpose, a brief discussion of the concept of trace theory
is required.

The description of sequential processes is traditionally based on the notion
of a finite automaton, seen as a restricted type of a Turing machine. Their
strength derives from the “simple elegance” of the underlying model. Power-
ful mathematical tools may be used to analyze both the structural properties,
due to the graph-like description, and the behaviors of the system based on
the notion of its language. The language theory has provided a valuable link
to the theory of free monoids [12].

In the description of concurrent processes, the mathematical analysis of
the used formalisms may sometimes be very complicated. In the 1970’s,
Mazurkiewicz formulated a theory that tried to apply the techniques of lan-
guage theory to the analysis of concurrent systems based on the notion of
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concurrency understood in the same way as in the theory of Petri nets. The
abstract description of a concurrent process is called a trace, being defined as
a congruence class of word modulo identities of the form ab = ba for some
pairs of letters [12]. The developed theory handles well some important phe-
nomena of concurrency and it is closely related to the theory of free monoids
describing sequential processes. The next section defines more formally the
concepts of trace theory necessary for the present discussion. The material
has been adopted from [12].

5.2.3 Free Partially Commutative Monoids

If Σ is a finite alphabet, let Σ∗ denote the set of all words over Σ. This set,
together with the concatenation operator forms the free monoid with the set
of generators Σ. The empty word, denoted by 1 acts as the unit element.

Let I ⊆ Σ × Σ be a symmetric and irreflexive relation over the alphabet
Σ. This relation is called the indepence or commutation relation. It de-
notes the pairs of actions, whose mutual execution order does not influence
the reached state. Thus, for the pair (a, b) ∈ I, ab = ba and they may be
performed in any order or even simultaneously.

The relation I induces an equivalence relation ∼I over Σ∗. Two words
are equivalent, denoted for the words x and y as x ∼I y, if there exists a
sequence z1, z2, . . . , zk, such that x = z1, y = zk, and for all i, 1 ≤ i < k
there exist words z′i and z′′i , and letters ai, bi satisfying:

zi = z′iaibiz
′′
i , zi+1 = z′ibiaiz

′′
i , and (ai, bi) ∈ I.

The set of words equivalent to x is denoted [x]I . It can be verified that ∼I

it the least congruence over Σ∗ such that ab ∼I ba for all pairs (a, b) ∈ I . The
free partially commutative monoid is the quotient of Σ∗ by the congruence
∼I , denoted M(Σ, I). In the special cases of I being the empty relation (no
two letters commute) or the full relation (any two letters commute), M(Σ, I)
is the free monoid Σ∗ and the free commutative monoid denoted NΣ, respec-
tively.

Example 3 Let Σ = {a, b, c, d} and I = {(a, b), (b, a), (c, d), (d, c)}. Let
x = abbcbdc. Then

[x]I = {abbcbdc, babcbdc, bbacbdc, abbcbcd, babcbcd, bbacbcd}

5.2.4 Normal Forms

In determining which representative among the set [x]I to choose, the no-
tion of a normal form is central. In this section two normal forms, the lexico-
graphic and the Foata normal form, are presented. The presentation assumes
the alphabet Σ to be totally ordered. Then the set Σ∗ has a corresponding
lexicographic ordering.

If X is a set of words, the unique minimal element of X with respect to
the lexicographic ordering is denoted by Min(X). A word x is said to be in
a lexicographic normal form if it is minimal among the set of words that are
equivalent to x, i.e.

5. ENHANCEMENTS 47



x = Min([x])

The Foata normal form of a trace is defined using the definition above as
follows. A word x of Σ∗ is in the Foata normal form, if it is the empty word
or if there exist an integer n > 0 and non-empty words xi, (1 ≤ i ≤ n) such
that

1. x = x1 · · ·xn

2. for each i, the word xi is a product of pairwise independent letters and
xi is minimal with respect to the lexicographic ordering,

3. for each 1 ≤ i < n and for each letter a of xi+1 there exists a letter b of
xi such that (a, b) 6∈ I .

Each of the xi is called a step. In the following, modifications to the
SPINB encoding that restrict the models of the formula to correspond to
executions in Foata normal form are discussed.

The requirements that were presented in the step semantics, still apply.
Several active components (Formula (5.5)) are allowed, but executing de-
pendent actions in the same step prohibited (Formula (5.7)). To restrict the
models further, an additional formula is needed. It requires that if a statement
is possible and all the statements from the other parallel components that it
depends on are not executed, then it will be executed. This is formalized as
follows:

p(la, t) ∧ ¬ex(lb, t) ∧ . . .¬ex(ln, t) → ac(p, t) (5.8)

In the formula above, the statement under consideration is labelled la
and the dependent statements have the labels from lb to ln. Furthermore, p
is the component the statement is in. Notice that if a statement is completely
independent the formula reduces to p(la, t) → ac(p, t).

For the statements manipulating the queues, the necessary precondition
about the queue status has to be taken into account. For instance, for the
queue send statement, the queue may not be full and the formula becomes:

p(la, t) ∧ ¬qu(q, qc, t) ∧ ¬ex(lb, t) ∧ . . .¬ex(ln, t) → ac(p, t) (5.9)

Lemma 2 (Soundness) Any model of the modified encoding corresponds to
an execution in Foata normal form.

Proof. In order for the execution to be of the required form, the three
criteria presented above have to be considered. Firstly, the division of the se-
quence of actions into steps follows the division into states in the model. The
lexicographic ordering is irrelevant since the atomic actions in the states are
executed simultaneously. Each step is a product of independent letters, since
Formula (3.4) restricts the possible statements from within a component to
one, and Formula (5.7) disallows simultaneous execution of dependent state-
ments.

48 5. ENHANCEMENTS



The third condition is the hardest one. Assume that among the executed
statements in the state n+1 there would exist an atomic action x such that it
would be independent of all the actions occurring at time step n. Firstly, this
would mean that in the state n, no statement would be executed from the
component x is in. This implies that x would have to be possible also in the
state n, since the control flow cannot advance, if no statement is executed.
In addition, no dependent statement from the other components would have
been executed. However, if this was the case, Formula (5.8) would be vio-
lated. Thus, no such x can exist 2.

The proof above establishes certain aspects of the models of the formulae
obtained from the modified encoding. It is not a real proof of soundness
with respect to the operational semantics. However, from a model it is still
possible to construct a unique execution sequence. The process is to linearize
the atomic actions in each step. The bound that would be given to the length
of the counterexamples is now a lower bound for the execution sequence, in
most cases it would be longer.

The proof of completeness would rely on a theorem stating that every trace
has a unique normal form [12]. The interleaving executions would be con-
verted to that form and then the model candidate would be constructed with
the same mapping h used in the proof of completeness of the interleaving
semantics. As stated above, the discussion is based on a given dependence
relation and to statically compute one that is not trivial (the full relation lead-
ing to interleaving model) is a hard task. The analysis of that problem and
possibly a dynamic approach remain subjects for future work.
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6 CONCLUSIONS

The aim of this report is to develop techniques to apply bounded model
checking to the verification of programs written in a small, parallel program-
ming language. The syntax of the language together with its operational
semantics is described. Based on that description, the translation of syntac-
tically valid programs to a boolean formula is devised, further divided to the
analysis of the arithmetical expressions and the statement types. The encod-
ing is proven sound and complete with respect to the operational semantics.

The use of temporal logic in verification is discussed with a justification of
choosing the linear time framework. Different property types are presented
and the encoding one of them, reachability, is given. Efficient translation of
the entire temporal logic LTL is a topic for future work.

The encoding presented corresponds to programs executed according to
the interleaving model. Chapter 5 presents the use of semantical models
that executed several atomic actions simultaneously, however, not losing any
erratical behaviour. The motivation and the modifications to the encoding
to accomodate the semantical models are briefly discussed, a more thorough
analysis being the subject of future work.

An initial implementation of the encoding presented exists. In the future,
the purpose is to see how well existing SAT solvers can handle the boolean
formulae resulting from the encoding when real-life model are used. Dur-
ing the work, it is noticed that the different conjuncts had similar elements.
Therefore, the structure sharing provided by the use of boolean circuits is an
interesting possibility.

Another course of actions is to integrate the BMC method with techniques
capable of reasoning of potentially infinite state spaces. That is, upon notic-
ing that a certain property holds up till a certain bound examine, whether
it were possible to use, e.g., an inductive argument to prove that it holds for
any bound.

A third step would be to see how data abstraction could be used together
with SPINB. It is a technique aiming to reduce the state space traversed by
replacing the entire range of values for a data type with a smaller set of repre-
sentatives. The modification may not, however, effect the detection of error.
With these steps outlined above, the goal is to assess the scalability of the
method and compare is with other verification techniques.
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A SPINB SYNTAX

Table A.1: The syntax of SPINB

program := units;
units := unit | units unit;
unit := g_decl | proc | spec | init | ε;
g_decl := type var_list ’;’ ;
type := ’int’ | ’short’ ;
var_list := svar | var_list ’,’ svar ;
svar := var | var ’=’ expr | var ’=’ ch_init ;
var := name | name ’[’pconst’]’;
name := [a-zA-Z][a-zA-Z0-9]∗ ;
pconst := [1-9][0-9]∗ ;
expr := expr ’+’ expr | expr ’-’ expr | expr ’*’ expr | expr ’/’ expr |

expr ’%’ expr | expr ’�’ expr | expr ’�’ expr |
expr ’>’ expr | expr ’<’ expr | expr ’>=’ expr | expr ’<=’ expr |
expr ’==’ expr | expr ’!=’ expr | ’!’ expr |
’(’ expr ’)’ | ’-’ expr | const | name ;

const := [0-9]∗ ;
ch_init := ’[’ const ’] of {’ typ_list ’}’ ;
typ_list := type | typ_list ’,’ type ;
proc := type name ’(’ a_decl ’)’ body;
a_decl := args | ε ;
args := arg | args ’,’ arg ;
arg := type name ;
body := l_decls stmts ;
l_decls := l_decls l_decl | ε ;
l_decl := g_decl ;
stmts := stmt | stmts stmt ;
stmt := name ’=’ expr ’;’ | name ’?’ margs ’;’ name ’!’ margs ’;’ |

name ’:’ | ’goto’ name ’;’ | ’while (’ expr ’) {’ stmts ’}’
’if (’ expr ’) {’ stmts ’}’ elses ;

margs := expr | margs ’,’ expr ;
elses := ’else if (’ expr ’) {’ stmts ’}’ elses | ’else {’ stmts ’}’ | ε;
spec := ’spec := G’ expr ’;’;
init := ’init {’ run ’}’ ;
run := ’run’ name ’(’ earg ’);’ ;
earg := rarg | ε ;
rarg := expr | rarg ’,’ expr;
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