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ABSTRACT: This report investigates algorithmic isomorph-free exhaustive
generation of balanced incomplete block designs (BIBDs), resolvable bal-
anced incomplete block designs (RBIBDs), and the corresponding resolu-
tions. In particular, three algorithms for isomorph-free exhaustive generation
of (v, k, λ)-BIBDs and resolutions are described and applied to settle exis-
tence and classification problems.

The first algorithm generates BIBDs point by point using an orderly al-
gorithm in combination with a maximum clique algorithm. The second
and third algorithm generate resolutions of BIBDs by utilizing a correspon-
dence between resolutions and certain optimal q-ary error-correcting codes.
The second algorithm generates the corresponding codes codeword by code-
word, and is analogous in structure to the first algorithm. The third algo-
rithm generates codes coordinate by coordinate, and is based on the recent
isomorph-free exhaustive generation framework of Brendan McKay.

The main result of this report is a proof of nonexistence for a (15, 5, 4)
RBIBD by exhaustive computer search. Other new classification results in-
clude the classifications of the (13, 6, 5)- and (14, 7, 6)-BIBDs and the
(16, 4, 2)-, (14, 7, 12)-, and (24, 12, 11)-RBIBDs together with their resolu-
tions, which correspond to classifications of the (10, 16, 8)4, (26, 14, 14)2, and
(23, 24, 12)2 error-correcting (n,M, d)q-codes, respectively. Additionally, a
number of earlier classification results are corroborated.

KEYWORDS: balanced incomplete block design, error-correcting code, ex-
haustive search, group action, isomorph rejection, orderly algorithm, resolu-
tion, resolvable design
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1 INTRODUCTION

Combinatorial design theory is a branch of discrete mathematics which orig-
inated in the design of statistical experiments for agriculture and as the gen-
eralization of various recreational problems. Modern combinatorial design
theory is a field of active research with connections to coding theory [75],
graph theory [16], finite group theory [33], and computer science and cryp-
tography [21, 23] in addition to the traditional applications in statistical ex-
periment design [101, 114].

A combinatorial design can be described as an arrangement of a finite set
of points into a finite collection of blocks so that the arrangement satisfies
some prescribed properties. As an example, consider the following famous
recreational problem posed by Thomas P. Kirkman in the Lady’s and Gen-
tleman’s Diary of 1850.

Fifteen young ladies in a school walk out three abreast for seven
days in succession: it is required to arrange them daily, so that no
two walk twice abreast.

A solution is given below.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

A B C A H I A J K A D E A F G A L M A N O
D J N B E G B M O B L N B H J B I K B D F
E H M C M N C E F C I J C L O C D G C H K
F I O D K O D H L F K M D I M E J O E I L
G K L F J L G I N G H O E K N F H N G J M

(A generalization of this problem to an arbitrary number of girls and days
was unsolved for well over a hundred years until it was finally settled by Ray-
Chaudhuri and Wilson [102] in 1968.)

Kirkman’s problem and its generalizations are examples of an existence
problem in design theory: Given a collection of properties, decide whether
there exists a design realizing these properties. A problem related to the
existence problem is the classification problem, in which one is asked to de-
scribe, up to some criterion of equivalence, all the designs that have the de-
sired properties. An easier version of the classification problem is the count-
ing problem, in which the task is to count, up to equivalence, the number of
distinct designs meeting the properties.

Solving such classification problems is of interest for both practical and
theoretical reasons. A complete catalogue of configurations of a particular
type can be searched for the best configuration meeting some additional re-
quirements, or for counterexamples to a conjecture. Additionally, the study
of a classification often provides new insights in the form of theorems con-
cerning the structure of a larger class of objects.

Algorithmic methods are widely used in design theory for solving exis-
tence and classification problems [42]. The success of algorithmic meth-
ods is based on the fact that the configurations studied are finite and thus
amenable to local and exhaustive search methods (see [69, Ch. 4–5]). Local
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search methods are typically incomplete in the sense that they are not guar-
anteed to find a solution to a problem even if one exists. Thus, local search
methods are primarily applicable to solving existence problems by explicit
construction, where they typically outperform exhaustive methods. Exhaus-
tive search considers all candidate solutions in turn and is guaranteed to find
a solution if one exists. Exhaustive search can thus be applied to generate all
combinatorial structures with particular properties, or to settle the nonexis-
tence of such a structure. Indeed, often an exhaustive computer search has
been the only instrument for demonstrating the nonexistence of a particular
design. The nonexistence of finite projective planes of order 10 is perhaps
the most notable such result to date [71]. Other examples are provided by
[61, 85].

A central issue in the design of practical exhaustive search algorithms for
the generation of combinatorial configurations is the detection and elimina-
tion of equivalent, or isomorphic, copies of configurations from considera-
tion. This is because failure to do so results in redundant work proportional
to the number of such copies—which is typically exponential in the size of
the configuration—making the search very inefficient or altogether infeasi-
ble to conduct with available computational resources. Furthermore, from a
mathematical point of view isomorphic configurations are by definition iden-
tical in the structure of interest, so it is desirable to eliminate all but one of
such generated structures.

In this report we study in a group-theoretic framework the problem of
isomorph-free exhaustive generation of two families of combinatorial designs,
namely (balanced incomplete) block designs and their resolutions.

The organization of the report is as follows. The first two chapters focus
on introducing the terminology and the necessary theoretical background
on block designs and error-correcting codes. Chapter 2 introduces block
designs and their resolutions, and derives representations for isomorphism
equivalence classes of both as orbits of a suitable group action. Chapter 3 in-
troduces the necessary coding-theoretic concepts and develops an alternative
representation for resolutions of block designs as error-correcting codes based
on a bijective correspondence between the two discovered by Semakov and
Zinov’ev [109].

The next two chapters discuss isomorph-free exhaustive generation. Chap-
ter 4 describes generic algorithmic frameworks developed for the problem of
generating a collection of orbit representatives. As a new result we demon-
strate that the McKay framework requires an additional axiom for correct
operation of the associated orbit transversal algorithm. Chapter 5 develops
three isomorph-free exhaustive generation algorithms for block designs and
their resolutions based on the Read–Faradžev and McKay frameworks de-
scribed in Chapter 4. The two Read–Faradžev-type algorithms for genera-
tion of block designs and resolutions apply a combination of clique search
and standard orderly generation with alternating steps of generation and lex-
icographic maximality testing. The McKay-type algorithm generates resolu-
tions of block designs parallel class by parallel class and uses the canonical
labelling package nauty to compute canonical placement.

Chapter 6 describes the new classification results obtained and earlier re-
sults corroborated. The main result of this report is a nonexistence proof for
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a resolvable (15,5,4) balanced incomplete block design by exhaustive search.
The other classification results are conveniently summarized in Tables 6.1
and 6.2 on page 66, so we shall not repeat them here.

Chapter 7 concludes the report by discussing the reliability of the classifi-
cation results and the choices made in algorithm design. Additionally, several
suggestions for future research are given.

The mathematical prerequisites appear in Appendix B. Appendix C dis-
cusses briefly the computational complexity of problems related to classi-
fication of block designs and the efficiency of algorithms that generate all
solutions to a given problem.
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2 COMBINATORIAL DESIGNS

This chapter gives a brief introduction to the theory of combinatorial designs.
In particular, we discuss block designs, their resolvability, resolutions, and
isomorphism of block designs and their resolutions. We assume familiarity
with basic concepts and notation related to sets, finite groups, and group
actions. Appendix B covers the presupposed mathematical definitions and
notation not discussed in the main subject matter.

For an in-depth introduction to design theory the reader is encouraged
to consult the books [4, 54]. A thorough survey of existence and classifica-
tion results for block designs is given in [20, Part I]. A recent comprehensive
treatment of existence theory and constructions for resolvable designs is [37].

2.1 SET SYSTEMS

We shall define block designs as a subfamily of a more generic family of
combinatorial objects, namely set systems. Informally, a set system is simply
a collection of subsets of a given set X , however, a rigorous definition is
somewhat more involved because we want it to be possible for a subset of
X to occur more than once in a set system. For this purpose, we use the
following standard formalism for multisets, that is, sets in which an element
may occur more than once.

Definition 2.1.1 For a nonempty set X , we define a multiset over X to be a
mapping E : X → N, which associates to an element x ∈ X its multiplicity
E(x).

We use the following additional terminology in the context of multisets. A
multiset E overX is finite if E(x) 6= 0 for only finitely many x ∈ X ; otherwise
E is infinite. The cardinality of a finite multiset E over X is defined by
|E| =

∑
x∈X E(x). The empty multiset is the multiset of cardinality zero. We

say that x ∈ X is an element of E if E(x) ≥ 1, and indicate this by writing
x ∈ E . Conversely, if E(x) = 0, then we write x /∈ E .

Definition 2.1.2 We write P[X] for the set of all subsets of X , and M [X]
for the set of all multisets over X . The restriction to subsets (respectively,
multisets) of cardinality b is denoted by Pb[X] (respectively, Mb[X]).

We use the standard brace bracket notation used to describe a set by listing
its elements for multisets as well:

Example 2.1.3 Suppose B is a multiset over {0, 1, 2, 3}. Then we write,
say, B = {0, 0, 1, 2} to indicate that B(0) = 2, B(1) = 1, B(2) = 1, and
B(3) = 0. ♦

To avoid confusion between sets and multisets, we denote multisets always
by uppercase calligraphic letters A,B, C, . . . ,Z and standard sets by upper-
case roman letters A,B,C, . . . , Z. Sometimes it is convenient to implicitly
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identify an E ∈P[X] with the multiset E ∈M [X] satisfying, for all x ∈ X ,

x ∈ E ⇔ E(x) = 1, x /∈ E ⇔ E(x) = 0. (2.1)

(We write “⇔” as a shorthand for “if and only if.”)
Using the multiset formalism, we can now give a precise definition for set

systems.

Definition 2.1.4 A set system B over a nonempty set X is a multiset over the
set of subsets of X , or briefly B ∈M [P[X]].

The following terminology is used in the context of set systems. The elements
of X are called points of the set system, and the elements B ∈ B are called
blocks of the set system. Two distinct points x, y ∈ X are adjacent if there
exists a B ∈ B such that x, y ∈ B. For a point x ∈ X and a block B ∈ B we
say that x is incident to B if x ∈ B.

Informally, two set systems are considered equivalent in structure, or iso-
morphic, if they have an identical structure of point-block incidences irre-
spective of the concrete identities of the points in the blocks. Graphs provide
a convenient illustration of this concept before we give the formal definition.

Definition 2.1.5 If each block in a set system has multiplicity one, then the
set system is simple. A graph is a simple set system in which all blocks have
cardinality two. It is customary to call the blocks of a graph edges and the
points vertices.

Example 2.1.6 Below is a graph with vertex set {0, 1, . . . , 9}.

G = {{0, 1}, {0, 4}, {0, 5}, {1, 2}, {1, 6}, {2, 3}, {2, 7}, {3, 4},
{3, 8}, {4, 9}, {5, 7}, {5, 8}, {6, 8}, {6, 9}, {7, 9}}.

(2.2)

♦

Figure 2.1 shows the graph (2.2) in its labelled and unlabelled form.

1

5

9

2

7

0

4

3

8

6

Figure 2.1: A labelled graph and the corresponding unlabelled graph.

The vertex-labelled graph on the left hand side in Figure 2.1 corresponds
to the graph (2.2), and the unlabelled graph on the right hand side represents
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to the structure of point-block incidences present in the labelled graph. The
vertex labels are clearly necessary to describe this particular structure of point-
block incidences using (2.2), but are otherwise redundant. So, to study the
structure of point-block incidences, we shall regard all labelled versions of
the same unlabelled structure as equivalent.

The formal definition of isomorphism is as follows. We restrict the consid-
eration to set systems over a fixed finite point set Zv = {0, 1, . . . , v− 1}, and
denote by Sv the symmetric group on Zv.

Definition 2.1.7 Two set systems B1,B2 ∈M [P[Zv]] are isomorphic if one
can be transformed into the other by a permutation σ ∈ Sv of the points in
the blocks.

Example 2.1.8 The set systems B1,B2 ∈M [P[Z7]],

B1 = {{0, 1, 2}, {0, 3, 4}, {0, 5, 6}, {1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}},
B2 = {{0, 1, 2}, {0, 3, 5}, {0, 4, 6}, {1, 3, 6}, {1, 4, 5}, {2, 3, 4}, {2, 5, 6}}

are isomorphic because σB1 = B2 for σ = (0 2 1) ∈ S7. (We use the standard
cycle notation for permutations, consult Appendix B.) ♦

The somewhat informal saying “by a permutation of the points in the blocks”
in Definition 2.1.7 can be made more precise in terms of a group action. We
define a group action of Sv on M [P[Zv]] by extending the induced action of
Sv on Zv using the actions given in the following two lemmata. (Our groups
act on the left, cf. Definition B.2.26.)

Lemma 2.1.9 Let G act on X . For all g ∈ G and E ⊆ X , define gE =
{gx : x ∈ E}. Then, the mapping (g, E) 7→ gE is a group action of G on
P[X].

Lemma 2.1.10 Let G act on X . For all g ∈ G and E ∈ M [X], define
gE ∈ M [X] by the rule gE : x 7→ E(g−1x) for all x ∈ X . Then, the
mapping (g, E) 7→ gE is a group action of G on M [X].

Henceforth we will speak simply of the (induced) action of Sv on M [P[Zv]],
although naturally what is meant is the extension of the induced action.

Isomorphism is clearly an equivalence relation on M [P[Zv]]. The iso-
morphism equivalence classes of set systems in M [P[Zv]] have a precise
characterization in the group action framework, where they are the orbits of
the induced action of Sv on M [P[Zv]].

Definition 2.1.11 Two set systems over Zv are isomorphic if they are on
the same orbit of the induced action of Sv on M [P[Zv]]. We write Sv 

M [P[Zv]] for the set of all orbits of Sv on M [P[Zv]].

Example 2.1.12 Figure 2.2 shows all 11 unlabelled graphs on four vertices.
These correspond to the 11 orbits of the induced action of S4 on the set of
graphs over {0, 1, 2, 3}. ♦
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Figure 2.2: The 11 unlabelled graphs on four vertices.

The group action framework gives us another useful concept: the stabilizer
subgroup (cf. Definition B.2.32).

Definition 2.1.13 The stabilizer subgroup of a B ∈ M [P[Zv]] in Sv is in
the context of set systems called the (full) automorphism group of B and
denoted by Aut(B). A permutation σ ∈ Aut(B) is called an automorphism
of B.

Knowledge of a single representative B from an orbit and of the correspond-
ing stabilizer subgroup Aut(B) is sufficient for straightforward construction
of the entire orbit as follows: compute a left transversal of Aut(B) in Sv and
apply the transversal to B to construct the distinct elements in the orbit (cf.
Theorem B.2.33). In particular, the cardinality of the orbit of B can be de-
termined as [Sv : Aut(B)] = |Sv|/|Aut(B)|. For example, |Aut(B1)| = 168
in Example 2.1.8. Consequently, there are 7!/168 = 5040/168 = 30 set sys-
tems in the orbit of B1 in M [P[Zv]]. These set systems can be constructed
by computing a left transversal of

Aut(B1) = 〈(0 4 5 6 1 3 2), (0 5 1 4)(3 6)〉

in S7. (See [58, Sec. 5] for an efficient algorithm for computing transversals
of subgroups in Sv.)

2.2 BLOCK DESIGNS

Definition 2.2.1 A set system B ∈ M [P[Zv]] is called a block design with
parameters v, k, λ ∈ N \ {0} (briefly, a B(v, k, λ) design) if all blocks of B
have cardinality k and each 2-subset of Zv occurs with total multiplicity λ in
the blocks.

Example 2.2.2 The unique B(7, 3, 1) design (up to isomorphism) is known
as the Fano plane:

{{0, 1, 2}, {0, 3, 4}, {0, 5, 6}, {1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}}. (2.3)

A graphic representation of the Fano plane is given in Figure 2.3, from which
it is easy to verify that each 2-subset of {0, 1, 2, 3, 4, 5, 6} occurs with total
multiplicity one in the blocks. ♦
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0 1 2

46
3

5

Figure 2.3: The Fano plane.

We remark that block designs as defined above are also often called balanced
incomplete block designs (briefly BIBDs). Our convention of calling them
simply block designs is from [4].

Definition 2.2.3 We write B(v, k, λ) for the set of all B(v, k, λ) designs in
M [P[Zv]].

The notion of isomorphism for block designs is inherited from set systems.
It is clear that the conditions in Definition 2.2.1 that characterize a block
design do not depend on the identities of the points in the blocks, that is, if
we permute the points in the blocks of a block design, the resulting set system
is still a block design. Consequently, the set B(v, k, λ) is a union of orbits of
Sv on M [P[Zv]], and we may restrict the induced action of Sv to B(v, k, λ)
when necessary.

We derive next some well-known necessary existence conditions for
B(v, k, λ) designs.

Theorem 2.2.4 In any B(v, k, λ) design each point occurs in λ(v− 1)/(k−
1) blocks, and the total number of blocks is λv(v − 1)/(k(k − 1)).

Proof. Consider an arbitrary B(v, k, λ) design, and fix any x ∈ Zv. Clearly,
x is an element in exactly v−1 2-subsets of Zv. Because any such pair occurs
with multiplicity λ in the blocks, the total number of such containments of
pairs in blocks is λ(v − 1). But any block that contains x must contain k− 1
other elements as well, and hence exactly k − 1 pair-block containments
occur per block. Thus, the number of blocks that contain x is λ(v− 1)/(k−
1). Denote by b the total number of blocks, and count the total number
of occurences of points in blocks in two ways. A block-by-block count gives
bk, and a point-by-point count gives λv(v − 1)/(k − 1). Consequently, b =
λv(v − 1)/(k(k − 1)). �

If we denote by b the total number of blocks of a B(v, k, λ) design and by
r the number of blocks in which a point occurs, we obtain as a corollary:

vr = bk, λ(v − 1) = r(k − 1). (2.4)

Additionally, since r and b must both be integers, we obtain a necessary exis-
tence condition:
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Corollary 2.2.5 There exists aB(v, k, λ) design only if λ(v−1) ≡ 0 (mod k−
1) and λv(v − 1) ≡ 0 (mod k(k − 1)).

Fisher’s inequality is a well-known necessary existence condition for block
designs when v is small in relation to k, λ:

Theorem 2.4.11 A B(v, k, λ) design with k < v exists only if b ≥ v.
(A proof can be found in Section 2.4.)
Fisher’s inequality can be strengthened if we assume that the design con-

tains two disjoint blocks. (The inequality (2.5) is known as Bose’s condition.)

Theorem 2.2.6 A B(v, k, λ) design with two disjoint blocks exists only if

b ≥ v + r − 1. (2.5)

Proof. See [4, Corollary 8.6]. �
A fundamental problem in design theory is to determine sufficient exis-

tence conditions for block designs. This typically involves giving an explicit
construction for the designs, although asymptotic existence results do exist
(see for example [4, Ch. XI]). As an example of an infinite family of block
designs, we consider the family of Steiner triple systems.

Definition 2.2.7 A B(v, 3, 1) design is called a Steiner triple system of order
v, or briefly an STS(v).

The constructions for STS(6j + 3) and STS(6j + 1) given below show that
the necessary existence condition v ≡ 1, 3 (mod 6) from Corollary 2.2.5 is
sufficient for Steiner triple systems. (The constructions are from [117, Ch.
19].)

Example 2.2.8 Construction for an STS(6j + 3). Let n = 2j + 1. For con-
venience we use Zn × Z3 as the point set. The blocks consist of all triples of
the form {(x, 0), (x, 1), (x, 2)} with x ∈ Zn and all triples {(x, i), (y, i), ((x+
y)(j + 1), i+ 1)} with x, y ∈ Zn, x 6= y, and i ∈ Z3. (Addition and multipli-
cation is coordinatewise modulo n and 3.) ♦

Example 2.2.9 Construction for an STS(6j+1). We take as point set Z2j×
Z3 ∪ {∞}. The 6j + 1 base blocks are:

{(0, 0), (0, 1), (0, 2)}; (2.6)
{∞, (0, 0), (j, 1)}, {∞, (0, 1), (j, 2)}, {∞, (0, 2), (j, 0)}; (2.7)
{(0, 0), (i, 1), (−i, 1)}, {(0, 1), (i, 2), (−i, 2)}, {(0, 2), (i, 0), (−i, 0)};

(2.8)

{(j, 0), (i, 1), (1− i, 1)}, {(j, 1), (i, 2), (1− i, 2)}, {(j, 2), (i, 0), (1− i, 0)},
(2.9)

where the blocks (2.8) are included once for every i = 1, . . . , j − 1 and
(2.9) for every i = 1, . . . , j. The block set is now constructed by adding the
element (l, 0) to each of the 6j + 1 base blocks for all l = 0, . . . , j − 1.
(Addition of elements is coordinatewise modulo 2j and 3 with∞ + (x, i) =
(x, i) +∞ =∞ for all (x, i) ∈ Z2j × Z3.) ♦
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These two constructions solve the Steiner triple system existence problem.
The next step is of course to classify all the nonisomorphic STS(v). This,
however, is not an easy problem because the number of nonisomorphic de-
signs increases very rapidly with increasing v by a result of Wilson [119]:

Theorem 2.2.10 The number of nonisomorphic STS(v) is at least (e−5v)v
2/6

for all v ≡ 1, 3 (mod 6).

It is known that there are 2 nonisomorphic STS(13) and 80 nonisomorphic
STS(15) [78, 79], however, already the number of nonisomorphic STS(19)
is unknown, but estimated to be between 1.1×1010 and 1.2×1010 [84]. (See
[22] for further reference on triple systems.)

To illustrate nonisomorphic designs, we give a complete classification of
the nonisomorphic B(8, 4, 3) designs, that is, a transversal of orbits S8 

B(8, 4, 3). Altogether there are four orbits of S8 on B(8, 4, 3). Example
2.2.11 lists a collection of representatives for the four orbits and gives gener-
ators for their full automorphism groups.

Example 2.2.11 The lexicographic minimum representatives of the orbits of
S8 on B(8, 4, 3) are:

B1 = {{0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 5, 6}, {0, 2, 5, 7}, {0, 3, 4, 5},
{0, 3, 6, 7}, {0, 4, 6, 7}, {1, 2, 6, 7}, {1, 3, 4, 6}, {1, 3, 5, 7},
{1, 4, 5, 7}, {2, 3, 4, 7}, {2, 3, 5, 6}, {2, 4, 5, 6}},

B2 = {{0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 5, 6}, {0, 2, 5, 7}, {0, 3, 4, 5},
{0, 3, 6, 7}, {0, 4, 6, 7}, {1, 2, 6, 7}, {1, 3, 4, 7}, {1, 3, 5, 6},
{1, 4, 5, 7}, {2, 3, 4, 6}, {2, 3, 5, 7}, {2, 4, 5, 6}}

B3 = {{0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 5, 6}, {0, 2, 5, 7}, {0, 3, 4, 7},
{0, 3, 5, 6}, {0, 4, 6, 7}, {1, 2, 6, 7}, {1, 3, 4, 5}, {1, 3, 6, 7},
{1, 4, 5, 7}, {2, 3, 4, 6}, {2, 3, 5, 7}, {2, 4, 5, 6}}

B4 = {{0, 1, 2, 3}, {0, 1, 4, 5}, {0, 1, 6, 7}, {0, 2, 4, 6}, {0, 2, 5, 7},
{0, 3, 4, 7}, {0, 3, 5, 6}, {1, 2, 4, 7}, {1, 2, 5, 6}, {1, 3, 4, 6},
{1, 3, 5, 7}, {2, 3, 4, 5}, {2, 3, 6, 7}, {4, 5, 6, 7}}.

The corresponding full automorphism groups and their orders are:

Aut(B1) = 〈(1 7)(2 6), (0 2 1)(3 4)(5 7 6)〉, |Aut(B1)| = 48,

Aut(B2) = 〈(0 4 5)(2 7 6), (1 7)(2 6)〉, |Aut(B2)| = 12,

Aut(B3) = 〈(1 4 6)(2 7 5), (0 5 2 6 7 4 1)〉, |Aut(B3)| = 21,

Aut(B4) = 〈(0 2 3 7 4 1 6), (0 3 2 6 1 7 5)〉, |Aut(B4)| = 1344.

♦

Given this information, we can calculate the total number of B(8, 4, 3) de-
signs in B(8, 4, 3) using Corollary B.2.34:

|B(8, 4, 3)| =
4∑
i=1

|S8|/|Aut(Bi)| =

= 8! · (1/48 + 1/12 + 1/21 + 1/1344) = 6150.
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Thus, most of the B(8, 4, 3) are isomorphic copies of each other, and only
four of the B(8, 4, 3) suffice to characterize them all.

2.3 RESOLVABILITY AND RESOLUTIONS OF BLOCK DESIGNS

Resolvability is a property of a block design which simplifies the data analy-
sis of a statistical experiment conducted according to the block design (see
[114]).

Definition 2.3.1 A B(v, k, λ) design B is said to be resolvable (briefly, an
RB(v, k, λ) design) if the blocks in B can be partitioned into parallel classes,
each of which partitions the point set Zv. Such a partition into parallel classes
is called a resolution.

Example 2.3.2 The STS(9) below is resolvable.

B = { {0, 1, 2}, {0, 3, 6}, {0, 4, 8}, {0, 5, 7}
{1, 4, 7}, {1, 3, 8}, {1, 5, 6}, {2, 3, 7}
{2, 4, 6}, {2, 5, 8}, {3, 4, 5}, {6, 7, 8} }.

The parallel classes of the unique resolutionR = {P1, P2, P3, P4} of B are:

P1 = {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}}, P2 = {{0, 3, 6}, {1, 4, 7}, {2, 5, 8}},
P3 = {{0, 4, 8}, {1, 5, 6}, {2, 3, 7}}, P4 = {{0, 5, 7}, {1, 3, 8}, {2, 4, 6}}.

♦

Example 2.3.3 Recalling the introduction, a solution to Kirkman’s problem
is a resolution of a resolvable STS(15). In general, a resolvable STS(v) is
called a Kirkman triple system of order v, or briefly a KTS(v). ♦

Note that we have not yet defined precisely what constitutes a partition of a
multi-set, and this is clearly required so that Definition 2.3.1 is unambiguous
for block designs that contain a block whose multiplicity exceeds one. For
this purpose some additional terminology is required. The sum E1 + E2 of
multisets E1, E2 ∈ M [X] is the multiset over X defined by the rule x 7→
E1(x) +E2(x) for all x ∈ X . For an integer k ∈ N and a multiset E ∈M [X],
the product k ·E is the multiset overX defined by x 7→ k ·E(x) for all x ∈ X .

Definition 2.3.4 Let E ∈ M [X] be a multiset. A multiset P ∈ M [M [X]]
is a partition of E if

∑
C∈M [X]P(C) · C = E and P(∅) = 0.

So, a B ∈ B(v, k, λ) is resolvable if and only if there exists a
R ∈ M [M [P[Zv]]] that partitions B so that each element of R partitions
Zv.

Definition 2.3.5 We write RB(v, k, λ) for the set of all RB(v, k, λ) designs
in B(v, k, λ). The set of all resolutions of RB(v, k, λ) designs in
M [M [P[Zv]]] is denoted by R(v, k, λ).
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Not all B(v, k, λ) designs admit a resolution. For example, if a v-set is to
be partitioned so that each cell of the partition is a k-set, then it is clear that
k must divide v for this to be possible. This observation together with (2.4)
leads to the following necessary condition for resolvability.

Theorem 2.3.6 If aB(v, k, λ) design is resolvable, then k divides v. Further-
more, every resolution of an RB(v, k, λ) design has exactly r parallel classes,
and each parallel class consists of v/k blocks.

Together with Corollary 2.2.5 this gives:

Corollary 2.3.7 An RB(v, k, λ) design exists only if λ(v−1) ≡ 0 (mod k−
1) and v ≡ 0 (mod k).

Example 2.3.8 The previous corollary gives v ≡ 3 (mod 6) as a necessary
existence condition for a KTS(v). This condition is also sufficient (see [4,
Ch. IX] or [102]). ♦

Example 2.3.9 The necessary existence conditions of Corollary 2.3.7 are not
always sufficient (although in an asymptotic sense they are, see [4, Ch. XI]).
For example, an RB(15, 5, 4) design does not exist, as we shall show later. ♦

Example 2.3.10 Even if an RB(v, k, λ) design exists, not all B(v, k, λ) de-
signs need to be resolvable. As an example, recall the classification of
B(8, 4, 3) designs given in Example 2.2.11. In the example, design B4 is
resolvable and its unique resolution is

R = {{{0, 1, 2, 3}, {4, 5, 6, 7}}, {{0, 1, 4, 5}, {2, 3, 6, 7}},
{{0, 1, 6, 7}, {2, 3, 4, 5}}, {{0, 2, 4, 6}, {1, 3, 5, 7}},
{{0, 2, 5, 7}, {1, 3, 4, 6}}, {{0, 3, 4, 7}, {1, 2, 5, 6}},
{{0, 3, 5, 6}, {1, 2, 4, 7}}}.

However, designs B1,B2 and B3 are not resolvable. (To see this, note that
block {0, 1, 2, 3} cannot form a parallel class since the aforementioned de-
signs do not contain block {4, 5, 6, 7}.) ♦

Bose’s condition (2.5) gives us an additional necessary existence condition for
a resolvable block design.

Theorem 2.3.11 An RB(v, k, λ) design with k < v exists only if b ≥ v+r−
1.

Proof. Clearly, if k < v, then a parallel class of a resolution must contain at
least two disjoint blocks. Thus, Bose’s condition applies. �

A resolution is clearly a labelled structure related to the underlying la-
belled block design. The following definitions enable the study of the labelling-
independent structure present in a resolution. We extend the induced action
of Sv on Zv using Lemmata 2.1.9 and 2.1.10 to M [M [P[Zv]]], and define:

Definition 2.3.12 Two resolutions of RB(v, k, λ) designs are isomorphic if
they are on the same orbit of the induced action of Sv on R(v, k, λ).
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Definition 2.3.13 Let R ∈ R(v, k, λ). The stabilizer of R in Sv is called
the (full) automorphism group ofR and denoted by Aut(R). A permutation
σ ∈ Aut(R) is called an automorphism ofR.

We observe that resolvability is an orbit-invariant property on B(v, k, λ):

Lemma 2.3.14 Let B ∈ RB(v, k, λ). Then σB ∈ RB(v, k, λ) for all σ ∈
Sv.

Proof. IfR is a resolution of B, then σR is a resolution of σB. �
It is not hard to see that isomorphism of resolutions is a stronger condition

than isomorphism of block designs in the sense that if two resolutions are
isomorphic, then the underlying designs are isomorphic. The converse is not
true; a resolvable design may have nonisomorphic resolutions (see Example
2.3.22 below).

However, there are two special cases in which a resolvable block design
always has a unique resolution.

Theorem 2.3.15 An RB(2k, k, λ) design has a unique resolution. Further-
more, the automorphism groups of the resolution and the underlying block
design agree.

Proof. Every parallel class of a resolution of an RB(2k, k, λ) design consists
of a block and its complement (cf. Example 2.3.10). Consequently, the
resolution is unique, and every automorphism of the design maps parallel
classes to parallel classes. �

Definition 2.3.16 AnRB(v, k, λ) design is affine if the design admits a reso-
lution in which any two blocks belonging to different parallel classes intersect
in a constant µ > 0 number of points. The constant µ is called the intersec-
tion parameter of the design.

Example 2.3.17 The KTS(9) in Example 2.3.2 is affine with µ = 1. ♦

Theorem 2.3.18 The resolution of an affine B(v, k, λ) design is unique.
Furthermore, the automorphism groups of the resolution and the underly-
ing block design agree.

Proof. Consider an arbitrary resolution of an affine design, and select a paral-
lel class of the resolution. Clearly, the blocks in the parallel class are pairwise
disjoint. Now consider a resolution that makes the design affine. By defini-
tion any two blocks belonging to different parallel classes of the affine res-
olution have nonempty intersection. Since the arbitrary resolution and the
affine resolution consist of the same blocks, it must be that the selected arbi-
trary parallel class is a parallel class of the affine resolution. Consequently,
the resolution that makes the design affine is unique. Furthermore, since
any automorphism of the design must map disjoint blocks to disjoint blocks,
every automorphism of the design is also an automorphism of the resolution.
�

The following theorem characterizing affine designs is due to Bose [8].
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Theorem 2.3.19 An RB(v, k, λ) design with k < v is affine if and only
if b = v + r − 1. Furthermore, the parameters of an affine design with
intersection parameter µ can always be written in the form

v = q2µ, k = qµ, λ =
qµ− 1

q − 1
, r =

q2µ− 1

q − 1
, b = qr,

where q is a positive integer.

Proof. See [4, Theorem 8.7]. �
A resolvable design may also have distinct isomorphic resolutions. The

following theorem gives a necessary and sufficient condition as to when this
is the case.

Theorem 2.3.20 Let B ∈ RB(v, k, λ) and suppose R ∈ R(v, k, λ) is a
resolution of B. Then, Aut(R) ≤ Aut(B), and the number of resolutions of
B isomorphic toR is [Aut(B) : Aut(R)].

Proof. Clearly, if σ ∈ Aut(R), then σ ∈ Aut(B). Denote by R(B) the set
of all resolutions of B. We note that Aut(B) acts on R(B); the orbit ofR on
R(B) under Aut(B) is precisely the set of resolutions in R(B) isomorphic to
R. Additionally, we note that Aut(R) is the stabilizer ofR in Aut(B). Thus,
Corollary B.2.34 applies and the orbit of R under Aut(B) has cardinality
[Aut(B) : Aut(R)]. �

Corollary 2.3.21 Let B ∈ RB(v, k, λ). Then, the number of nonisomor-
phic resolutions of B is |Aut(B) 
 R(B)|. In particular, if |Aut(B)| = 1,
then distinct resolutions of B are nonisomorphic.

As an example of a design with multiple isomorphic and nonisomorphic res-
olutions we consider the KTS(15)

B = {{0, 1, 2}, {3, 7, 11}, {4, 10, 12}, {5, 8, 13}, {6, 9, 14},
{0, 3, 4}, {1, 7, 9}, {2, 11, 13}, {5, 10, 14}, {6, 8, 12},
{0, 5, 6}, {1, 13, 14}, {2, 7, 10}, {3, 9, 12}, {4, 8, 11},
{0, 7, 8}, {1, 3, 5}, {2, 12, 14}, {4, 9, 13}, {6, 10, 11},
{0, 9, 10}, {1, 11, 12}, {2, 4, 5}, {3, 8, 14}, {6, 7, 13},
{0, 11, 14}, {1, 4, 6}, {2, 8, 9}, {3, 10, 13}, {5, 7, 12},
{0, 12, 13}, {1, 8, 10}, {2, 3, 6}, {4, 7, 14}, {5, 9, 11}},

which has two nonisomorphic resolutions. (There are 80 nonisomorphic
STS(15), only four of these are resolvable. Three of the four have two non-
isomorphic resolutions each, and one has a unique resolution up to isomor-
phism [79].) The full automorphism group of B has order 20160 and

Aut(B) = 〈(0 3 11 9 6 8 1)(2 4 7 5 14 12 10),
(0 9 12 2 7 11)(3 14 10)(4 6)(5 13 8)〉.
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Example 2.3.22 Representatives for the two orbits of Aut(B) on R(B) are

R1 = {{{0, 1, 2}, {3, 7, 11}, {4, 10, 12}, {5, 8, 13}, {6, 9, 14}},
{{0, 3, 4}, {1, 7, 9}, {2, 11, 13}, {5, 10, 14}, {6, 8, 12}},
{{0, 5, 6}, {1, 13, 14}, {2, 7, 10}, {3, 9, 12}, {4, 8, 11}},
{{0, 7, 8}, {1, 3, 5}, {2, 12, 14}, {4, 9, 13}, {6, 10, 11}},
{{0, 9, 10}, {1, 11, 12}, {2, 4, 5}, {3, 8, 14}, {6, 7, 13}},
{{0, 11, 14}, {1, 4, 6}, {2, 8, 9}, {3, 10, 13}, {5, 7, 12}},
{{0, 12, 13}, {1, 8, 10}, {2, 3, 6}, {4, 7, 14}, {5, 9, 11}}},

R2 = {{{0, 1, 2}, {3, 7, 11}, {4, 10, 12}, {5, 8, 13}, {6, 9, 14}},
{{0, 3, 4}, {1, 7, 9}, {2, 11, 13}, {5, 10, 14}, {6, 8, 12}},
{{0, 5, 6}, {1, 11, 12}, {2, 8, 9}, {3, 10, 13}, {4, 7, 14}},
{{0, 7, 8}, {1, 3, 5}, {2, 12, 14}, {4, 9, 13}, {6, 10, 11}},
{{0, 9, 10}, {1, 13, 14}, {2, 3, 6}, {4, 8, 11}, {5, 7, 12}},
{{0, 11, 14}, {1, 8, 10}, {2, 4, 5}, {3, 9, 12}, {6, 7, 13}},
{{0, 12, 13}, {1, 4, 6}, {2, 7, 10}, {3, 8, 14}, {5, 9, 11}}}.

The corresponding full automorphism groups are (both groups have order
168):

Aut(R1) = 〈(0 6 12)(1 14 10)(2 9 4)(5 8 13),

(0 7)(1 10)(3 6)(4 13)(5 11)(12 14)〉,
Aut(R2) = 〈(0 7 12 6)(1 11 10 9)(2 3 4 14)(5 8),

(0 10 4)(1 5 11)(2 14 8)(3 9 12)〉.

♦

From this information we can calculate that there are [S15 : Aut(B)] =
64864800 KTS(15) in B(15, 3, 1) isomorphic to B. Each of these has
[Aut(B) : Aut(R1)] = 120 resolutions isomorphic to R1. Thus, the total
number of resolutions isomorphic to R1 in R(15, 3, 1) is 64864800 · 120 =
7783776000.

2.4 INCIDENCE SYSTEMS

It is sometimes more convenient to further explicate the point-block inci-
dence structure of a set system by labelling the blocks. The resulting inci-
dence systems are more suitable for algorithmic construction and they allow
the use of tools from linear algebra to study block designs via the associated
incidence matrix representation.

The definition for an incidence system presented below is motivated by
the following idea. Suppose we label the blocks of a set system
B ∈ Mb[P[Zv]] of cardinality b as B = {B0, B1, . . . , Bb−1}. Then, the
point-block incidences of B subject to this labelling are completely described
by the mapping A : Zv × Zb → Z2 defined by

A(i, j) =

{
1 if i ∈ Bj ; and
0 otherwise, (2.10)
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for all (i, j) ∈ Zv × Zb.

Definition 2.4.1 A v × b incidence system is a mapping A ∈ ZZv×Zb2 .

In the situation above, we say that the incidence system A corresponds to the
set system B.

(We warn the reader that our definition for an incidence system is some-
what nonstandard in the sense that typically an incidence system is defined
as the relation R = {(i, j) ∈ P ×B : i is incident to j}, where P and B
label the points and blocks, respectively.)

It is clear that any set system in Mb[P[Zv]] admits description as a v × b
incidence system and vice versa, however, the correspondence is not bijec-
tive. (A set system with at least two distinct blocks has multiple corresponding
incidence systems.)

We identify v × b incidence systems with v × b matrices over Z2. The
following conventions are used with matrices.

Definition 2.4.2 For positive integers v, b and a nonempty set X , a v × b
matrix A overX is an array with v rows and b columns consisting of elements
of X . The rows are numbered 0, . . . , v− 1 from top to bottom, the columns
0, . . . , b − 1 from left to right. The entry at row i, column j is denoted by
A(i, j).

Example 2.4.3 Suppose we label the edges of the graph (2.2) in the order
they are listed. The incidence system subject to this labelling of the edges is

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 1


. (2.11)

♦

Example 2.4.4 If we label the blocks of the Fano plane in Example 2.2.2 in
the order they are listed, we obtain the incidence system

1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 0 1
0 1 0 0 1 1 0
0 0 1 1 0 1 0
0 0 1 0 1 0 1


. (2.12)

♦
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The isomorphism equivalence classes of set systems in Mb[P[Zv]] can be
described as orbits of the direct product group Sv × Sb on ZZv×Zb2 . First, we
observe that permuting the rows of an A ∈ ZZv×Zb2 is equivalent to permuting
the points in the blocks of the corresponding set system B. Second, permut-
ing the columns of A corresponds to relabelling the blocks. Consequently,
two set systems B1,B2 ∈ Mb[P[Zv]] are isomorphic if and only if any two
incidence systemsA1, A2 ∈ ZZv×Zb2 corresponding to B1 and B2, respectively,
are related by a permutation of the rows and columns.

Permuting the rows and columns of an incidence system can be formu-
lated as a group action. We let the direct product group Sv × Sb act on
Z
Zv×Zb
2 by ((σ, τ), A) 7→ (σ, τ)A, where (σ, τ) ∈ Sv × Sb, and

(σ, τ)A : (i, j) 7→ A(σ−1(i), τ−1(j)) (2.13)

for all (i, j) ∈ Zv × Zb.

Definition 2.4.5 Two v × b incidence systems are isomorphic if they are on
the same orbit of Sv × Sb on ZZv×Zb2 under the row and column permuting
action (2.13).

Example 2.4.6 Suppose σ = (0 1 2 3) ∈ S7 and τ = (0 1) ∈ S7. Then,

(σ, τ)



1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 0 1 0 1 1 0
0 1 0 0 1 0 1
0 0 1 1 0 0 1


=



1 0 0 1 0 1 0
1 1 1 0 0 0 0
0 1 0 1 1 0 0
0 1 0 0 0 1 1
0 0 1 0 1 1 0
1 0 0 0 1 0 1
0 0 1 1 0 0 1


.

This corresponds to

σ{{0, 1, 2}, {0, 3, 5}, {0, 4, 6}, {1, 3, 6}, {1, 4, 5}, {2, 3, 4}, {2, 5, 6}} =
={{0, 1, 5}, {1, 2, 3}, {1, 4, 6}, {0, 2, 6}, {2, 4, 5}, {0, 3, 4}, {3, 5, 6}}.

♦

We now turn our attention to block designs and their representation as
incidence systems. The following lemma characterizes the incidence systems
that correspond to B(v, k, λ) designs in Mb[P[Zv]].

Lemma 2.4.7 Let v, b, r, k, λ be positive integers that satisfy (2.4) and sup-
pose A ∈ ZZv×Zb2 . Then, A corresponds to a B(v, k, λ) design if and only
if

(i)
∑v−1

i=0 A(i, j) = k for all j ∈ Zb; and

(ii)
∑b−1

j=0 A(i, j) = r for all i ∈ Zv; and

(iii)
∑b−1

j=0 A(i1, j)A(i2, j) = λ for all i1, i2 ∈ Zv, i1 6= i2.
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Proof. Condition (i) states that each block of the set system which corre-
sponds to A has cardinality k. Condition (ii) says that each point occurs
exactly r times in the blocks of the corresponding set system. Condition (iii)
is equivalent to the last condition of Definition 2.2.1. To see this, note that
A(i1, j)A(i2, j) = 1 if and only if block labelled j contains the 2-subset
{i1, i2}. �

Definition 2.4.8 We write I B(v, k, λ) for the set of all incidence systems
in ZZv×Zb2 that correspond to B(v, k, λ) designs.

We observe that conditions (i) and (iii) of Lemma 2.4.7 imply (ii) by The-
orem 2.2.4. It is also the case that conditions (ii) and (iii) imply (i):

Corollary 2.4.9 In Lemma 2.4.7 conditions (ii) and (iii) imply (i).

Proof. Put kj =
∑v−1

i=0 A(i, j) for all j ∈ Zb. We will show that kj = vr/b for
all j ∈ Zb. From (ii), we obtain

b−1∑
j=0

kj = vr (2.14)

by counting the points in the blocks in two different ways. Furthermore,
condition (iii) gives

∑b−1
j=0

(
kj
2

)
= λ

(
v
2

)
by counting the pairs in the blocks in

two different ways. Expanding and substituting first (2.14) and then λ(v −
1) = r(vr/b− 1), we obtain

∑b−1
j=0 k

2
j = v2r2

b
. Now,

b−1∑
j=0

(
kj −

vr

b

)2
=
v2r2

b
− 2

vr

b

b−1∑
j=0

kj +
b−1∑
j=0

k2
j = −v

2r2

b
+

b−1∑
j=0

k2
j = 0.

Thus, kj = vr/b for all j ∈ Zb. �
Incidence systems that correspond to block designs can now be character-

ized by a real-coefficient matrix equation that combines (ii) and (iii):

Corollary 2.4.10 Let v, b, r, k, λ be positive integers which satisfy (2.4) and
suppose A ∈ ZZv×Zb2 . Then A corresponds to a B(v, k, λ) design if and only
if

AAT = (r − λ)I + λJ. (2.15)

(AT denotes the transpose of A, I is the v × v identity matrix, and J denotes
the v × v matrix with all entries equal to 1. For terminology and reference
on linear algebra, we refer the reader to [49].)

Equation (2.15) transforms the block design existence problem into a
problem in linear algebra. A simple proof of Fisher’s inequality can be given
in this setting:

Theorem 2.4.11 A B(v, k, λ) design with k < v exists only if b ≥ v.

Proof. It suffices to show that the v rows of an A ∈ I B(v, k, λ) are linearly
independent when considered as vectors of a b-dimensional real vector space
because then b ≥ v. Observe that the entries of AAT are the pairwise inner
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products of the row vectors in A. The row vectors of A are then linearly
independent if and only if det(AAT ) 6= 0 [49, p. 192]. By (2.15) and [16,
Lemma 1.12] we have

det(AAT ) = det((r − λ)I + λJ) = (r + λ(v − 1))(r − λ)v−1

= rk(r − λ)v−1,

which is nonzero because r − λ > 0 by the assumption v > k and (2.4). �

2.5 RESOLVED INCIDENCE SYSTEMS

In this section we derive a representation for resolutions of block designs and
their isomorphism equivalence classes using incidence systems. The main
motivation for this representation is that it allows us to prove in the next
chapter that resolutions of block designs are equivalent to a family of error-
correcting codes.

In what follows we assume that the parameters v, k, λ satisfy the necessary
existence conditions of Corollary 2.3.7 for an RB(v, k, λ) design and that
b, r are determined by (2.4). Furthermore, for notational convenience, we
put q = v/k. (Recall that k must divide v for a design to be resolvable.)
Consequently, since vr = qkr = bk, we have b = qr.

If we are to represent resolutions of block designs using incidence systems,
it is evident that we must introduce additional structure to an incidence sys-
tem to identify the resolution at hand (cf. Example 2.3.22). A straightforward
way to accomplish this is to require the block labelling to present the blocks
of every parallel class of a resolution in adjacent columns.

Definition 2.5.1 Suppose that A ∈ I B(v, k, λ) corresponds to the
B(v, k, λ) design B = {B0, B1, . . . , Bqr−1}. We say that A is resolved if the
blocks
Bjq, Bjq+1, . . . , Bjq+q−1 form a parallel class for all j ∈ Zr.

In the situation above, we say that the resolved incidence system A corre-
sponds to the resolution R = {P0, . . . , Pr−1} of B, where
Pj = {Bjq, Bjq+1, . . . , Bjq+q−1} for all j ∈ Zr.

Example 2.5.2 A resolved incidence system that corresponds to the resolu-
tionR ∈ R(9, 3, 1) in Example 2.3.2 is

1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0 1 0 0 1
0 1 0 1 0 0 0 0 1 0 1 0
0 1 0 0 1 0 1 0 0 0 0 1
0 1 0 0 0 1 0 1 0 1 0 0
0 0 1 1 0 0 0 1 0 0 0 1
0 0 1 0 1 0 0 0 1 1 0 0
0 0 1 0 0 1 1 0 0 0 1 0


.

(The parallel classes are separated by vertical lines for clarity.) ♦
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Definition 2.5.3 We write I R(v, k, λ) for the set of all resolved incidence
systems in I B(v, k, λ).

Lemma 2.5.4 An incidence system A ∈ I B(v, k, λ) is resolved if and only
if

q−1∑
l=0

A(i, qj + l) = 1 (2.16)

for all (i, j) ∈ Zv × Zr.

Proof. (We remark that (2.16) is a refinement of condition (ii) in Lemma
2.4.7.) Suppose A corresponds to the B(v, k, λ) design B = {B0,
B1, . . . , Bqr−1}. Select a j ∈ Zr. By (2.10) blocks Bjq, Bjq+1, . . . , Bjq+q−1

partition Zv if and only if every row of A contains a one in exactly one of
the columns jq, jq + 1, . . . , jq + q − 1. Consequently, (2.16) holds for all
(i, j) ∈ Zv × Zr if and only if A is resolved. �

Next we define a group action on I R(v, k, λ) whose orbits correspond
to the isomorphism equivalence classes of resolutions, that is, the orbits of
Sv on R(v, k, λ). This is accomplished by restricting the row and column
permuting action (2.13) so that the resolution described by a resolved set
system remains invariant under a permutation of the columns.

Accordingly, we put ∆j = {jq, jq + 1, . . . , jq + q− 1} for all j ∈ Zr and
denote by S∆ the set of all permutations τ ∈ Sqr that stabilize setwise the
partition ∆ = {∆0,∆1, . . . ,∆r−1} of Zqr. Clearly, S∆ ≤ Sqr.

The following lemma shows that S∆ is isomorphic to the permutation
wreath product Sq oSr. Recall that elements of the permutation wreath prod-
uct Sq o Sr are ordered pairs (µ, π), where π ∈ Sr and µ = (µ1, . . . , µr) is
an ordered r-tuple of permutations µj ∈ Sq. (See Appendix B for further
information on wreath products.)

Lemma 2.5.5 The group S∆ is isomorphic to the permutation wreath prod-
uct Sq o Sr under the isomorphism Φ : S∆ → Sq o Sr, Φ(τ) = (µ, π), where
(µ, π) is defined by

τ(qj + l) = qπ(j) + µπ(j)(l) (2.17)

for all (j, l) ∈ Zr × Zq.

Proof. Let τ ∈ S∆. Observe that π ∈ Sr is determined from τ∆j = ∆π(j) for
all j ∈ Zr. (No other choice is possible because then τ(qj+ l)− qπ(j) /∈ Zq
for some (j, l) ∈ Zr × Zq.) Furthermore, µ is determined from µπ(j)(l) =
τ(qj + l)− qπ(j) for all (j, l) ∈ Zr × Zq, so Φ is well-defined and bijective.

It remains to show that Φ is a group homomorphism. Let τ, τ̂ ∈ S∆, and
suppose Φ(τ) = (µ, π), Φ(τ̂) = (µ̂, π̂). Then, (2.17) applied twice gives

τ τ̂(qj + l) = τ(qπ̂(j) + µ̂π̂(j)(l)) = qππ̂(j) + µππ̂(j)µ̂π̂(j)(l).

Consequently, if we put ( ˆ̂µ, ˆ̂π) = Φ(τ τ̂), then ˆ̂π = ππ̂ and ˆ̂µj = µjµ̂π−1(j)

for all j ∈ Zr. But this is by definition the product of (µ, π) and (µ̂, π̂) in
Sq o Sr, so Φ(τ τ̂) = Φ(τ)Φ(τ̂). �
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Corollary 2.5.6 The inverse of a τ ∈ S∆ with Φ(τ) = (µ, π) satisfies

τ−1(qj + l) = qπ−1(j) + µ−1
j (l) (2.18)

for all (j, l) ∈ Zr × Zq.

Proof. Substitute (2.18) to (2.17) to obtain the identity mapping. �
We show next that the orbits of Sv × S∆ on I R(v, k, λ) correspond to

the orbits of Sv on R(v, k, λ). First we have to establish that I R(v, k, λ) is
closed under the row and column permuting action of Sv × S∆.

Lemma 2.5.7 Let A ∈ I R(v, k, λ), and suppose (σ, τ) ∈ Sv × S∆. Then,
(σ, τ)A ∈ I R(v, k, λ).

Proof. Conditions (i)-(iii) of Lemma 2.4.7 are obviously preserved by row
and column permutation, so (σ, τ)A ∈ I B(v, k, λ). To establish (σ, τ)A ∈
I R(v, k, λ), we must verify condition (2.16) of Lemma 2.5.4. By Corollary
2.5.6 and (2.13) we have, for all (i, j, l) ∈ Zv × Zr × Zq,

(σ, τ)A(i, qj + l) = A(σ−1(i), τ−1(qj + l)) = A(σ−1(i), qπ−1(j) + µ−1
j (l)),

where Φ(τ) = (µ, π). Because µj is a bijection, we thus have

q−1∑
l=0

(σ, τ)A(i, qj + l) =

q−1∑
l=0

A(σ−1(i), qπ−1(j) + l),

for all (i, j) ∈ Zv × Zr. Consequently, (2.16) holds for (σ, τ)A as well. �

Definition 2.5.8 We say that two resolved incidence systems
A,A′ ∈ I R(v, k, λ) are isomorphic if they are on the same orbit under
the row and column permuting action of Sv × S∆.

The following theorem establishes that the isomorphism equivalence classes
on R(v, k, λ) and I R(v, k, λ) are in a bijective correspondence.

Theorem 2.5.9 Let R,R′ ∈ R(v, k, λ) and suppose A,A′ ∈ I R(v, k, λ)
correspond toR andR′, respectively. Then,R andR′ are isomorphic if and
only if A and A′ are isomorphic.

Proof. Let A correspond to the B(v, k, λ) design B = {B0, B1, . . . , Bqr−1}.
By Definition 2.5.1,R = {P0, P1, . . . , Pr−1}where Pj = {Bqj+0, Bqj+1, . . . ,
Bqj+q−1} for all j ∈ Zr. Furthermore, suppose that B′, B′qj+l, R′, and P ′j ,
respectively, denote the analogous objects for A′.

(if) Suppose A′ = (σ, τ)A with (σ, τ) ∈ Sv × S∆. Put Φ(τ) = (µ, π).
From (2.10) and (2.13) we obtain the chain of equivalences

i ∈ Bqj+l ⇔ A(i, qj + l) = 1 ⇔ (σ, τ)A(σ(i), τ(qj + l)) = 1

⇔ A′(σ(i), τ(qj + l)) = 1 ⇔ σ(i) ∈ B′τ(qj+l)

⇔ σ(i) ∈ B′qπ(j)+µπ(j)(l)

(2.19)

for all (i, j, l) ∈ Zv×Zr×Zq. In other words, σBqj+l = B′qπ(j)+µπ(j)(l)
for all

(j, l) ∈ Zr × Zq, which implies σPj = P ′π(j) for all j ∈ Zr. Consequently,
σR = {σPj}j∈Zr = {P ′π(j)}j∈Zr = {P ′j}j∈Zr = R′.
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(only if) LetR′ = σR with σ ∈ Sv. We observe that this implies

R(Pj) = σR(σPj) = R′(σPj) (2.20)

for all j ∈ Zr. We construct a τ ∈ S∆ such that A′ = (σ, τ)A step by step as
follows: Select a Pj ∈ R. Then, σPj ∈ R′ and, consequently, there exists a
j′ ∈ Zr such that σPj = P ′j′ . Put π(j) = j′, and define µπ(j) ∈ Sq so that

σBqj+l = B′qπ(j)+µπ(j)(l)
(2.21)

holds for all l ∈ Zq. Remove Pj and P ′j′ from consideration, and continue
with the next parallel class in R until all r parallel classes have been consid-
ered. This way we obtain a τ ∈ S∆ with τ(qj + l) = qπ(j) + µπ(j)(l) for all
(j, l) ∈ Zr × Zq. The construction is well-defined because (2.20) guarantees
the existence of a new j′ on each step. Moreover, σPj = P ′j′ clearly implies

σPj = {σBqj+0, . . . , σBqj+q−1} = {B′qj′+0, . . . , B
′
qj′+q−1} = P ′j′

making step (2.21) well-defined. The constructed τ ∈ S∆ now satisfies

A(i, qj + l) = 1 ⇔ i ∈ Bqj+l ⇔ σ(i) ∈ B′τ(qj+l)

⇔ A′(σ(i), τ(qj + l)) = 1

for all (i, j, l) ∈ Zv × Zr × Zq. Thus, (σ, τ)A = A′. �
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3 ERROR-CORRECTING CODES

Often in combinatorics a class of objects has several descriptions. This is
particularly true with designs, codes, and graphs; see [16, 117]. In this chap-
ter we describe one such connection discovered by Semakov and Zinov’ev
[109] between resolutions of block designs and a certain family of q-ary error-
correcting codes. Before discussing this correspondence between codes and
resolutions, however, we give a brief introduction to coding-theoretic termi-
nology and discuss code equivalence.

For a proper and thorough introduction to coding theory, consult [53, 75].
Coding theory and its connections with design theory are discussed in [16].

3.1 HAMMING SPACES AND BLOCK CODES

Definition 3.1.1 A nonempty setX together with a mapping d : X×X → N

is a (discrete) metric space if the mapping d, called the metric or distance
function, has the following properties

(i) d(x, y) = 0 if and only if x = y; and

(ii) d(x, y) = d(y, x) for all x, y ∈ X ; and

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

Let Fq be a finite set of cardinality q ≥ 2. Suppose n ≥ 1, and denote by
F n
q the set of all ordered n-tuples over Fq.

Lemma 3.1.2 The mapping dH : F n
q × F n

q → N defined by

dH((x0, x1 . . . , xn−1), (y0, y1, . . . , yn−1)) = |{j ∈ Zn : xj 6= yj}|

for all x = (x0, x1, . . . , xn−1) ∈ F n
q and y = (y0, y1, . . . , yn−1) ∈ F n

q is a
metric for F n

q .

Definition 3.1.3 The metric space (F n
q , dH) is called the Hamming space of

dimension n over Fq. The corresponding metric dH is called the Hamming
metric.

The elements x ∈ F n
q are in the context of coding theory called codewords.

The components (x0, x1, . . . , xn−1) of a codeword are called coordinates,
and the values xj ∈ Fq coordinate values.

Definition 3.1.4 A q-ary (block) code of length n is a nonempty subset of
F n
q .

The Hamming space (F n
q , dH) can be made a finite vector space if Fq has the

structure of a finite field. In this case we can use tools from linear algebra to
manipulate linear codes.

Definition 3.1.5 Let Fq be a finite field. A code C ∈ P[F n
q ] is linear if it

forms a subspace of the vector space F n
q . Otherwise C is nonlinear.
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The codes we study in this report are typically nonlinear. Therefore, we can
make the simplifying assumption Fq = Zq without loss of generality.

Definition 3.1.6 The minimum distance of a code C ∈P[Znq ] with at least
two codewords is the quantity d(C) = min{dH(x, y) : x, y ∈ C, x 6= y}. A
code is equidistant if d(x, y) = d(C) for all distinct x, y ∈ C.

The minimum distance of a code is probably the most important parame-
ter of a code in the study of error-correcting codes because it measures the
ability of the code to sustain random transmission errors. Error-correcting
codes for information transmission are often classified according to length
and minimum distance as follows.

Definition 3.1.7 An (n, d)q code is a q-ary code of length n and minimum
distance d. An (n, d)q code with cardinality M is called an (n,M, d)q code.

(To exclude degenerate cases in the previous definition we always implicitly
assume M ≥ 2 and q ≥ 2.)

A fundamental problem in coding theory is to determine, for fixed pa-
rameter values q, n, d, the maximum cardinality of an (n, d)q code. This
maximum is usually denoted by Aq(n, d), and the corresponding codes of
maximum cardinality are called optimal .

3.2 EDm-CODES

The family of EDm-codes (EDm – equidistant with maximal distance) was
introduced and studied by Semakov and Zinov’ev [109].

Definition 3.2.1 An (n,M, d)q code is an EDm-code if (i) q divides M ; and
(ii)
(
M
2

)
d = n

(
q
2

)
(M/q)2.

Example 3.2.2 Below is an EDm-code with parameters n = 4, M = 9,
d = 3, and q = 3:

C = {(0, 0, 0, 0), (0, 1, 1, 1), (0, 2, 2, 2), (1, 0, 2, 1), (1, 1, 0, 2),
(1, 2, 1, 0), (2, 0, 1, 2), (2, 1, 2, 0), (2, 2, 0, 1)}.

♦

The family of EDm-codes is interesting from a coding-theoretic point of view
because its codes are both equidistant and optimal. These properties can be
derived from the q-ary Plotkin bound [7, Theorem 3]:

Theorem 3.2.3 If there exists an (n,M, d)q code, then(
M

2

)
d ≤ n

q−2∑
i=0

q−1∑
j=i+1

MiMj, (3.1)

where Mi = b(M + i)/qc. If equality holds, the code is equidistant, and the
distribution of values in a coordinate is (up to permutation) uniquely given
by the values of Mi.
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For an EDm-code it is clear by (i) of Definition 3.2.1 that Mi = M/q for
all i ∈ Zq. Thus, the right hand side of (3.1) becomes n

(
q
2

)
(M/q)2, which

together with (ii) implies that equality holds in the Plotkin bound.

Corollary 3.2.4 An EDm-code is equidistant, and every coordinate value oc-
curs exactly k = M/q times in every coordinate of the code.

Establishing optimality of an EDm-code is somewhat more involved, because
mere equality in (3.1) is not sufficient to establish optimality. (As an example,
if q = 3, n = 14, and d = 10, then equality holds for both M = 14 and
M = 15.)

Corollary 3.2.5 An EDm-code is optimal.

Proof. Let n,M, d, q constitute the parameters of an EDm-code. Because
codewords can always be deleted from a code—and the minimum distance
can only increase in the process—it suffices to show an (n, d)q code of cardi-
nality M + 1 is impossible. Suppose, for the sake of contradiction, that such
a code C exists. Then, we can delete any codeword x ∈ C and obtain an
EDm-code C ′, which is equidistant and each coordinate value occurs exactly
M/q times in a coordinate by Corollary 3.2.4. Clearly, the total Hamming
distance

∑
y1∈C

∑
y2∈C dH(y1, y2) of C must be at least

(
M+1

2

)
d. Because

C ′ is equidistant, its total Hamming distance is exactly
(
M
2

)
d, which forces(

M+1
2

)
d −

(
M
2

)
d = Md ≤

∑
y∈C′ dH(x, y). Because each coordinate value

occurs exactly M/q times in a coordinate in the EDm-code, we calculate∑
y∈C′ dH(x, y) = n(q − 1)M/q. By condition (ii) of Definition 3.2.1, we

have (M − 1)d = n(q − 1)M/q, which implies Md > n(q − 1)M/q. Thus,
C cannot have minimum distance d, which is a contradiction. �

3.3 CODE EQUIVALENCE

In the study of error-correcting codes the notion of code equivalence has sev-
eral variations. For example, if we are only interested in the error-detecting
capability of a code, then it makes sense to regard as equivalent all codes
of equal cardinality that have the same collection of pairwise codeword dis-
tances. In other words, two codes C,C ′ ∈P[Znq ] are regarded as equivalent
if there exists a bijection φ : C → C ′ satisfying dH(x, y) = dH(φ(x), φ(y))
for all x, y ∈ C. In particular, we observe that all equidistant codes of fixed
length and cardinality are equivalent.

Another standard approach to code equivalence is to regard two codes as
equivalent if they are related by an isometry of the Hamming space.

Definition 3.3.1 Let (X, d) be a metric space. A mapping ψ : X → X is an
isometry of (X, d) if d(x, y) = d(ψ(x), ψ(y)) for all x, y ∈ X . We denote by
Iso(X, d) the set of all isometries of (X, d).

In this report we use this latter notion of code equivalence because it regards
as inequivalent precisely those EDm-codes that correspond to nonisomorphic
resolutions of RB(v, k, λ) designs. This connection between isometry equiv-
alence classes of codes and isomorphism equivalence classes of resolutions is
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best described if we have a group action analogous to those presented in the
previous chapter whose orbits correspond to the isometry equivalence classes
of codes. In what follows we describe such a group action on Znq .

We begin by noting that the set of all isometries of the Hamming space,
Iso(Znq , dH), is a group under composition of isometries.

Theorem 3.3.2 For a finite metric space (X, d), Iso(X, d) ≤ Sym(X).

Proof. Let ψ ∈ Iso(X, d). Suppose ψ(x) = ψ(y) for some x, y ∈ X . Then,
0 = d(ψ(x), ψ(y)) = d(x, y). Thus, x = y, and ψ is injective since x, y
were arbitrary. Now, since X is finite and ψ : X → X , ψ must be surjective
as well. Thus, ψ ∈ Sym(X). Two isometries clearly compose to form an
isometry, which by Theorem B.2.11 is sufficient to establish the claim. �

Definition 3.3.3 Two codes C1, C2 ∈ P[Znq ] are equivalent if they are on
the same orbit of the induced action of Iso(Znq , dH) on P[Znq ].

Example 3.3.4 The mapping ψ : Z3
2 → Z

3
2 defined by ψ(x0, x1, x2) =

(x2, x1, x0) for all x ∈ Z3
2 is obviously an isometry of (Z3

2, dH) (cf. Lemma
3.3.6). So, for exampleC = {(0, 0, 1), (1, 1, 0)} andC ′ = {(1, 0, 0), (0, 1, 1)}
are equivalent because C ′ = ψC. ♦

The group Iso(Znq , dH) is still too abstract for our purpose of demonstrat-
ing that EDm-codes and resolutions are equivalent. By a result of Ho [52], the
group Iso(Znq , dH) is isomorphic to the permutation wreath product Sq o Sn;
unfortunately, we were unable to verify the proof given in [52]. (An indepen-
dent graph-theoretic proof appears in [120].)

The two lemmata below give two families of isometries of (Znq , dH) which
together generate Iso(Znq , dH). The first family of isometries permutes the
coordinate values in every coordinate of a codeword separately. For conve-
nience in what follows, we identify a codeword x = (x0, x1, . . . , xn−1) ∈ Znq
in the obvious way with the mapping x : Zn → Zq defined by x(i) = xi for
all i ∈ Zn.

Lemma 3.3.5 Let µ ∈ Snq . The mapping µ̄ : Znq → Z
n
q , defined by µ̄(x) :

i 7→ µi(x(i)) for all i ∈ Zn and x ∈ Znq , is an isometry of (Znq , dH).

Proof. Let µ ∈ SZnq and suppose x, y ∈ Znq . By definition of dH we have
dH(x, y) = |{i ∈ Zn : x(i) 6= y(i)}|. Because µi is a bijection for all i ∈ Zn,
we have µi(x(i)) 6= µi(y(i)) if and only if x(i) 6= y(i). Thus, dH(x, y) =
|{i ∈ Zn : µi(x(i)) 6= µi(y(i))} = dH(µ̄(x), µ̄(y)). �

The second family permutes the coordinates of a codeword.

Lemma 3.3.6 Let π ∈ Sn. The mapping π̄ : Znq → Z
n
q , defined by π̄(x) :

i 7→ x(π−1(i)) for all i ∈ Zn and x ∈ Znq , is an isometry of (Znq , dH).

Proof. Let π ∈ Sn and suppose x, y ∈ Znq . Since π is a bijection, we have
dH(x, y) = |{i ∈ Zn : x(π−1(i)) 6= y(π−1(i))}| = dH(π̄(x), π̄(y)). �

We define a group action of Sq o Sn on Znq by letting (µ, π) ∈ Snq × Sn
act on x ∈ Znq first by coordinate permutation (Lemma 3.3.6) and then by
permutation in the coordinate values (Lemma 3.3.5). The following theorem
gives the details of the action.
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Theorem 3.3.7 The mapping ((µ, π), x) 7→ (µ, π)x defined by (µ, π)x =
µ̄(π̄(x)) for all (µ, π) ∈ Sq oSn and x ∈ Znq is a group action of Sq oSn on Znq .

Proof. Condition (i) of Definition B.2.26 is clearly satisfied. For condi-
tion (ii), select (µ, π), (µ̃, π̃) ∈ Sq o Sn and x ∈ Znq . For convenience, put
x̃ = (µ̃, π̃)x. Compose the mappings in Lemmata 3.3.5 and 3.3.6 to obtain
x̃(i) = µ̃i(x(π̃−1(i))) for all i ∈ Zn. Furthermore,

(µ, π)x̃(i) = µi(x̃(π−1(i))) = µiµ̃π−1(i)(x(π̃−1π−1(i))). (3.2)

The product ( ˜̃µ, ˜̃π) = (µ, π)(µ̃, π̃) is defined by ˜̃π = ππ̃ and ˜̃µi = µiµ̃π−1(i)

for all i ∈ Zn. Hence,

( ˜̃µ, ˜̃π)x(i) = µiµ̃π−1(i)(x(π̃−1π−1(i))). (3.3)

The right hand sides of (3.2) and (3.3) are identical, which implies (*) in(
(µ, π)(µ̃, π̃)

)
x = (˜̃µ, ˜̃π)x

(∗)
= (µ, π)x̃ = (µ, π)

(
(µ̃, π̃)x

)
.

Thus, condition (ii) holds and the proof is complete. �
We next argue that Iso(Znq , dH) is in fact the image of the faithful permu-

tation representation that corresponds (cf. Theorem B.2.27) to the action
of Sq o Sn given in the previous theorem. (To see that the representation is
faithful, suppose that (µ, π)x = x for all x ∈ Znq . In particular, this holds
for all codewords that contain the same coordinate value in every coordinate.
Consequently, we must have µ = 1, and then clearly also π = 1 because
all codewords that contain exactly one occurence of some coordinate value
must be fixed. Thus, the kernel of the representation is trivial and the repre-
sentation injective.)

It is clear from Lemmata 3.3.5 and 3.3.6 that the mapping x 7→ (µ, π)x =
µ̄(π̄(x)) is an isometry for all (µ, π) ∈ Sq o Sn. Naturally, it is not so evident
that all isometries in Iso(Znq , dH) are of this form. This is the content of the
following theorem.

Theorem 3.3.8 Let ψ ∈ Iso(Znq , dH). Then, there exists a (µ, π) ∈ Sq o Sn
such that ψ(x) = (µ, π)x for all x ∈ Znq .

Proof. See [26, Theorem 1]; an earlier graph-theoretic proof appears in [120,
Theorem 1]. �

The permutation representation of the action in Theorem 3.3.7 restricted
to
Iso(Znq , dH) is thus an isomorphism between Sq o Sn and Iso(Znq , dH). This
leads immediately to the following theorem.

Theorem 3.3.9 Let Sq o Sn act on Znq as in Theorem 3.3.7, and suppose that
this action is extended to P[Znq ] using Lemma 2.1.9. Then, two codes are
equivalent if and only if they are on the same orbit of Sq o Sn on P[Znq ].

As a special case, the previous action can be restricted to the set of all
(n,M, d)q codes because it clearly preserves code cardinality and minimum
distance.

Definition 3.3.10 We denote by Cq(n,M, d) the set of all (n,M, d)q codes
in P[Znq ].
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3.4 MATRIX REPRESENTATION FOR CODES

A code C ∈ PM [Znq ] can be represented using a M × n matrix over Zq
whose rows consist of the codewords of C. Conversely, the rows of any matrix
C ∈ ZZM×Zqq whose rows are pairwise distinct clearly represent the codewords
of a q-ary code of length n and cardinality M .

This representation of a code in terms of a matrix is useful in the next
section where explicit labelling of the codewords is required to describe the
correspondence between EDm-codes and resolutions. Furthermore, it will
prove useful later in describing the algorithms that generate resolutions of
block designs in Chapter 5.

We let the direct product group SM × (Sq o Sn) act on the set of matrices
Z
ZM×Zn
q so that σ ∈ SM permutes the rows of a matrix and (µ, π) ∈ Sq o Sn

acts on the rows of a matrix as on codewords in Theorem 3.3.7. Formally, for
a C ∈ ZZM×Znq and a (σ, (µ, π)) ∈ SM × (Sq o Sn), we define

(σ, (µ, π))C : (i, j) 7→ µj(C(σ−1(i), π−1(j))) (3.4)

for all (i, j) ∈ ZM × Zn.
The orbits of matrices with pairwise distinct rows in ZZM×Znq under (3.4)

are clearly in a bijective correspondence to the isometry equivalence classes
on PM [Znq ].

Definition 3.4.1 We denote by L C q(n,M, d) the set of all M × n matrices
over Zq whose rows form an (n,M, d)q code.

In particular, there is a bijective correspondence between the orbits Sq oSn

Cq(n,M, d) and SM × (Sq o Sn) 
L C q(n,M, d).

3.5 EDm-CODES AND RESOLUTIONS OF BLOCK DESIGNS

Semakov and Zinov’ev proved in [109] that resolutions of RB(v, k, λ) de-
signs are equivalent to EDm-codes. In this section we describe this result and
show that it also extends to isomorphism equivalence classes of resolutions
and isometry equivalence classes of codes.

The following two lemmata connect the parameter families of EDm-codes
andRB(v, k, λ) designs. (The conclusions of both lemmata appear in [109].)
We denote by [a, b] the greatest common divisor of a, b ∈ N.

Lemma 3.5.1 The parameters (n,M, d)q of an EDm-code can always be
written in the form

M = qk, n = c · qk − 1

[q − 1, k − 1]
, d = n− c · k − 1

[q − 1, k − 1]
, (3.5)

where k and c are positive integers.

Proof. Since q divides M , k is uniquely determined by M = qk. Condition
(ii) of Definition 3.2.1 is thus equivalent to

(qk − 1)d = k(q − 1)n. (3.6)
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From elementary number theory we know that all integer solutions to (3.6)
can be written in the form

d = c · k(q − 1)

[k(q − 1), qk − 1]
, n = c · qk − 1

[k(q − 1), qk − 1]
,

where c is an arbitrary integer. To obtain the claim, observe that

[k(q − 1), qk − 1] = [k(q − 1), k − 1] = [q − 1, k − 1]

and that

d = c · qk − 1 + 1− k
[q − 1, k − 1]

= n− c · k − 1

[q − 1, k − 1]
.

�

Lemma 3.5.2 The parameters v, r and λ of an RB(v, k, λ) design can al-
ways be written in the form

v = qk, r = c · qk − 1

[q − 1, k − 1]
, λ = c · k − 1

[q − 1, k − 1]
, (3.7)

where c and q are positive integers.

Proof. Recall that k must divide v for a design to be resolvable. Substitute
v = qk to (2.4) to obtain (qk−1)λ = (k−1)r. The rest of the proof is similar
to that of the previous lemma. �

From Lemmata 3.5.1 and 3.5.2 we see that the parameter families satis-
fying necessary existence conditions for EDm-codes and RB(v, k, λ) designs
are connected by

n = r =
λ(v − 1)

k − 1
, M = v = qk, d = r − λ, b = qr; (3.8)

the exception being the trivial families with k = v and d = n, which have no
corresponding parameters of the other type.

We next show that the elements of I R(v, k, λ) and L C q(n,M, d) with
parameters connected by (3.8) are in a bijective correspondence. The fol-
lowing theorem and its corollary are essentially a reformulation of [109, The-
orem 1].

Theorem 3.5.3 Let I R(v, k, λ) be nonempty and suppose that k < v.
Then, the mapping Ψ : I R(v, k, λ)→ L C q(r, v, r − λ) defined by

ΨA(i, j) = l ⇔ A(i, qj + l) = 1 (3.9)

for all (i, j, l) ∈ Zv × Zr × Zq and A ∈ I R(v, k, λ) is a bijection.
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Proof. We illustrate the mapping Ψ with a short example before proceeding
with the proof:

Ψ



1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0 1 0 0 1
0 1 0 1 0 0 0 0 1 0 1 0
0 1 0 0 1 0 1 0 0 0 0 1
0 1 0 0 0 1 0 1 0 1 0 0
0 0 1 1 0 0 0 1 0 0 0 1
0 0 1 0 1 0 0 0 1 1 0 0
0 0 1 0 0 1 1 0 0 0 1 0


=



0 0 0 0
0 1 1 1
0 2 2 2
1 0 2 1
1 1 0 2
1 2 1 0
2 0 1 2
2 1 2 0
2 2 0 1


. (3.10)

(In the example above, v = 9, k = 3, λ = 1; r = 4, q = 3.) First we have to
check that Ψ is well-defined. Select any A ∈ I R(v, k, λ). Since A satisfies
(2.16), every entry ΨA(i, j) is uniquely determined by (3.9), so it suffices to
check that the code that corresponds to ΨA has minimum distance r − λ.
(Note that k < v implies λ < r by (2.4).) Select any two rows of ΨA labelled
i1, i2 ∈ Zv, i1 6= i2. We observe that ΨA(i1, j) 6= ΨA(i2, j) if and only if
A(i1, qj + l1) = 1 and A(i2, qj + l2) = 1 for some l1 6= l2, that is, points
i1 and i2 occur in different blocks of parallel class j of the resolution that
corresponds to A. By (2.16) we therefore have

q−1∑
l=0

A(i1, qj + l)A(i2, qj + l) =

{
1 if ΨA(i1, j) = ΨA(i2, j);
0 if ΨA(i1, j) 6= ΨA(i2, j).

Now since every A ∈ I R(v, k, λ) must by Lemma 2.4.7 satisfy

b−1∑
s=0

A(i1, s)A(i2, s) =
r−1∑
j=0

q−1∑
l=0

A(i1, qj + l)A(i2, qj + l) = λ,

we have ΨA(i1, j) 6= ΨA(i2, j) for exactly r−λ coordinates j ∈ Zr. Further-
more, because i1, i2 were arbitrary, ΨA is equidistant with minimum distance
r − λ.

We still have to show that Ψ is bijective. Given ΨA it is possible to recon-
struct A uniquely using (3.9), so Ψ is injective. Let C ∈ L C q(r, v, r − λ).
It is clear that we can transform C to an A ∈ ZZv×Zqr2 using (3.9) so that
ΨA = C and (2.16) holds. To establish surjectivity we must verify that
A ∈ I R(v, k, λ), which amounts to checking properties (i) and (iii) given
in Lemma 2.4.7. Recall Corollary 3.2.4, which states that an EDm-code is
equidistant and every coordinate value occurs exactly k = v/q times in ev-
ery coordinate. Consequently, every column of A constructed from C using
(3.9) must contain exactly k ones, which establishes (i). Furthermore, the
equidistance of C implies that any two distinct codewords agree on exactly λ
coordinates and differ in the remaining r − λ. Thus, the rows of A that cor-
respond to any two codewords contain a 1 in precisely λ common columns,
which establishes (iii). �

Based on the previous proof it is evident that it is possible to present a
similar bijection in the reverse direction if L C q(r, v, r − λ) is nonempty.
Consequently,
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Corollary 3.5.4 Let v, k, λ, n,M, d, q ∈ N \ {0} satisfy (3.8) and suppose
that k < v and d < n. Then, an RB(v, k, λ) design exists if and only if there
exists an EDm-code with parameters (n,M, d)q.

To establish that the isomorphism equivalence classes on R(v, k, λ) and
the isometry equivalence classes on Cq(r, v, r − λ) are in a bijective corre-
spondence, it suffices to show that the orbits Sv × S∆ 
 I R(v, k, λ) and
Sv × (Sq o Sr) 
 L C q(r, v, r − λ) are in a bijective correspondence, be-
cause these in turn correspond bijectively to the aforementioned equivalence
classes.

Since Ψ : I R(v, k, λ) → L C q(r, v, r − λ) is a bijection between
I R(v, k, λ) and L C q(r, v, r−λ), it suffices to show that the diagram (3.11)
is commutative. (In the diagram, Φ is the isomorphism from Lemma 2.5.5.)

Sv × S∆ ×I R(v, k, λ)
id×Φ×Ψ−−−−→ Sv × (Sq o Sr)×L C q(r, v, r − λ)

(2.13)

y (3.4)

y
I R(v, k, λ)

Ψ−−−→ L C q(r, v, r − λ)
(3.11)

If this is the case, then the group actions (2.13) and (3.4) are clearly equiv-
alent up to a relabelling of the group elements and the elements of the set
on which the group acts. Consequently, the orbits of the group actions must
be in a bijective correspondence. The following theorem shows that (3.11) is
commutative.

Theorem 3.5.5 Let I R(v, k, λ) be nonempty with k < v and suppose that

Φ : S∆ → Sq o Sr, Ψ : I R(v, k, λ)→ L C q(r, v, r − λ)

are the mappings from Lemma 2.5.5 and Theorem 3.5.3, respectively. Then,

(σ,Φ(τ))ΨA = Ψ(σ, τ)A

for all (σ, τ) ∈ Sv × S∆ and A ∈ I R(v, k, λ).

Proof. Select any (σ, τ) ∈ Sv × S∆ and A ∈ I R(v, k, λ). Put Φ(τ) =
(µ, π). By Corollary 2.5.6, we have τ−1(qj + l) = qπ−1(j) + µ−1

j (l) for all
(j, l) ∈ Zr × Zq. Select (i, j, l) ∈ Zv × Zr × Zq. By (2.13) we have

(σ, τ)A(i, qj + l) = 1 ⇔ A(σ−1(i), qπ−1(j) + µ−1
j (l)) = 1,

which combined with (3.9) gives

Ψ(σ, τ)A(i, j) = l ⇔ A(σ−1(i), qπ−1(j) + µ−1
j (l)) = 1. (3.12)

From (3.9) we obtain

µj(ΨA(σ−1(i), π−1(j))) = l ⇔ A(σ−1(i), qπ−1(j) + µ−1
j (l)) = 1.

In other words, by (3.4)

(σ, (µ, π))ΨA(i, j) = l ⇔ A(σ−1(i), qπ−1(j) + µ−1
j (l)) = 1. (3.13)

Thus, if we combine (3.12) and (3.13), we obtain

Ψ(σ, τ)A(i, j) = l ⇔ (σ, (µ, π))ΨA(i, j) = l,

which establishes the claim as i, j, l were arbitrary. �
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Corollary 3.5.6 Let v, k, λ, n,M, d, q ∈ N\{0} satisfy (3.8) and suppose that
k < v and d < n. Then, anRB(v, k, λ) design exists if and only if there exists
an EDm-code with parameters (n,M, d)q. Furthermore, the isomorphism
equivalence classes on R(v, k, λ) and the isometry equivalence classes on
Cq(n,M, d) are in a bijective correspondence.
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4 ISOMORPH-FREE EXHAUSTIVE GENERATION

Most problems of generation of combinatorial objects can be formulated in
terms of a nonempty set of objects X and a group G acting on X . Two ob-
jects are then isomorphic if they are on the same orbit of G on X , and the
isomorph-free exhaustive generation problem is to produce exactly one rep-
resentative from each G-orbit on X . Such a set of representatives is called an
orbit transversal . Obvious examples of families of combinatorial objects that
fall within this generation framework are block designs and error-correcting
codes discussed in the preceding chapters.

This chapter examines algorithm families developed for isomorph-free ex-
haustive generation in an abstract setting. In the next chapter we use these al-
gorithm families to develop isomorph-free exhaustive generation algorithms
for block designs and their resolutions.

An algorithm for isomorph-free exhaustive generation typically has two
principal components. The first component is a method for generating ob-
jects fromX so that at least one representative from eachG-orbit is obtained,
and the second component is devoted to eliminating objects isomorphic to
those already generated from consideration.

This division into components suggests a straightforward algorithm that
keeps a record of orbit representatives encountered so far and employs an
exhaustive method for generation of candidate orbit representatives. When-
ever a new candidate representative is obtained, it is tested for isomorphism
against the stored orbit representatives. A representative that is not isomor-
phic to any of the stored representatives is added to the record and output,
whereas isomorphic copies of stored representatives are simply discarded.

The straightforward algorithm is effective in many cases, however, it has
two fundamental sources of inefficiency.

The first drawback of the straightforward algorithm is that it has to keep
track of all the orbit representatives encountered thus far. If the number of
orbits is large, then the available storage may run out, or the isomorphism
testing of each new candidate against a large number of representatives may
require too much time even if sufficient storage is available for the orbit rep-
resentatives.

This drawback can be circumvented by using a canonical placement map,
which transforms isomorphism testing to testing computed canonical repre-
sentatives for equality.

Definition 4.0.1 A mapping c : X → X is a canonical placement map with
respect to G if it satisfies the properties

(i) c(gx) = c(x) for all g ∈ G and x ∈ X ; and

(ii) for all x ∈ X there exists a g ∈ G such that c(x) = gx.

The element c(x) is called the canonical representative of the orbit Gx.

(For examples of canonical placement maps, see [3, 81, 82].) Isomorphism
testing can be performed using a canonical placement map by computing
the corresponding canonical representative for each candidate representative
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and testing it for equality against a collection of stored canonical representa-
tives. Furthermore, if every canonical representative appears as a candidate
representative exactly once, then it suffices to accept x ∈ X as a new orbit
representative whenever c(x) = x. Note that no representatives need to be
stored with this latter approach.

The second drawback of the straightforward algorithm involves the set X ,
which may be many orders of magnitude larger than the number of G-orbits
on X . A good example is given by the B(31, 10, 3) designs, for which

|B(31, 10, 3)| = 981911352307627196154752532480000000,

yet |S31
B(31, 10, 3)| = 151. In this case it is clear that an exhaustive search
through all elements of B(31, 10, 3) with the straightforward algorithm is in-
feasible due to the huge number of elements to be searched. To make a
classification of the nonisomorphic designs in B(31, 10, 3) possible, isomor-
phic copies of partial configurations must be detected and eliminated from
consideration already during the generation phase, which requires dedicated
algorithms.

McKay [84] (see also [12]) classifies modern algorithms for isomorph-
free exhaustive generation into roughly three types, although noting that the
boundary between different algorithm families is unclear. The first algorithm
family, introduced independently by Read [103] and Faradžev [35], is well-
established and consists of orderly algorithms. (The term orderly, introduced
by Read, comes from the fact that objects are generated subject to some total
order onX and on the set of subobjects.) An orderly algorithm is essentially a
recursive version of the straightforward algorithm involving alternating steps
of generation and rejection of isomorphic copies. The rejection of isomor-
phic copies during the step-by-step construction is based on the properties of
the selected canonical representatives of the orbits to be generated. Examples
of orderly algorithms in the literature are numerous, [11, 30, 32, 87] provides
a small sample. The second algorithm family, described by McKay in [84],
constructs orbit representatives step by step along a canonical construction
path. The existence of such a path is guaranteed by an axiomatic model
which defines a tree structure on the set of unlabelled partial configurations.
Practical examples of McKay-type algorithms appear in [10, 106]; see the
references in McKay’s article [84] for further examples. The last algorithm
family is based on the homomorphism principle for group actions [62, 63],
and uses homomorphisms of group actions for step-by-step refinement of an
orbit transversal. Examples of this approach are provided by [50, 63, 73].

In this chapter we examine in detail Read–Faradžev-type and McKay-type
algorithms and briefly illustrate the homomorphism principle for group ac-
tions using construction of double coset representatives as an example.

4.1 READ–FARADŽEV-TYPE ALGORITHMS

We describe Read–Faradžev-type algorithms using the model and ideas from
Faradžev’s paper [35]. Read’s paper [103] presents perhaps a more generic
model, but lacks the group-theoretic treatment present in Faradžev’s paper.
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To describe combinatorial objects, Faradžev uses the successful Pólya–
de Bruijn model from enumerative combinatorics [27, 28, 100], which is as
follows. Let X and Y be finite nonempty sets, and denote by Y X the set of
functions of X into Y . Suppose A and B are groups acting on X and Y ,
respectively, and let the direct product group G = A × B act on Y X by the
rule ((a, b), ϕ) 7→ (a, b)ϕ, where (a, b) ∈ G, ϕ ∈ Y X , and

(a, b)ϕ : x 7→ b ϕ(a−1x) (4.1)

for all x ∈ X . The elements of Y X are the labelled objects of the model,
and the orbits G 
 Y X are the unlabelled objects.

The collection of combinatorial objects to be generated is described within
this model as a union P of orbits of G on Y X . In other words, P describes an
orbit-invariant property shared by the objects to be constructed. (For exam-
ple, P = I B(v, k, λ) with X = Zv, Y = ZZb2 , and G = Sv×Sb; cf. Section
5.1.) The aim of a Read–Faradžev-type algorithm is to generate exactly one
representative from each orbit in P . For this purpose, we select an (for the
moment) arbitrary transversal C for the orbits G 
 Y X . Elements of C are
called the canonical representatives of their orbits.

A Read–Faradžev-type algorithm performs an exhaustive search for all ϕ ∈
P ∩ C by extending the domain of a mapping ϕ′ : X ′ → Y , where X ′ ⊆ X ,
one element of X \ X ′ at a time so that all extensions of ϕ′ to an element
of P ∩ C are considered. The following definitions formalize the extension
process. (We remark that our treatment is somewhat modified from [35].)
Fix a total order on X , label the |X| = N elements of X subject to the
total order as x1 < x2 < · · · < xN , and put Xi = {x1, x2, . . . , xi} for all
i = 1, . . . , N . Additionally, put X0 = ∅. Denote by Y X∗ the disjoint union
Y X0 ∪ · · · ∪ Y XN . (The set Y X0 is only a formal entity; it consists of the
“empty mapping,” to which all other elements of Y X∗ are extensions in the
following sense:) A mapping ϕ′ ∈ Y Xj is an extension of a mapping ϕ ∈ Y Xi

if i ≤ j and ϕ(x) = ϕ′(x) for all x ∈ Xi; we write ϕ � ϕ′ to indicate this.
An extension ϕ′ of ϕ is proper if i < j; this is indicated by ϕ ≺ ϕ′. Finally, a
proper extension is minimal if j = i+ 1.

Lemma 4.1.1 The binary relation � is a partial order on Y X∗ with a unique
minimal element. The maximal elements in Y X∗ constitute the labelled
objects Y X .

Proof. The claimed properties follow immediately from the definitions and
from the properties of the standard total order ≤ on Z. �

This partial order gives Y X∗ the structure of a search tree. The children of
a tree node are its minimal proper extensions, the maximal elements are the
leaves of the tree, and the unique minimal element is the root of the tree.

So far we have gained nothing over the straightforward algorithm pre-
sented earlier. However, we now have formalized the construction process
for the objects in P∩C to a sufficient degree to enable pruning of isomorphic
copies during the construction process. (Recall that the straightforward algo-
rithm performs isomorph rejection only after an object has been completely
constructed.) The condition as to when a search tree node may be pruned
admits a straightforward formalization: Let E ⊆ Y X . A subset E∗ ⊆ Y X∗ is
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called an extract of E if, for all ϕ′ ∈ E, we have ϕ ∈ E∗ whenever ϕ � ϕ′.
In other words, if ϕ /∈ E∗, then no extension of ϕ is in E. Consequently,
an extract of P ∩ C describes a necessary condition for the extendibility of a
mapping ϕ ∈ Y X∗ to an element of P ∩ C and hence can be used to prune
the search tree.

Pseudocode for a Read–Faradžev-type orbit transversal algorithm is given
as Algorithm 1. (In the algorithm, we denote by (P ∩C)∗ an arbitrary extract
of P ∩ C.) The algorithm performs a depth-first traversal of the search tree
defined by � as can be easily seen.

Algorithm 1 A Read–Faradžev-type orbit transversal algorithm.
procedure ORDERLY-SCAN(ϕ : a mapping in Y X∗ , i : integer)

if ϕ /∈ (P ∩ C)∗ then
return

end if
if i = N then

if ϕ ∈ P ∩ C then
output ϕ

end if
return

end if
construct all minimal proper extensions E [ϕ] of ϕ
for all ϕ′ ∈ E [ϕ] do

ORDERLY-SCAN(ϕ′, i+ 1)
end for

endprocedure

The performance of a Read–Faradžev-type algorithm depends heavily on
the choice of canonical representatives C and the extracts used. A widely-
used and successful (see [30, 32] and the references therein) family of canon-
ical representatives, described in [35], is defined as follows. Recall that X is
ordered. Introduce a total order on Y to obtain a lexicographic order on sets
Y Xi for all i = 1, . . . , N . Because Y X = Y XN is finite, we may define the
unique lexicographic maximum element of every orbit of G on Y X to be the
canonical representative:

C = {ϕ ∈ Y X : ϕ ≥ gϕ for all g ∈ G}. (4.2)

The success of this set of canonical representatives is based on its extracts,
which can be used to prune the search after every extension step in Algorithm
1.

In what follows we describe two generic extracts for (4.2). For notational
convenience we write GXi for the subgroup AXi ×B ≤ G, where AXi is the
setwise stabilizer of Xi in A. Additionally, we denote the restriction ϕ|Xi of a
ϕ ∈ Y Xj , where i < j, simply by ϕi.

Lemma 4.1.2 Let ϕ ∈ C and suppose 1 ≤ i ≤ N . Then, ϕi ≥ gϕi for all
g ∈ GXi .
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Proof. Select 1 ≤ i ≤ N . First we note that the action (4.1) of GXi is well-
defined on Y Xi since AXi ≤ A is the setwise stabilizer of Xi on A. To reach
a contradiction, suppose that there exists a g ∈ GXi such that gϕi > ϕi. By
definition of lexicographic order and our choice of labelling x1 < · · · < xN ,
there exists a 1 ≤ k ≤ i such that gϕi(xk) > ϕi(xk) and gϕi(xj) = ϕi(xj)
for all 1 ≤ j < k. Now, since xl > xi for all l > i, we must have gϕ > ϕ,
which is a contradiction to the assumption ϕ ∈ C. �

Corollary 4.1.3 The set

C∗ =
N⋃
i=1

{ϕ ∈ Y Xi : ϕ ≥ gϕ for all g ∈ GXi} (4.3)

is an extract of C.

In applications extract (4.3) can be expensive to compute. The following
lemma yields an extract which is often easier to compute, but which is in-
ferior to (4.3) in pruning efficiency. We write Gϕi for the stabilizer of ϕi in
GXi ; the stabilizer of xi+1 in G is denoted by Gxi+1

as usual.

Lemma 4.1.4 Let ϕ ∈ C and suppose 1 ≤ i < N . Then, ϕi+1 ≥ gϕi+1 for
all g ∈ Gϕi ∩Gxi+1

.

Proof. We note that the action (4.1) of Gϕi ∩ Gxi+1
is well-defined on the

set of minimal proper extensions of ϕi. Additionally, Gϕi ∩ Gxi+1
≤ GXi+1

.
Thus, a g ∈ Gϕi ∩ Gxi+1

with gϕi+1 > ϕi+1 is a contradiction to Lemma
4.1.2. �

Corollary 4.1.5 The set

C∗ =
N−1⋃
i=1

{ϕ ∈ Y Xi+1 : ϕ ≥ gϕ for all g ∈ Gϕi ∩Gxi+1
} (4.4)

is an extract of C.

4.2 MCKAY-TYPE ALGORITHMS

In this section we essentially follow the treatment in McKay’s article [84];
the proofs of the theorems and lemmata have been slightly expanded, axiom
(C3*) is new, and Lemma 4.2.4 is new.

The abstract model for McKay-type algorithms is as follows. Let G be a
group that acts on a nonempty set X . The elements of X are the labelled
objects of the model, and the orbits G 
 X are the unlabelled objects. For
notational convenience we write U for the set of all unlabelled objects.

Associated with each labelled object x ∈ X is a finite set L(x) of lower ob-
jects and a finite set U(x) of upper objects. The sets {x1},{x2},L(x1),U(x1),
L(x2),U(x2) are constrained to be pairwise disjoint for all distinct x1, x2 ∈ X .
For notational convenience we write X̌ = ∪x∈XL(x) and X̂ = ∪x∈XU(x)
for the sets of all lower and upper objects, respectively. The lower and upper
objects are connected by means of a binary relation R ⊆ X̌×X̂ which is, for
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convenience, accessed using functions u : X̌ → P[X̂] and l : X̂ → P[X̌]
defined by

u : y̌ 7→ {x̂ ∈ X̂ : (y̌, x̂) ∈ R}, l : x̂ 7→ {y̌ ∈ X̌ : (y̌, x̂) ∈ R}.

The group G is assumed to act on X ∪ X̌ ∪ X̂ so that conditions (C1)-(C5)
are satisfied. (Condition (C3*) is new and necessary for validity of Theorem
4.2.5; see Example 4.2.6 for a counterexample without (C3*).)

(C1) G fixes each of X, X̌ and X̂ setwise.

(C2) For each x ∈ X and g ∈ G we have L(gx) = gL(x) and U(gx) =
gU(x)

(C3) For each y̌ ∈ X̌ , u(y̌) 6= ∅.

(C3*) For each x̂ ∈ X̂ and g ∈ G, if l(x̂) 6= ∅ then l(gx̂) 6= ∅.

(C4) For any y̌ ∈ X̌ , g ∈ G, x̂1 ∈ u(y̌), and x̂2 ∈ u(gy̌), there exists a h ∈ G
such that hx̂1 = x̂2.

(C5) For any x̂ ∈ X̂ , g ∈ G, y̌1 ∈ l(x̂), and y̌2 ∈ l(gx̂), there exists a h ∈ G
such that hy̌1 = y̌2.

Furthermore, every x ∈ X is assumed to have an order o(x) ∈ N that is
shared by the elements of L(x) and U(x) so that conditions (O1) and (O2)
given below are satisfied.

(O1) For each x ∈ X and g ∈ G, we have o(gx) = o(x).

(O2) For each x̌ ∈ X̌ and ŷ ∈ u(x̌), we have o(ŷ) < o(x̌).

Finally, the existence of a function m : X → P[X̌] satisfying the following
conditions is assumed. (We write Gx for the stabilizer of x ∈ X in G as
usual.)

(M1) If L(x) = ∅, then m(x) = ∅.

(M2) If L(x) 6= ∅, then m(x) = Gxx̌ for some x̌ ∈ L(x).

(M3) For each x ∈ X and g ∈ G, we have m(gx) = gm(x).

This concludes the description of the McKay model.
The McKay model guarantees the existence of a tree structure on the set

of unlabelled objects. We describe this structure next.

Definition 4.2.1 An unlabelled object S ∈ U is irreducible if L(x) = ∅ for
each x ∈ S; otherwise an unlabelled object is reducible.

We write U0 for the set of all irreducible unlabelled objects, and U1 for the
set of all reducible unlabelled objects. The following lemma gives a map-
ping that associates a parent unlabelled object to each reducible unlabelled
object.
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Figure 4.1: Illustration of Lemma 4.2.2.

Lemma 4.2.2 There is a unique mapping p : U1 → U with the following
property: For all S ∈ U1, x ∈ S, and x̌ ∈ m(x), there exists a y ∈ p(S) such
that u(x̌) ⊆ U(y).

Proof. It suffices to show that, starting from a reducible unlabelled object
S ∈ U1, an y will always exist and—no matter how the choices are made—
all such y are on the same G-orbit. Let S ∈ U1 and choose any x1, x2 ∈ S.
Since S is reducible, L(x1), L(x2) 6= ∅. Thus, by (M2) both m(x1) and
m(x2) are nonempty. For i = 1, 2, choose any x̌i ∈ m(xi) and ŷi ∈ u(x̌i).
(The set u(x̌i) is nonempty by (C3).) Since ŷi ∈ X̂ , there exists a unique
yi ∈ X such that ŷi ∈ U(yi); existence is clear by definition of X̂ , uniqueness
is guaranteed by disjointness of the sets U(y) for distinct y. Now, since S =
Gx1 = Gx2, there exists a g ∈ G such that gx1 = x2. Furthermore, (M2) and
(M3) imply that there exists a k ∈ Gx1 such that gkx̌1 = x̌2. Thus, by (C4)
there exists an h ∈ G such that hŷ1 = ŷ2. By (C2), hŷ1 ∈ hU(y1) = U(hy1).
On the other hand, ŷ2 = hŷ1 ∈ U(y2). Therefore, since the sets U(y) are
disjoint for distinct y, we must have hy1 = y2. �

Definition 4.2.3 The unlabelled object p(S) is the parent of S ∈ U1, and
unlabelled objects in the set {S, p(S), p(p(S)), . . . } are the ancestors of S.
Conversely, an S ∈ U is a child of a T ∈ U if T is the parent of S, and S is
a descendant of T if T is an ancestor of S.

By (O1) we can associate order o(S) to an unlabelled object S ∈ U by
setting o(S) = o(x) for any x ∈ S.

Lemma 4.2.4 Each unlabelled object S ∈ U has a finite number of ances-
tors and a finite number of children.

Proof. Lemma 4.2.2 together with (O2) shows that o(S) > o(p(S)) for all
S ∈ U1, which implies that p can be applied to an S ∈ U1 only a finite
number of times before reaching an irreducible object. Let T ∈ U and fix
a y0 ∈ T . Suppose S1, S2 ∈ U1 are distinct children of T , that is, p(S1) =
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p(S2) = T and S1 6= S2. For i = 1, 2, select xi ∈ Si, x̌i ∈ m(xi), and let
yi ∈ T such that u(x̌i) ⊆ U(yi). Since y0, y1, y2 ∈ T , we have y0 = h1y1 =
h2y2 for some h1, h2 ∈ G. Thus, hiu(x̌i) ⊆ U(y0) for i = 1, 2 by (C2).
Suppose, for the sake of contradiction, that ẑ ∈ h1u(x̌1)∩h2u(x̌2). Then, for
i = 1, 2, we have h−1

i ẑ ∈ u(x̌i), that is, x̌i ∈ l(h−1
i ẑ), which by (C5) implies

kx̌1 = x̌2 for some k ∈ G. Now, by (M3), m(kx1) = km(x1) 3 kx̌1 =
x̌2 ∈ m(x2). This together with (M2), (C2), and the disjointness of the sets
L(x) for distinct x ∈ X implies kx1 = x2, which is a contradiction to the
assumption S1 6= S2. Thus, h1u(x̌1) and h2u(x̌2) are disjoint and, because
U(y0) is finite, T can have only a finite number of children. �

Consequently, p gives U the structure of a finitely branching forest of
rooted trees where the roots of the trees are the irreducible unlabelled objects.
A transversal algorithm for the orbits U is given as Algorithm 2.

Algorithm 2 A McKay-type orbit transversal algorithm.
procedure MCKAY-SCAN(x : labelled object, n : integer)

if o(x) ≤ n then
output x
for each orbit Gxx̂ of Gx on U(x) do

if l(x̂) 6= ∅ then
select any y̌ ∈ l(x̂), and suppose y̌ ∈ L(y)
if y̌ ∈ m(y) then

MCKAY-SCAN(y, n)
end if

end if
end for

end if
endprocedure

Theorem 4.2.5 Let S0 ∈ U , and select any x0 ∈ S0. Then, the call MCKAY-
SCAN(x0, n) will output exactly one labelled object x ∈ S for each descen-
dant S of S0 with order at most n.

Proof. We say that an unlabelled object S ∈ U belongs to generation i if S
has precisely i+ 1 ancestors. Let S0 belong to generation i0.

Suppose, as an induction hypothesis, that the algorithm outputs exactly
one labelled object x ∈ S for each descendant S of S0 belonging to genera-
tion i and with order at most n. The induction base case i = i0 is clear – the
algorithm outputs x0 ∈ S0 if o(x0) ≤ n. For the inductive step, consider a
descendant S of S0 belonging to generation i+ 1 with order at most n.

We first establish that at least one representative of S is output. Since
p(S) belongs to generation i and (O2) implies o(p(S)) < o(S) ≤ n, there
exists an x1 ∈ p(S) such that x1 is output by the induction hypothesis. By
Lemma 4.2.2 there exists a y2 ∈ S, a y̌2 ∈ m(y2) and an x̂2 ∈ u(y̌2) such
that x̂2 ∈ U(x2) for some x2 ∈ p(S). Since x1, x2 ∈ p(S), we have x2 = gx1

for some g ∈ G. Thus, by (C2) x̂2 ∈ gU(x1). Let x̂1 ∈ U(x1) be the orbit
representative chosen by the algorithm for which x̂2 ∈ gGx1x̂1, and let h ∈
Gx1 such that x̂2 = ghx̂1. Since y̌2 ∈ l(x̂2), axiom (C3*) implies l(x̂1) 6= ∅.
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Suppose y̌1 ∈ l(x̂1) is selected by the algorithm and that y̌1 ∈ L(y1). Then,
by (C5), there exists a k ∈ G such that ky̌1 = y̌2, which implies ky1 = y2

by (C2). This together with y̌2 ∈ m(y2) and (M3) implies y̌1 ∈ m(y1).
Therefore, the call MCKAY-SCAN(y1, n) is made for y1 ∈ S, and, because
o(y1) = o(S) ≤ n, y1 is output.

Now, suppose, for the sake of contradiction, that y1, y2 ∈ S are both out-
put. This implies that there were at least two calls to MCKAY-SCAN: one with
arguments (y1, n) and another with (y2, n). For these calls to occur, there
must exist a y̌1 ∈ m(y1) and a y̌2 ∈ m(y2) for which there exist x̂1 ∈ u(y̌1)
and x̂2 ∈ u(y̌2). Furthermore, for i = 1, 2, x̂i must occur as the repre-
sentative of an orbit of Gxi on U(xi) for some labelled object xi ∈ Ti. By
Lemma 4.2.2, we must have T1 = T2 = p(S). Thus, by the induction hy-
pothesis, x1 = x2. Since y1 and y2 are isomorphic, we have gy̌1 = y̌2 for
some g ∈ G by (M2) and (M3). Hence, by (C4), there exists a h ∈ G such
that hx̂1 = x̂2. By (C2) we have U(hx1) 3 hx̂1 = x̂2 ∈ U(x2), and hence
hx1 = x2 = x1. Consequently, h ∈ Gx1 , and x̂1 and x̂2 are on the same orbit
of Gx1 on U(x1). Since exactly one representative per orbit is selected by the
algorithm, we must have x̂1 = x̂2, which is a contradiction as the algorithm
makes at most one call to MCKAY-SCAN per orbit representative. �

Example 4.2.6 We demonstrate that axiom (C3*) added to the original
McKay model is necessary for the validity of Theorem 4.2.5. Figure 4.2 il-
lustrates an instance of the McKay model that satisfies the axioms except for
(C3*). The instance is as follows. Put X = {a1, a2, d1, d2} and suppose that

a2

d1 d2

c1 c2

b1 b2

L(d2)

U(a2)

R

a1

U(a1)

L(d1)

S2

S1

Figure 4.2: An instance of the McKay model without (C3*).

the sets of lower and upper objects are

L(a1) = L(a2) = ∅, L(d1) = {c1}, L(d2) = {c2},
U(d1) = U(d2) = ∅, U(a1) = {b1}, U(a2) = {b2},

where b1, b2, c1, c2 are distinct from each other and from a1, a2, d1, d2.
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Let G = {1, g} act on X ∪ X̌ ∪ X̂ = {a1, a2, b1, b2, c1, c2, d1, d2} by

ga1 = a2, ga2 = a1, gb1 = b2, gb2 = b1,

gc1 = c2, gc2 = c1, gd1 = d2, gd2 = d1.

Finally, define R = {(c1, b1), (c2, b1)},

o(a1) = o(a2) = o(b1) = o(b2) = 0, o(c1) = o(c2) = o(d1) = o(d2) = 1,

and

m(a1) = m(a2) = ∅, m(d1) = {c1}, m(d2) = {c2}.

It is straightforward to verify that conditions (C1)-(C5), (O1)-(O2), and (M1)-
(M3) are satisfied, however, (C3*) does not hold because l(b1) 6= ∅ and
l(gb1) = ∅.

The instance has two unlabelled objects, namely S1 = {a1, a2} and S2 =
{d1, d2}, where S2 is a descendant of S1 by Definition 4.2.3 and Lemma
4.2.2. Consequently, by Theorem 4.2.5 Algorithm 2 should output a rep-
resentative for S2 when started with either MCKAY-SCAN(a1, 1) or MCKAY-
SCAN(a2, 1). On input x = a1, n = 1 the algorithm behaves correctly and
outputs a representative for S2 regardless whether c1 or c2 is chosen as y̌ dur-
ing the course of the algorithm. However, on input x = a2, n = 1 we have
l(x̌) = l(b2) = ∅ and no representative is output. Thus, Theorem 4.2.5
requires axiom (C3*) for its validity. ♦

If determining orbit representatives of Gx on U(x) is computationally de-
manding, an alternative transversal algorithm can be used. This algorithm
employs explicit isomorphism testing instead of orbit computations, and it is
given as Algorithm 3.

Algorithm 3 A McKay-type algorithm with explicit isomorphism testing.
procedure MCKAY-SCAN2(x : labelled object, n : integer)

if o(x) ≤ n then
output x
T ← ∅
for each x̂ ∈ U(x) do

if l(x̂) 6= ∅ then
select any y̌ ∈ l(x̂), and suppose y̌ ∈ L(y)
if y̌ ∈ m(y) and y is not isomorphic to any y′ ∈ T then

MCKAY-SCAN2(y, n)
T ← T ∪ {y}

end if
end if

end for
end if

endprocedure

Theorem 4.2.7 Let S0 ∈ U , and select any x0 ∈ S0. Then the call MCKAY-
SCAN2(x0, n) will output exactly one labelled object x ∈ S for each descen-
dant S of S0 with order at most n.
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Proof. Since at least one representative per orbit of Gx on U(x) is consid-
ered, it is clear by Theorem 4.2.5 that the algorithm outputs a representative
for each descendant S of S0 with order at most n. On the other hand, the
explicit isomorphism testing performed by the algorithm suffices to delete all
isomorphic labelled objects from output. The proof of this is similar to that of
Theorem 4.2.5: First conclude inductively that isomorphic y1, y2 ∈ S must
originate from a unique call MCKAY-SCAN2(x, n) with x ∈ p(S). But then
either y1 or y2 must be removed by isomorphism testing. �

4.3 THE HOMOMORPHISM PRINCIPLE

The homomorphism principle for group actions [62, 63] gives a different
approach to the problem of constructing G-orbit representatives on X . The
idea is to use a chain of homomorphisms of group actions to proceed step
by step from a transversal of orbits of a “simpler” group action to the desired
orbit transversal. We give an overview of the method and illustrate it using
double cosets as an example.

The crucial ingredient of the method is the concept of a homomorphism
of group actions:

Definition 4.3.1 Let G and H be groups and suppose G and H act on
nonempty sets X and Y , respectively. A pair of mappings (η, θ), where
θ : X → Y and η : G → H is a group homomorphism, is a homomor-
phism of group actions if θ(gx) = η(g)θ(x) for all g ∈ G and x ∈ X .

The following theorem connects the orbits H 
 Y to the orbits G 
X via a
homomorphism of group actions, and is consequently called the homomor-
phism principle.

Theorem 4.3.2 Let groups G and H act on nonempty sets X and Y , respec-
tively, and suppose (η, θ) is a homomorphism connecting the two actions so
that both η and θ are surjective. Then,

(i) Suppose T is an arbitrary transversal of H 
 Y . Then, for each orbit
Gx in G 
X , there exists a unique y ∈ T such that Gx ∩ θ−1(y) 6= ∅.

(ii) For any y ∈ Y the orbits inG
X that intersect θ−1(y) are in a bijective
correspondence to the orbits η−1(Hy) 
 θ−1(y).

Proof. Select an orbit Gx ∈ G 
 X and put θ(x) = y0. Because T is a
transversal of H 
 Y , there exists a y ∈ T and a h ∈ H such that y =
hy0. Since η is surjective, there exists a g ∈ G such that η(g) = h. Now,
θ(gx) = η(g)θ(x) = hy0 = y, which implies Gx ∩ θ−1(y) 6= ∅. Suppose
Gx ∩ θ−1(y′) 6= ∅ for some y′ ∈ T . Then there exists a g′x ∈ Gx such that
y′ = θ(g′x) = η(g′)θ(x) = η(g′)y0. So, y′ = η(g′)h−1y. Since both y, y′ ∈
T , we must have y = y′ as T contains exactly one representative from each
orbit. For (ii), select y ∈ Y . It is straightforward to verify that η−1(Hy) ≤ G.
Select a g ∈ η−1(Hy) and suppose x ∈ θ−1(y). Then η(g) ∈ Hy and we
have θ(gx) = η(g)θ(x) = η(g)y = y. As a result, gx ∈ θ−1(y) and the
action of η−1(Hy) on θ−1(y) is well-defined. Now select any x, x′ ∈ θ−1(y)
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and g ∈ G. If x′ = gx, then necessarily y = θ(x′) = θ(gx) = η(g)y, so
g ∈ η−1(Hy). Thus x, x′ reside in the same G-orbit if and only if they reside
in the same η−1(Hy)-orbit. �

We give the following two observations to illustrate the usefulness of the
situation of Theorem 4.3.2 from a constructive point of view. (We note,
however, that practical algorithms utilizing the situation of Theorem 4.3.2
are more involved, see [63, 72, 73, 107, 108] for examples.) First, given a
transversal T of H 
 Y and the associated stabilizers Hy for each y ∈ T ,
we can construct a transversal T ′ of G 
 X by taking a union of transver-
sals of η−1(Hy) 
 θ−1(y) over all y ∈ T . Second, it is also possible to
proceed from a transversal T ′ of G 
 X to a transversal of H 
 Y because
θ(Gx) = η(G)θ(x) = Hθ(x) for all x ∈ X . So, it suffices to consider only
images θ(x) of x ∈ T ′ and to eliminate all but one of those images that reside
on each H-orbit.

A concrete example of the homomorphism principle is given by the con-
struction of double coset representatives.

Definition 4.3.3 For U, V ≤ G and g ∈ G the set UgV = {ugv : u ∈ U,
v ∈ V } is called the (U, V )-double coset of g.

Double cosets can alternatively defined as orbits of a group action. Let G be
a group and suppose U, V ≤ G. The mapping (u, gV ) 7→ ugV of U ×G/V
into G/V is clearly a group action of U on the set of left cosets of V in G.
Because two left cosets are either identical or disjoint (Theorem B.2.17), we
may identify the orbits U 
G/V with the set U\G/V = {UgV : g ∈ G}.

A transversal for the (U, V )-cosets in G can now be constructed using a
homomorphism of group actions and Theorem 4.3.2 as follows: Suppose
that V ≤ Ṽ ≤ G and let U act on G/Ṽ similarly by left multiplication. Put
η = id and define θ : G/V → G/Ṽ by gV 7→ gṼ for all g ∈ G. We observe
that θ is well-defined because

g1V = g2V ⇔ g−1
2 g1 ∈ V ≤ Ṽ ⇒ g1Ṽ = g2Ṽ

holds for all g1, g2 ∈ G. The pair (η, θ) is a homomorphism of group actions
because θ(ugV ) = ugṼ = uθ(gV ) = η(u)θ(gV ) for all u ∈ U and g ∈
G. Moreover, both mappings are surjective as can be easily seen. Thus,
Theorem 4.3.2 applies and from a transversal of (U, Ṽ )-cosets in G we can
construct a transversal of (U, V )-cosets in G, or the other way around. This
enables the construction of a transversal of (U, V )-cosets in G step by step
along a ladder of subgroups between V and G. (Schmalz introduced this
construction technique for a transversal of double cosets in [107] and called
it “Leiterspiel”, or the ladder game.)

Definition 4.3.4 A subgroup ladder between groups V and G, V ≤ G, is
a sequence V0, V1, . . . , Vn such that V = V0, Vn = G, and, for all i ∈ Zn,
either Vi ≤ Vi+1 or Vi ≥ Vi+1.

For an application of the ladder game and double cosets to the construction
of t-designs (a generalization of block designs) with a prescribed automor-
phism group, see [5, 108].
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Double cosets have a range of applications in determining a set of orbit
representatives (see [62]). This is a consequence of the following theorem,
which transforms the problem of constructing an orbit transversal for the
orbits U 
X to the problem of determining transversal(s) of double cosets.

Theorem 4.3.5 Let G act on X and suppose U ≤ G. Then, for all x ∈ X ,
the mapping Ugx 7→ UgGx of U 
Gx into U\G/Gx is a bijection.

Proof. Let x ∈ X . Recall that the mapping gx 7→ gGx is a bijection of Gx
onto G/Gx (Theorem B.2.33). Put η = id and θ : gx 7→ gGx, and let U act
on Gx by (u, gx) 7→ ugx and on G/Gx by (u, gGx) 7→ ugGx. Consequently,
the pair (η, θ) is a homomorphism of group actions. Because both η and θ
are bijective, Theorem 4.3.2 shows that the orbits U 
Gx and U 
G/Gx =
U\G/Gx are in a bijective correspondence under θ̄ : Ugx 7→ UgGx. �
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5 ALGORITHMS FOR BLOCK DESIGNS

In this chapter we consider the problem of isomorph-free exhaustive genera-
tion of block designs and their resolutions. We start by giving a survey of exist-
ing research, and then proceed to develop three algorithms for isomorph-free
exhaustive generation of block designs and resolutions based on the Read–
Faradžev and McKay frameworks from the previous chapter.

The most common algorithmic discipline employed in exhaustive genera-
tion of block designs is backtrack search (see [48] and [69, Ch. 4]) combined
with some method for removing isomorphic partial designs from considera-
tion such as canonical placement, explicit isomorphism testing, or the Read–
Faradžev and McKay frameworks. There are at least three main approaches
in the literature to formulate an exhaustive backtrack search for block de-
signs. The first is to construct designs block by block and remove isomor-
phic partial solutions after addition of a block. This approach was used by
Mathon and Lomas [77]. The second approach, examples of which include
the work of McKay and Radziszowski [85] and Denny and Gibbons [30], is
to proceed from smaller designs to larger designs by using some extension
method, such as Alltop’s extension theorem [1], combined with isomorph re-
jection. The third, and the most common, approach is to construct a design
point by point and to perform isomorph rejection after addition of a point
[31, 41, 57, 85, 93, 99, 112].

We emphasize that these backtrack search methods are aimed at the gen-
eration of a complete set of isomorphism equivalence class representatives
for a given parameter family (v, k, λ). If additional properties are assumed
of the designs, then other successful exhaustive methods exist. For example,
generation of designs with a prescribed group of automorphisms has been
studied by Kramer and Mesner [67], Kreher and Radziszowski [68], Schmalz
[108], Betten et al. [5], and Laue [73].

There are at least three main approaches for generating resolutions of
block designs in the literature. The first is to construct all nonisomorphic
resolutions, if any, for each isomorphism class representative during an ex-
haustive search that considers representatives for all B(v, k, λ) designs. This
approach has been successfully applied by Östergård [93, 96]. The second
approach is to use a suitable combinatorial subconfiguration as a starting
point for generation, see Lam and Tonchev [70] and Ito et al. [56] for exam-
ples. The third approach is to generate resolutions from scratch using back-
track search with isomorph rejection. There are again two variants to such a
backtrack search. The first variant is to construct resolutions parallel class by
parallel class. It was used by Dinitz et al. [32] to classify the nonisomorphic
one-factorizations of K12, the complete graph on 12 vertices. (This corre-
sponds to a classification of the nonisomorphic resolutions in R(12, 2, 1).)
Additional examples of this variant include the classification of RB(12, 4, 3)
designs conducted by Morales and Velarde [90]. The second variant is to
proceed point by point, that is, recalling the correspondence from Section
3.5, codeword by codeword. Backtrack search with isomorph rejection has
been used for construction of codes in at least [13, 95, 92].
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5.1 A READ–FARADŽEV-TYPE ALGORITHM FOR BLOCK DESIGNS

The algorithm described in this section is a variant of a well-known exhaus-
tive generation algorithm for block designs. Several researchers, including at
least Gibbons [41], Ivanov [57], Pietsch [99], Spence [112], and Denny [30],
have contributed to its development.

The algorithm constructs lexicographically maximum representatives of
isomorphism equivalence classes of B(v, k, λ) designs point by point using
backtrack search combined with a maximum clique algorithm. This ap-
proach was motivated by the successful classification of the nonisomorphic
B(31, 10, 3) and B(24, 4, 1) designs conducted by Spence [110, 112] using
a similar algorithm. (So, in this sense our algorithm is not new.) Additional
motivation for this approach of combining a comparably slow orderly ap-
proach early in the search with a fast-running clique algorithm later in the
search can be found in a set of principles for designing fast backtrack algo-
rithms presented in [80].

Our contribution to the algorithm is that we improve the efficiency of the
lexicographic maximum test using a pruning technique applied by Meringer
[87] (see also [86]) in orderly construction of regular graphs and cages. A sec-
ond novelty is that we apply a recent maximum clique algorithm of Östergård
[94] in the second stage of the algorithm.

A partial solution in the backtrack search is a w × b incidence system
A ∈ ZZw×Zb2 , where 1 ≤ w ≤ v. (Throughout this section we assume that
v, b, r, k, λ are positive integers that satisfy the necessary conditions (2.4) for
B(v, k, λ) design existence.) For every 1 ≤ w ≤ v, the set ZZw×Zb2 is as-
sumed to have lexicographic order induced by the standard lexicographic
order on Zw × Zb and Z2 (see Appendix B for a precise definition of lexi-
cographic order). A complete solution in the search is an incidence system
A ∈ I B(v, k, λ) that is the lexicographic maximum of its orbit under the
row and column permuting action (2.13) of Sw × Sb.

On input A ∈ ZZw×Zb2 the behaviour of the algorithm is divided into two
stages depending on the number of points (that is, rows) in the incidence
system. Let 1 ≤ p ≤ v be the number of rows that separates the two stages.

Stage 1. If w < p, then the algorithm performs a two-level backtrack
search for extensions to the input incidence system. The first level constructs
every possible row which extends the input incidence system. (The row gen-
eration procedure is described in Section 5.1.2.) Whenever a valid extending
row is found on the first level, a second level of backtrack search is performed
to verify that the extended incidence system is the lexicographic maximum
of its orbit under row and column permutation. (This test is described in
Section 5.1.3.) If the extended incidence system is the maximum of its orbit,
then it is recursively considered for extensions and maximality.

Stage 2. If w ≥ p, then the algorithm first generates a list of all rows that
extend the input incidence system. These rows form the vertices of a graph
whose (v− p)-cliques contain all extensions of the input incidence system to
a lexicographically maximal block design, if any. (The graph generation and
the clique search are described in Section 5.1.4.)

To argue the correctness of the algorithm we embed it into the Read–
Faradžev framework. This embedding is then used as a basis for deriving
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pruning conditions to the backtrack search.

5.1.1 Embedding into the Read–Faradžev framework

The embedding to the Read–Faradžev framework rests on the following el-
ementary identification: Any incidence system A ∈ ZZv×Zb2 can be thought
as a mapping ϕ : Zv → Z

Zb
2 that takes i ∈ Zv to a mapping ϕi : Zb → Z2

that describes the entries of row i of A, that is, ϕi : j 7→ A(i, j) for all
(i, j) ∈ Zv × Zb.

This identification of ZZv×Zb2 and (ZZb2 )Zv allows us to consider the point-
by-point construction of incidence systemsA ∈ ZZv×Zb2 in the Read–Faradžev
framework by setting X = Zv, Y = ZZb2 , G = Sv×Sb, and letting (σ, τ) ∈ G
act on ϕ ∈ Y X by

(σ, τ)ϕ : i 7→ τϕσ−1(i), τϕσ−1(i) : j 7→ ϕσ−1(i)(τ
−1(j)) (5.1)

for all (i, j) ∈ Zv × Zb. It is straightforward to verify that the orbits G 
 Y X

of (5.1) correspond to the orbits Sv × Sb 
 ZZv×Zb2 of the row and column-
permuting action (2.13). Moreover, lexicographic order on Y X is equivalent
to lexicographic order on ZZv×Zb2 if Y = Z

Zb
2 has the standard lexicographic

order.
To generate block designs in the Read–Faradžev framework, we put

P = I B(v, k, λ) and select the lexicographic maximum incidence system
of each orbit in Sv × Sb 
 ZZv×Zb2 as the canonical representative. Formally,
we let

C = {A ∈ ZZv×Zb2 : (σ, τ)A ≤ A for all (σ, τ) ∈ G}. (5.2)

We observe that with these choices extending a partial solution in the
Read–Faradžev framework corresponds to adding zero or more rows to an
incidence system. Moreover, a proper extension corresponds to the addition
of at least one row, and a minimal proper extension adds exactly one row.

The lexicographic maximum test performed after addition of each row in
Stage 1 of the algorithm now corresponds to applying extract (4.3) to prune
the search in the Read–Faradžev framework. (To see this, note that for 1 ≤
w ≤ v the action of the stabilizer GXw in (4.3) corresponds to the row and
column permuting action of Sw×Sb; cf. Lemma 5.1.2.) Thus, Stage 1 of the
algorithm is essentially an implementation of Algorithm 1 for the generation
of block designs.

We will now derive necessary conditions for extendibility of a partial solu-
tion based on the properties of the incidence systems in P ∩ C. Each of the
conditions corresponds to an extract in the Read–Faradžev framework. So,
as long as only such necessary conditions are used to prune the search, the
first stage of the algorithm correctly generates all partial solutions that have
an extension in P ∩ C.

Recall that the incidence systems in P = I B(v, k, λ) are characterized
by properties (i)-(iii) of Lemma 2.4.7. These properties give us the following
necessary condition for extendibility:

Lemma 5.1.1 Let w ∈ {1, 2, . . . , v}. An incidence system A ∈ ZZw×Zb2 has
an extension in P only if
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(i)
∑w−1

i=0 A(i, j) ≤ k for all j ∈ Zb; and

(ii)
∑b−1

j=0 A(i, j) = r for all i ∈ Zw; and

(iii)
∑b−1

j=0 A(i1, j)A(i2, j) = λ for all i1, i2 ∈ Zw, i1 6= i2.

The next two necessary conditions for extendibility appear in [57]. The
first condition is extract (4.3) adapted to the generation of lexicographically
maximal incidence systems under the row and column permuting action.

Lemma 5.1.2 Let w ∈ {1, 2, . . . , v} and suppose Sw × Sb acts on ZZw×Zb2

by permutation of the rows and columns. Then, an incidence system A ∈
Z
Zw×Zb
2 has an extension in C only if (σ, τ)A ≤ A for all (σ, τ) ∈ Sw × Sb.

This condition implies that the rows and columns of any incidence system
that has an extension in C must appear in decreasing lexicographic order.
We write A(i, ·) for row i of A ∈ ZZw×Zb2 and A(·, j) for column j of A.
Formally, we consider A(i, ·) : Zb → Z2 and A(·, j) : Zw → Z2 as mappings
defined by

A(i, ·) : j 7→ A(i, j), A(·, j) : i 7→ A(i, j)

for all (i, j) ∈ Zw×Zb so that the rows and columns ofA inherit the standard
lexicographic order from Z

Zb
2 and ZZw2 , respectively.

Lemma 5.1.3 Let w ∈ {1, 2, . . . , v}. An incidence system A ∈ ZZw×Zb2

has an extension in C only if A(i, ·) ≥ A(i + 1, ·) for all i ∈ Zw−1 and
A(·, j) ≥ A(·, j + 1) for all j ∈ Zb−1.

Proof. If either the rows or the columns of A do not appear in decreasing lex-
icographic order, then we can sort them to decreasing order. Such a sorted
incidence system is lexicographically greater than A and related to A by a
permutation of the rows and columns. Consequently, the necessary condi-
tion of Lemma 5.1.2 is not satisfied and A cannot be extended to an element
of C. �

The next condition is a reformulation of an observation made by Denny
and Mathon [31].

Lemma 5.1.4 Let w ∈ {1, 2, . . . , v}, let A ∈ ZZw×Zb2 , and suppose that
there exists a j0 ∈ Zb satisfying

∑w−1
i=0 A(i, j0) < k. Then, A has an extension

in P ∩ C only if A(s, tA(s)) = 1 for all s ∈ {1, 2, . . . , w}, where

tA(s) = min {j ∈ Zb :
s−1∑
i=0

A(i, j) < k}.

Proof. Select s ∈ {1, 2, . . . , w} and suppose that A has an extension in
P ∩ C. Then A(s, j) = 0 for all j ∈ ZtA(s), because otherwise condition (i)
of Lemma 5.1.1 would be violated. To reach a contradiction, suppose that
A(s, tA(s)) = 0. Then, for every extension A′ ∈ P of A, there must exist a
r > s such that A′(r, tA(s)) = 1 and A′(r, j) = 0 for every j ∈ ZtA(s). But
then A′(s, ·) < A′(r, ·) and A′ has no extension in C (that is, A′ /∈ C) by
Lemma 5.1.3. This is a contradiction since A′ was arbitrary. �
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Although the following is not implemented in our algorithm, we wish to
mention that Denny and Gibbons [30] have developed a pruning method
(strong partial isomorph rejection) based on stored automorphisms of the in-
put incidence system, which also enables backjumping in a backtrack search
for row extensions; we note that this pruning technique is essentially an ap-
plication of extract (4.4) to incidence systems.

5.1.2 Row generation

The row generation algorithm accepts as input an incidence system A ∈
Z
Zw×Zb
2 , and produces all rows x ∈ ZZb2 so that A extended with x satisfies

a suitable collection of necessary conditions for extendibility to an element
of P ∩ C. Our row generation algorithm uses the necessary conditions for
extendability given in Lemmata 5.1.1, 5.1.3, and 5.1.4. (Naturally, the in-
put A must also satisfy these conditions, because otherwise it clearly has no
extension to an element of P ∩ C.)

The problem of producing all rows x ∈ ZZb2 so that A extended with x
satisfies the necessary condition of Lemma 5.1.1 is equivalent to determining
all integer solutions x ∈ ZZb2 to the system of linear equations

1 · · · 1
A(0, 0) · · · A(0, b− 1)

...
...

A(w − 1, 0) · · · A(w − 1, b− 1)


 x(0)

...
x(b− 1)

 =


r
λ
...
λ

 ,

(5.3)

where x(j) = 0 whenever
∑w−1

i=0 A(i, j) = k. (So, we can remove the
columns j satisfying

∑w−1
i=0 A(i, j) = k from (5.3) and fix x(j) = 0. In

what follows we implicitly assume this deletion has been performed.)
The remaining necessary conditions allow us to further constrain the set

of admissible row extensions. The lexicographic order constraint (Lemma
5.1.3) is straightforward to incorporate into (5.3): The decreasing lexico-
graphic row order is enforced by requiring that a solution x ∈ ZZb2 to (5.3)
must be lexicographically lesser than the lexicographically least row in A.
The decreasing lexicographic column order is enforced by requiring for ev-
ery j ∈ {1, 2, . . . , b−1} that x(j) ≤ x(j−1) wheneverA(·, j) = A(·, j−1).
Finally, Lemma 5.1.4 fixes x(tA(w)) = 1.

All solutions to (5.3) satisfying the additional constraints of Lemmata 5.1.3
and 5.1.4 can now be determined using, for example, backtrack search. Our
implementation relies on backtrack search which first fixes x(0), then x(1),
x(2) and so on until either a solution is reached or it is no longer possible
satisfy (5.3), at which point backtracking is performed. Inextendible par-
tial solutions are detected by keeping track of the sum of all the x(j)s in
the partial solution and the number of ones in each row in the remaining
columns of A. A partial solution x(0), x(1), . . . , x(s) is pruned if either
b − s − 1 < r −

∑s
j=0 x(j) or

∑b−1
j=s+1 A(i, j) < λ −

∑s
j=0 A(i, j)x(j)

for some i ∈ Zw. (We point out that more sophisticated methods for detect-
ing infeasible solutions early in this type of backtrack search are available, see
[29, p. 119] for a packing constraint.)
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Alternative methods to backtrack search for determining all solutions to
systems of linear integer equations analogous to (5.3) appear in [108, 118].

5.1.3 Canonicity test

The purpose of the canonicity test is to verify that a given incidence system is
the lexicographic maximum of its orbit under the row and column permuting
action (2.13). For a given A ∈ ZZw×Zb2 , this is equivalent to deciding whether
there exists a (σ, τ) ∈ Sw × Sb such that (σ, τ)A > A.

A straightforward implementation of the canonicity test simply searches
through all possible choices (σ, τ) ∈ Sw×Sb and tests whether (σ, τ)A > A.
However, we can avoid searching through Sb for every σ ∈ Sw by noting
that the lexicographic rank of (σ, τ)A is maximal for those τ ∈ Sb that sort
the columns of (σ, 1)A to decreasing lexicographic order. Thus, for canon-
icity testing it suffices to search through every σ ∈ Sw and test whether the
column-sorted version of (σ, 1)A is lexicographically greater than A. Fur-
thermore, a search through all σ ∈ Sw can be implemented as a backtrack
search with pruning so that in general only a fraction of the w! row permuta-
tions need to be considered for a given incidence system.

The backtrack search proceeds step by step fixing one image point of a
permutation σ ∈ Sw at a time, that is, the image point σ(0) is fixed first,
then σ(1), σ(2), and so forth. Pruning is made possible by the observa-
tion that from a partial solution σ(0), . . . , σ(i) we can determine the first
i + 1 rows of the matrix (σ−1, 1)A, that is, we can determine the restriction
(σ−1, 1)A|Zi+1×Zb . Consequently, we can sort the columns of
(σ−1, 1)A|Zi+1×Zb to decreasing lexicographic order and determine whether
the matrix so obtained differs fromA|Zi+1×Zb . IfA|Zi+1×Zb is lexicographically
greater than the column-sorted matrix, then we can backtrack because no ex-
tension of the current partial solution will lead to a matrix greater than A.
On the other hand, if A|Zi+1×Zb is lexicographically lesser than the column-
sorted matrix, then every extension of the current partial solution will lead to
a matrix which is greater than A (and, therefore, A is not the lexicographic
maximum of its orbit). Thus, the only case in which we have to search further
is when the column-sorted matrix is equal to A|Zi+1×Zb .

The backtrack search algorithm just described for checking lexicographic
maximality of incidence systems is well-known [30, 31, 93]. A problem with
this algorithm is that searches through all elements of the point automor-
phism group AutP (A) = {σ ∈ Sw : ∃τ ∈ Sb (σ, τ)A = A}, that is, the full
automorphism group of the set system that corresponds to A; cf. Definition
2.1.13.

The following observation, attributed to R. Grund in [87], gives us a way
to prune the search whenever a point automorphism is encountered.

Lemma 5.1.5 LetG act on a nonempty totally ordered setX and let U ≤ G.
Furthermore, suppose that x ∈ X satisfies ux ≥ x for all u ∈ U , and that we
have ûgx = x for some û ∈ U and g ∈ G. Then, ugx ≥ x for all u ∈ U .

Proof. Select any u ∈ U . Then, ugx = uû−1ûgx = uû−1x ≥ x since
uû−1 ∈ U . �
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Corollary 5.1.6 Let Sw × Sb act on ZZw×Zb2 by permutation of the rows and
columns, let U ≤ Sw, and suppose that A ∈ ZZw×Zb2 satisfies (σ, τ)A ≤ A for
all (σ, τ) ∈ U × Sb. Then, (σπ, τ)A ≤ A for all (σ, τ) ∈ U × Sb whenever
(σ̂π, τ̂)A = A for some π ∈ Sw, σ̂ ∈ U , and τ̂ ∈ Sb.

In other words, whenever the backtrack search has tested all σ ∈ U for a
subgroupU ≤ Sw, and no counterexample to the maximality ofAwas found,
then the discovery of a point automorphism π ∈ AutP (A) implies that we
can ignore the entire right coset Uπ in the search.

To enable as much pruning as possible with a minimal amount of prior
testing, we can take advantage of a suitable chain of subgroups

Sw ≥ U0 ≥ U1 ≥ U2 ≥ · · · ≥ Un−1 = {1}

and order the search so that Un−1 is tested first, then Un−2\Un−1, Un−3\Un−2

and so on until either a counterexample is found or all elements of Sw have
been considered.

Meringer [87] uses the chain Ui = {π ∈ Sw : π(j) = j for all j ∈ Zi+1},
i ∈ Zw, of point stabilizer subgroups of Sw in his canonicity testing algorithm
for graphs. This has the advantage that a successor group in the chain can
be expressed as a disjoint union of left cosets with only transpositions as the
coset representatives, that is,

Ui−1 =
w−1⋃
j=i

(i j)Ui (5.4)

for all i ∈ Zw (we assume U−1 = Sw).
This stabilizer chain leads to a straightforward lexicographic maximality

test implementation for incidence systems, which is formulated as Algorithm
4. Note that although Corollary 5.1.6 involves a right coset, the search in
Algorithm 4 is performed using left cosets; this is due to the inversion of σ in
(2.13).

Whenever A is the lexicographic maximum representative of its orbit, we
obtain as a side effect of the canonicity test a strong generating set (see [14,
33]) for the group AutP (A) with respect to the chain U0 ≥ U1 ≥ · · · ≥
Uw−1 by storing the discovered automorphisms σ during the course of the
algorithm.

5.1.4 Clique search

Before discussing the second stage of the algorithm, we review the necessary
graph-theoretic definitions. Recall that a graph is a pairG = (V,E), where V
is a set of vertices and E is a set of 2-subsets of V , called edges (cf. Definition
2.1.5). The order of a graph is the number of vertices it contains. A graph
is complete if E contains all 2-subsets of V . A graph G′ = (V ′, E ′) is a
subgraph of G = (V,E) if V ′ ⊆ V and E ′ ⊆ E. A complete subgraph of a
graph is called a clique. A clique of order k is called a k-clique.

Let A ∈ ZZp×Zb2 be an incidence system which has been input by the
first stage of the algorithm to the second stage. (So, A satisfies the necessary
conditions for extendibility given in Lemmata 5.1.1 and 5.1.3.)
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Algorithm 4 Canonicity test for a w × b incidence system A ∈ ZZw×Zb2 .
function COSET-SEARCH(σ : permutation, i, l, w : integer) : integer

if i = w then
(* Automorphism σ ∈ AutP (A) discovered. *)
return 0

end if
if i < l then
J ← {i}

else
J ← {i, i+ 1, . . . , w − 1}

end if
if i = l then

(* Coset of the identity has been tested before, remove it. *)
J ← J \ {i}

end if
for all j ∈ J do
σ′ ← σ ◦ (i j)
put A′(s, t) = A(σ′(s), t) for all (s, t) ∈ Zi+1 × Zb
sort columns of A′ to decreasing lexicographic order
if A′ ≥ A|Zi+1×Zb then

if A′ > A|Zi+1×Zb then
(* Counterexample found. *)
return -1

end if
d← COSET-SEARCH(σ′, i+ 1, l, w)
if d < 0 ∨ (d = 0 ∧ i > l) then

(* Counterexample found or Corollary 5.1.6 applies. *)
return d

end if
end if

end for
return 1

function CANONICAL(A : w × b incidence system) : boolean
for l = w,w − 1, . . . , 0 do

(* Test left cosets of the stabilizer of 0, 1, . . . , l in Sw. *)
if COSET-SEARCH(id, 0, l, w) < 0 then

return FALSE
end if

end for
return TRUE
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The problem of extendingA to a block design in P∩C can be transformed
to a problem of locating a collection (v−p)-cliques in the compatibility graph
of A as follows.

Definition 5.1.7 The compatibility graph Gr,λ(A) of an incidence system
A ∈ ZZp×Zb2 is the graph whose vertices consist of all solutions x ∈ ZZb2 to
(5.3) that are lexicographically lesser than any row of A; any two vertices
x1, x2 are connected by an edge if and only if

∑b−1
j=0 x1(j)x2(j) = λ.

Suppose now that A′ ∈ I B(v, k, λ) is an extension of A whose rows are in
decreasing lexicographic order. Then, by (i) and (iii) of Lemma 2.4.7, the
last v − p rows of A′ form a set of v − p vertices of Gr,λ(A). Furthermore,
there is an edge between each pair of these vertices in Gr,λ(A). Thus, the
vertices and edges form a (v−p)-clique in Gr,λ(A). Conversely, suppose that
x1, . . . , xv−p ∈ ZZb2 are the vertices of a (v − p)-clique in Gr,λ(A). Then,
we can extend A using x1, . . . , xv−p and obtain an incidence system A′ ∈
Z
Zv×Zb
2 that satisfies properties (i) and (iii) of Lemma 2.4.7. By Corollary

2.4.9, we have A′ ∈ I B(v, k, λ).
Consequently, every collection of rows that extends A to an element of

P ∩C appears as a (v−p)-clique in Gr,λ(A). However, although each (v−p)-
clique in Gr,λ(A) extends A to an element of P , such extended A is not
necessarily the lexicographic maximum of its orbit. Therefore, all extensions
obtained from (v − p)-cliques of Gr,λ(A) must still be tested for maximality
before they are accepted as elements of P ∩ C by the algorithm. As a side
effect of the test, we conveniently obtain a strong generating set for the point
automorphism group of each canonical representative.

The following lemma shows that (v−p)-cliques are maximum in Gr,λ(A).

Lemma 5.1.8 If A ∈ ZZp×Zb2 satisfies the necessary conditions for extendibil-
ity given in Lemma 5.1.1, then the order of any clique in Gr,λ(A) is at most
v − p.

Proof. Put xi = A(i, ·) ∈ ZZb2 for all i ∈ Zp and suppose xp, . . . , xw−1 are
the vertices of a (w − p)-clique in Gr,λ(A). By Lemma 5.1.1 and Definition
5.1.7, each xi contains precisely r ones, and

∑b−1
j=0 xi1(j)xi2(j) = λ for all

distinct i1, i2 ∈ Zw. Consequently, dH(xi1 , xi2) = 2(r − λ) for all distinct
i1, i2 ∈ Zw. The b-tuples x1, . . . , xw form a constant weight code of length
b, weight r, and minimum distance 2(r − λ). The cardinality of such a code
is bounded from above by the so-called Johnson bound (see [75, p. 525])

w ≤ (r − λ)b

r2 − rb+ (r − λ)b
,

which simplifies to w ≤ v using (2.4). �
Standard maximum clique algorithms such as [17, 94] (which locate a

single maximum clique of the graph) are easily modified to generate all max-
imum cliques. Our implementation uses the maximum clique algorithm of
Östergård [94].

Although the following is not implemented in our algorithm, we remark
that Spence [112] makes some useful observations on the generation of the
compatibility graph and on how to prune cliques that do not correspond to a
lexicographically maximal extension during the clique search.
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5.2 A READ–FARADŽEV-TYPE ALGORITHM FOR RESOLUTIONS

In this section we develop an algorithm for generating all nonisomorphic res-
olutions of RB(v, k, λ) designs, or equivalently, all inequivalent EDm-codes
with parameters (n,M, d)q. This algorithm was used to settle the nonexis-
tence of an RB(15, 5, 4) design. (The algorithm that appeared in conjunc-
tion with that result in [61] is identical to the algorithm described here with
the exception that the present algorithm uses Lemma 5.1.5 for pruning dur-
ing the canonicity test.)

We use the coding-theoretic framework to discuss the algorithm because
this is more convenient. Let n,M, d, q constitute the parameters of an EDm-
code. The algorithm constructs lexicographically minimal representatives of
(n,M, d)q codes codeword by codeword using backtrack search combined
with a maximum clique algorithm. Similarly to the algorithm presented in
the previous section, the present algorithm is divided into two stages depend-
ing on the number of codewords in the input code. The first stage proceeds
codeword by codeword and applies a lexicographic minimality test after each
added codeword. The second stage constructs a graph from all codewords
that extend the input code and performs a maximum clique search in the
graph to locate extensions of the input code to an (n,M, d)d code.

5.2.1 Embedding into the Read–Faradžev framework

We represent q-ary codes of length n and cardinality M as M × n matrices
over Zq (recall Section 3.4). In particular, the isometry equivalence classes
of (n,M, d)q codes then correspond to the orbits of the action (3.4) of SM ×
(Sq o Sn) on ZZM×Znq .

The embedding into the Read–Faradžev framework is analogous to that
used for block designs. We put X = ZZnq , Y = ZM , G = SM × (Sq oSn), and
let (σ, (µ, π)) ∈ G act on ϕ ∈ Y X by

(σ, (µ, π))ϕ : i 7→ (µ, π)ϕ(σ−1(i)) (5.5)

for all i ∈ Zn, where (µ, π) ∈ Sq o Sn acts on a codeword ϕ(σ−1(i)) ∈ ZZnq
as in Theorem 3.3.7. This action on Y X is clearly equivalent to the action
(3.4) on ZZM×Znq . Furthermore, the standard lexicographic order on Y X is
equivalent to the standard lexicographic order on ZZM×Znq .

To generate all nonisomorphic (n,M, d)q codes, we put
P = L C q(n,M, d) and select the lexicographic minimum of each orbit
as the canonical representative:

C = {A ∈ ZZM×Znq : A ≤ (σ, (µ, π))A for all (σ, (µ, π)) ∈ G}.

We derive next a collection of necessary conditions for extendibility of a par-
tial solution A ∈ ZZM′×Znq .

Because an EDm-code is equidistant and each coordinate value occurs
precisely M/q times in a coordinate (Corollary 3.2.4), we have the following
two elementary conditions for extendibility:

Lemma 5.2.1 Let M ′ ∈ {1, 2, . . . ,M}. An A ∈ ZZM′×Znq has an extension
in P only if dH(A(i1, ·), A(i2, ·)) = d for all distinct i1, i2 ∈ ZM ′ .
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Lemma 5.2.2 Let M ′ ∈ {1, 2, . . . ,M}. An A ∈ ZZM′×Znq has an extension
in P only if |{i ∈ ZM ′ : A(i, j) = l}| ≤M/q for all (j, l) ∈ Zn × Zq.

The generic extract (4.3) for the lexicographic maximum representatives in
the Read–Faradžev framework can naturally be formulated for the lexico-
graphic minimum representatives of an orbit as well. Thus, any partial so-
lution A ∈ ZZM′×Znq that has an extension in C must be the lexicographic
minimum of its orbit:

Lemma 5.2.3 Let M ′ ∈ {1, 2, . . . ,M}. An A ∈ ZZM′×Znq has an extension
in C only if A ≤ (σ, (µ, π))A for all (σ, (µ, π)) ∈ SM ′ × (Sq o Sn).

This implies that whenever A ∈ ZZM′×Znq has an extension in C, then its
rows and columns appear in increasing lexicographic order. Furthermore,
the columns must be minimal with respect to a permutation of the coordi-
nate values Zq. These necessary conditions are given in the following two
lemmata.

Lemma 5.2.4 Let M ′ ∈ {1, 2, . . . ,M}. An A ∈ ZZM′×Znq has an extension
in C only if A(i, ·) ≤ A(i + 1, ·) for all i ∈ ZM ′−1 and A(·, j) ≤ A(·, j + 1)
for all j ∈ Zn−1.

Proof. The rows and columns of A can be permuted in an arbitrary way by
choosing a suitable pair (σ, π) ∈ SM ′ × Sn and µ = 1. If either the rows
or the columns of A do not appear in increasing lexicographic order, then
we can sort them to obtain a matrix lexicographically lesser than A, which
implies that the necessary condition in Lemma 5.2.3 is not satisfied. �

Lemma 5.2.5 Let M ′ ∈ {1, 2, . . . ,M}. An A ∈ ZZM′×Znq has an extension
in C only if A(·, j) ≤ νA(·, j) for all j ∈ Zn and ν ∈ Sq, where νA(·, j) :
i 7→ ν(A(i, j)) for all i ∈ ZM ′ .

Proof. If some column A(·, j) is not lexicographically minimal with respect
to a permutation ν ∈ Sq of the coordinate values, then we can minimize
the column using a suitable µ ∈ SZnq and obtain a matrix lexicographically
lesser than A. Consequently, the necessary condition of Lemma 5.2.3 is not
satisfied. �

By the following lemma the first column of an extendible partial solution
is always fixed.

Lemma 5.2.6 Let M ′ ∈ {1, 2, . . . ,M}. An A ∈ ZZM′×Znq has an extension
in P ∩ C only if A(i, 0) = bi/qc for all i ∈ ZM ′ .

Proof. Suppose A′ ∈ P ∩ C is an extension of A. The coordinate values
in column A′(·, 0) must form an increasing sequence, because otherwise the
rows ofA′ are not in increasing lexicographic order. SinceA′ forms an EDm-
code, each of the q coordinate values in Zq must occur exactly M/q times in
A′(·, 0) (Corollary 3.2.4). Thus, A′(i, 0) = bi/qc. �
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5.2.2 Codeword generation

The codeword generation procedure generates on input A ∈ ZZM′×Znq all
codewords that extend A so that the extension satisfies a collection of neces-
sary conditions for extendibility to an element of P ∩ C.

The necessary conditions used by our backtrack search implementation
are given in Lemmata 5.2.1 (equidistance), 5.2.2 (bound on the number
of coordinate value occurences), 5.2.4 (lexicographic ordering of rows and
columns), 5.2.5 (column minimality), and 5.2.6 (the first column is fixed).
Clearly,Amust satisfy these conditions because otherwiseA has no extension
in P ∩ C.

The backtrack search constructs a codeword x ∈ ZZn2 one coordinate at
a time, that is, x(0) is fixed first, then x(1) and so on. Backtracking is per-
formed either after a complete solution is reached or if the current partial
solution cannot be extended further without violating one or more of the
necessary conditions for extendibility.

We describe next how each of the necessary conditions is incorporated
into the backtrack search. The easiest conditition to incorporate is the one
that fixes the first column, namely, x(0) = bM ′/qc is fixed. Equally straight-
forward to check is the bound on coordinate value occurences: If coordinate
value l ∈ Zq occurs M/q times in A(·, j), then we must have x(j) 6= l.
The column minimality condition is enforced by the constraint x(j) ≤ 1 +
maxi∈ZM′ A(i, j). The lexicographic order condition is incorporated into the
search in two ways. First, a partial solution must always be lexicographi-
cally greater than or equal to the lexicographically greatest row in A. This
is easily arranged by restricting the choice of coordinate values. Second, if
A(·, j) = A(·, j− 1), then we must have x(j) ≥ x(j− 1), because otherwise
the columns of A extended with x are clearly not in increasing lexicographic
order.

The equidistance condition is the hardest to incorporate efficiently into
the search. Our implementation keeps track of the Hamming-distance of
the current partial solution x(0), x(1), . . . , x(s) to each of the codewords in
A. Pruning occurs whenever there exists an i ∈ ZM ′ such that |{j ∈ Zs+1 :
x(j) 6= A(i, j)}| > d or |{j ∈ Zs+1 : x(j) 6= A(i, j)}|+ (n− s− 1) < d.

We note that during the second stage of the algorithm the following nec-
essary conditions are not applicable: the first column condition, the column
minimality condition, and the condition x(j) ≥ x(j − 1) enforcing lexico-
graphic ordering of the columns. This is because an extending codeword is
not necessarily placed immediately after the last codeword of A during the
second stage of the algorithm.

5.2.3 Canonicity test

Lexicographic minimality of anA ∈ ZZM′×Znq under the action of SM ′×(Sq o
Sn) can be tested using an analogous backtrack search as was presented in
Section 5.1.3 to test lexicographic maximality of an incidence system.

The canonicity test algorithm decides using exhaustive search whether
there exists a (σ, (µ, π)) ∈ SM ′ × (Sq o Sn) such that (σ, (µ, π))A < A.
The following observation enables us to avoid a search through Sq o Sn for
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every σ ∈ SM ′ : Suppose that a (σ, (µ, π)) ∈ SM ′ × (Sq o Sn) satisfying A′ =
(σ, (µ, π))A < A exists. Then, the lexicographic rank ofA′ can only decrease
when we first minimize lexicographic rank of every column ofA′ with respect
to value permutation, and then sort the minimized columns to increasing
lexicographic order. Consequently, to establish that A is the lexicographic
minimum of its orbit, it suffices to check, for each σ ∈ SM ′ , that the column-
minimized column-sorted (σ, 1)A is not lexicographically lesser than A.

Our backtrack search implementation of the canonicity test proceeds by
fixing one image point of σ ∈ SM ′ at a time, that is, σ(0) is fixed first, then
σ(1) and so on. We observe that from a partial solution σ(0), σ(1), . . . , σ(s)
we can determine the restriction (σ−1, 1)A|Zs+1×Zn . Pruning is enabled by
the observation that the restriction of the column-minimized and column-
sorted (σ−1, 1)A to Zs+1×Zn remains invariant in all extensions of the partial
solution σ(0), . . . , σ(s). Consequently, as soon as the column-minimized
and sorted (σ−1, 1)A|Zs+1×Zn differs from A|Zs+1×Zn , we can either prune the
partial solution (A|Zs+1×Zn is lexicographically lesser), or conclude that A is
not the lexicographic minimum of its orbit (A|Zs+1×Zn is lexicographically
greater).

Lemma 5.1.5 can also be applied in this context for pruning:

Corollary 5.2.7 Let SM ′ × (Sq o Sn) act on ZZM′×Znq by (3.4) , let U ≤ SM ′ ,
and suppose A ∈ ZZM′×Znq satisfies (σ, (µ, π))A ≤ A for all (σ, (µ, π)) ∈
U × (Sq o Sn). Then, (σ%, (µ, π))A ≤ A for all (σ, (µ, π)) ∈ U × (Sq o Sn)
whenever (σ̂%, (µ̂, π̂))A = A for some % ∈ SM ′ , σ̂ ∈ U , and (µ̂, π̂) ∈ Sq o Sn.

Pseudocode for the canonicity test algorithm that realizes these observa-
tions is given as Algorithm 5. The chain of subgroups used in the search is
the same as was used in Algorithm 4.

We note that the set of automorphisms discovered during the course of Al-
gorithm 4 for anA ∈ P ∩C is a strong genating set for the full automorphism
group of the resolution that corresponds to A.

5.2.4 Clique search

Let A ∈ ZZM′×Znq be input by the first stage of the algorithm to the second
stage. (So, A satisfies the necessary conditions of Lemmata 5.2.3 and 5.2.1.)

The second stage of the algorithm is analogous to the second stage of
the block design generation algorithm presented in Section 5.1.4. First, the
compatibility graph of A is generated:

Definition 5.2.8 The compatibility graph Gd(A) of an A ∈ ZZM′×Znq is the
graph whose vertices consist of all codewords x ∈ Z

Zn
q that satisfy

dH(A(i, ·), x) = d and x ≥ A(i, ·) for all i ∈ ZM ′ ; any two vertices x1, x2 are
connected by an edge if and only if dH(x1, x2) = d.

Then, all extensions of A to an EDm-code are located using a maximum
clique algorithm to generate all (M − M ′)-cliques in Gd(A). Each exten-
sion is tested for lexicographic minimality and, if the extension is minimal,
accepted as an element of P ∩ C by the algorithm.
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Algorithm 5 Canonicity test for a matrix A ∈ ZZM′×Znq .
function COSET-SEARCH(σ : permutation, i, l,M ′ : integer) : integer

if i = M ′ then
(* Automorphism σ discovered. *)
return 0

end if
if i < l then
J ← {i}

else
J ← {i, i+ 1, . . . ,M ′ − 1}

end if
if i = l then

(* Coset of the identity has been tested before, remove it. *)
J ← J \ {i}

end if
for all j ∈ J do
σ′ ← σ ◦ (i j)
put A′(s, t) = A(σ′(s), t) for all (s, t) ∈ Zi+1 × Zn
minimize lexicographic rank of each column ofA′ by value permutation
sort minimized columns of A′ to increasing lexicographic order
if A′ ≤ A|Zi+1×Zn then

if A′ < A|Zi+1×Zn then
(* Counterexample found. *)
return -1

end if
d← COSET-SEARCH(σ′, i+ 1, l,M ′)
if d < 0 ∨ (d = 0 ∧ i > l) then

(* Counterexample found or Corollary 5.1.6 applies. *)
return d

end if
end if

end for
return 1

function CANONICAL(A : an element of ZZM′×Znq ) : boolean
for l = M ′,M ′ − 1, . . . , 0 do

(* Test left cosets of the stabilizer of 0, 1, . . . , l in SM ′ . *)
if COSET-SEARCH(id, 0, l,M ′) < 0 then

return FALSE
end if

end for
return TRUE
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We observe that the vertices of a clique of order M −M ′ in Gd(A) clearly
complete A to an EDm-code. Conversely, if A has an extension in P ∩ C,
then the extending codewords appear as the vertices of an (M −M ′)-clique
in Gd(A). Furthermore, if A satisfies the necessary conditions in Lemma
5.2.1, then a clique in Gd(A) has order at most M − M ′; this is because
EDm-codes are optimal by Corollary 3.2.5. Thus, the second stage of the
algorithm correctly produces all extensions of A in P ∩ C.

5.3 A MCKAY-TYPE ALGORITHM FOR RESOLUTIONS

In this section we develop an alternative algorithm, based on the McKay
framework, for generating all nonisomorphic resolutions of RB(v, k, λ) de-
signs. We continue to use the coding-theoretic framework, and assume that
n,M, d, q constitute the parameters of an EDm-code. The algorithm per-
forms a backtrack search for all nonisomorphic (n,M, d)q codes coordinate
by coordinate.

5.3.1 Embedding into the McKay framework

We embed coordinatewise code construction into the McKay framework as
follows.

The set of labelled objectsX is formed as the disjoint unionX = ∪ns=1Xs,
whereXs = ZZM×Zsq . The groupG acting onX is the (formal) direct product
G = Πn

s=1Gs, where Gs = SM × (Sq o Ss) × Sq. The action of Gs on Xs is
defined by

(σ, (µ, π), ν)A : (i, j) 7→ µj(A(σ−1(i), π−1(j))) (5.6)

for all (i, j) ∈ ZM × Zs, all (σ, (µ, π), ν) ∈ Gs, and all A ∈ Xs. (Note this is
the same as action (3.4).)

The sets of upper and lower objects associated to an A ∈ Xs are

L(A) =

{
∅ if s = 1,
{(A, t) : t ∈ Zs} if s = 2, 3, . . . , n; (5.7)

U(A) =

{
{(A, c) : c ∈ ZZMq } if s = 1, 2, . . . , n− 1,
∅ if s = n. (5.8)

The intuition behind the lower objects is that the second component of a
pair (A, t) indicates which coordinate is to be deleted from A to obtain a
smaller labelled object. For an upper object (A, c), the second component
c ∈ ZZMq describes the new coordinate to be added to A to obtain a larger
labelled object. These collections of upper and lower objects are clearly
disjoint for distinct A. For notational convenience we put X̌ = ∪ns=1X̌s and
X̂ = ∪ns=1X̂s, where X̌s = ∪A∈XsL(A), X̂s = ∪A∈XsU(A).

The action of Gs is extended from Xs to X̌s and X̂s by defining

(σ, (µ, π), ν)(A, t) = ((σ, (µ, π))A, π(t)), (5.9)
(σ, (µ, π), ν)(A, c) = ((σ, (µ, π))A, ν ◦ c ◦ σ−1) (5.10)

for all (σ, (µ, π), ν) ∈ Gs and all A ∈ Xs, t ∈ Zs, and c ∈ ZZMq .
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The upper and lower objects are connected by defining R ⊆ X̌ × X̂

to be the set that consists of all pairs ((A, t), (B, c)) ∈ X̌s+1 × X̂s, s =
1, 2, . . . , n− 1, that satisfy

(σ, (µ, π))B(i, j) =

{
A(i, j) if j < t
A(i, j + 1) if j ≥ t

, (5.11)

ν ◦ c ◦ σ−1(i) = A(i, t) (5.12)

for some (σ, (µ, π), ν) ∈ Gs. Consequently, a lower object (A, t) ∈ X̌s+1 is
related through R to precisely those upper objects that can be obtained from
A by separating coordinate t ∈ Zs+1 as c ∈ ZZMq and then relabelling the re-
sulting pair (B, c) using a group element in Gs. Conversely, an upper object
(B, c) ∈ X̂s is related to precisely those lower objects that can be obtained
by inserting c to any coordinate position t ∈ Zs+1 and then relabelling the
resulting pair (A, t) using a group element Gs+1.

It is straightforward to verify that these definitions satisfy axioms (C1)-(C5)
of the McKay framework.

We define the order of a labelled object to be o(A) = s for every A ∈
Xs ⊆ X . Axioms (O1) and (O2) are then clearly satisfied.

It remains to define a functionm : X →P[X̌] that satisfies axioms (M1)-
(M3). Our construction for an m-function was inspired by the one in [84],
which was used to generate triangle-free graphs. Let c : X → X be an ar-
bitrary canonical placement map with respect to G (recall Definition 4.0.1).
For convenience we write A∗ for the canonical representative associated to
an A ∈ X by c. A canonical placement map associates to every A ∈ X a
unique canonical placement coset gGA ∈ G/GA that satisfies gGAA = A∗

(cf. [3]), where GA is the stabilizer of A in G as usual. Suppose now that
A ∈ X and that gGA ∈ G/GA is the corresponding canonical placement
coset. We define

m(A) =

{
∅ if o(A) = 1,
GAg

−1(A∗, 0) if o(A) > 1. (5.13)

Lemma 5.3.1 The function m is well-defined and satisfies axioms (M1)-
(M3) of the McKay framework.

Proof. Clearly, L(A) = ∅ if and only if o(A) = 1. Thus, axiom (M1)
is satisfied. Henceforth we assume o(A) > 1. Select an A ∈ X , and
suppose that gGAA = A∗ for some g ∈ G. We first show that m is well-
defined. It is clear by (5.9) that m(A) ⊆ L(A) for all A ∈ X . Select any
g1 ∈ G such that g1GAA = A∗. Then we must have g−1

1 g ∈ GA. Select
any (A, t) ∈ GAg

−1(A∗, 0) and denote by h ∈ GA a solution to (A, t) =
hg−1(A∗, 0). Then, (A, t) = h(g−1

1 g)−1g−1
1 (A∗, 0) ∈ GAg

−1
1 (A∗, 0). Thus,

GAg
−1(A∗, 0) ⊆ GAg

−1
1 (A∗, 0). The proof of the reverse inclusion is similar,

andm is well-defined. Axiom (M2) is satisfied by (5.13) because g−1(A∗, 0) ∈
L(A) and m(A) = GAg

−1(A∗, 0). For (M3), select any g̃ ∈ G. Then,
g(g̃−1g̃)GA(g̃−1g̃)A = (gg̃−1)Gg̃A(g̃A) = A∗ since Gg̃A = g̃GAg̃

−1. Con-
sequently, the coset (gg̃−1)Gg̃A is the canonical placement coset of g̃A, and
m(g̃A) = Gg̃A(gg̃−1)−1(A∗, 0) = g̃GAg̃

−1g̃g−1(A∗, 0) = g̃m(A). �
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5.3.2 Top-level algorithm

The embedding into the McKay framework presented in the previous section
leads to a straightforward backtrack search implementation of Algorithm 2.

The algorithm accepts as input a partial solution A ∈ Xs = Z
ZM×Zs
q ,

where s = 1, . . . , n. Also input to the algorithm is a strong generating set for
the point automorphism group of A:

AutP (A) = {σ ∈ SM : ∃(σ, (µ, π), ν) ∈ Gs (σ, (µ, π), ν)A = A}.

If s < n, the algorithm performs a backtrack search for coordinates c ∈
Z
ZM
q that extend A and are the lexicographic minimum representatives of

their GA-orbits on U(A). (This procedure is described in Section 5.3.3.)
Whenever an extending coordinate c is found, the algorithm constructs A′ ∈
Xs+1 defined by

A′(i, j) =

{
A(i, j) if j ∈ Zs;
c(i) if j = s

(5.14)

for all (i, j) ∈ ZM × Zs+1, and then evaluates the m-function for A′. (The
m-function implementation is described in 5.3.4) If (A′, s) ∈ m(A′), then
the algorithm proceeds recursively to extend A′ and its point automorphism
group, which was computed as a side effect of the m-function evaluation;
otherwise the algorithm considers the next c ∈ ZZMq .

5.3.3 Coordinate generation

Given A ∈ X , the coordinate generation procedure produces an orbit rep-
resentative for each orbit of GA on U(A) (cf. Algorithm 2). By (5.10) this
is equivalent to producing a transversal for the orbits AutP (A) × Sq 
 ZZMq ,
where (σ, ν) ∈ AutP (A)×Sq acts on a c ∈ ZZMq by (σ, ν)c = ν ◦c◦σ−1. Our
implementation is a Read–Faradžev-type orbit transversal algorithm based on
backtrack search, which uses the lexicographic minimum element of each or-
bit in AutP (A)× Sq 
 ZZMq as the canonical representative.

Naturally, not all such orbit representatives need to be generated:

Lemma 5.3.2 Let 1 ≤ s ≤ n − 1, A ∈ Xs, c ∈ ZZMq , and suppose A′ is
defined by (5.14). Then, A′ can be extended to an (n,M, d)q code only if

(i) for all i1, i2 ∈ ZM , if dH(A(i1, ·), A(i2, ·)) = d, then c(i1) = c(i2); and

(ii) for all i1, i2 ∈ ZM , if dH(A(i1, ·), A(i2, ·)) + n − s = d and i1 6= i2,
then c(i1) 6= c(i2); and

(iii) |{i ∈ ZM : c(i) = l}| = M/q for all l ∈ Zq.

Proof. If at least one condition does not hold, then A′ and consequently all
of its extensions violate Corollary 3.2.4. �

Our backtrack search implementation proceeds by fixing first c(0), then
c(1), and so forth. Each partial solution c(0), c(1), . . . , c(t) must satisfy con-
ditions (i) and (ii) of Lemma 5.3.2; condition (iii) can naturally only partly be
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checked for a partial solution. After a value c(t) has been fixed, the partial so-
lution c(0), c(1), . . . , c(t) is tested for lexicographic minimality with respect
to the subgroupH×Sq ≤ AutP (A)×Sq, whereH is the pointwise stabilizer
of t + 1, . . . ,M − 1 in AutP (A). (This test is equivalent to applying extract
(4.3) to prune the search in the Read–Farardžev framework.) The minimality
test is implemented as an exhaustive search through all elements of H (see
[14, Ch. 10] on how to implement such a search). For each σ ∈ H , the lexi-
cographic rank of (σ, 1)c|Zt is minimized with respect to permutation of the
values Zq, and the result is compared with c|Zt . As a result of the comparison,
the partial solution is either rejected as nonminimal, or the search continued
if no counterexample to minimality was found. (We point out that Lemma
5.1.5 can also be applied in this context.)

If AutP (A) has large order, then we apply the minimality test only up
to a certain depth in the search so that the order of H will not grow too
large (and the search too expensive). In this case we need to supplement the
partial minimality test with explicit isomorphism testing (cf. Algorithm 3).
Isomorphism testing is facilitated by the m-function implementation, which
as a side effect computes a canonical representative for the extended code
A′.

5.3.4 Canonical placement of codes using nauty

Our implementation of the m-function (5.13) uses the the graph canonical
labelling package nauty [81, 82] to compute a canonical placement coset for
A ∈ Xs.

We first transform an A ∈ Xs into a graph. (This transformation is from
[92].) The graph consists of M + sq vertices. The first M vertices correspond
to the M codewords in A, and the remaining sq vertices encode the q coor-
dinate values in each of the s coordinates. Edges are inserted to the graph so
that each of the q coordinate-value vertices in every coordinate is connected
by an edge to every other coordinate-value vertex in the same coordinate.
Furthermore, for every (i, j) ∈ ZM × Zs, the codeword vertex that corre-
sponds to codeword i is connected by an edge to the coordinate-value vertex
that corresponds to the value A(i, j) in coordinate j. Finally, the vertices are
colored using one color for the M codeword vertices and another color for
the sq coordinate-value vertices.

After the graph has been constructed, we apply nauty to compute the
canonical placement coset of the graph, that is, a permutation of the vertices
that transforms the graph into its canonical representative combined with a
strong generating set for the full automorphism group of the graph.

In computing canonical placement and the full automorphism group,
nauty never maps vertices of one color into vertices of the other. Conse-
quently, nauty computes canonical placement for elements of Xs with re-
spect toGs. (Two graphs, constructed as above, have identical canonical rep-
resentatives if and only if they are related by a permutation of the codeword
vertices combined with a permutation of the coordinates and the coordinate
values in each coordinate; cf. (5.6).)

The m-function test condition (A, s−1) ∈ m(A) is easy to check because
nauty also computes the automorphism-orbits of the vertices of the graph.
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Furthermore, we obtain a strong generating set for AutP (A) by restricting
the reported generator permutations for the full automorphism group to the
codeword vertices.
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6 RESULTS

We implemented the three exhaustive generation algorithms described in
the previous chapter as C programs, and ran them on a number of differ-
ent design parameter families. In the process we were able to produce new
complete classifications for several families of block designs, resolvable block
designs, and their resolutions. Additionally, we were able to corroborate sev-
eral recent classification results of other researchers.

The new classification results and the verified old classifications are sum-
marized in Tables 6.1 and 6.2 for ease of reference. Column “No” in the
tables indicates the block design parameter family number in [78]; columns
v, k, λ, r, b give the corresponding parameters. (A “-” in the “No” column
indicates that the parameter family does not lie in the range 3 ≤ r ≤ 41
covered by [78].) The number of nonisomorphic block designs, resolvable
block designs, and resolutions in a family are given in columns “Nd”, “Nrd”,
and “Nr”, respectively.

The following results on block designs were obtained as a result of this
work. The classifications of the B(13, 6, 5) and the B(14, 7, 6) designs are
discussed in Sections 6.1 and 6.2. To the best of our knowledge, both of these
classifications are new. Additionally, we verified the classification results of
Spence onB(31, 10, 3) designs [110] and onB(23, 11, 5) designs [111]. (We
remark that both Table 1 in [111] and table entry number 63 in [78] contain
an error. The correct number of nonisomorphic B(23, 11, 5) designs is 1106;
this is implicit in [111, p. 192–196].) In both verifications we applied the
block design generation algorithm described in Section 5.1. TheB(31, 10, 3)
verification was conducted with p = 10 and theB(23, 11, 5) verification with
p = 7.

For resolvable block designs, we were able to settle the nonexistence of an
RB(15, 5, 4) design and produce complete classifications of theRB(16, 4, 2),
the affine RB(24, 12, 11), and the RB(14, 7, 12) designs. These are dis-
cussed in Sections 6.3, 6.4, 6.5, and 6.6, respectively. Additionally, the clas-
sifications of the resolutions of RB(9, 3, λ) designs for λ = 3, 4, 5 and the
RB(9, 3, λ) designs for λ = 3, 4 have been submitted for separate publica-
tion [96].

We corroborate the following classification results on resolvable block de-
signs obtained by other researchers. First, we confirm the result of Lam
and Tonchev [70] that there are 68 nonisomorphic affine RB(27, 9, 4) de-
signs. Second, we verified the result of Kocay and van Rees [66] that there
are 5 and 3 nonisomorphic RB(16, 8, 7) and RB(20, 10, 9) designs, respec-
tively. Third, we confirm the number of nonisomorphic RB(8, 4, 9) and
RB(8, 4, 12) designs as 10 and 31, respectively, and continue the enumera-
tion of the RB(8, 4, 3λ) design family up to 3λ = 21. Fourth, we corroborate
the recent classification result of Morales and Velarde [90] that there are 5
nonisomorphic RB(12, 4, 3) designs, each of which has a unique resolution.
Finally, we note that table entry number 195 in [78] contains an error; the
correct number of nonisomorphic RB(10, 5, 8) designs is 5.

The classification runs were distributed over a network of twenty 200–
500MHz PCs using the batch system autoson [83]. The resolutions of the
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Table 6.1: The B(v, k, λ) design families classified.

No v k λ Nd Comments
54 31 10 3 151 Classified in [110].
63 23 11 5 1106 Classified in [111] (see text).
77 13 6 5 19072802 New. See Section 6.1.
89 14 7 6 15111019 New. See Section 6.2.

Table 6.2: The RB(v, k, λ) design families classified.

No v k λ Nr Nrd Comments
44 16 4 2 339592 325062 New. See Section 6.4.
56 12 4 3 5 5 Classified in [90]
66 9 3 3 426 395 New [96].
90 27 9 4 68 68 Classified in [70].

102 15 5 4 0 0 New. See Section 6.3.
130 16 8 7 5 5 Classified in [66].
145 9 3 4 149041 119985 New [96].
195 10 5 8 5 5 Error in [78].
224 20 10 9 3 3 Classified in [66].
235 9 3 5 203047732 ? New [96].
278 8 4 9 10 10 Classified by Spence [78].
346 24 12 11 130 130 See Section 6.5.
451 14 7 12 1363486 1363486 New. See Section 6.6.
524 8 4 12 31 31 Known [78].
819 8 4 15 82 82 New.

- 8 4 18 240 240 New.
- 8 4 21 650 650 New.
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RB(9, 3, 5) designs took the longest to classify (slightly over 100 days total
CPU time). The second longest classification was that of the RB(14, 7, 2)
designs, which required six days total CPU time. All the other classifications
were completed in total CPU time ranging from a few seconds to a few days.

Because the classifications of designs and resolutions presented in this
chapter were obtained using computer search, the results are correct if the
computer programs are correct and no hardware error occurs. To guard
against hardware errors, all of the classification runs were conducted at least
twice. Confidence in the correctness of the computer programs was acquired
from the correct verifications of earlier results obtained. Nevertheless, an in-
dependent verification would naturally be desirable.

6.1 CLASSIFICATION OF B(13, 6, 5) DESIGNS

The classification of the B(14, 7, 6) designs was obtained using the block
design generation algorithm from Section 5.1 with p = 7. Altogether there
are 19072802 nonisomorphic B(13, 6, 5) designs, of which 19063352 have a
trivial full automorphism group.

In addition to enumerating the designs, the following additional data was
computed. For each canonical representative generated by the algorithm,
the order of its full automorphism group was determined from the strong
generating set computed during the canonicity test. The orders of the au-
tomorphism groups of B(13, 6, 5) designs are given in Table 6.3. Column
“|Aut(B)|” indicates the order of the full automorphism group, and column
“Nd” indicates the number of nonisomorphic designs with this full automor-
phism group order.

Table 6.3: Properties of B(13, 6, 5) designs.

|Aut(B)| Nd
1 19063352
2 7619
3 1651
4 113
6 53
12 10
13 1
39 2

156 1
Total 19072802

We discuss the fourB(13, 6, 5) designs that have the largest automorphism
groups as an example. All four designs are transitive, that is, their full auto-
morphism group is transitive. (Based on Table 6.3, these are also the only
transitive B(13, 6, 5) designs.) The lexicographic maximum incidence ma-
trices of the designs are listed below.
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B1 : 11111111111100000000000000
11111000000011111110000000
11000111000011100001111000
10100100110010011001100110
10010010101001010100011110
10000001011100101111010100
01100100001101010011010011
01010000110100111000111001
01001001101010001101001011
00110011010010000110110011
00101010100101100101100101
00011101000101001010101110
00001110011010110010001101

B2 : 11111111111100000000000000
11111000000011111110000000
11110100000010000001111110
11000011100001110001110001
10100011010001001100001111
10010000101100001111101001
01000110011010101011000101
01000100011101110100101010
00101101001000011010110011
00101010100100110011001110
00011010010110010100110101
00010001101111101000010110
00001101110011000111011000

B3 : 11111111111100000000000000
11111000000011111110000000
11100110000011000001111100
11000001110000111001110010
10011100001000100101101011
10000101100110110010001101
01010010001100011011011001
01010001010111000101000111
00101011010000101100011101
00101000111001010011001110
00100110100101011100100011
00010100111010001110110100
00001011001111100010110010

B4 : 11111111111100000000000000
11111000000011111110000000
11100110000011000001111100
11010001100000110001110011
11000100011000101100001111
10000011100110001111001010
01000010011110011010110001
00101010010101110001001011
00100101100101011100100101
00100001111011100010010110
00011110000100100110110110
00011101001010010011001101
00011000111001001101111000

The automorphism groups of the designs are:

Aut(B1) = 〈(1 4 5 6 10 9 2 8 7 3 12 11), (0 6 12 8 9 2 5 7 1 11 4 10 3)〉,
Aut(B2) = 〈(1 6 11)(2 7 5)(3 8 10)(4 12 9), (0 1 2)(3 4 5)(6 8 10)(7 9 11)〉,
Aut(B3) = 〈(1 3 8)(2 7 9)(4 5 12)(6 11 10), (0 1 4)(2 8 11)(3 12 6)(5 9 7)〉,
Aut(B4) = 〈(0 1 9 4 8 3 2 7 10 11 6 12 5)〉.

Group Aut(B1) is primitive, has order 156, and is isomorphic to the group
AGL1(13). Groups Aut(B2) and Aut(B3) are both primitive, have order 39,
and are isomorphic to the Frobenius group F13,3. Group Aut(B4) is transi-
tive and is evidently isomorphic to the cyclic group Z13. (The group proper-
ties were determined using the GAP system [39] and its library of primitive
groups. The group names are from [18].)

6.2 CLASSIFICATION OF B(14, 7, 6) DESIGNS

The classification of the B(14, 7, 6) designs was obtained using the block
design generation algorithm from Section 5.1 with p = 7. Altogether there
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are 15111019 nonisomorphic B(14, 7, 6) designs, of which 15097318 have a
trivial full automorphism group.

The orders of the full automorphism groups of the B(14, 7, 6) designs are
listed in Table 6.4.

The seven B(14, 7, 6) designs with the largest automorphism groups are
shown below.

B1 : 11111111111110000000000000
11111100000001111111000000
11110011000001100000111110
11001100110000011000111101
11000010101101000111110001
11000000011110110110001110
10101001001010001101101011
01000011110011111001000011
00110100110010100110110011
00110011100100011110001101
00110000011111011001110100
00011100101101100001001111
00001111010011000111011100
00001111001100111010110010

B2 : 11111111111110000000000000
11111100000001111111000000
11110011000001100000111110
11100000111000011100111001
10011010100100011010100111
10001011010101000111011001
10000101001110111010011100
01010100010111010001110101
01001101101001001001001111
01001010101010100111110100
00110001110010101011010011
00101001001111110100100011
00100110110011010110001110
00010110011100101101101010

B3 : 11111111111110000000000000
11111100000001111111000000
11110011000001100000111110
11100000111000011100111001
10011010100100011010100111
10001001011101100110010101
10000011011011011011001010
01011000010110110001011011
01001101100010001110011110
01000111001100101101100011
00110010101010100111001101
00101110010011001001110101
00100100101111110010110010
00010101110101010101101100

B4 : 11111111111110000000000000
11111100000001111111000000
11110011000001100000111110
11001010110000011100111001
10101000101101000011110101
10010100011100110010101011
10000111001010011011011100
01100010001111001110001011
01010101100010000111110011
01000001110111111010100100
00110001111000101101001101
00101100100110110100011110
00011010011011010101100110
00001111010101101001010011

B5 : 11111111111110000000000000
11111100000001111111000000
11100011100001110000111100
11010010011001001100110011
10101001010100001110101110
10001110001010110010101011
10000100111101101001001101
01100100001110011001110110
01010001101100110110000111
01001011000110101101011001
00110101100011001010011011
00100010110111010111100001
00011110110000010101011110
00011001011011100011110100

B6 : 11111111111110000000000000
11111100000001111111000000
11110011000001100000111110
11001010110000011100111001
10101001101000010011100111
10010100011100001110110110
10000101110101101001001101
01100001010111000111110001
01010000101110110101101100
01000111001010111010010101
00101110001100100101011011
00100110110011010110001110
00011010100111101010100011
00011001011011011001011010
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B7 : 11111111111110000000000000
11111100000001111111000000
11100011100001110000111100
11010010011001001100110011
10110001010100100011101011
10001110110000001011011110
10001001101101010110000111
01010101001010100110011110
01001011000110011101101010
01000000111111101011100100
00111000101010011010111001
00101101010011000101110101
00100110011100111100001101
00010110100111110001010011

The automorphism groups of the designs are:

Aut(B1) = 〈(0 7 1 8 3 5 13 12 10 9 4 2 11), (1 10 13 2 5 12)(3 8 11 9 4 7)〉,
Aut(B2) = 〈(0 1 2)(4 7 10)(5 8 11)(6 9 12), (1 9 10)(2 8 12)(4 11 7)(5 6 13)〉,
Aut(B3) = 〈(0 1 2)(4 7 10)(5 9 11)(6 8 12), (1 5 12)(2 6 10)(4 9 11)(7 13 8)〉,
Aut(B4) = 〈(0 1 2)(3 4 7)(5 10 8)(6 11 9), (1 8 11)(2 9 4)(3 10 7)(5 6 13)〉.
Aut(B5) = 〈(1 6 13)(2 11 9)(3 12 5)(7 8 10), (0 1 5 13 11 3 12 8 7 6 9 10 2)〉.
Aut(B6) = 〈(0 1 7 5 2 11 3 4 10 8 12 13 6)〉.
Aut(B7) = 〈(0 1 4 7 5 2 13 6 12 3 9 8 11)〉.

Group Aut(B1) has order 78 and is isomorphic to the Frobenius group F13,6.
Groups Aut(B2), Aut(B3), Aut(B4), and Aut(B5) have order 39 and are
isomorphic to the Frobenius group F13,3. Groups Aut(B6) and Aut(B7) are
clearly isomorphic to the cyclic groupC13. Each of the automorphism groups
above fixes exactly one point. The points fixed are 6,3,3,12,4,6, and 10, re-
spectively.

Table 6.4: Properties of B(14, 7, 6) designs.

|Aut(B)| Nd
1 15097318
2 10934
3 2514
4 143
6 98
12 5
13 2
39 4
78 1

Total 15111019
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6.3 NONEXISTENCE OF RB(15, 5, 4) DESIGNS

The Read–Faradžev-type algorithm for generation of resolutions of block de-
signs from Section 5.2 was used to settle the nonexistence of an RB(15, 5, 4)
design by exhaustive search. The algorithm was used with p = 5 to generate
the corresponding (14, 15, 10)3-codes; none of the 74 compatilibity graphs
generated contained a clique of order exceeding 7, so no (14, 15, 10)3-code
and hence no RB(15, 5, 4) design can exist.

6.4 CLASSIFICATION OF RB(16, 4, 2) DESIGNS

The Read–Faradžev-type algorithm for generation of resolutions of block de-
signs from Section 5.2 was used to generate all RB(16, 4, 2) designs and
their resolutions as follows. First, all 339592 nonisomorphic resolutions of
RB(16, 4, 2) designs were generated and stored to disk using the algorithm
with p = 8. Then, a postprocessing stage was invoked, which determined for
each resolution the underlying block design and converted the block design
to its canonical representative using nauty (cf. Section 5.3.4). The canonical
representatives of the underlying block designs were then sorted to deter-
mine which of the resolutions had isomorphic underlying block designs, that
is, identical canonical representatives for the block designs. In the process
the orders of the full automorphism groups of both the resolutions and the
underlying designs were determined.

Table 6.5 contains data on the RB(16, 4, 2) designs and their resolutions.
The leftmost table contains the full automorphism group orders for each of
the 325062 RB(16, 4, 2) designs. Column “|Aut(B)|” in the table indicates
the full automorphism group order, and column “Nrd” indicates the number
of resolvable designs with that automorphism group order. The table in the
middle lists the same information for the 339592 resolutions of RB(16, 4, 2)
designs. Finally, the rightmost table gives the number of nonisomorphic reso-
lutions for each resolvable block design. Column “Nr” indicates the number
of nonisomorphic resolutions and column “Nrd” gives the number of resolv-
able designs that have this number of nonisomorphic resolutions.

The uniqueRB(16, 4, 2) designs with the largest full automorphism group
(of order 5760) is formed by taking two copies of the well-known unique
affine RB(16, 4, 1) design, and therefore is not very interesting as an exam-
ple. A more illustrative example is given by the resolvable design with the
next largest full automorphism group (of order 1920).

The blocks of the lexicographic maximum representative of this resolvable
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Table 6.5: Properties of RB(16, 4, 2) designs.

|Aut(B)| Nrd
1 314263
2 9588
3 88
4 661
5 3
6 94
8 158

10 7
12 37
16 73
18 2
24 22
32 32
36 2
48 9
64 5
72 1
96 5

120 2
128 1
192 2
256 1
384 2
768 1

1152 1
1920 1
5760 1
Total 325062

|Aut(R)| Nr
1 325678
2 11977
3 89
4 1112
5 3
6 101
8 315

10 7
12 56
16 110
18 2
24 32
32 61
36 2
48 7
64 7
72 1
96 8

120 2
128 9
192 4
256 1
320 1
384 3
768 1
1152 1
1920 1
5760 1
Total 339592

Nr Nrd
1 311819
2 12840
3 88
4 170
5 1
6 52
7 4
8 73
9 3

10 2
11 1
13 2
14 2
16 2
24 2
28 1

Total 325062
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design are

0 : {0, 1, 2, 3}, 1 : {0, 1, 4, 5}, 2 : {0, 2, 6, 7},
3 : {0, 3, 8, 9}, 4 : {0, 4, 10, 11}, 5 : {0, 5, 12, 13},
6 : {0, 6, 10, 14}, 7 : {0, 7, 12, 15}, 8 : {0, 8, 11, 15},
9 : {0, 9, 13, 14}, 10 : {1, 2, 10, 12}, 11 : {1, 3, 11, 13},
12 : {1, 4, 6, 8}, 13 : {1, 5, 7, 9}, 14 : {1, 6, 10, 15},
15 : {1, 7, 12, 14}, 16 : {1, 8, 11, 14}, 17 : {1, 9, 13, 15},
18 : {2, 3, 14, 15}, 19 : {2, 4, 6, 9}, 20 : {2, 4, 10, 13},
21 : {2, 5, 7, 8}, 22 : {2, 5, 11, 12}, 23 : {2, 8, 13, 15},
24 : {2, 9, 11, 14}, 25 : {3, 4, 7, 8}, 26 : {3, 4, 11, 12},
27 : {3, 5, 6, 9}, 28 : {3, 5, 10, 13}, 29 : {3, 6, 12, 14},
30 : {3, 7, 10, 15}, 31 : {4, 5, 14, 15}, 32 : {4, 7, 13, 14},
33 : {4, 9, 12, 15}, 34 : {5, 6, 11, 15}, 35 : {5, 8, 10, 14},
36 : {6, 7, 11, 13}, 37 : {6, 8, 12, 13}, 38 : {7, 9, 10, 11},
39 : {8, 9, 10, 12}.

The full automorphism group of the design is primitive and has order 1920.
A set of generators for the group is given below.

Aut(B) = 〈(0 1 12)(2 7 5)(3 14 13)(4 10 15)(6 9 11),

(0 14 4 9 5 2 1 11)(3 8 10 13 15 6 7 12)〉

The group is isomorphic to the group “ASL(2, 4) :2” in the GAP primitive
group library, and to group number 16.14 in [18].

The design has 11 nonisomorphic resolutions: (Each column gives the
labels of blocks that constitute a parallel class.)

R1 : 0 1 2 3 4 5 6 7 8 9
31 18 11 10 13 12 17 16 15 14
36 37 33 32 23 24 21 19 20 22
39 38 35 34 29 30 26 28 27 25

R2 : 0 1 2 3 4 5 6 7 8 9
31 18 11 10 13 12 17 16 15 14
36 37 33 32 23 24 22 19 20 21
39 38 35 34 29 30 25 28 27 26

R3 : 0 1 2 3 4 5 6 7 8 9
31 18 11 10 13 12 17 16 15 14
36 37 33 32 23 24 22 20 19 21
39 38 35 34 29 30 25 27 28 26

R4 : 0 1 2 3 4 5 6 7 8 9
31 18 11 10 13 12 17 16 15 14
37 36 33 32 23 24 22 20 19 21
38 39 35 34 29 30 25 27 28 26

R5 : 0 1 2 3 4 5 6 7 8 9
31 18 11 10 13 14 17 16 15 12
36 37 33 32 23 24 21 20 19 22
39 38 35 34 29 25 26 27 28 30

R6 : 0 1 2 3 4 5 6 7 8 9
31 18 11 10 13 14 17 16 15 12
37 36 33 32 23 24 21 20 19 22
38 39 35 34 29 25 26 27 28 30

R7 : 0 1 2 3 4 5 6 7 8 9
31 18 11 10 17 14 13 16 15 12
36 37 33 32 21 24 23 20 19 22
39 38 35 34 29 25 26 27 28 30

R8 : 0 1 2 3 4 5 6 7 8 9
31 18 11 10 17 14 13 16 15 12
37 36 33 32 21 24 23 19 20 22
38 39 35 34 29 25 26 28 27 30

R9 : 0 1 2 3 4 5 6 7 8 9
31 18 11 10 17 14 13 16 15 12
37 36 33 32 21 24 23 20 19 22
38 39 35 34 29 25 26 27 28 30

R10 : 0 1 2 3 4 5 6 7 8 9
31 18 11 14 15 16 17 12 13 10
37 36 33 22 23 19 21 24 20 25
38 39 35 32 27 30 26 28 29 34
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R11 : 0 1 2 3 4 5 6 7 8 9
31 18 17 14 15 16 11 12 13 10
37 36 26 22 23 19 21 24 20 25
38 39 35 32 27 30 33 28 29 34

The full automorphism groups of the resolutions are:

Aut(R1) = 〈(0 1 12)(2 7 5)(3 14 13)(4 10 15)(6 9 11),

(0 14 4 9 5 2 1 11)(3 8 10 13 15 6 7 12)〉.
Aut(R2) = 〈(0 2)(1 3)(4 15)(5 14)(6 7)(8 10)(9 12)(11 13),

(1 15)(2 7)(3 12)(4 11)(5 8)(6)(9 13)(10)(14),

(2 3)(4 5)(6 9)(7 8)(10 13)(11 12)〉.
Aut(R3) = 〈(0 7)(1 11)(2 6)(3 13)(4 9)(5 10)(8 14)(12 15),

(2 4)(3 5)(6 10)(7 11)(8 12)(9 13),

(2)(3)(4 5)(6 7)(8 9)(10 12)(11 13)(14 15)〉.
Aut(R4) = 〈(0 7 6)(1 8 9)(3 5 4)(10 15 11)(12 13 14),

(0 11 5 13 1 7 4 6)(2 10 15 12 3 9 14 8)〉.

Aut(R5) = 〈(0 4)(1 5)(2 15)(3 14)(6 12)(7 9)(8 13)(10 11),

(0 1)(2 3)(4 5)(6 13)(7 11)(8 12)(9 10)(14 15),

(1 2)(4 6)(5 7)(8 9)(10)(11 14)(12)(13 15)〉.
Aut(R6) = 〈(0 2)(1 3)(4 15)(5 14)(6 7)(8 10)(9 12)(11 13),

(0 1)(2 3)(4 5)(6 13)(7 11)(8 12)(9 10)(14 15),

(1 15)(2 11)(3 8)(4 7)(5 12)(6 10)(13)(14)〉.
Aut(R7) = 〈(1 3 2)(4 9 7)(5 8 6)(10 13 15)(11 14 12),

(0 7 14 8)(1 11 15 12)(2 13 5 9)(3 6 4 10)〉.
Aut(R8) = 〈(0 5)(1 4)(2 14)(3 15)(6 8)(7 10)(9 11)(12 13),

(0 12 14 11)(1 8 15 7)(2 10 5 6)(3 9 4 13),

(0 15)(1 14)(2 5)(3 4)(6)(7 11)(8 12)(9)(10)(13)〉.
Aut(R9) = 〈(2 3)(4 5)(6 9)(7 8)(10 13)(11 12),

(0 4)(1 5)(2 15)(3 14)(6 12)(7 9)(8 13)(10 11),

(0 7)(1 11)(2 6)(3 13)(4 9)(5 10)(8 14)(12 15)〉.
Aut(R10) = 〈(1 11 12 9)(2 10 7 14)(3 4 15 13)(5 8),

(0 1)(2 3)(4 5)(6 13)(7 11)(8 12)(9 10)(14 15)〉.
Aut(R11) = 〈(0 4 2 8)(1 6 7 3)(5 9)(10 13 15 11)(12)(14),

(0 10 11 9 14)(1 3 5 15 12)(2 13 6 4 7)〉.

All of the full automorphism groups are transitive. Moreover, groups Aut(R1)
and Aut(R11) are primitive. Group Aut(R1) coincides with the full au-
tomorphism group of the design; group Aut(R11) is isomorphic to group
“(2∧4 :5).4” in the GAP primitive group library, which is group number 16.5
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in [18]. The orders of the groups are

Aut(R1) = 1920, Aut(R2) = 128, Aut(R3) = 128,

Aut(R4) = 384, Aut(R5) = 32, Aut(R6) = 32,

Aut(R7) = 96, Aut(R8) = 32, Aut(R9) = 32,

Aut(R10) = 64, Aut(R11) = 320.

6.5 CLASSIFICATION OF RB(24, 12, 11) DESIGNS

The affineRB(24, 12, 11) designs have been studied in [56] by Ito, Leon, and
Longyear. They determined 129 as the number of nonisomorphic
RB(24, 12, 11) designs, and obtained from these 59 nonisomorphic
Hadamard matrices of order 24. However, it was later discovered by Kimura
[64] that the actual number of nonisomorphic Hadamard matrices of order
24 was 60. (This has been independently confirmed by Spence [111].) Be-
cause the completeness of the classification of Hadamard matrices of order
24 in [56] was based on the assumption that the 129 RB(24, 12, 11) de-
signs form a complete classification, this naturally raises the question whether
there exist additional RB(24, 12, 11) designs.

To determine all the nonisomorphicRB(24, 12, 11) designs, we construc-
ted the resolutions of the designs using the Read–Faradžev-type algorithm
from Section 5.2 with p = 14. The algorithm found 130 nonisomorphic
resolutions, to which correspond 130 nonisomorphic RB(24, 12, 11) designs
by Theorem 2.3.19.

Based on the automorphism group sizes and other tabulated isomorphism
invariants in [56], we suspect that the design/resolution missed in [56] was

{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}},
{{0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 16, 17}, {6, 7, 8, 9, 10, 11, 18, 19, 20, 21, 22, 23}},
{{0, 1, 2, 3, 6, 7, 12, 13, 18, 19, 20, 21}, {4, 5, 8, 9, 10, 11, 14, 15, 16, 17, 22, 23}},
{{0, 1, 2, 3, 8, 9, 14, 15, 18, 19, 22, 23}, {4, 5, 6, 7, 10, 11, 12, 13, 16, 17, 20, 21}},
{{0, 1, 2, 3, 10, 11, 16, 17, 20, 21, 22, 23}, {4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 18, 19}},
{{0, 1, 4, 5, 6, 7, 14, 16, 18, 20, 22, 23}, {2, 3, 8, 9, 10, 11, 12, 13, 15, 17, 19, 21}},
{{0, 1, 4, 5, 8, 10, 12, 17, 18, 19, 21, 22}, {2, 3, 6, 7, 9, 11, 13, 14, 15, 16, 20, 23}},
{{0, 1, 4, 6, 8, 9, 13, 15, 17, 20, 21, 23}, {2, 3, 5, 7, 10, 11, 12, 14, 16, 18, 19, 22}},
{{0, 1, 5, 7, 10, 11, 13, 14, 15, 19, 21, 23}, {2, 3, 4, 6, 8, 9, 12, 16, 17, 18, 20, 22}},
{{0, 1, 6, 7, 9, 11, 12, 15, 16, 17, 19, 22}, {2, 3, 4, 5, 8, 10, 13, 14, 18, 20, 21, 23}},
{{0, 1, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20}, {2, 3, 4, 5, 6, 7, 15, 17, 19, 21, 22, 23}},
{{0, 2, 4, 5, 9, 11, 12, 13, 19, 20, 22, 23}, {1, 3, 6, 7, 8, 10, 14, 15, 16, 17, 18, 21}},
{{0, 2, 4, 6, 10, 11, 14, 15, 17, 18, 19, 20}, {1, 3, 5, 7, 8, 9, 12, 13, 16, 21, 22, 23}},
{{0, 2, 4, 7, 9, 10, 12, 15, 16, 18, 21, 23}, {1, 3, 5, 6, 8, 11, 13, 14, 17, 19, 20, 22}},
{{0, 2, 5, 6, 8, 11, 13, 15, 16, 18, 21, 22}, {1, 3, 4, 7, 9, 10, 12, 14, 17, 19, 20, 23}},
{{0, 2, 5, 7, 8, 9, 14, 16, 17, 19, 20, 21}, {1, 3, 4, 6, 10, 11, 12, 13, 15, 18, 22, 23}},
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{{0, 2, 6, 7, 8, 10, 12, 13, 14, 17, 22, 23}, {1, 3, 4, 5, 9, 11, 15, 16, 18, 19, 20, 21}},
{{0, 3, 4, 6, 8, 11, 12, 14, 16, 19, 21, 23}, {1, 2, 5, 7, 9, 10, 13, 15, 17, 18, 20, 22}},
{{0, 3, 4, 7, 8, 10, 13, 15, 16, 19, 20, 22}, {1, 2, 5, 6, 9, 11, 12, 14, 17, 18, 21, 23}},
{{0, 3, 4, 7, 9, 11, 13, 14, 17, 18, 21, 22}, {1, 2, 5, 6, 8, 10, 12, 15, 16, 19, 20, 23}},
{{0, 3, 5, 6, 9, 10, 12, 14, 15, 20, 21, 22}, {1, 2, 4, 7, 8, 11, 13, 16, 17, 18, 19, 23}},
{{0, 3, 5, 6, 9, 10, 13, 16, 17, 18, 19, 23}, {1, 2, 4, 7, 8, 11, 12, 14, 15, 20, 21, 22}},
{{0, 3, 5, 7, 8, 11, 12, 15, 17, 18, 20, 23}, {1, 2, 4, 6, 9, 10, 13, 14, 16, 19, 21, 22}}.

The following properties distinguish the design above from the 129 designs
tabulated in [56]. First, the full automorphism group

Aut(R) = 〈(0 1)(2 3)(4 9 7 10)(5 8 6 11)(12 23)(13 22) · · ·
· · · (14 18 20 16)(15 19 21 17),

(0 2)(1 3)(4 5)(6 7)(8 10)(9 11)(12 13)(14 17) · · ·
· · · (15 16)(18 21)(19 20)(22 23)〉

of the design has order 8. Second, the induced action of the automorphism
group on the set of parallel classes has 9 orbits: four of cardinality 4, two of
cardinality 2, and three of cardinality 1. Finally, the design has 12 missing
quadliterals, that is, 4-subsets of Z24 that do not occur in any block.

6.6 CLASSIFICATION OF RB(14, 7, 12) DESIGNS

The RB(14, 7, 12) designs were classified using the Read–Faradžev algo-
rithm for generation of resolutions of block designs with p = 8. The total
number of resolutions obtained was 1363486, of which 1360800 have a triv-
ial full automorphism group.

Each resolution is unique and the automorphism groups of the resolution
and the underlying design agree by Theorem 2.3.15. Table 6.6 gives the
orders of the automorphism groups of the RB(14, 7, 12) designs/resolutions.

Table 6.6: Properties of RB(14, 7, 12) designs.

|Aut(B)| Nrd
1 1360800
2 1819
3 748
4 63
6 37
8 1

12 13
13 1
24 1
39 2
156 1

Total 1363486
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The lexicographic maximum representative of the RB(14, 7, 2) design
with the largest automorphism group is given below.

R = {{{0, 1, 2, 3, 4, 5, 6}, {7, 8, 9, 10, 11, 12, 13}},
{{0, 1, 2, 3, 4, 5, 7}, {6, 8, 9, 10, 11, 12, 13}},
{{0, 1, 2, 3, 8, 9, 10}, {4, 5, 6, 7, 11, 12, 13}},
{{0, 1, 2, 4, 8, 11, 12}, {3, 5, 6, 7, 9, 10, 13}},
{{0, 1, 2, 5, 9, 11, 13}, {3, 4, 6, 7, 8, 10, 12}},
{{0, 1, 3, 6, 7, 12, 13}, {2, 4, 5, 8, 9, 10, 11}},
{{0, 1, 3, 6, 9, 12, 13}, {2, 4, 5, 7, 8, 10, 11}},
{{0, 1, 4, 6, 9, 10, 11}, {2, 3, 5, 7, 8, 12, 13}},
{{0, 1, 4, 7, 8, 11, 12}, {2, 3, 5, 6, 9, 10, 13}},
{{0, 1, 5, 7, 8, 10, 13}, {2, 3, 4, 6, 9, 11, 12}},
{{0, 1, 5, 8, 10, 12, 13}, {2, 3, 4, 6, 7, 9, 11}},
{{0, 1, 6, 7, 9, 10, 11}, {2, 3, 4, 5, 8, 12, 13}},
{{0, 2, 3, 6, 8, 11, 13}, {1, 4, 5, 7, 9, 10, 12}},
{{0, 2, 3, 7, 8, 9, 10}, {1, 4, 5, 6, 11, 12, 13}},
{{0, 2, 4, 7, 9, 12, 13}, {1, 3, 5, 6, 8, 10, 11}},
{{0, 2, 4, 9, 10, 12, 13}, {1, 3, 5, 6, 7, 8, 11}},
{{0, 2, 5, 6, 7, 10, 12}, {1, 3, 4, 8, 9, 11, 13}},
{{0, 2, 5, 6, 10, 11, 12}, {1, 3, 4, 7, 8, 9, 13}},
{{0, 2, 6, 7, 8, 11, 13}, {1, 3, 4, 5, 9, 10, 12}},
{{0, 3, 4, 5, 10, 11, 13}, {1, 2, 6, 7, 8, 9, 12}},
{{0, 3, 4, 6, 8, 10, 12}, {1, 2, 5, 7, 9, 11, 13}},
{{0, 3, 4, 7, 10, 11, 13}, {1, 2, 5, 6, 8, 9, 12}},
{{0, 3, 5, 7, 9, 11, 12}, {1, 2, 4, 6, 8, 10, 13}},
{{0, 3, 5, 8, 9, 11, 12}, {1, 2, 4, 6, 7, 10, 13}},
{{0, 4, 5, 6, 7, 8, 9}, {1, 2, 3, 10, 11, 12, 13}},
{{0, 4, 5, 6, 8, 9, 13}, {1, 2, 3, 7, 10, 11, 12}}}.

The full automorphism group

Aut(R) = 〈(1 3 2 8 11 12 5 10 13 4 9 6), (0 3 13 12 8 11 1 5 9 4 6 2 10)〉

has order 156 and is isomorphic to the group AGL1(13).
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7 CONCLUSION

The nonexistence of RB(15,5,4) designs and the other classification results
obtained in this report provide additional evidence that exhaustive search is
a valuable tool for settling problems in design theory — the time efficiency
of the search algorithm and the available computational resources being the
limiting factors for such an approach.

An additional concern in the exhaustive approach is naturally the relia-
bility of the results obtained, especially in the case of negative results. In
particular, a result obtained using exhaustive search is correct if the search
algorithm is correct and the implementation behaves correctly. The correct
behaviour of the implementation depends in turn on the correctness of the
source code-level implementation, the correctness of the compiler, the error-
free operation of the hardware, and so on. Given such a multitude of possible
sources of error, it is obvious that an independent verification is desirable for
complete confidence in a result based on exhaustive search, even if the algo-
rithm implementation correctly reproduces earlier research results. In this
sense computer search for mathematical results should be regarded as an ex-
perimental science, where the experimental setup must be described to a
sufficient degree to allow reproducibility, and where the results are generally
considered valid only after at least one independent verification.

There are two central issues to consider in designing effective exhaustive
generation algorithms for block designs and other combinatorial configura-
tions: (i) how to generate the configurations efficiently; and, if elimination
of isomorphic configurations is desired, (ii) how to detect isomorphic config-
urations. In this report the approach chosen to generate block designs was
to formulate the generation problem in a group-theoretic framework and to
use backtrack search combined with detection and elimination of isomor-
phic partial solutions to generate the desired orbit transversal. It is natural
to ask whether the backtrack search approach—which is usually considered
as a “last resort” option when other algorithmic disciplines fail—is the best
available for solving such problems. Although we cannot give an affirma-
tive answer to this question, we will attempt to argue that the generation of
block designs is by no means an easy combinatorial problem, so the use of
backtrack search is acceptable.

To put generation of block designs into perspective, we briefly discuss gen-
eration of other types of configurations. For some configurations such as
permutations, set partitions, and combinations, very fast generation methods
exist [34]. Generation up to isomorphism is possible with constant delay for
trees [121] and with polynomial delay (in the number of vertices) for graphs
[43, 45]. As far as we are aware, there is no published polynomial delay algo-
rithm for generating up to isomorphism all set systems with a point set and
cardinality fixed. It is our belief, however, that the easy–hard interleaving
technique used in [43] to achieve polynomial delay could in some form be
used to achieve polynomial delay for generation of set systems.

All of the generation problems in the previous paragraph can be regarded
as having an efficient solution. What is more often required is the efficient
generation of a subcollection of these configurations that satisfy an additional
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property the generation of, say, regular graphs [87] or block designs being
good examples. Deciding whether a given problem instance has a particular
property is a standard problem studied in computational complexity theory,
so it is natural to attempt to investigate the complexity of generation problems
by studying related decision problems. Such an attempt is made in Appendix
C, where it is hoped that the reader will become at least partially convinced
that generation of block designs and resolutions are both hard problems from
a computational complexity viewpoint.

If we regard backtrack search as an acceptable method for solving the gen-
eration problem for block designs, then further effort should be directed to
improve its performance. The collection of principles for designing fast back-
track algorithms presented in [80] are helpful in this regard. The first ques-
tion to ask when designing any backtrack search algorithm is what constitutes
a partial solution, and what can be done to facilitate an early and efficient
detection of inextendible partial solutions to limit the number of partial solu-
tions that must be traversed by the algorithm.

The constraints for a block design necessarily involve a consideration of
the points in the blocks, so it is natural to proceed either point by point or
block by block in a backtrack search. For the generation of block designs we
chose to proceed point by point motivated by the success of similar algorithms
in the past. Furthermore, the pairwise inner product constraint required for
the rows of an incidence system could be formulated as a clique problem on
the compatibility graph; the clique approach presents a performance advan-
tage over standard backtrack search because it is not necessary to backtrack
through the set of rows that extend a partial solution after every extension
step. The block by block generation approach for block designs was discour-
aged by an NP-completeness result of Colbourn [19] (see Appendix C). For
resolutions of block designs no such result exists as far as we are aware, so we
chose to explore generating the codes that correspond to the resolutions both
codeword by codeword and coordinate by coordinate.

Of the three algorithms described in Chapter 5, both of the Read–
Faradžev-type algorithms were successful in producing new classification re-
sults. The McKay-type algorithm, however, proved to be too slow to produce
any new results. The most likely reason why the algorithm is ineffective is the
choice to construct codes coordinate by coordinate. (The main reason for this
choice was to try out an alternative method for classification of codes of small
length but large cardinality. For example, the (10, 21, 9)7 EDm-codes that
correspond to the resolutions of Kirkman triple systems of order 21 are of this
type.) Although the number of extension steps in the search is smaller when
proceeding coordinate by coordinate, the number of inextendible solutions
that need to be traversed by the McKay-type algorithm seems to be much
larger than when proceeding codeword by codeword. There are at least two
likely sources for this inefficiency, both of which increase the number of in-
extendible partial solutions that must be traversed by the algorithm. First, the
necessary conditions for extendibility given in Lemma 5.3.2 are likely not to
constrain the partial solutions as much as the conditions in Lemmata 5.2.1
and 5.2.2 do. Second, there seems to be no immediate counterpart to Lem-
mata 5.2.6 and 5.2.4 that would constrain the order in which coordinates are
added to a partial solution in the McKay framework.
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We conclude this discussion by indicating several topics for future re-
search. First of all, the new classification results described Chapter 6 should
be more thoroughly analyzed. This involves implementing a back-end to
the generation algorithm that analyzes the generated designs for properties
of interest and stores either part or all of the designs for subsequent use. (A
preliminary version of such a back-end was implemented for classification of
the RB(16, 4, 2) designs as described in Section 6.4.)

Improving the efficiency of the Read–Faradžev-type backtrack search algo-
rithms is also a topic of future research. In particular, the packing constraint
from [29] and the strong partial isomorph rejection technique from [30]
should improve the efficiency of the row and codeword generation proce-
dures. Additionally, it is our belief that more advanced computational group
theory methods (see, for example, [14]) could be used to improve the per-
formance of the canonicity test procedures. In the least, the canonicity test
procedures should take advantage of the automorphism groups computed
earlier in the search. The clique search algorithm can also be improved
to take into account the automorphism group of the partial solution, which
induces a group of automorphisms for the compatibility graph (cf. [112]).
Indeed, clique search in a graph with a known group of automorphisms is a
research topic of independent interest.

On the theoretical side, Appendix C contains problems whose exact com-
putational complexity has not been established as far as we are aware. Two
examples are deciding resolvability of a given block design and deciding
whether a given incidence system can be completed to a block design by
addition of points.

Finally, we wish to mention open problems in design theory which could
be accessible to exhaustive methods in the future, although the algorithms
developed in this report are still too inefficient to settle them. Namely,
the B(22, 8, 4) designs constitute the smallest parameter family of block de-
signs whose existence is at present unsettled. Furthermore, the families of
STS(19) and KTS(21) await classification.
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x ∈ X x is an element of X , 92
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Functions
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Groups and group actions
H ≤ G H is a subgroup of G, 95
G/H the set of all left cosets of H in G, 96
H\G the set of all right cosets of H in G, 96
[G : H] index of H in G, 96
G 
X the set of all orbits of G on X , 97
Gx orbit of x under action of G, 97
Gx stabilizer of x in G, 97
fixX(g) number of x ∈ X fixed by g, 98
G×H direct product of G and H , 98
K oQ semidirect product of K by Q, 98
D oQ wreath product of D by Q, 100
Sym(X) symmetric group on X , 94
Sn symmetric group on Zn, 94
(i0 i1 · · · ir−1) r-cycle with elements i0, i1, . . . , ir−1, 94
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Aut(G) full automorphism group of G, 96
〈S〉 group generated by S, 95

Block designs and resolutions
B(v, k, λ) the set of all B(v, k, λ) designs over Zv, 8
RB(v, k, λ) the set of all RB(v, k, λ) designs over Zv, 11
R(v, k, λ) the set of all resolutions of RB(v, k, λ) designs

over Zv, 11
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Aut(B) full automorphism group of B ∈ B(v, k, λ), 7
Aut(R) full automorphism group of R ∈ R(v, k, λ),
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Incidence systems
I B(v, k, λ) the set of all incidence systems that correspond

to B(v, k, λ) designs, 18
I R(v, k, λ) the set of resolved incidence systems in

I B(v, k, λ), 20
AutP (A) point automorphism group of an A ∈ ZZw×Zb2 ,

51

Error-correcting codes
dH the Hamming metric, 23
Aq(n, d) the maximum cardinality of an (n, d)q code, 24
Iso(X, d) the set of all isometries of a metric space (X, d),

25
Cq(n,M, d) the set of all (n,M, d)q codes in P[Znq ], 27
L C q(n,M, d) the set of allM×nmatrices over Zq whose rows

form an (n,M, d)q code, 28
AutP (A) point automorphism group of an A ∈ ZZM×Zsq ,
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Miscellaneous
⇔ if and only if, 5
A(i, ·) row i of a matrix A, 49
A(·, j) column j of a matrix A, 49
bxc the greatest integer n for which n ≤ x, 24
[a, b] greatest common divisor of a, b ∈ N, 28
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B MATHEMATICAL PRELIMINARIES

B.1 TERMINOLOGY AND NOTATION

B.1.1 Sets, functions and relations

We use the following standard notation and terminology for sets. We write
x ∈ X to indicate that x is an element of the set X . Conversely, x /∈ X
indicates that x is not an element of X . The cardinality of a finite set X is
denoted by |X|. We write Y ⊆ X to indicate that Y is a subset of X , and
Y ⊂ X to indicate that Y is a proper subset of X . Furthermore, we use the
standard notation X ∪ Y , X ∩ Y and X \ Y for the union, intersection, and
difference of X and Y , respectively.

The following sets are used frequently in this report and therefore deserve
their own symbols. The empty set is denoted by ∅. The set of nonnegative
integers is denoted by N = {0, 1, 2, . . . }, and the set of integers by Z =
{. . . ,−1, 0, 1, . . . }. The set of the first q nonnegative integers is denoted by
Zq = {0, 1, . . . , q − 1}.

Two sets are said to be disjoint if their intersection is empty. A collection
of sets X1, . . . , Xn is pairwise disjoint if Xi ∩Xj = ∅ for all 1 ≤ i < j ≤ n.
A set of pairwise disjoint nonempty subsets of a set X whose union is X is a
partition of X . The elements of a partition are called cells.

We denote by {x ∈ X : P} the set of all x ∈ X with property P .
The set of all subsets of a set X , including the empty set, is denoted by
P[X]. Additionally, we denote by X × Y the Cartesian product of X
and Y . The n-fold Cartesian product of X0, X1, . . . , Xn−1 is denoted by
X0 ×X1 × · · · ×Xn−1. We denote an ordered n-tuple in X0 ×X1 × · · · ×
Xn−1 by (x0, x1, . . . , xn−1), where xi ∈ Xi for all i ∈ Zn. The elements
x0, x1, . . . , xn−1 are called coordinates of the n-tuple. For notational conve-
nience we abbreviate X ×X × · · · ×X︸ ︷︷ ︸

n

as Xn.

A binary relation R ⊆ X ×X is reflexive if (x, x) ∈ R for all x ∈ X . (For
notational convenience we shall henceforth write xRy to indicate (x, y) ∈
R.) If xRy implies yRx for all x, y ∈ X , then R is symmetric. Conversely,
R is antisymmetric if, for all x, y ∈ X , xRy and yRx imply x = y. Further-
more, R is transitive if xRy and yRz imply xRz for all x, y, z ∈ X . If R is
reflexive, symmetric, and transitive then R is an equivalence relation on X .
An equivalence relationR onX partitionsX into equivalence classes, which
are defined by the rule that x, y ∈ X are in the same cell (equivalence class)
of the partition if and only if xRy.

For functions we use the standard notation f : X → Y to indicate that f
is a function from X to Y . Moreover, we write either f(x) = y or f : x 7→ y
to indicate that x ∈ X maps to y ∈ Y under f . If the function is clear from
the context, we often omit the “f :” and write simply x 7→ y.

We write Y X for the set of all functions from X to Y . This notation
allows an easy identification of elements of the n-fold Cartesian product
Y n = Y × Y × · · · × Y with functions in Y Zn in which an n-tuple y =
(y0, y1, . . . , yn−1) ∈ Y n corresponds to the function y ∈ Y Zn defined by
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y : i 7→ yi for all i ∈ Zn.
The composition of functions f : Y → Z and g : X → Y is the function

f ◦ g : X → Z defined by x 7→ f(g(x)) for all x ∈ X . The restriction of
a function f : X → Y into Z ⊆ X is denoted by f |Z . The inverse of a
bijective function f is denoted by f−1.

B.1.2 Lexicographic order

Let X be a nonempty set. A reflexive, antisymmetric and transitive binary
relation R ⊆ X×X is a partial order on X . A partial order R is a total order
if, for all x, y ∈ X , either xRy or yRx. We use ≤ to denote a total order
relation. The symbol < is used as a shorthand for x ≤ y and x 6= y.

Let X0, X1, . . . , Xn−1 be totally ordered sets, and let x = (x0, x1, . . . ,
xn−1) and y = (y0, y1, . . . , yn−1) be elements of X0 × X1 × · · · × Xn−1.
Lexicographic order on X0 ×X1 × · · · ×Xn−1 is defined by the rule x ≤ y
if and only if either xi = yi for all i ∈ Zn, or there exists a j ∈ Zn such that
xj < yj and xi = yi for all i ∈ Zj .

Let X and Y be totally ordered sets and let f, g : X → Y . Lexicographic
order on Y X is defined by the rule f ≤ g if and only if either f(x) = g(x)
for all x ∈ X , or there exists a x ∈ X such that f(x) < g(x) and f(z) = g(z)
for all z ∈ X that satisfy z < x.
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B.2 GROUP THEORY

Our definitions for groups are based on [105] (cf. [2, 15, 33, 55]).
We use the standard multiplicative notation g1 ∗ g2 for the image of an

ordered pair (g1, g2) under ∗ instead of the more cumbersome ∗(g1, g2).

Definition B.2.1 A setG is a group under a mapping ∗ : G×G→ G, called
the group operation of G, if ∗ has the following properties:

(i) (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3) for all g1, g2, g3 ∈ G; and

(ii) there exists a 1 ∈ G such that g ∗ 1 = g for all g ∈ G; and

(iii) for all g ∈ G there exists a g−1 ∈ G such that g ∗ g−1 = 1.

Conditions (ii) and (iii) of the previous definition can be stated in a stronger
form as (ii’) and (iii’).

Theorem B.2.2 Let G be a group under ∗ : G×G→ G. Then,

(ii’) there exists a unique 1 ∈ G, called the identity element of G, such that
g ∗ 1 = 1 ∗ g = g for all g ∈ G; and

(iii’) for all g ∈ G there exists a unique g−1 ∈ G, called the inverse of g,
such that g ∗ g−1 = g−1 ∗ g = 1.

We write (G, ∗) to indicate that G is a group under ∗ if explication of the
group operation is necessary for clarity; if the group operation is clear from
the context, then we write simply g1g2 instead of g1 ∗ g2.

A group G is finite if G is a finite set. The order of a finite group G is its
cardinality.

B.2.1 Permutations, the symmetric group

Definition B.2.3 A permutation of a nonempty set X is a bijection of X
onto itself.

We write Sym(X) for the set of all permutations of X .

Theorem B.2.4 Sym(X) is a group under the composition operation ◦.

The group Sym(X) is called the symmetric group on X . We abbreviate
Sym(Zn) to Sn.

Definition B.2.5 Let x ∈ X and π ∈ Sym(X). We say that π fixes x if
π(x) = x; otherwise π moves x. Two permutations are disjoint if every point
moved by one is fixed by the other.

Definition B.2.6 Let i0, i1, . . . , ir−1 be distinct integers in Zn. If π ∈ Sn
fixes the remaining n− r integers and if

π(i0) = i1, π(i1) = i2, . . . , π(ir−2) = π(ir−1), π(ir−1) = i0,

then π is an r-cycle, and is denoted by (i0 i1 · · · ir−1).
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Example B.2.7 The permutation π ∈ S8 with π(0) = 5, π(1) = 1, π(2) =
6, π(3) = 2, π(4) = 0, π(5) = 4, π(6) = 3, and π(7) = 7 can be written as a
product of cycles π = (0 5 4)(2 6 3). A pictorial representation of π in terms
of its cycles is given below.

0 5

4
1

6

2
7

3

♦

Theorem B.2.8 Every permutation in π ∈ Sn is either a cycle or a product
of pairwise disjoint cycles.

This cycle representation of π ∈ Sn is unique up to ordering of the cycles if
all points fixed by π are included in the representation as 1-cycles.

B.2.2 Subgroups, cosets and Lagrange’s theorem

Definition B.2.9 A nonempty subset H of a group G is a subgroup of G if
(i) h−1 ∈ H for all h ∈ H ; and (ii) hh′ ∈ H for all h, h′ ∈ H .

We write H ≤ G to indicate that H is a subgroup of G.

Theorem B.2.10 If (G, ∗) is a group and H ≤ G, then H is a group under
the restriction of ∗ to H ×H .

For a finite group G, condition (i) of Definition B.2.9 can be omitted:

Theorem B.2.11 If G is a finite group and H ⊆ G, then H ≤ G if and only
if hh′ ∈ H for all h, h′ ∈ H .

Example B.2.12 Let X be a nonempty set. A permutation group on X is a
subgroup of Sym(X). The degree of a permutation group on X is |X|. ♦

Theorem B.2.13 If G is a group, then the intersection of any collection of
subgroups of G is a subgroup of G.

Corollary B.2.14 Let G be a group and let S ⊆ G. Then the set

〈S〉 =
⋂
{H : S ⊆ H ≤ G}

is a subgroup of G.

The group 〈S〉 is called the group generated by S and the elements of S are
called generators of 〈S〉.

Example B.2.15 The 6-cycle (0 1 2 3 4 5) generates a subgroup of S6 with 6
elements:

(0)(1)(2)(3)(4)(5), (0 1 2 3 4 5), (0 2 4)(1 3 5),

(0 3)(1 4)(2 5), (0 4 2)(1 5 3), (0 5 4 3 2 1).

♦
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Definition B.2.16 Let G be a group and let H ≤ G. For a g ∈ G the set
gH = {gh : h ∈ H} is called the left coset of H in G which contains g.
Similarly, Hg = {hg : h ∈ h} is the right coset .

We write G/H and H\G for the sets of left and right cosets of H in G, re-
spectively.

Theorem B.2.17 For a group G and a H ≤ G, any two left (right) cosets of
H in G are either identical or disjoint, and the number of left cosets of H in
G is equal to the number of right cosets of H in G.

Definition B.2.18 For a group G and a H ≤ G, the index of H in G, de-
noted by [G : H], is the number of left (right) cosets of H in G.

Theorem B.2.19 (Lagrange) If G is a finite group and H ≤ G, then |H|
divides |G| and [G : H] = |G|/|H|.

Definition B.2.20 For a group G and a H ≤ G, a subset T ⊆ G is a left
(right) transversal of H in G if T contains exactly one element from each left
(right) coset of H in G.

B.2.3 Homomorphism and isomorphism

Definition B.2.21 Let (G, ∗) and (H,�) be groups. A mapping ϑ : G→ H
is a group homomorphism if ϑ(g0 ∗ g1) = ϑ(g0) � ϑ(g1) for all g0, g1 ∈ G.

Theorem B.2.22 Let G and H be groups and let ϑ : G → H be a group
homomorphism. Then (i) ϑ(1G) = 1H ; and (ii) ϑ(g−1) = ϑ(g)−1 for all
g ∈ G.

Definition B.2.23 A group isomorphism is a bijective homomorphism. An
isomorphism of G onto itself is an automorphism.

Definition B.2.24 The set of all automorphisms ofG is a subgroup of Sym(G)
that is called the (full) automorphism group of G and denoted by Aut(G).

B.2.4 Permutation representations and group actions

Definition B.2.25 For a group G and a nonempty set X , a homomorphism
ρ : G → Sym(X) is called a permutation representation of G on X . A
permutation representation is faithful if it is injective.

Permutation representations are often more conveniently described in
terms of group actions. Theorem B.2.27 below shows that these descriptions
are equivalent.

Definition B.2.26 Let (G, ∗) be a group, and let X be a nonempty set. A
function · : G×X → X is called a (left) action of G on X if

(i) 1 · x = x for all x ∈ X ; and

(ii) (g0 ∗ g1) · x = g0 · (g1 · x) for all g0, g1 ∈ G, and all x ∈ X .
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Theorem B.2.27 Let · : G×X → X be a group action. Then, the mapping
ρ : G → Sym(X) defined by ρ : g 7→ ρg and ρg : x 7→ g · x for all
x ∈ X and g ∈ G is a group homomorphism. Conversely, a homomorphism
ρ : G→ Sym(X) defines an action on X by (g, x) 7→ ρg(x).

To indicate the presence of a group action of G on X without explicating the
action we say that G acts on X . For notational convenience we shall omit
the “·” and write simply gx whenever there is no danger of confusion.

Example B.2.28 LetG ≤ Sym(X) be a permutation group onX . Then the
induced action of G on X is defined by (π, x) 7→ π(x) for all π ∈ G and
x ∈ X . ♦

The induced action of a permutation group can be extended to P[X] and
other constructions involving subsets of X (such as set systems, cf. Defini-
tion 2.1.4) using Lemmata 2.1.9 and 2.1.10. It is customary to speak of the
induced action also in this case.

B.2.5 Orbits and stabilizers

Definition B.2.29 Let G act on X . For every x ∈ X , the set

Gx = {gx : g ∈ G}

is called the orbit of x under G.

We write G 
X for the set of all orbits of G on X .

Theorem B.2.30 G 
X is a partition of X .

Example B.2.31 The induced action of 〈(0 1 2 3 4 5)〉 on the set of 2-subsets
of Z6 produces the following partition into three orbits:

0

12

3

4 5

0

12

3

4 5

0

12

3

4 5

(Each straight line connecting two points represents a 2-subset.) ♦

Definition B.2.32 Let G act on X . For every x ∈ X , the stabilizer of x in
G, denoted by Gx, is the subgroup

Gx = {g ∈ G : gx = x} ≤ G.

Let x ∈ X . The orbit Gx and the corresponding stabilizer subgroup Gx are
connected by the following theorem.
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Theorem B.2.33 (Orbit-Stabilizer Theorem) Let G act on X and suppose
x ∈ X . If T is a left transversal of Gx in G, then the mapping defined by
t 7→ tx for all t ∈ T is a bijection of T onto Gx.

Corollary B.2.34 Let G be a finite group acting on a finite set X . Then, for
every x ∈ X , |Gx| = [G : Gx].

Theorem B.2.35 (Cauchy-Frobenius Lemma) Let G be a finite group act-
ing on a finite set X . Define fixX(g) = |{x ∈ X : gx = x}| for all g ∈ G.
Then,

|G 
X| = 1

|G|
∑
g∈G

fixX(g). (B.1)

The previous theorem is also known as Burnside’s Lemma, however, see [91].

Definition B.2.36 The action of G on X is transitive if G has only one orbit
on X .

Definition B.2.37 Let G act transitively on X . A nonempty subset ∆ ⊆ X
is a block of the action of G on X if, for all g ∈ G, either g∆ = ∆ or
g∆ ∩∆ = ∅. A block is trivial if either ∆ = {x} for some x ∈ X or ∆ = X .

Definition B.2.38 Let G act transitively on X . The action of G on X is
primitive if it has only trivial blocks.

Definition B.2.39 A permutation group onX is transitive (respectively, prim-
itive) if its induced action on X is transitive (respectively, primitive).

B.2.6 Direct, semidirect and wreath products

Definition B.2.40 The Cartesian productG×H of groups (G, ∗) and (H,�)
is a group under the operation defined by ((g1, h1), (g2, h2)) 7→ (g1 ∗g2, h1�
h2) for all (g1, h1), (g2, h2) ∈ G×H and is called the (external) direct prod-
uct of G and H .

The n-fold direct product for groups G1, . . . , Gn is defined analogously.
The group constructed in the following theorem is called a semidirect

product of K by Q (realizing ϑ) and is denoted by K oϑ Q.

Theorem B.2.41 Let K and Q be groups and let ϑ : Q → Aut(K) where
q 7→ ϑq be a homomorphism. Then, K × Q is a group under the operation
defined by

(k1, q1), (k2, q2) 7→ (k1ϑq1(k2), q1q2).

for all (k1, q1), (k2, q2) ∈ K ×Q.
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Proof. We verify conditions (i)-(iii) of Definition B.2.1. For condition (i), let
(k1, q1), (k2, q2), (k3, q3) ∈ K ×Q. From the definition we obtain

((k1, q1)(k2, q2))(k3, q3) =

= (k1ϑq1(k2), q1q2)(k3, q3) = (k1ϑq1(k2)ϑq1q2(k3), q1q2q3).

Because ϑ is a homomorphism of Q into Aut(K), we have ϑq1q2(k3) =
ϑq1(ϑq2(k3)). Moreover, since ϑq1 is a homomorphism of K onto K,
ϑq1(k2)ϑq1(ϑq2(k3)) = ϑq1(k2ϑq2(k3)). Thus,

(k1ϑq1(k2)ϑq1q2(k3), q1q2q3) =

= (k1ϑq1(k2ϑq2(k3)), q1q2q3) = (k1, q1)(k2ϑq2(k3), q2q3) =

= (k1, q2)((k2, q2)(k3, q3)).

Condition (ii) holds for the element (1K , 1Q) ∈ K × Q. To see this, note
that ϑq(1K) = 1K for all q ∈ Q by Theorem B.2.22. Thus, (k, q)(1K , 1Q) =
(kϑq(1K), q1Q) = (k, q) for all (k, q) ∈ K × Q. For condition (iii), let
(k, q) ∈ K × Q and put (k, q)−1 = (ϑq−1(k−1), q−1). Now, by Theorem
B.2.22,

(k, q)(ϑq−1(k−1), q−1) =

= (kϑq(ϑq−1(k−1)), qq−1) = (kϑqq−1(k−1), 1Q) = (kϑ1Q(k−1), 1Q) =

= (kk−1, 1Q) = (1K , 1Q),

which establishes condition (iii) and completes the proof. �
We require some preliminaries before we define the wreath product (which

is a special case of a semidirect product). Let D be a group and suppose X
is a finite nonempty set. Then we can give DX a direct product structure by
defining a group operation (d1, d2) 7→ d1d2 on DX by the rule

d1d2 : x 7→ d1(x)d2(x)

for all x ∈ X and d1, d2 ∈ DX .

Theorem B.2.42 LetQ act on a finite setX , and letD be a group. IfDX has
the direct product structure, then the mapping ϑ : Q → Aut(DX) defined
by ϑq(d) : x 7→ d(q−1x) for all x ∈ X , d ∈ DX , and q ∈ Q is a well-defined
homomorphism.

Proof. We first show that ϑq is an automorphism ofDX for all q ∈ Q. Select a
q ∈ Q. We note that ϑq simply maps a d : x 7→ d(x) to ϑq(d) : x 7→ d(q−1x).
Thus, because x 7→ q−1x is a bijection, ϑq is a bijection and its inverse is
ϑq−1 . Let d1, d2 ∈ DX , and select an x ∈ X . Then,

ϑq(d1d2) : x 7→ d1d2(q−1x) = d1(q−1x)d2(q−1x)

by definition of the direct product structure on DX . Also, ϑq(d1)ϑq(d2) :
x 7→ d1(q−1x)d2(q−1x). Since x ∈ X was arbitrary, we have ϑq(d1d2) =
ϑq(d1)ϑq(d2). We still have to show that ϑ is a homomorphism. Let q1, q2 ∈
Q and d ∈ DX . Then,

ϑq1q2(d) : x 7→ d((q1q2)−1x) = d(q−1
2 q−1

1 x),

ϑq1(ϑq2(d)) : x 7→ ϑq2(d)(q−1
1 x) = d(q−1

2 q−1
1 x)

for all x ∈ X . Consequently, ϑq1q2(d) = ϑq1(ϑq2(d)). �
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Definition B.2.43 Let D and Q be groups, and let Q act on a finite set X .
The wreath product of D by Q, denoted by D o Q, is the semidirect product
DX

oϑQ, whereDX has the direct product structure and ϑ : Q→ Aut(DX)
is the homomorphism of Theorem B.2.42.

A wreath product D o Q is clearly dependent on the action of Q on X . An
important special case occurs with Q ≤ Sym(X), where the action of Q on
X is the induced action. In this case we say that D o Q is the permutation
wreath product of D by Q.

Example B.2.44 Suppose Sq o Sn is the permutation wreath product of Sq
by Sn. The elements of Sq o Sn are then ordered pairs (µ, π), where µ ∈ SZnq
and π ∈ Sn. For notational convenience, we shall identify the mapping µ
with the ordered n-tuple (µ0, . . . , µn−1) ∈ Snq , where µi = µ(i) ∈ Sq for all
i ∈ Zn. The product ( ˆ̂µ, ˆ̂π) of two elements (µ, π), (µ̂, π̂) in Sq o Sn is then
defined by ˆ̂π = ππ̂ and ˆ̂µi = µiµ̂π−1(i) for all i ∈ Zn. ♦
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C COMPUTATIONAL COMPLEXITY

In this appendix we discuss computational complexity aspects of block de-
signs and their resolutions motivated by surveys of Colbourn [24], Gibbons
[42], and the recent survey of Goldberg [46]. (For reference on computa-
tional complexity theory and the complexity classes P, NP, #P, and #P1,
see [40, 98, 116].) In particular, we shall consider decision and counting
problems related to generation of block designs and resolutions. Further-
more, we briefly discuss the complexity of algorithms that output all solutions
to a given problem instance.

C.1 EXISTENCE AND COMPLETION

First we discuss decision problems related to generation of block designs. A
natural decision problem to consider is

Problem C.1.1 (BLOCK DESIGN EXISTENCE) Given parameters v,k,λ in-
put as unary integers, decide whether a B(v, k, λ) design exists.

The existence problem is obviously in NP, because a nondeterministic Tur-
ing machine can in time polynomial in the input size nondeterministically
guess an incidence matrix and then verify that it corresponds to a block de-
sign. Due to the unary problem instance encoding, the problem is unlikely to
be NP-complete (cf. [98, Theorem 14.3]), although it is by no means trivial.
For example, the existence of a B(22, 8, 4) design is at present undecided.

If we constrain the existence problem to the problem of completing a
given partial design, then the problem becomes NP-complete.

Problem C.1.2 (PARTIAL DESIGN COMPLETION) Given parameters v,k,λ
of a block design and a collection of blocks of cardinality k, decide whether
the collection can be completed to a B(v, k, λ) design.

(We assume that the collection of blocks is always input using a v × b in-
cidence matrix to guarantee that the problem is in NP.) By a result of
Colbourn [19], the problem of completing partial Steiner triple systems is
NP-complete. Consequently, PARTIAL DESIGN COMPLETION is NP-
complete, and it is likely that no efficient (polynomial-time) procedure exists
for deciding whether a partial design can be completed to a block design by
addition of blocks.

Given this result, it is natural to consider the complexity of the problem
of completing a w × b incidence system to a block design by addition of
points instead of blocks. The complexity of this problem is, to the best of our
knowledge, undetermined.

A related problem is to decide whether a single extending row exists, that
is, (recall Section 5.1.2) deciding whether the integer equation system (5.3)
has a {0, 1}-solution, a problem clearly in NP. In the general case, the
problem of deciding whether an equation system Ax = y has a nonnegative
integer solution x ∈ Nn for a givenm×n integer matrixA and anm-vector y
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is NP-complete [97]. It would be interesting to know whether the restriction
from the generic case to systems similar to (5.3) remains NP-complete.

Another related problem is deciding, given all solutions to (5.3), whether
there exists a collection of rows that completes the incidence system to a
block design. Recalling Section 5.1.4, this problem reduces to deciding
whether the corresponding compatibility graph contains a clique of appro-
priate size. The problem of deciding whether an arbitrary graph contains a
clique of a given size is NP-complete [98, p. 190].

C.2 RESOLVABILITY

The second problem we discuss is deciding whether a block design is resolv-
able.

Problem C.2.1 (BLOCK DESIGN RESOLVABILITY) Decide whether a given
B(v, k, λ) design is resolvable.

The exact complexity of this problem is to our knowledge undetermined,
although it is clearly in NP. (Nondeterministically guess a partition of the
blocks and then verify in polynomial time that each cell of the partition is a
parallel class.)

Deciding resolvability reduces to deciding whether a graph related to the
design has a partition into cliques of fixed size.

Definition C.2.2 The block intersection graph of a B(v, k, λ) design has as
vertices all the blocks of the design. Two vertices are connected by an edge
if and only if the corresponding blocks are disjoint.

A clique of order v/k in the block intersection graph of a B(v, k, λ) design
clearly corresponds to a parallel class. Thus, a partition of the block inter-
section graph into cliques of order v/k corresponds to a resolution of the
design. More specifically, a resolution corresponds to a partition of the vertex
set of the block intersection graph into sets of size v/k such that the subgraph
induced by each of the sets is a v/k-clique.

For arbitrary graphs, deciding whether a partition of the above kind into
m-cliques exists is NP-complete for m ≥ 3. (The clique partition problem is
a form of the NP-complete problem PARTITION INTO ISOMORPHIC SUB-
GRAPHS, see [40, p. 193].)

For λ = 1 the block intersection graphs of B(v, k, λ) designs belong to a
class of graphs of separate interest (see [16, Ch. 5]).

Definition C.2.3 A strongly regular graph with parameters (n, d, p, q) is a
graph with n vertices, where each pair of vertices x, y is adjacent to d, p, or q
common vertices according as x and y are equal, adjacent, or non-adjacent,
respectively.

Theorem C.2.4 The block intersection graph of aB(v, k, 1) design is strong-
ly regular with parameters

n = b, d = k(r − 1), p = k2, q = (r − 2) + (k − 1)2. (C.1)
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Proof. Note that two blocks of a B(v, k, 1) design are either disjoint or in-
tersect in exactly one point, and apply straightforward counting arguments.
�

By a result of Bose [9], the converse also holds for large enough n, that is,
any strongly regular graph with appropriate parameters and a large enough n
is a block intersection graph of a B(v, k, 1) design. Furthermore, the design
can be constructed up to isomorphism in polynomial time from the block
intersection graph [113]. So, deciding resolvability of, for example, a Steiner
triple system of large enough order is polynomial-time equivalent to deciding
whether a corresponding strongly regular graph can be partitioned into v/3-
cliques.

A related problem to BLOCK DESIGN RESOLVABILITY is deciding
whether the design contains a parallel class.

Problem C.2.5 (PARALLEL CLASS EXISTENCE) Decide whether a given
B(v, k, λ) design contains a parallel class.

This naturally reduces to deciding whether the block intersection graph con-
tains a v/k-clique. Again, the exact complexity of this problem is, to our
knowledge, undetermined.

Deciding whether a regular graph contains a clique of given size is NP-
complete. More precisely, the problem INDEPENDENT SET OF d-REGULAR
GRAPH is NP-complete for d > 2 [36]. (A graph is d-regular if each of its
vertices is adjacent to exactly d vertices.)

Problem C.2.6 (INDEPENDENT SET OF d-REGULAR GRAPH) Given a d-
regular graph, decide whether it contains an independent set (a set of vertices
in which no pair of vertices is connected by an edge) of a given size.

Strongly regular graphs are clearly a much more restricted class of graphs
than regular graphs, so this NP-completeness result on regular graphs un-
fortunately does not tell us very much about the corresponding problem for
strongly regular graphs.

For B(v, 3, λ) designs PARALLEL CLASS EXISTENCE is a restriction of
an NP-complete problem EXACT COVER BY 3-SETS.

Problem C.2.7 (EXACT COVER BY 3-SETS) Decide whether a collection
of n 3-subsets of a 3m-set contains m sets which partition the 3m-set.

C.3 ISOMORPHISM TESTING AND CANONICAL PLACEMENT

The complexity of deciding isomorphism of two block designs and the com-
plexity of computing canonical placement is clearly of interest in the context
of isomorph-free generation of block designs.

Problem C.3.1 (BLOCK DESIGN ISOMORPHISM) Given twoB(v, k, λ) de-
signs, decide whether they are isomorphic.

By a result of Colbourn [25], BLOCK DESIGN ISOMORPHISM is polynomial-
time equivalent to graph isomorphism.

A related problem is deciding whether two resolutions are isomorphic.
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Problem C.3.2 (RESOLUTION ISOMORPHISM) Given two resolutions of
RB(v, k, λ) designs, decide whether they are isomorphic.

RESOLUTION ISOMORPHISM can clearly be reduced in polynomial time
to graph isomorphism. To our knowledge the converse has not been estab-
lished.

The graph isomorphism problem and canonical placement of graphs have
both received a lot of attention (see [65, 104]). The time complexity of
McKay’s graph canonical placement software nauty [81, 82] is discussed in
[89]. Miller [88] develops a vlog v+O(1) time algorithm for canonical place-
ment of Steiner systems. Babai and Luks [3] generalize the algorithm to han-
dle B(v, k, λ) designs. They also develop a polynomial-time algorithm for
computing canonical placement of graphs with bounded vertex degree, and
demonstrate that finding the graph with the lexicographic minimum/maxi-
mum adjacency matrix isomorphic to a given graph is NP-hard. A related
theoretical result of Blass and Gurevich [6] states that, for certain polynomial
time computable equivalence relations, determining the lexicographic mini-
mum/maximum representative of an equivalence class is strictly harder than
computing canonical placement unless P = NP.

C.4 LABELLED AND UNLABELLED COUNTING

A natural prerequisite to listing all solutions to a given problem is the ability
to count them. Valiant’s complexity classes #P [115] and #P1 [116] are
suitable for discussing the computational complexity of counting problems.
The complexity class #P consists of problems solvable by a polynomial-time
nondeterministic Turing machine in the following sense: The solution to a
problem instance is the number of accepting computations of the Turing
machine when input with the problem instance. The class #P1 is the re-
striction of #P to problems with a unary input alphabet. Both #P-complete
and #P1-complete problems exist, see [116].

We will first consider labelled counting of block designs and resolutions
in this context.

Problem C.4.1 (#LABELLED BLOCK DESIGNS) Given parameters v, k, λ
input as unary integers, compute the number of labelled B(v, k, λ) designs,
that is, |B(v, k, λ)|.

This problem is in #P, because a nondeterministic Turing machine can in
polynomial time guess a column-ordered v × b incidence matrix and accept
if and only if it corresponds to a block design. If either k, λ or v, k are fixed,
then the problem is clearly in #P1. For example, the problem of counting
all labelled STS(v) is in #P1.

The problem of counting resolutions of RB(v, k, λ) designs with unary
parameter input is clearly also in #P. Furthermore, so is the problem of
counting labelled resolutions of a given block design.

Problem C.4.2 (#LABELLED RESOLUTIONS OF DESIGN) Given a
B(v, k, λ) design, compute the number of distinct labelled resolutions of the
design.
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The group-theoretic framework is natural for unlabelled counting. Let G
be a group acting on a finite set X . Recall that the number of orbits in G
X
can be counted using the Cauchy-Frobenius Lemma (Theorem B.2.35) as

|G 
X| = 1

|G|
∑
g∈G

fixX(g),

or, more conveniently, |G||G
X| =
∑

g∈G fixX(g). Based on the discussion
in Chapter 2, counting the unlabelled block designs can be formulated as:

Problem C.4.3 (#UNLABELLED BLOCK DESIGNS) Given parameters v,
k, λ input as unary integers, compute |Sv||Sv 
B(v, k, λ)|.

We will argue that #UNLABELLED BLOCK DESIGNS is in #P. By the
Cauchy-Frobenius Lemma, solving #UNLABELLED BLOCK DESIGNS is
equivalent to computing

∑
σ∈Sv fixB(v,k,λ)(σ). Consider a nondeterminis-

tic Turing machine which, given v, k, λ input as unary integers, computes
as follows. First, the machine guesses nondeterministically an arbitrary per-
mutation σ ∈ Sv and an arbitrary B ∈ B(v, k, λ) (which is, for example,
represented as a v×b column-ordered incidence matrix). The machine then
accepts if and only if σB = B. It is straightforward to design the machine so
that the number of accepting computations is

∑
σ∈Sv fixB(v,k,λ)(σ), and that

all computations either accept or reject in time polynomial in v+k+λ. Con-
sequently, #UNLABELLED BLOCK DESIGNS is in #P, and any restriction
to an unary input alphabet is in #P1. Furthermore, the following obser-
vations are evident. First, since |Sv| = v! is easy to compute, determining
|Sv 
 B(v, k, λ)| is hard. (Unless, of course, #UNLABELLED BLOCK DE-
SIGNS is computable in polynomial time.) Second, the problem of com-
puting the nonisomorphic resolutions in a given parameter family, that is,
computing |Sv||Sv 
 R(v, k, λ)| can be shown to be in #P using a similar
construction.

A related unlabelled counting problem is to determine the number of
unlabelled resolutions of a given block design. Recall that by Corollary
2.3.21 |Aut(B) 
 R(B)| is the number of nonisomorphic resolutions of a
B ∈ B(v, k, λ). An analogous application of the Cauchy-Frobenius Lemma
as above establishes that the following problem is in #P.

Problem C.4.4 (#UNLABELLED RESOLUTIONS OF DESIGN) Given a
B(v, k, λ) design B ∈ B(v, k, λ), compute |Aut(B)||Aut(B) 
R(B)|.

Computing |Aut(B)| is likely not to be easy due to the polynomial time
equivalence between isomorphism testing of graphs and of block designs [25]
and the fact that computing |Aut(G)| is polynomial-time equivalent to decid-
ing graph isomorphism [76].

We conclude this section with two generic observations on unlabelled
counting.

First, in general, counting the orbits of a group action on a set can be very
hard (#P-complete). Suppose G ≤ Sym(X) is a permutation group on a
finite set X . We assume that G is given as a set of generator permutations.
(Any permutation group on X can be described using at most |X|− 1 gener-
ator permutations. Moreover, these can be computed from an arbitrary set of
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generator permutations in polynomial time; see for example [58].) The orbits
of the induced action of G on X can be computed in polynomial time from
the generator permutations using, for example, a transitive closure algorithm
[74].

Not much needs to be changed in the situation above and the orbit count-
ing problem becomes #P-complete. Let Y be a fixed finite set with |Y | > 1,
and let G act on Y X by (π, ϕ) 7→ ϕ ◦ π−1 for all π ∈ G and ϕ ∈ Y X .

Problem C.4.5 (#PÓLYAORBITS [46]) Given a set of generator permuta-
tions for G, compute |G||G 
 Y X |.

The problem #PÓLYAORBITS is #P-complete [46, Theorem 3.1] (cf. [44,
59]) under polynomial-time Turing reductions with a function oracle. The
order |G| can be computed in polynomial time from the generator permuta-
tions (see [38, 74]), so determining |G 
 Y X | is hard.

The second observation we make is that counting the unlabelled substruc-
tures of a given structure can be a lot harder than counting all the unlabelled
structures (cf. counting all unlabelled resolutions of a design vs. counting
all unlabelled resolutions in a parameter family). An example is provided
by the fact that counting the unlabelled subtrees of a tree is #P-complete
under polynomial-time Turing reductions with a function oracle [47], yet
counting unlabelled trees with a given number of vertices is possible in time
polynomial in the number of vertices [51].

C.5 LISTING ORBIT REPRESENTATIVES

The problem of generating orbit representatives was discussed in an abstract
setting in Chapter 4, however, little attention was paid to computational com-
plexity issues and the efficiency of the algorithms. It is not our intention to
analyze the algorithms in detail here either, but only to illustrate how the
efficiency of such algorithms could be measured, and to give pointers to lit-
erature of interest.

It is customary to regard as “efficient” an algorithm that computes the so-
lution to a decision problem in time bounded by a polynomial in the input
size. However, this notion of efficiency is not applicable to algorithms that
output all solutions to a given problem instance simply because the number
of solutions to the problem may be exponential in the input size. For exam-
ple, the number of nonisomorphic STS(v) has an exponential lower bound
in v (Theorem 2.2.10).

Notions of efficiency for algorithms that generate all solutions to a given
problem are discussed in [60]. We will consider two of these, namely poly-
nomial space and polynomial delay.

An algorithm for generating all solutions to a problem instance uses poly-
nomial space if the algorithm operates within a polynomial space bound in
the input size. (It is assumed that a structure output by the algorithm is be-
yond its reach as soon as it is completely output. For a rigorous definition of
space-bounded computation, see for example [98, p. 34–35].)

We note that the three algorithms described in Chapter 5 all operate
within a polynomial space bound in v + k + λ. To see this, note that the
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first stage of both of the Read–Faradžev algorithms can be applied through-
out the search, so the potentially space-demanding second stage of the algo-
rithms need not be used. Furthermore, the McKay-type algorithm for code
generation is guaranteed to operate within a polynomial space bound if ex-
plicit isomorphism testing is not used and the canonical placement algorithm
has a polynomial space bound.

An algorithm for generating all solutions to a problem instance exhibits
polynomial delay if the delay until the first solution is output, and thereafter
the delay between any two successive solutions output, is bounded by a poly-
nomial in the input size. This notion of efficiency is very strong in the sense
that the existence of a polynomial-delay algorithm that generates all solutions
to a problem for which the corresponding decision problem is NP-complete
(say, the problem of generating all cliques of given size for a given graph)
clearly implies P = NP.

Polynomial delay algorithms are interesting in at least two respects. First,
the order in which the structures are generated is significant. For example,
Johnson et al. [60] present a polynomial delay algorithm for generating all
maximal cliques of a graph in lexicographic order, yet they show that no
polynomial delay algorithm for generating the maximal cliques of a graph in
reverse lexicographic order exists unless P = NP. Second, polynomial delay
algorithms exist for nontrivial problems, such as listing all the unlabelled
graphs with a given number of vertices [43] (see also [45]).

It would be interesting to know whether it is possible to construct a polyno-
mial delay algorithm for listing unlabelled block designs and/or resolutions
with given parameters. However, because block designs are much more con-
strained structures than arbitrary graphs, and even BLOCK DESIGN EXIS-
TENCE seems to be a hard problem, the existence of a polynomial delay
algorithm seems very remote.
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Automated Testing of Büchi Automata Translators for Linear Temporal Logic. December 2000.

HUT-TCS-A67 Timo Latvala

Model Checking Linear Temporal Logic Properties of Petri Nets with Fairness Constraints. January 2001.

HUT-TCS-A68 Javier Esparza, Keijo Heljanko

Implementing LTL Model Checking with Net Unfoldings. March 2001.

HUT-TCS-A69 Marko Mäkelä
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