
Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 69

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 69

Espoo 2001 HUT-TCS-A69

A REACHABILITY ANALYSER FOR ALGEBRAIC SYSTEM NETS

Marko Mäkelä

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI

Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 69

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 69

Espoo 2001 HUT-TCS-A69

A REACHABILITY ANALYSER FOR ALGEBRAIC SYSTEM NETS

Marko Mäkelä

Helsinki University of Technology

Department of Computer Science and Engineering

Laboratory for Theoretical Computer Science

Teknillinen korkeakoulu

Tietotekniikan osasto

Tietojenkäsittelyteorian laboratorio

Distribution:

Helsinki University of Technology

Laboratory for Theoretical Computer Science

P.O.Box 5400

FIN-02015 HUT

Tel. +358-0-451 1

Fax. +358-0-451 3369

E-mail: lab@tcs.hut.fi

©c Marko Mäkelä

ISBN 951-22-5541-3

ISSN 1457-7615

Picaset Oy

Helsinki 2001

ABSTRACT: Concurrent and distributed systems are difficult to manage
without using formal analysis methods. The user of formal methods has
to find a balance between expressive power and tractability. A formalism
with small expressive power may not suit well to describing all real-
life systems, but on the other hand, performing exhaustive reachability
analysis on a system defined using a highly expressive formalism may be
an unsolvable problem.

Using extended many-sorted algebras, this work defines the data type
system and the set of algebraic operations that the author has imple-
mented in a reachability analyser intended for modelling computer soft-
ware based communications protocols. The work also introduces the
modelling formalism of the analyser, algebraic system nets.

The report discusses some implementation details of the reachability
analyser both from a theoretical and from a software technology point of
view. Finally, the work shows how some constructs difficult for other tools
can be modelled using the new formalism, and describes how different
programming language constructs can be transformed to parts of a model
by a semi-automated compiler.

KEYWORDS: many-sorted algebras, algebraic system nets, distributed
systems, reachability analysis

Contents

1 Introduction 1
1.1 Reachability Analysers in the Past and Present 3
1.2 Related Work . 4
1.3 Outline . 5

2 Verification of Concurrent Programs 6
2.1 Classifying Programs . 6

2.1.1 Sequential Behaviour 6
2.1.2 Concurrent Behaviour 6

2.2 Making Abstractions . 7
2.2.1 Atomising Sequences of Actions 7
2.2.2 Introducing Nondeterminism 8

3 Computer Tools for Analysis 11
3.1 Incomplete Methods . 11

3.1.1 Static Analysis . 11
3.1.2 Instrumenting Program Code 12
3.1.3 Regression Testing 13

3.2 Formal Methods . 13
3.2.1 Constructing the Model 14
3.2.2 Analysing the Model 15

4 Algebraic System Nets 17
4.1 Signatures and Algebras 17

4.1.1 Signatures, Variables and Terms 17
4.1.2 Algebras, Assignments and Evaluations 18
4.1.3 Multi-Set Signatures and Algebras 20

4.2 Algebraic System Nets . 21

5 Data Types 25
5.1 Design Criteria . 25

5.1.1 Tight Representation 26
5.1.2 Expressive Power 26

5.2 Simple Types . 26
5.2.1 Boolean . 26
5.2.2 Character . 27
5.2.3 Integer . 27
5.2.4 Enumerated Types 27
5.2.5 Identifier Type . 27

5.3 Structured Types . 28
5.3.1 Tuple . 28
5.3.2 Associative Array 29
5.3.3 Variable-Length Buffer 29
5.3.4 Tagged Union . 30

5.4 Constraints . 30
5.4.1 Computing the Union 30

5.4.2 Computing the Intersection 31

6 Algebraic Operations 32
6.1 Design Criteria . 32
6.2 Variables . 33
6.3 Operations on Basic Sorts 33

6.3.1 Constants . 33
6.3.2 Total Order . 34
6.3.3 Logical Operations 35
6.3.4 Integer Arithmetics 35
6.3.5 Structure Operations 36
6.3.6 Type Conversions 38

6.4 Operations on Multi-Set Sorts 39
6.4.1 Multi-Set Constructor 40
6.4.2 Empty Multi-Set 40
6.4.3 Multi-Set Sum and Filter 40
6.4.4 Multi-Set Transformations 41
6.4.5 Union and Intersection 41
6.4.6 Scalar Multiplication 42
6.4.7 Comparison . 42
6.4.8 Minimum and Maximum Multiplicity and Cardi-

nality . 42
6.5 Short-Circuit Operations 42

7 Implementing the Analyser 44
7.1 Transition Instance Analysis 44

7.1.1 Splitting the Arcs 46
7.1.2 The Unification Algorithm 46
7.1.3 Unfolding to Place/Transition Nets 50

7.2 The Expression Evaluator 50
7.2.1 Error Handling . 50
7.2.2 Optimisations . 51
7.2.3 Interpreting vs. Compiling 52

7.3 Managing the Reachability Graph 54
7.3.1 Encoding Markings 55
7.3.2 Encoding Transition Instances 57

8 Constructing and Analysing Models 59
8.1 Point-to-Multipoint Communications 59
8.2 Existential Quantification 60
8.3 The Performance of Exhaustive Analysis 63

8.3.1 The Size of the Encoded State Space 63

9 Modelling Computer Programs 65
9.1 Data Types . 65

9.1.1 Expressive Power 66
9.1.2 Representation . 67

9.2 Message Queues . 67
9.2.1 Previous Approaches 67
9.2.2 Algebraic Support for Queues 68

9.3 Dynamic Resource Allocation 68
9.3.1 Process Creation 69
9.3.2 Memory Allocation 70

9.4 Procedure Calls . 70
9.4.1 Scoping . 71
9.4.2 Recursive Procedures 71
9.4.3 Exception Handling 71

9.5 Object-Oriented Constructs 72
9.5.1 Inheritance and Polymorphism 72

10 Conclusion 74

Bibliography 77

Index 83

PREFACE

The author would like to thank Professor Nisse Husberg, Kimmo Varpaa-
niemi, D.Sc. (Tech.), Tommi Junttila, Keijo Heljanko and Tommi Syrjä-
nen from the Laboratory for Theoretical Computer Science of Helsinki
University of Technology for discussions, feedback and numerous valuable
ideas. Also, Tommi Junttila introduced the author to Algebraic System
Nets, the formalism the formal notations of this work are based on. Spe-
cial thanks go to Professor Leo Ojala for his encouragement in the final
stages of the work.

The research took place in the Maria project financed by the National
Technology Agency of Finland (TEKES), Nokia Research Center, Nokia
Networks, the Helsinki Telephone Corporation and the Finnish Rail Ad-
ministration. The work was also supported by the Helsinki Graduate
School in Computer Science and Engineering (HeCSE) and by a personal
grant from Tekniikan Edistämissäätiö.

I would like to thank my friends for all kinds of support I have received
during this research project, and Mikko Suonio in particular for reviewing
this work and for his constructive comments.

Marko Mäkelä
Espoo, June 2001

1 INTRODUCTION

The rapid development of telecommunications has considerably increased
the use of concurrent and distributed systems. Such systems are much
more difficult to manage than stand-alone systems controlled by sequen-
tial program code. Concurrent and distributed systems call for new anal-
ysis tools, because those used for sequential programs are not very useful
in an environment where errors are difficult to reproduce due to the asyn-
chronous nature of the communication between processes.

One solution to this problem is the use of formal models, investigating
them in reachability analysers. This technique ensures that the com-
plete state space of the system is checked for certain properties and that
complete execution traces to possible errors can be recorded.

The big problem with this approach is, however, the vast state space
of all real systems. Therefore, reachability analysis should be applied at
an early stage of the development, preferably already when the system
is specified. In the specification, there usually are few implementation
details that would complicate the analysis and explode the state space.
It is also easier and cheaper to correct errors at this stage.

A problem that has not been addressed much is the creation of the
model. This is a main obstacle that prevents the introduction of this
analysis in the industry in a large scale. Existing analysers often require
that a formal model is constructed by hand. This means that the creator
must be an expert both in the real system design and in the formalism
the analyser uses. Such experts are very hard to find.

One solution is to generate the models automatically, to translate the
specification into a formal model. This requires that the specification
language has solid semantics and does not leave any room for interpre-
tation. There will always be a need for experts, but their workload can
be reduced and the coverability of formal analysis techniques greatly im-
proved by introducing appropriate computer aided tools.

There has been some work in this field [21, 28, 40] connected to the
TNSDL programming language [49] used in digital telephone exchanges.
A major difficulty was that the reachability analyser [57] did not support
the data types used in the specification language. Thus the decision
was made to design a new analyser that supports a large class of data
types [38] and lets the modeller or translator writer concentrate on other
things than the representation of data.

This work is about the design of data types for the formalism used
in the Maria analyser and about the implementation of the analyser.
The analyser was designed to meet the demands of industrial systems.
It is important to notice that while the data type system has been de-
signed in such a way that it satisfies the practical needs of specification
and programming languages, the modelling language of the analyser is
completely formal.

The analyser applies a variant of Algebraic System Nets [31, 32, 48]
with a fixed set of algebraic operations. Algebraic System Nets, inspired
by many-sorted nets [2] and coloured nets [26], are a high-level enhance-

CHAPTER 1. INTRODUCTION 1

ment of ordinary Petri Nets [46, 47].

Throughout the work we have strictly followed the requirements of
reachability analysis, so that all models that can be entered to our tool
can be analysed in a formal way. The whole reachability analyser has
been designed with the following requirements in mind:

1. satisfaction of practical needs, ease of use

• structured data types

• aggregate operations on multi-sets

2. reachability analysis

• strictly formal semantics

• very tight representation of states

• theoretical possibility to unfold all models to low-level nets

3. modular design; replaceable modules for

• expression evaluation and handling

• reachability analysis and model checking

• reachability graph management

When constructing a formal model of a system, one should pay atten-
tion not only to correctness but also to possible difficulties in reachability
analysis. The expressive power of the formalism is not merely important
for easy modelling but also for efficient analysis. If the formalism con-
tains high-level data types like queues and stacks, the set of reachable
states can be reduced considerably.

The definition of Algebraic System Nets given in [32] was quite useful
for this work, but some additions had to be made in order to achieve
better expressiveness and efficiency in the analysis. For instance, our im-
plementation allows multi-set terms with non-constant multiplicity and
a special case of multi-set valued variables. Algebraic System Nets de-
fine a fairly generic framework for describing computations; this work
defines a set of concrete data types and algebraic operations that should
be adequate for the succinct description and efficient analysis of practical
concurrent systems.

Designing data types for a formal analyser is quite different from de-
signing data types for a programming language. The data types must not
only be compatible with the formalism but also with the analysis tech-
niques. Thus it was impossible to allow general pointers in our formalism,
as we shall see in Chapter 5. Unbounded data types like lists and trees
were also omitted. However, after careful examination it was possible to
include most of the data types used in common programming languages.
It was also possible to impose a total order on all data types—a useful
feature in the analysis and a requirement for some powerful algebraic
operations.

2 CHAPTER 1. INTRODUCTION

1.1 REACHABILITY ANALYSERS IN THE PAST AND PRESENT

Formal analysis tools based on exhaustive state space exploration, or
reachability analysers, have greatly developed since the 1980s. There
are numerous research groups both at universities and in commercial
companies, and many tools have been developed for internal use, or just
to see whether a theoretical idea might work in practice, often analysing
theoretical models that do not directly have any roots in the real world.

The work on automated protocol validation and tools for Petri Nets
began in the 1970’s. In the beginning, when the memory capacity of com-
puters was severely limited, reachability analysis could only be applied
to rather simple systems. In the early 1980’s, the most advanced analy-
sers could handle systems of up to tens of thousands of reachable states,
and model checking—checking whether there are execution paths that
violate a property expressed in temporal or modal logic—was considered
impractical by some researchers. [60]

In Finland, one of the first research projects on computer tools for
reachability analysis started in the summer of 1980. Financed by the
then Posts and Telecommunications of Finland, the three-year project
resulted in a theorem prover for modal logic [33]. In 1984, the research
continued in a joint four-year project of the Computer Technology Lab-
oratory of Technical Research Centre of Finland (VTT) and the Digital
Systems Laboratory of Helsinki University of Technology. Financed by
the then Technology Development Centre of Finland (TEKES) and four
industrial partners, the Rimst project (Rinnakkaisjärjestelmien määrit-
telyn ja suunnittelun tukijärjestelmä, or Support System for Specifica-
tion and Design of Concurrent Systems) identified a number of practical
and theoretical problems, some of which could be addressed during the
project. When the project ended in 1988, the Digital Systems Labora-
tory continued to explore Petri Nets, while the group at VTT eventually
developed a tool set for labelled transition systems [29].

At Helsinki University of Technology, the joint project resulted in a
set of analysis tools for Predicate/Transition Nets [11] called Prena [30].
The worst limitation of the tool was that it only could handle some thou-
sands of reachable states. By that time, there were several reachability
analysers in existence. A survey from 1988 [34] lists 22 tools for high-
level Petri Nets, 13 of which perform reachability analysis. An earlier
survey from 1985 [9] that includes tools for low-level nets lists 26 tools,
most of which have been written in nonportable languages for proprietary
systems. The situation seems to have stabilised a little: a survey from
1998 [52] focuses on ten tools for high-level nets.

The initial version of Prod, the successor of Prena, was developed in
1989–1991 mostly as a student project. Capable of exhaustively analysing
systems with millions of reachable states and performing model checking
while generating the set of reachable states, the tool has been a flag-
ship of the Digital Systems Laboratory, later Laboratory for Theoretical
Computer Science, and it has been extended with advanced algorithms,
such as a model checker for the branching time temporal logic [19] and
the stubborn set method [56].

CHAPTER 1. INTRODUCTION 3

Difficulties in modelling some practical systems presented the need
for a reachability analyser that supports a more powerful modelling for-
malism. One of the main goals of the three-year Maria project, which
started in 1998, was to develop a reachability analyser that supports a
highly expressive data type system. This goal has been achieved: our tool
is capable of performing brute-force exhaustive reachability analysis both
interactively and in batch mode. Still, much work remains to be done,
and many of the advanced algorithms of Prod are being implemented in
Maria. There are some promising reduction methods that have not been
implemented in either analyser yet, such as symmetry reductions [27].

There are many institutions with a long tradition in reachability anal-
ysis. At Bell Labs, reachability analysers have been developed and used
since the early 1980’s. Their current analyser Spin [20] is designed for
analysing computer protocols, and it is one of the few analysers that
have successfully been applied to industrial-size systems. The tool is
based on a process-oriented modelling language Promela whose syn-
tax resembles some programming languages. The somewhat informal
application-oriented approach of Spin has turned out to suit extremely
well to modelling protocols.

Spin supports probabilistic verification, representing the set of reach-
able states with a very large hash table, a bit vector indexed by hash val-
ues. The larger the table and the better the hash function that converts
system states to indices of the hash table, the smaller is the probability
that an unexplored state is mistaken for an already explored one. When
using this probabilistic method, one cannot be completely sure that the
whole state space has been explored. Nevertheless, it is hard to match
Spin in performance, especially with a tool meant for analysing all kinds
of concurrent systems and not only protocols.

SDL, the CCITT Specification and Description Language [25], which
is mainly used by the telecommunications industry for specifying pro-
tocols, has raised some interest both in the academic world and among
commercial tool vendors. The verification tool by Telelogic [8] is prob-
ably the most capable reachability analyser for SDL, when it comes to
the extent of supported language constructs. However, the tool does
not appear to be able to perform model checking of properties expressed
in temporal logic, and it generates the reachability graph in the system
memory, which makes the exhaustive analysis option useless for nontriv-
ial specifications. In academic projects, small subsets of SDL have been
translated to the internal formalisms of some reachability analysers, such
as Pep [16] and Prod [57].

1.2 RELATED WORK

Not all tool authors aim for the ability to efficiently perform exhaustive
reachability analysis and model checking. For teaching purposes and
for running simulations, a graphical user interface and an inscription
language with a lot of expressive power seem to be more important than
a solid theoretical background.

4 CHAPTER 1. INTRODUCTION

One tool, Design/CPN [41], is based on a formalism called Coloured
Petri Nets [26]. While the tool is capable of performing exhaustive reach-
ability analysis, the high expressive power of its inscription language—
including the ability to define data types of an unbounded domain—
makes it very difficult to unfold the net to a lower level, which is the
domain of many advanced analysis methods. Models constructed in our
formalism can always be unfolded in principle; see Section 7.1.3.

The efforts in modelling high-level languages using Petri Nets have
shown that the underlying formalism must have enough expressive power
to facilitate a straightforward transformation. Otherwise the transforma-
tion is awkward [28, 40], or the domain of the source language has to be
severely restricted [17], or both, as we illustrate in Chapter 9. However,
the introduction of new constructs must be carefully considered in order
not to sacrifice tractability for expressiveness.

1.3 OUTLINE

We begin with some general observations on the properties of typical com-
puter programs and suggesting how they should be exploited in formal
analysis. In Chapter 3 we list some of the techniques that can be applied
in order to detect errors in different stages of software development.

The second part of this work introduces a class of many-sorted alge-
bras and defines Algebraic System Nets in Chapter 4. Chapter 5 gives an
inductive definition of the concrete data types implemented in our reach-
ability analyser [38] for Algebraic System Nets, and Chapter 6 defines
the algebraic operations.

Chapter 7 discusses some implementation details, such as finding all
enabled actions in a state, evaluating algebraic terms efficiently, and rep-
resenting the states and enabled actions of a system as very short bit
vectors. Finally, Chapters 8 and 9 motivate some of the design choices
of our analyser by showing how certain common constructs, which are
difficult to represent in other formalisms, can be translated to our class
of nets in a straightforward way.

CHAPTER 1. INTRODUCTION 5

2 VERIFICATION OF CONCURRENT PROGRAMS

Many concurrent and distributed systems include components imple-
mented in computer software.1 Due to the complex nature of such sys-
tems, it is difficult to convince oneself of their proper operation under
all circumstances just by looking at the program code. Concurrency re-
lated errors that manage to go undetected in the manufacturer’s tests
can be expensive to correct. The manufacturer would rather experience
a system crash in the laboratory and not at the customer’s premises.

2.1 CLASSIFYING PROGRAMS

In the software industry, there is a famous law referred to as the 20%–
80% rule or the 10%–90% rule. Usually it refers to the size of a program
and to its execution time: when a program is executed, most of the time is
spent executing statements in a small fraction of the program text. This
law could also be used to classify concurrent programs. Typically, only a
small part of a concurrent program deals with concurrency, and assuming
that the errors in the program are evenly distributed and that formal
methods are not being applied, most of the time devoted to debugging
will be spent trying to figure out why the concurrent algorithm fails under
some circumstances.

2.1.1 Sequential Behaviour

Errors in the sequential parts of a computer program are relatively easy
to locate. Modern compilers perform quite a lot of static analysis and
can issue warnings for things like unused or uninitialised variables, for
enumeration constants not handled in a switch statement, and so on.

Static checking can only detect a small class of errors. In practice,
the majority of other errors in sequential code can be found by test-
ing. Since sequential programs typically are fully deterministic, i.e. they
always produce the same output given the same input, it is easy to re-
produce erratic situations and to find their cause by stepping through
the code in a debugger. This approach, although it is far from formal,
works astonishingly well for sequential program code.

2.1.2 Concurrent Behaviour

Constructing or understanding event or message driven programs requires
a different way of thinking than traditional algorithm driven programs.
The event driven approach is common in reactive or embedded systems,
in graphical user interfaces and in applications working over computer
networks. As the input events or messages are typically generated by
entities running concurrently with the system, the system as a whole
tends to behave in a nondeterministic and irreproducible way.

1Verifying the correct operation of hardware circuits is beyond the scope of this work.

6 CHAPTER 2. VERIFICATION OF CONCURRENT PROGRAMS

Exhaustive analysis of the concurrent behaviour of a system calls for
the use of formal methods. Tests or simulations can only prove the pres-
ence of a bug (by accidentally finding one), but only exhaustive formal
analysis can prove the absence of bugs in an abstract model of the im-
plemented system.2

2.2 MAKING ABSTRACTIONS

Although it is possible to formally model any program written for a finite-
memory computer system, it is often undesirable to do so, since the set
of reachable global states of the system can be excessively large.

Large systems can be formally analysed by omitting details that are
considered irrelevant or uninteresting. Abstractions can be made in many
different ways, by altering a formal model or its interpretation. In this
section, we give two examples of making abstractions in a model.

2.2.1 Atomising Sequences of Actions

Consider a system consisting of n concurrently executing processes. If
each process performs k actions before communicating with other pro-
cesses, the system will have (k+1)n possible global states and nk(k+1)n−1

possible transitions between them. Figure 2.1 illustrates the reachability
graph of such a system. The example is from the introductory part of
Antti Valmari’s dissertation [54, Section 3.5.1], which also contains proofs
for the above numbers.

The k actions of each process could represent purely sequential behav-
iour, which can be abstracted away, efficiently letting k = 1. Still, the
size of the thus abstracted state space grows exponentially with n. If we
make the assumption that the processes execute synchronously, we have
n = 1 and get a easily manageable number of states.

Since errors in sequential program code can be treated pretty well by
using semi-formal techniques such as testing, it is reasonable to assume
that there are no errors in the sequential parts when constructing a model
for verifying the concurrent behaviour of a system. Thus, the parts inter-
nal to processes can be abstracted away from the model without losing
any suspicious behaviour.

In our example system, n processes perform k internal actions. Since
the processes cannot communicate with each other until each of them
have completed the internal actions, there is no way the internal state of
one process could affect the behaviour of other processes.

In the lattice-shaped reachability graph presented in Figure 2.1, the
vertices in the middle represent intermediate states where each process
has performed some but not all of its actions. If the actions are treated
atomically—that is, once a process starts performing a sequence of inter-
nal actions, it will complete the whole sequence before other processes
do anything—we will get rid of those intermediate states.

2Also formal analysis can produce wrong results if the model does not adequately repre-
sent the system and its environment.

CHAPTER 2. VERIFICATION OF CONCURRENT PROGRAMS 7

?〈0, 0〉
〈1, 0〉 〈0, 1〉

〈2, 0〉 〈1, 1〉 〈0, 2〉
〈3, 0〉 〈2, 1〉 〈1, 2〉 〈0, 3〉

〈4, 0〉 〈3, 1〉 〈2, 2〉 〈1, 3〉 〈0, 4〉
〈4, 1〉 〈3, 2〉 〈2, 3〉 〈1, 4〉

〈4, 2〉 〈3, 3〉 〈2, 4〉
〈4, 3〉 〈3, 4〉

〈4, 4〉

¡¡ª

¡¡ª

¡¡ª

¡¡ª

¡¡ª

¡¡ª

¡¡ª

¡¡ª

¡¡ª

¡¡ª

¡¡ª

¡¡ª

¡¡ª

¡¡ª

¡¡ª

¡¡ª

¡¡ª

¡¡ª

¡¡ª

¡¡ª

@@R

@@R

@@R

@@R

@@R

@@R

@@R

@@R

@@R

@@R

@@R

@@R

@@R

@@R

@@R

@@R

@@R

@@R

@@R

@@R

Figure 2.1: Actions in k = 4 Steps by n = 2 Processes

?〈0, 0〉
〈1, 0〉 〈0, 1〉

〈2, 0〉 〈0, 2〉
〈3, 0〉 〈0, 3〉

〈4, 0〉 〈0, 4〉
〈4, 1〉 〈1, 4〉

〈4, 2〉 〈2, 4〉
〈4, 3〉 〈3, 4〉
〈4, 4〉

¡¡ª

¡¡ª

¡¡ª

¡¡ª

¡¡ª

¡¡ª

¡¡ª

¡¡ª

@@R

@@R

@@R

@@R

@@R

@@R

@@R

@@R

?〈0, 0〉

〈4, 0〉 〈0, 4〉

〈4, 4〉

¡
¡

¡
¡

¡
¡

¡¡ª

¡
¡

¡
¡

¡
¡

¡¡ª

@
@

@
@

@
@

@@R

@
@

@
@

@
@

@@R

Figure 2.2: Atomic Actions in k = 4 Steps by n = 2 Processes

Figure 2.2 illustrates the effect of atomising sequences of local events.
It is straightforward to see that instead of (k + 1)n states and nk(k +
1)n−1 transitions, the reachability graph now only has (n(k− 1)+2)2n−1

states and nk2n−1 transitions. Furthermore, if the sequences of events
are collapsed to single events as shown in the right part of the figure, we
will end up with 2n states and n2n−1 transitions.

This simple example shows that the reachability graph of a concurrent
system can be vastly reduced by optimising the model. Further savings
can be achieved during the reachability graph generation with advanced
analysis techniques such as partial order reductions and symmetry re-
ductions, which are summarised in [55].

2.2.2 Introducing Nondeterminism

It may seem that all concurrent systems can be efficiently modelled by
converting complex local computations to single events, thus pruning

8 CHAPTER 2. VERIFICATION OF CONCURRENT PROGRAMS

most intermediate states. Unfortunately this turns out not to be the case.
Some analysis techniques become utterly inefficient when the source and
target state of a transition differ very much or when extremely many
transitions are possible in one state. Introducing a few intermediate
states could be of some help, but there is a better solution.

The sequential part of a concurrent system usually constrains and
limits the behaviour of the system. For example, in a distributed game,
the state of the game field and some decision algorithms will determine
the type of messages sent to different counterparts. When we are only
interested in generic properties like the absence of deadlocks in the com-
munications protocol of the game, we can abstract away all information
regarding the game field (also from the messages sent by different pro-
cesses) and model the outcome of the decision algorithm by a nondeter-
ministic choice of all possible outcomes, e.g. “game over” or “your turn.”3

Omitting the typically large data structures needed by the sequential
parts of a system from the abstract verification model will not merely
reduce the amount of memory needed for storing the global state of the
system; also the computational complexity involved with the reproduc-
tion of the exact behaviour of the sequential part will be reduced to a
trivial linear-time operation of making a nondeterministic choice between
all possible outcomes of the computation. Often also the outcome can be
presented at a higher abstraction level, which can drastically reduce the
domain.

The use of libraries characterises modern programming. It is difficult
to imagine a large object-oriented program that does not make any use of
built-in libraries for basic data structures, such as lists and search trees.
Sometimes libraries are part of the run-time environment and completely
transparent for the user. For instance, the virtual machine of the popu-
lar interpreted language Perl [58] originally designed for text processing
has an instruction that matches character strings by generalised regular
expressions [51, p. 324]. Including all these complex algorithms in the
abstract model of a system would be like reinventing the wheel and cer-
tainly not worth the effort. It is rather unlikely that the library routines
of a widely used language implementation contain errors.

Hidden Errors
There is no free lunch, not even in the world of abstractions. Consider
a ring network where messages are relayed from node to node. If the
communications protocol has been built so that a node may only send
a message to another once it has received a message either for itself
or for relaying, it can happen that a node has to wait for a long time
before it can send a message. If the abstract model of the nodes is
totally nondeterministic, so that any node can decide to send a message
to another node at any time, the problem will fail to arise in the formal
analysis.

Also abstracting chunks of sequential code can hide severe errors. If

3The original decision algorithm would probably have several outcomes equivalent to
“your turn” in the abstracted version. As the state of the game field has been abstracted away,
there is no need to distinguish “I pass” and “I move the piece from place x to place y.”

CHAPTER 2. VERIFICATION OF CONCURRENT PROGRAMS 9

the original piece of code under some circumstances can break the bounds
of an array or be trapped in an infinite loop, such errors will be absent
in a model that replaces the chunk with a nondeterministic choice.

False Alarms
Abstractions can not only hide errors; they can also cause false alarms.
For instance, consider the distributed game described earlier. The com-
munications protocol may have been specified so that it is an error to
begin the game with the message “game over.” Replacing the decision
algorithms with nondeterministic choices can make it possible to start
the protocol with that message. If the model has some kind of a guard
against this, the analysis will yield a false alarm.

False alarms may seem harmless in comparison to hidden errors, but
there is a problem involving the human element. If the person who
interprets the results of the analysis receives an extensive list of error
traces, he will probably check the realisability of some of them and ignore
all further error messages of that type. Realisable errors can then also
go unnoticed.

10 CHAPTER 2. VERIFICATION OF CONCURRENT PROGRAMS

3 COMPUTER TOOLS FOR ANALYSIS

Applying formal methods in software development may seem straightfor-
ward. All sequential behaviour will be modelled with nondeterminism,
and only the fraction of the system expressing concurrent behaviour must
be translated to an abstract model. But the reality can sometimes be
quite different. If the project manager wants to have a 50,000-line pro-
gram verified by tomorrow or even by next week, manually constructing
a verification model is not an option, especially if the work has to be
done by someone who is not very familiar with formal methods or with
the formalism applied by the analysis tool.

It is sad but true that in many software development projects, qual-
ity issues and formal methods are typically forgotten until the project
encounters problems too severe to be solved in a reasonable time period
of hacking and debugging. Designing the system incrementally, verifying
and testing each refinement step, will help to detect errors earlier. For
the computer tools described here, however, it does not make any differ-
ence whether they are used from the very beginning of a project or as a
last resort to patch a sinking ship sailing on a stormy ocean.

3.1 INCOMPLETE METHODS

Practical systems tend to be so complex that exploring the complete state
space, checking that the system performs correctly on all possible input
sequences, is out of the question. Many errors can be found with less
ambitious methods, some of which will be described here.

3.1.1 Static Analysis

Some errors can be discovered by relatively simple analysis. In the early
days of computing when memory was scarce, compiler front-ends were
rather simple, and separate programs were developed for detecting sim-
ple mistakes such as using the assignment operator where an equality
comparison is likely to be intended.

Modern compilers perform all kinds of optimisations, which require
fairly thorough static analysis of the input. Many sanity checks are per-
formed as a side effect. It is common to check for unreachable program
statements or for expressions whose value is not used, and often warn-
ings about them indicate typing mistakes or even an error in the program
logic.

Many compilers have some very strict static analysis options that are
disabled by default, since they would cause numerous warnings for ex-
isting programs or even for the built-in libraries. Enabling such options
only makes sense if the program does not need too big modifications in
order to pass the checks. A good example is the check for uninitialised
member variables by a C++ [23] compiler, which requires that all con-
structors make use of the member initialisation list, a less known feature

CHAPTER 3. COMPUTER TOOLS FOR ANALYSIS 11

of the language. Normally it makes sense to filter out certain warning
messages reported for library interfaces, so that only relevant, correctable
mistakes will be pointed out.

3.1.2 Instrumenting Program Code

Errors in large programs tend to have global effects. For instance, if
an algorithm corrupts some data structures, the corruption may cause
another, correctly implemented algorithm to fail. It depends on the un-
derlying safety net, e.g. on the granularity of memory protection, how far
the effects will propagate before the system crashes.

A tight safety net that would e.g. check the validity of arguments and
return values of all procedure invocations will detect errors closer to their
cause. Also in this case there is no free lunch: a program instrumented
with all kinds of sanity checks will run slower, and if the program is free of
errors, all the checks are redundant and unnecessary. Usually programs
are instrumented during the development and testing phase, and the
checks are omitted from the published version if the performance penalty
is an issue.

Assertions
The C programming language [24] defines a macro for making assertions,
for ensuring that a condition holds whenever the macro is evaluated. The
macro is supplied with one argument, a truth-valued expression. If the
expression evaluates to false, an error message will be displayed and the
execution of the program will be aborted. Assertions can be disabled by
defining a preprocessor symbol when compiling the program. Therefore,
the same source code can be used for producing a fast, optimised exe-
cutable as well as an instrumented executable for testing and debugging.

Detecting Resource Leakages
A program that allocates a resource but does not ever give it up is said
to have a resource leakage. Probably the most common type of resource
leakages is related to dynamic memory allocation. In programming lan-
guages whose run-time environments do not automatically release unused
dynamically allocated memory in a process called garbage collection, it
is the programmer’s responsibility to explicitly deallocate memory areas
that are no longer needed.

The need for explicit memory deallocation causes two major problems.
First, programs that constantly allocate memory but do not deallocate
it will eventually run out of memory. Second, if a program is too eager
about deallocating memory, it can end up with dangling pointers pointing
to deallocated memory. Accessing deallocated memory through these
pointers or trying to deallocate a memory block more than once will
probably corrupt data structures and may cause a crash somewhere else
in the program code.

These problems can be addressed with programs called memory access
debuggers. They work either by replacing the library routines for memory
allocation and deallocation [45], by instrumenting the compiled code [7]

12 CHAPTER 3. COMPUTER TOOLS FOR ANALYSIS

or by instrumenting the program at compile time, a technique widely
applied both by free [12, 59] and commercial tools.

Memory access debuggers have severe limitations. The instrumented
program typically executes an order of magnitude slower than the origi-
nal, and it will also require much more memory. This is due to the fact
that memory access debuggers typically do not deallocate the memory
deallocated by the instrumented program. By doing so, they can detect
accesses to deallocated memory blocks. Also, the instrumented program
code will allocate bigger memory blocks than the program actually asks
for, so that it will be possible to detect accesses outside the bounds of
the allocated memory area.

3.1.3 Regression Testing

One way to make software development resemble a controlled, determinis-
tic process rather than the efforts of a panicking fire brigade is systematic
testing. Whenever new features are added to a piece of software, a set of
test cases are defined. The test cases, consisting of input sequences and
expected output sequences, are stored in a version control system. Before
accepting modifications to the program, it must pass all tests recorded
so far. If it does not, the program has to be corrected or the test case
must be updated.

The key problem with regression testing is the need for manual inter-
vention. It is difficult to design tests that cover all of the program code.
Moreover, when a test fails, one must ensure that it is not the test case
that violates the specification, which often is not carved in stone but lives
with the development cycle. In any case, it must be kept in mind that
testing can only prove the presence of errors, not the absence of them.

3.2 FORMAL METHODS

Hardly anyone believes that the correct operation of a complex system
could be formally verified simply by pushing a button. Expertise in
formal methods will always be needed to be able to specify the properties
the system should fulfill, to interpret the results when a complicated
error is detected and to simplify the model of the system by means of
abstractions. However, there is no reason why verification could not be
made to appear as a push-button technology for system designers and
engineers. It is enough to have experts behind the scenes.

Figure 3.1 illustrates our vision of applying formal methods to software
verification. There are several reasons why model construction should be
automated like this instead of manually constructing models compatible
to verification. First, it is not reasonable to assume that everyone can
learn formal methods to the necessary extent. Only a few people would
have the necessary skills to construct the model. Second, modelling big
systems involves much work, and humans make mistakes when perform-
ing mechanical tasks. Also, if the system is updated frequently, it would
be hard to keep the model up to date.

CHAPTER 3. COMPUTER TOOLS FOR ANALYSIS 13

System to Analyse

Specialised Front-End
?

? ? ?

?

6

Properties Formal Model Commands

Reachability Analyser Graph Explorer

Persistent Reachability Graph Storage (File System)

? ? ? ?

?

6

?

6

Figure 3.1: Automatic Verification of Computer Software

3.2.1 Constructing the Model

Since most designers are not familiar with other formalisms than the one
they are directly working with, the verification model has to be hidden
from them by means of a specialised front-end. The front-end will trans-
late the implementation expressed in an application-specific high-level
language to an analysable formal model, making reasonable abstractions.
The model will be checked for the absence of deadlocks and for properties
that have been entered in a database by an expert. Counterexamples,
that is, execution paths leading to a state violating a desired property,
will be translated back to the original formalism. In this way, the average
user does not need to know the details of the underlying machinery.

Automatic model construction has many prerequisites. The system
has to be implemented in a reasonably high-level language that has a
well-defined semantics. If the system description cannot be represented
with a single abstract syntax tree, it is difficult to construct a formal
model of it. In practice, a system can be implemented using several
programming languages and some electronic circuits. Models for low-
level subsystems have to be constructed manually. Also the abstraction
rules for omitting certain things from the model have to be specified by
an expert. The databases of desired properties and abstraction rules may
need to be updated during the development process if the specification
changes.

Modelling Data
Incorporating big amounts of data in models intended for verification is
generally a bad idea, since it raises the memory requirements for storing
the global state of the model and often splits logically equivalent states

14 CHAPTER 3. COMPUTER TOOLS FOR ANALYSIS

to a number of states, multiplying the reachability graph. Also, complex
data structures are typically maintained by sequential code, which should
be omitted from the model for reasons given in Chapter 2.

Nevertheless, all models need some data, and if a system is simple
enough, it can be formally analysed without omitting anything. Some-
times it is nice to experiment with a model, to see which parts need to
be abstracted in order to be able to analyse the behaviour. This kind
of prototyping and experimenting requires that the data types and alge-
braic expressions used in the system can be automatically translated to
corresponding structures in the model.

If a system implementation uses a construct that cannot be directly
expressed in the modelling language, constructing an automatic transfor-
mation can be a major challenge, especially when attention is paid to the
performance of the generated model. Data types are very problematic
in this aspect. It is cumbersome to represent arrays or first-in-first-out
buffers in a formalism that is based on tuples of integers or enumerated
constants. Doing so may be of academic interest [17, 21], but if the
intention is to accomplish some real work, applying an inefficient trans-
formation that only works in special cases will clearly be out of question.

A modelling language equipped with powerful data types such as struc-
tures, unions, arrays and variable-length buffers is an easy target for-
malism for compilers of programming languages. If the automatically
constructed model generates too big a state space, simplifications and
abstractions can be specified in the source formalism or in the abstrac-
tion rules. This can be done by someone familiar with the system but
not necessarily knowing the modelling formalism.

Modelling the Environment
In order to analyse a program, it has to be given some input. In dis-
tributed systems, the input typically consists of events generated by the
environment. Usually the environment does not act randomly, but it
follows some disciplines. For instance, if one wants to place a telephone
call, he will first dial the number and will not start talking until the call
is answered.

The environment has to be part of the verification model, for various
reasons. Connecting the model to a totally nondeterministically acting
environment, which can synchronise with all kinds of actions at all times,
could result in an unmanageable number of states and in a large number
of errors that are impossible in the real system. Also, a nondeterministic
environment may drive the system to erroneous states that are impossible
in practice, or let the system continue from a situation that would be a
deadlock if there were some constraints for the environment.

3.2.2 Analysing the Model

Merely constructing a formal model of a system does not solve anything.
The model has to be analysed to see whether it (and the system it rep-
resents) fulfills some desired properties. Analysis can be carried out at
different levels; here we will present some possibilities.

CHAPTER 3. COMPUTER TOOLS FOR ANALYSIS 15

Reachability Analysis
Exhaustive reachability analysis, considering each possible action in each
reachable state of the model, is the most complete analysis method. Its
major drawback is that for many practical systems, the set of reachable
states tends to be so large that the state space cannot be efficiently stored
in a computer memory. There are several techniques that address this
state space explosion problem; see [55] for an introduction.

Model Checking
Only a limited set of properties, such as the presence or absence of dead-
lock states, can be found out from the reachability graph generated by
exhaustive reachability analysis. Model checking can prove or find violat-
ing execution paths for properties typically expressed in temporal logic.
If a property does not hold, a counterexample will usually be found after
generating only a part of the reachability graph.

Simulation
Like software development, also modelling can be an incremental, exper-
imental process. Simulation is a very useful tool that lets one to exper-
iment with a model, to make sure that it behaves in the intended way.
An incorrectly working model will often produce an infinite state space.
Performing exhaustive reachability analysis on such a model would be a
waste of time; often hours or even days can pass before the analyser will
run out of memory.

Simulation is also very useful for illustration and teaching purposes.
In simulation, only a small subset of possible actions will be carried out.
Simulations typically work on one trace, always performing an action on
the state generated by the previously performed action. The next action
can be chosen either randomly among the set of possible actions, or it
can be chosen by the user.

A somewhat different approach has been implemented in [38]. Instead
of letting the user to choose actions, the analyser will perform all possible
actions that are possible in the state picked up by the user. This kind
of simulation will not produce a single trace, but a (partial) reachability
graph, which can be explored at all times. It is also possible to evaluate
temporal logic formulae in a state. Only if the model checker does not
find a counterexample for the formula, the complete reachability graph
will have to be generated, unless the query is interrupted. Interactive on-
demand reachability graph generation appears to combine the advantages
of simulation with the advantages of reachability analysis at a relatively
small price.

16 CHAPTER 3. COMPUTER TOOLS FOR ANALYSIS

4 ALGEBRAIC SYSTEM NETS

Our formalism for modelling and analysing concurrent systems is the
class of Algebraic System Nets [31, 32, 48], which we will describe in this
chapter. Later parts of this work will refine and restrict the formalism,
as used by our implementation [38] of a reachability analyser.

4.1 SIGNATURES AND ALGEBRAS

Algebraic System Nets, as their name suggests, are based on algebras.
The algebras we represent here contain two extensions: error checking
and short-circuit evaluation. Our notion of errors, inspired by [27], bears
similarities with exception conditions [15] and abstract errors [14]. To
keep the notation simple, we do not distinguish between different kinds
of errors.

The motivation behind the second extension of our algebras, short-
circuit evaluation of algebraic terms, is to narrow the gap between alge-
bras and optimised computer implementations of expression evaluators.

Languages have two major properties: syntax (appearance) and se-
mantics (interpretation). For algebraic systems, the syntax is defined in
a signature, which contains symbols and terms but does not define any
interpretation for them. The semantics is given in the algebra, which
consists of the signature and of functions corresponding to the operation
symbols given in the signature.

Our definition of algebras makes use of a concept of families, collections
of sets. We assume that the reader has a knowledge in some mathematical
preliminaries such as sets.

Definition 4.1 (Families) For a set I ,

A =
⋃
i∈I

Ai

is a family of sets if Ai is a set for each i ∈ I . Furthermore, a family A is
pairwise disjoint if for all i, j ∈ I , i 6= j ⇒ Ai ∩ Aj = ∅.

4.1.1 Signatures, Variables and Terms

Definition 4.2 (Signatures) A signature

S = 〈S,F ,G〉

consists of

1. a non-empty set S of sort names (sorts)

2. a pairwise disjoint family F =
⋃

σ∈S∗,s∈S Fσ,s of functional operation
symbols

CHAPTER 4. ALGEBRAIC SYSTEM NETS 17

3. a pairwise disjoint family G =
⋃

s′,s∈S Gs′,sn of short-circuit operation
symbols where sn stands for s, . . . , s︸ ︷︷ ︸

n times

; F ∩ G = ∅.

An operation symbol f ∈ Fs1...sn,s stands for a functional operation
from the domain sorts s1, . . . , sn to the range sort s of f . The set Fλ,s is
called the set of S-constant symbols of sort s, where λ denotes the empty
sequence.1

An operation symbol g ∈ Gs′,sn stands for an operation from s′ to an
operation from sn to s, where s′ is the selection sort and s the range sort
of g.

Definition 4.3 (Variables) A pairwise disjoint family

V =
⋃
s∈S

Vs

of symbols is called a family of S-variables.

Using variables and the two kinds of operation symbols, we can build
S-terms, sequences of symbols, according to the following definition,
which defines a kind of grammar. Algebraic terms can be viewed as
strings of symbols; their interpretation is defined separately.

Definition 4.4 (Terms) The set TS
s (V) of S-terms of sort s ∈ S over V is the

minimal set defined inductively by the following rules.

1. Vs ⊆ TS
s (V).

2. For n ≥ 0, if f ∈ Fs1...sn,s and Ti ∈ TS
si
(V) for 1 ≤ i ≤ n, then

f(T1, . . . , Tn) ∈ TS
s (V).

3. For n ≥ 0, if g ∈ Gs′,sn and T ′ ∈ TS
s′(V) and Ti ∈ TS

s (V) for 1 ≤ i ≤
n, then g(T ′, T1, . . . , Tn) ∈ TS

s (V).

The set TS
s (∅) is the set of S-ground terms of sort s.

4.1.2 Algebras, Assignments and Evaluations

An algebra corresponding to a signature gives an interpretation for the
sorts and operations of the signature. It assigns each sort a carrier and
each functional operation symbol a function. Chapter 5 defines one pos-
sible family of carriers (called data types), and Chapter 6 defines a family
of operations on them. This chapter proceeds in a more abstract level,
independent of the actual carriers and functions.

Definition 4.5 (Short Circuit Error Algebras) Let S = 〈S,F ,G〉 be a sig-
nature. An S-short circuit error algebra, or S-algebra

A = 〈DA,FA〉
consists of:

1By our convention, sequence indices are written in ascending order. When the index of
the last element of a sequence is smaller than the index of the first element, the sequence is
empty. For instance, if n < 1, the sequence s1 . . . sn equals λ, the empty sequence.

18 CHAPTER 4. ALGEBRAIC SYSTEM NETS

1. a pairwise disjoint family DA =
⋃

s∈S DA
s of non-empty carriers

2. the undefined symbol ε 6∈ DA

3. a pairwise disjoint family ĎA =
⋃

s∈S ĎA
s of augmented carriers; for

all s ∈ S , ĎA
s = DA

s ∪ {ε}
4. a pairwise disjoint family FA =

⋃
f∈F fA of functional operations; for

all f ∈ Fs1...sn,s with n ≥ 0, fA is a mapping

fA : ĎA
s1
× · · · × ĎA

sn
→ ĎA

s

such that the image of the subset

(ĎA
s1
× · · · × ĎA

sn
) \ (DA

s1
× · · · × DA

sn
)

equals {ε}; that is, whenever an argument equals ε, so will also the
result

5. bijective mappings

oDA
s′

: DA
s′ →

{
0, . . . ,

∣∣DA
s′
∣∣− 1

}

for each short-circuit term g ∈ Gs′,sn , where the selection sort s′ has a
finite carrier DA

s′ with
∣∣DA

s′
∣∣ = n.

Definition 4.6 (Assignments) Let A be an algebra. The set

VA(V) =

{
v

∥∥∥∥∥ v :
⋃
s∈S

(Vs → ĎA
s

)
}

is the set of assignments to the variables of the family V .

Note that we allow also undefined variables, which are assigned the unde-
fined value ε. Given an assignment, S-terms can be evaluated as follows:

Definition 4.7 (Evaluations of Terms) An assignment v ∈ VA(V) is carried
to the corresponding evaluation of terms

eAv :
⋃
s∈S

(
TS

s (V) → ĎA
s

)

in the following inductive definition for each T ∈ TS
s (V):

1. If T ∈ Vs, then
eAv (T) = v(T).

2. If T = f(T1, . . . , Tn), f ∈ Fs1...sn,s and Ti ∈ TS
si
(V) for 1 ≤ i ≤ n ≥

0, then
eAv (T) = fA(eAv (T1), . . . , e

A
v (Tn)).

3. If T = g(T ′, T1, . . . , Tn), g ∈ Gs′,sn , T ′ ∈ TS
s′(V) and Ti ∈ TS

s (V) for
1 ≤ i ≤ n ≥ 1, then

eAv (T) =

ε if eAv (T ′) = ε
eAv (Tk+1) if ∃k ∈ {0, . . . , n− 1} : k = oDA

s′
(eAv (T ′))

ε otherwise.

CHAPTER 4. ALGEBRAIC SYSTEM NETS 19

4.1.3 Multi-Set Signatures and Algebras

For convenience, we shall introduce a special kind of signatures and alge-
bras based on multi-sets. First we shall define multi-sets and some basic
operations on them.

Definition 4.8 (Multi-Set) A multi-set over a finite non-empty set A is a
function

µ : A → N
from the set A to the set of natural numbers. For an element a ∈ A, µ(a) is
called the multiplicity of a in µ.

Definition 4.9 (Set of Multi-Sets) The set of all multi-sets over A is denoted
by

M(A) = {µ ‖ µ : A → N} .

Definition 4.10 (Multi-Set Relations and Operations) Let there be a finite
non-empty set A and µ1, µ2 ∈M(A). We define the following relations and
operations:

1. µ1 = µ2 if µ1(a) = µ2(a) for all a ∈ A (equality)

2. µ1 ≤ µ2 if µ1(a) ≤ µ2(a) for all a ∈ A (containment)

3. a ∈ µ1 if µ1(a) > 0 (membership)

4. µ1 + µ2 = {〈a, µ1(a) + µ2(a)〉 ‖ a ∈ A} (union)

5. µ1 − µ2 = {〈a, max{0, µ1(a)− µ2(a)}〉 ‖ a ∈ A} (difference)

6. n · µ1 = {〈a, n · µ1(a)〉 ‖ a ∈ A}, n ∈ N (scalar multiplication)

7. |µ1| =
∑

a∈A µ1(a) (cardinality)

A multi-set signature distinguishes two different kinds of sorts: basic
sorts and multi-set sorts over basic sorts.

Definition 4.11 (Multi-Set Signature) Let S = 〈S,F ,G〉 be a signature
with a finite set of sorts S. Let Sβ,Sµ ⊆ S such that Sβ ∪ Sµ = S and
Sβ ∩Sµ = ∅, and let µ : Sβ → Sµ be a bijective mapping from basic sorts Sβ

to multi-set sorts Sµ. Then

Sµ = 〈S,F ,G, µ〉
is a multi-set signature.

A multi-set algebra is a straightforward extension of an algebra. Based
on a multi-set signature, it requires that the carrier of its each multi-set
sort is the set of multi-sets over the carrier of the corresponding basic
sort.

Definition 4.12 (Multi-Set Algebras) Let S be a signature and Sµ be the
corresponding multi-set signature. An S-algebra A = 〈DA,FA〉 is an Sµ-
algebra if for each s ∈ Sβ , DA

µ(s) = M(DA
s).

20 CHAPTER 4. ALGEBRAIC SYSTEM NETS

transition

µ´
¶³

µ´
¶³

µ´
¶³

input places

?

@
@

@@R

¡
¡

¡¡ª
input arcs

µ´
¶³

µ´
¶³

output places
?

@
@

@@R

output arcs

Figure 4.1: Graphical Representation of a Petri Net

4.2 ALGEBRAIC SYSTEM NETS

The algebras defined in the previous section form the core of a modelling
formalism called Algebraic System Nets [31, 32, 48]. The formalism is a
generalisation of Petri Nets [46, 47], which are a kind of generalised au-
tomata. Finite state automata have states and actions leading from one
state to another, which are usually represented with circles and labelled
directed arcs connecting circles representing states. Only one state is
active at a time in a finite state automaton.

Petri Nets have places, graphically represented with circles, and tran-
sitions. Unlike the actions in finite state automata, transitions in Petri
Nets may connect an arbitrary number of places. A transition, graph-
ically represented with a rectangle, may have a number of input and
output places connected to it via directed arcs. Input places are con-
nected via input arcs (arcs leading to the transition) and output places
via output arcs (arcs leading from the transition). Figure 4.1 illustrates
the graphical notation typically used with Petri Nets.

In a finite state automaton, one state may be marked active at a time.
In a Petri Net, a number of places may be marked with a token.2 A finite
state automaton may take an action if the source state of the action
is active. A transition in a Petri Net is enabled if all its input places
contain enough tokens. Only an enabled transition may fire, removing
some tokens from its input places and producing some to its output
places.3

Petri Nets and Algebraic System Nets clearly are more expressive than
finite state automata. Once we have defined the formal semantics of
Algebraic System Nets, we shall introduce the concept of a reachability
graph, an automaton or a labelled transition system representing the
complete behaviour of an Algebraic System Net.

Definition 4.13 (Algebraic System Nets) An algebraic system net

Σ = 〈N ,A,V , i〉
over A consists of

2In Algebraic System Nets, each place may be marked with any number of tokens.
3In Algebraic System Nets, tokens are elements of a multi-set; in low-level Petri Nets,

tokens are not associated with values.

CHAPTER 4. ALGEBRAIC SYSTEM NETS 21

1. a net N = 〈P , T ,F〉 where

(a) P , a finite pairwise disjoint family of sort-indexed places P =⋃
s∈Sµ

Ps, is a set of Sµ-variables whose assignments are multi-set-
valued

(b) T , a finite set of transitions, is disjoint from the family of places:
T ∩ P = ∅

(c) F ⊆ (T × P) ∪ (P × T) is a flow relation; the items of F are
called arcs; for t ∈ T and p ∈ P , 〈p, t〉 ∈ F is an input arc and
〈t, p〉 ∈ F is an output arc

2. an Sµ-algebra A for a multi-set signature Sµ=〈Sβ ∪ Sµ,F ,G, µ〉; one
basic sort b ∈ Sβ is the Boolean sort of truth values with DA

b = B =
{⊥,>}

3. a sorted Sµ-variable set V =
⋃

s∈S Vs such that Ps ∩ Vs = ∅ for all
s ∈ Sµ

4. a net inscription i : (P ∪ T ∪ F) → ⋃
s∈S T

Sµ
s (V) such that

(a) i(p) ∈ T
Sµ
s (∅) for each s ∈ Sµ and p ∈ Ps; i.e.

⋃
p∈P i(p) are the

initialisation expressions

(b) i(t) ∈ T
Sµ

b (V) for each t ∈ T , where the b is the Boolean sort;
i.e.

⋃
t∈T i(t) are the transition guards

(c) i(f) ∈ T
Sµ
s (V) for each f ∈ F such that f = 〈p, t〉 or f = 〈t, p〉

where s ∈ Sµ, p ∈ Ps and t ∈ T ; i.e.
⋃

f∈F i(f) are the arc
expressions.

So far, we have formally defined a structure for modelling concurrent
systems. We shall now give the structure a dynamic semantics, which
can be applied to determine all possible executions (state–transition se-
quences) of the model. First we will define the states of the model.

Definition 4.14 (Marking, Local Marking and Tokens) Let Σ be an alge-
braic system net. The mapping

M :
⋃

s∈Sµ

(Ps → DA
s

)
,

is a marking of Σ, and the set of all such markings M is denoted by MΣ.
For each s ∈ Sβ and p ∈ Pµ(s), we call M(p) the local marking of place

p and the items d ∈ DA
s tokens of sort s. We say that the place p contains n

tokens carrying the value d if M(p)(d) = n.

Definition 4.15 (Initial Marking) Let v∅ ∈ VA(∅) be an empty assignment.
The marking M0 : P → DA with

M0 :
⋃

s∈Sµ

{〈
p, eAv∅(i(p))

〉 ∥∥∥ p ∈ Ps

}

is called the initial marking of Σ. Note that the initial marking is undefined
if eAv∅(i(p)) = ε for some p ∈ Ps.

22 CHAPTER 4. ALGEBRAIC SYSTEM NETS

The rôle of the places of an algebraic system net has now been covered.
The places are associated with the global state of the model, the marking.
In each state M of a net Σ, a place p ∈ P of Σ contains a multi-set M(p)
of tokens. The initial marking yields the initial distribution of tokens in
the model, its initial state.

In an algebraic system net, places are connected via arcs and tran-
sitions. They define the behaviour of the system, the possible actions
leading from one global state to another. In the following definitions, the
possible actions in a state are referred to as the enabled transition modes
in a marking. Furthermore, a transition can be fired in a marking in an
enabled mode to transform the marking to another marking representing
another state of the system.

Definition 4.16 (Input and Output Effect) Let Σ be an algebraic system
net, t ∈ T a transition and v̂, v ∈ VA(V) assignments such that v augments
v̂, i.e. for each s ∈ S and x ∈ Vs, v̂(x) = ε or v̂(x) = v(x). The two sub-
stitutions t−v̂ , t+v :

⋃
s∈Sβ

(Pµ(s) → ĎA
µ(s)) are called the input effect and the

output effect, respectively, and they are defined by:

t−v̂ (p) =

{
eAv̂ (i(〈p, t〉)) if 〈p, t〉 ∈ F
DA

s → {0} otherwise t+v (p) =

{
eAv (i(〈t, p〉)) if 〈t, p〉 ∈ F
DA

s → {0} otherwise

Definition 4.17 (Pre-Enabling Rule) Let Σ be an algebraic system net, M
its marking, t ∈ T a transition of Σ and v̂ ∈ VA(V) an assignment. Transition
t is pre-enabled in mode v̂ at marking M of Σ if the following conditions hold
for each s ∈ Sµ and p ∈ Ps:

1. eAv̂ (i(t)) = >; i.e. the transition guard holds

2. t−v̂ (p) 6= ε; i.e. the input effect is defined

3. t−v̂ (p) ≤ M(p); i.e. each place contains enough tokens

Definition 4.18 (Enabling Rule) Let Σ, M , t ∈ T and v̂ ∈ VA(V) be such
that t is pre-enabled in mode v̂ at marking M of Σ. Let v ∈ VA(V) such that
for each s ∈ S and x ∈ Vs, v̂(x) = ε or v̂(x) = v(x). Transition t is enabled
in mode v′ if for each s ∈ Sµ and p ∈ Ps it holds that t+v (p) 6= ε.

Our definition of the transition enabling rule is divided into two parts,
one based on the input effect and another one based on the output effect.
Our definition distinguishes a set of variables

Vo =
⋃
s∈S

{x ∈ Vs ‖ v̂(x) 6= v(x)}

that are defined (not ε) in v but undefined in v̂. These variables are called
output variables, since they can only be evaluated on the output arcs of
an enabled transition. An assignment4 v̂ can be extended to a number of
assignments v e.g. by enumerating through the domain of each variable
in Vo, picking values such that a user-defined condition c ∈ T

Sµ

b (V) holds:

4Also the words “instance” and “valuation” are usual.

CHAPTER 4. ALGEBRAIC SYSTEM NETS 23

eAv (c) = >. The implementation in [38] does this, and it also provides
variables for t−v̂ (p) for each place p.5 Formally, for each sort s ∈ Sµ and
place p ∈ Ps, we have a variable xp ∈ Vs, and for each enabled instance
v̂, v ∈ VA(V) of a transition t ∈ T , it holds that

v̂(xp) = ε

v(xp) = t−v̂ (p).

Note that Definition 4.13 does not allow variables to refer to the global
state of the model, which would make it possible to simulate Turing
machines [44, Chapter 2] with Algebraic System Nets.6

Definition 4.19 (Firing Rule) Let Σ, M , t ∈ T and v̂, v ∈ VA(V) be such
that t is enabled in mode v at marking M of Σ. The firing of transition t in
mode v at marking M produces a marking

M ′ =
⋃

s∈Sµ

{〈p,M(p)− t−v̂ (p) + t+v (p)〉 ‖ p ∈ Ps

}
.

The fact that M ′′ is the result of firing t in mode v at M can be written
M [tv〉M ′′.

The firing rule allows us to determine the set of markings that are
reachable in the model, the reachable state space of the model.

Definition 4.20 (Reachable States) Let Σ be an algebraic system net and
M0 the initial marking of Σ. The set of reachable states of Σ is the smallest
set R ⊆MΣ fulfilling the following conditions:

1. M0 ∈ R

2. {M ′ ‖M [tv〉M ′} ⊆ R for all M ∈ R, t ∈ T and v ∈ VA(V) such that
t is enabled in mode v at marking M .

Definition 4.21 (Reachable Actions) Let Σ be an algebraic system net and
M0 the initial marking of Σ and R the set of reachable states of Σ. The set
of reachable actions of Σ is defined to be the smallest set E ⊆ R × (T ×
VA(V))×R for which

{〈M, 〈t, v〉,M ′〉 ‖M [tv〉M ′} ⊆ E

for all M ∈ R, t ∈ T and v ∈ VA(V) such that t is enabled in mode v at M .

Definition 4.22 (Reachability Graph) Let Σ be an algebraic system net and
M0 the initial marking of Σ. Let R be the set of reachable states and E the set
of reachable actions of Σ. The reachability graph of Σ is the directed graph

G = 〈R,E〉 .

5This extension to the formalism is redundant in the sense that a model making use of
output variables can be transformed to a model without output variables. However, using
output variables will speed up the reachability analysis and can make models more intuitive.

6As one of the consequences, the reachability problem for Algebraic System Nets would
become undecidable, since an Algebraic System Net could decide whether a Turing ma-
chine halts.

24 CHAPTER 4. ALGEBRAIC SYSTEM NETS

5 DATA TYPES

Digital devices such as computers represent all data with binary digits,
also known as bits, of zeros and ones. They are often grouped to fixed-
width machine words of n = 2m bits, often interpreted as integer numbers
between 0 and 2n − 1 or between −2n−1 and 2n−1 − 1. This is fine for
numerical applications, but many other applications would benefit from
more sophisticated structures for managing data. The data model of
practically all high-level programming languages is based on data types.

Mathematically, a data type can be represented as a set comprising all
the acceptable values, the domain of the type. A computer implementa-
tion of data types has to be more specific. We will present an inductive
definition of a data type system that has been implemented in [38].

5.1 DESIGN CRITERIA

Our data type system is based on the following design criteria.

Limited domain
All data types D have a limited domain, |D| > 0, facilitating a
conversion between data items and sequences of machine words.
The domains can be limited further by specifying ranges of allowed
values.

Total order
For all data types D and for all data items i, j ∈ D, there is an
asymmetric irreflexive transitive relation <D⊂ D×D,1 i.e. at most
one of the following holds: i <D j or j <D i. If neither property
holds, i and j refer to the same data item: i = j.

Tight representation
For a data type D with a domain consisting of n = |D| data items,
we construct a bijective mapping oD : D → {0, . . . , n− 1} such
that for all d, d′ ∈ D, oD(d) < oD(d′) if and only if d <D d′. The
mapping allows each d ∈ D to be represented with dlog2 ne binary
digits.

Expressive power
There should be a straightforward transformation to our data types
from most data types used in programming languages. We have
to omit pointers to data items, since they would violate all the
preceding properties, and unbounded data types such as lists and
trees. We do have variable-length buffers of limited capacity.

1We deviate from the commonly used definition that includes reflexivity, i.e. i ≤D i.

CHAPTER 5. DATA TYPES 25

5.1.1 Tight Representation

For a data type D with |D| = n and with a total order <D ⊂ D×D, we
define the mapping

oD : D → {0, . . . , n− 1} : d 7→ |{k ∈ D ‖ k <D d}| .
It is easy to see that the mapping is bijective and that it preserves the
order of the mapped items. Because <D is a total order, D can be written
as

D = {d0, . . . , dn−1}
such that di−1 <D di for all 0 < i < n. Now oD maps each di, 0 ≤ i < n,
to a unique value:

oD(di) = |{k ∈ D ‖ k <D di}|
= |{d0, . . . , di−1}|
= i.

Since oD(di) = i, it holds that oD(di) < oD(dj) if and only if i < j, or
di <D dj. Thus, oD is an order-preserving mapping.

5.1.2 Expressive Power

Pointers to data items are a problematic issue. We cannot allow them for
several reasons. First of all, pointers having a large number of possible
addressees (data objects they may point to) would destroy the modular-
ity and locality properties of the verification model, thus restricting the
applicability of compositional verification techniques. Second, pointers
do not mix with the fundamental concept of Petri Nets: transitions af-
fect the state only locally. Furthermore, pointers can be used to define
data types of unlimited domain, which cannot be handled by analysis
techniques that require unfolding; see Section 7.1.3. Last but not least,
no total order can be defined for pointers in an obvious way independent
of the underlying computer system.

Some restricted cases of pointer usage can be modelled by using the
identifier type that will be introduced in Section 5.2.5; this will be dis-
cussed in Section 9.3.2.

5.2 SIMPLE TYPES

There are a number of data types whose data items can be directly rep-
resented with machine words. Usually machine words are interpreted as
integers, but they can easily be interpreted as other enumerable unstruc-
tured data items as well.

5.2.1 Boolean

The Boolean type B = {⊥,>} represents truth values. It has the total
order <B= {〈⊥,>〉}.

26 CHAPTER 5. DATA TYPES

5.2.2 Character

The Character type K represents the character set of the underlying
computer system. The size of the alphabet is typically |K| = 28 = 256.
A bijective mapping

c : K→ {0, . . . , |K| − 1}

assigns the character set an ordering. The total order <K ⊂ K × K is
defined as

<K= {〈i, j〉 ∈ K×K ‖ c(i) < c(j)}
based on the bijective mapping c and the total order in the set of integer
numbers.

5.2.3 Integer

The Integer type I is a straightforward representation of machine words.
Machine words can be interpreted either as signed or as unsigned inte-
gers.2 The domain of the signed variant usually is {−2n−1, . . . , 2n−1 − 1},
where n is the length of the machine word in bits, typically 25 or 26. The
total order <I is defined in the obvious way:

<I= {〈i, j〉 ∈ I× I ‖ i < j} .

5.2.4 Enumerated Types

Enumerated data types are similar to integers. An enumerated type
consists of named integer constants

EN = {〈k, nk〉 ‖ k ∈ N ∧ nk ∈ I}

having distinct values:

∀k ∈ N : ∀l ∈ N : nk = nl ⇒ k = l.

The total order <EN
is defined in terms of the integer values of the named

constants:

<EN
= {〈〈i, ni〉, 〈j, nj〉〉 ∈ EN × EN ‖ ni <I nj} .

5.2.5 Identifier Type

The identifier type is comparable to a pointer or a resource handle in a
programming language environment. From the user’s point of view, the
type does not have any literals (constants), and identifier values can only
be compared for equality; for the user, there is no total order or conversion
to integers. Symmetry reductions are very effective on models making
use of this type.

2Like many programming languages, our implementation [38] provides both unsigned
and signed integers, but for the sake of simplicity, we make the assumption that all integers
are of the same type.

CHAPTER 5. DATA TYPES 27

The identifier type Jn is represented with integers,

Jn = {0, . . . , n− 1} ,

and the total order <Jn is defined in the obvious way:

<Jn = {〈i, j〉 ∈ Jn × Jn ‖ i < j} .

5.3 STRUCTURED TYPES

Structured data types add expressive power to the data type system,
especially when structured types can be constructed of other structured
types without limitation. As all types in our data type system must
have finite domains, we cannot allow any kind of recursion in data type
definitions. For instance, it is impossible to define a tuple A with a
component belonging to a union type containing the tuple A.

5.3.1 Tuple

A tuple data type is a Cartesian product of data types Dk,

TD1...Dn = D1 × · · · × Dn.

Syntactically, the data types Dk in a tuple are called the components
of the tuple. Typically components are identified by names; our formal
description shall use index numbers:

fTD1...Dn
: TD1...Dn × {1, . . . , n} →

n⋃

k=1

Dk : 〈〈d1, . . . , dn〉, k〉 7→ dk

The total order <D of D = TD1...Dn is defined lexicographically in the
little endian [5] way: The first component is the least significant one,
and it will thus determine the ordering only when all other components
are equal:

<D =

{〈
〈i1, . . . , in〉, 〈j1, . . . , jn〉

〉
∈ D ×D

∥∥∥∥∥
n∨

k=1

(ik <Dk
jk ∧

n∧

l=k+1

il = jl)

}
.

When n = 0, D = T = {〈〉} and <D= ∅, as we define the empty disjunc-
tion to be false.

Why is <D a total order? For l > k, il = jl implies that il <Dl
jl

cannot hold (since <Dl
is a total order). On the other hand, if ik <Dk

jk,
we cannot have ik = jk. Therefore, at most one of the disjuncts in the
condition can be true at a time. We shall now show that for any i, j ∈ D,
either i <D j, j <D i or i = j. There are two cases. Either one disjunct k′

is true or all disjuncts are false. When a disjunct k′ is true, we have that
for l > k′, il = jl, and that ik′ <Dk′ jk′ . The symmetric comparison yields
jl = il for l > k′, but neither jk′ <Dk′ ik′ nor jk′ = ik′ holds, because <Dk′
is a total order. Therefore j <D i does not hold in this case. When all
disjuncts in i <D j are false, either ik = jk for all 1 ≤ k ≤ n, in which
case i = j, or there exists a k′′ such that jk′′ <Dk′′ ik′′ and thus j <D i.

28 CHAPTER 5. DATA TYPES

5.3.2 Associative Array

An associative array is a collection of elements of a data type De indexed
by data items of Dx. Formally,

ADx,De = De × · · · × De︸ ︷︷ ︸
|Dx| terms

.

Arrays are similar to tuples, except that all components (elements) are
of the same type De and that the elements are indexed by integer repre-
sentations oDx(d) of the index values d ∈ Dx rather than by component
names or numbers:

xADx,De
: ADx,De ×Dx → De :

〈〈d1, . . . , d|Dx|〉, d
〉 7→ d1+oDx (d).

The total order <D of D = ADx,De is defined lexicographically, in a way
similar to the total order among tuples:

<D =

〈
〈i1, . . . , i|Dx|〉, 〈j1, . . . , j|Dx|〉

〉
∈ D×D

∥∥∥∥∥∥

|Dx|∨

k=1

(ik <De jk ∧
|Dx|∧

l=k+1

il = jl)

.

Since the construction is essentially the same as for tuples (substituting
|Dx| for n), it is easy to see that <D is a total order.

5.3.3 Variable-Length Buffer

Linked lists, first-in-first-out queues and last-in-first-out stacks can be
seen as variable-length buffers of data elements of type De. Since all
our data types have a bounded domain, our variable-length buffer has a
maximum number n of data elements. Formally,

VDe,n =
n⋃

k=0

Dk
e

where the superscript indicates a Cartesian product

Dk
e = De × · · · × De︸ ︷︷ ︸

k times

.

The total order <D of D = VDe,n is defined by considering a missing
item to be the smallest. A buffer value can only contain missing items
as a contiguous sequence in its tail. Because of this, the lexicographical
comparison can be implemented by comparing the actual buffer length
first:

<D=

{〈
〈(i)p

1〉, 〈(j)q
1〉
〉
∈D×D

∥∥∥∥∥ p < q ∨
(
p = q ∧

m∨

k=1

(ik <De jk∧
m∧

l=k+1

il = jl)
)}

where m denotes the minimum of p and q, and the abbreviation (i)p
1

stands for the sequence i1, . . . , ip.

CHAPTER 5. DATA TYPES 29

5.3.4 Tagged Union

The union type UD1...Dn can hold values of different types D1, . . . ,Dn. In
order to ease type conversions, a value of type Dk will be tagged with
the index number k.

UD1...Dn =
n⋃

k=1

{〈k, dk〉 ‖ dk ∈ Dk}

The total order <D for D = UD1...Dn first compares index numbers and
then values:

<D =
{
〈〈ki, i〉, 〈kj, j〉〉 ∈ D × D

∥∥∥ ki < kj ∨ (ki = kj ∧ i <Dki
j)

}
.

5.4 CONSTRAINTS

Type constraints limit the domain of a data type. A constraint function
f maps each data item of a data type D to a Boolean value that specifies
whether the data item is allowed in the constrained type

C(D, f : D → B) = {d ∈ D ‖ f(d) = >} .

The total order <C(D,f) is defined in terms of the total order <D of the
underlying data type D:

<C(D,f)= {〈i, j〉 ∈ C(D, f)× C(D, f) ‖ i <D j} .

In [38], constraints are implemented as lists of non-overlapping semi-
open ranges interpreted as unions, and constraints can be defined for
all data types. The grammar of the input language allows both unions
and intersections of ranges to be entered. Figure 5.1 depicts how unions
and intersections of ranges can be evaluated to convert constraints to the
canonic form. Symmetric cases (obtained by swapping the rôles of r1 and
r2) are omitted from the figure.

5.4.1 Computing the Union

When computing the union of two constraints c1 and c2, the algorithm
implemented in [38] compares each range r1

i in c1 with each range r2
j in

c2. If one of the cases depicted in Figure 5.1 applies, then the union of
the two ranges will be added to the result. Otherwise the algorithm will
compare whether the upper limit of r1

i is one less than the lower limit of
r2
j or vice versa, and add the combination of the two ranges to the result

if this is the case. This is how {1, 2} ∪ {3} will become {1, 2, 3}. If even
this does not apply, the two ranges are disjoint, and both will be stored
in the resulting constraint.

30 CHAPTER 5. DATA TYPES

Range r1

Range r2

r1 ∪ r2

r1 ∩ r2

q q q q q q q qq q q q q
q q
q q
q q

q q
q q
q q

q
q

q q

q
q
q q q q

q
q

q

q

q q q

Figure 5.1: The Union and the Intersection of Ranges

5.4.2 Computing the Intersection

The intersection of two constraints c1 and c2 is computed by comparing
each range r1

i in c1 with each range r2
j in c2. If one of the cases described

in Figure 5.1 applies, the intersection of the two ranges will be added to
the resulting constraint. Otherwise the two ranges are disjoint, and the
resulting constraint will not be augmented. To simplify our implementa-
tion, we made all ranges closed. This eliminates six of the eight of cases
illustrated in Figure 5.1.

CHAPTER 5. DATA TYPES 31

6 ALGEBRAIC OPERATIONS

Computers work by performing operations on data. Big operations are
implemented in terms of smaller operations, and at the lowest level, there
are basic operations performed by the underlying computing machinery.
Because operations are performed on data items, they are tightly coupled
with the data type system. Here we shall present the basic operations
implemented in [38]; the data type system is defined in Chapter 5.

It is quite common that there is some redundancy among basic oper-
ations, even in low-level languages. For instance, if the basic operations
of an algebra include logical conjunction, logical disjunction and logi-
cal negation, the conjunction or the disjunction can be constructed in
terms of the two remaining operations by applying De Morgan’s law:
¬a ∧ ¬b = ¬(a ∨ b). High-level languages tend to have more redundant
operations than low-level languages, so called syntactic sugar that adds
expressive power to the language and allows for compact notation.

High-level programming languages define expressions and statements.
In the Algebraic System Nets defined in Chapter 4, expressions do not
have side effects (they cannot affect the assignment they are evaluated
in), and there is only one form of a statement, the transition. A transition
can be viewed as a statement that changes the value of some variables in
an assignment.1

The algebraic operations defined in this chapter use the notational
conventions

op ∈ Fs1,...,sn,s

opA : ĎA
s1
× · · · × ĎA

sn
→ ĎA

s

and the implicit definition

opA(d) = ε for all d ∈ (ĎA
s1
× · · · × ĎA

sn

) \ (DA
s1
× · · · × DA

sn

)
.

Further algebraic operation definitions in this chapter augment the im-
plicit definition. In further definitions, the domains consist of the carriers
of the domain sorts (excluding the symbol ε), and the ranges are the car-
riers of the range sorts augmented with the symbol ε.

6.1 DESIGN CRITERIA

The basic operations were chosen according to the following criteria:

No side effects
No operation modifies the environment it is evaluated in.

Total order
With the exception of the identifier type defined in Section 5.2.5,
there are operations for accessing the total order of data items e.g.
via comparisons and via predecessor and successor operations.

1In Algebraic System Nets, these variables (in the algebraic sense) are the local markings
of the places attached to the transition via input and output arcs.

32 CHAPTER 6. ALGEBRAIC OPERATIONS

Expressive power
All basic operations of popular programming languages like C [24]
are covered, except for pointer arithmetics and operations having
side effects. In addition, there are some operations that deal with
multi-sets, which are an extension over the data type system defined
in Chapter 5.

6.2 VARIABLES

In computer languages, there typically are two things that can be done
to variables: they can be declared and referenced. In various high-level
Petri Net formalisms, variables are often declared implicitly, at the points
when the variables are first referenced. Declaring variables corresponds
to extending the family of variables V =

⋃
s∈S Vs with new items.

Variable references x ∈ Vs for s ∈ S are not operations, but direct
members of the set of terms: x ∈ TS

s (V).

6.3 OPERATIONS ON BASIC SORTS

The lowest level operations of our algebra are defined for the family of
basic sorts Sβ, which is mapped to data types constructed using the
structures defined in Chapter 5.

6.3.1 Constants

Constants in our algebra include literals of simple types, minimum and
maximum value of ordered types, and integer constants representing the
number of elements in a type. For each basic sort s ∈ Sβ and d ∈ DA

s ,
we define

constantd ∈ Fλ,s

constantAd () = d.

Note that we do not fix the syntax here. Especially if an implemen-
tation performs constant folding, replacing terms g ∈ TS

s (∅) with terms
constantd() where d = eAv (g) for an empty assignment v ∈ VA(∅), there
are numerous ways of writing constants.

There is also an undefined constant, whose purpose is to detect errors
in an Algebraic System Net model. Remember, a transition instance
can only be fired when all its arc expressions evaluate to defined values.
In [38], there are two variations of the undefined constant: one that only
causes an error message to be displayed for the current state, and another
that causes the reachability analysis to be aborted.

undefined ∈ Fλ,s

undefinedA() = ε.

CHAPTER 6. ALGEBRAIC OPERATIONS 33

6.3.2 Total Order

Successor and Predecessor
For each sort s ∈ Sβ with the carrier DA

s and the bijective mapping
oDAs : DA

s → {
0, . . . ,

∣∣DA
s

∣∣− 1
}

defined in Section 5.1.1, we define the
successor and predecessor operations as follows:

succ ∈ Fs,s

succA(d) = d+

pred ∈ Fs,s

predA(d) = d−

such that

oDAs (d) + 1 ≡ oDAs (d+) (mod |DA
s |)

oDAs (d)− 1 ≡ oDAs (d−) (mod |DA
s |).

Comparison
For the Boolean sort b ∈ Sβ with the carrier DA

b = B = {⊥,>} and for
each sort s ∈ Sβ with the carrier DA

s and the total order <DAs ⊂ DA
s ×DA

s ,
we define following comparison operations:

equal ∈ Fs,s,b

unequal ∈ Fs,s,b

less ∈ Fs,s,b

greater ∈ Fs,s,b

lessequal ∈ Fs,s,b

greaterequal ∈ Fs,s,b

equalA(d1, d2) =

{ > if d1 = d2

⊥ otherwise

unequalA(d1, d2) =

{ ⊥ if d1 = d2

> otherwise

lessA(d1, d2) =

{ > if d1 <DAs d2

⊥ otherwise

greaterA(d1, d2) =

{ > if d2 <DAs d1

⊥ otherwise

lessequalA(d1, d2) =

{ ⊥ if d2 <DAs d1

> otherwise

greaterequalA(d1, d2) =

{ ⊥ if d1 <DAs d2

> otherwise

Note that equality and inequality comparisons are defined for all basic
sorts. The implementation in [38] restricts the use of the other compari-
son operations on sorts that do not contain the identifier sort.

34 CHAPTER 6. ALGEBRAIC OPERATIONS

6.3.3 Logical Operations

For the Boolean sort b ∈ Sβ with the carrier DA
b = B = {⊥,>}, we define

the following logical operations:

not ∈ Fb,b

and ∈ Fb,b,b

or ∈ Fb,b,b

notA(d1) =

{ ⊥ if d1 = >
> otherwise

andA(d1, d2) =

{ > if d1 = > and d2 = >
⊥ otherwise

orA(d1, d2) =

{ > if d1 = > or d2 = >
⊥ otherwise

Our parser implementation [38] defines logical implication, equivalence
and logical exclusive disjunction in terms of these operations.

6.3.4 Integer Arithmetics

For the integer sort s ∈ Sβ with the carrier DA
s = I, we define the fol-

lowing basic arithmetic operations based on addition, subtraction, mul-
tiplication and truncated division of integer numbers. To simplify the
following definitions, we do not explicitly state that when the result of
an integer arithmetic operation does not belong to I, it will be ε. Also,
our definition of the division operation rounds the values towards neg-
ative infinity. Our implementation [38] uses the underlying C++ [23]
implementation, which can as well round the values towards zero. To
reduce implementation-defined behaviour, our modulus operation is only
defined for positive integers.

negate ∈ Fs,s

plus ∈ Fs,s,s

minus ∈ Fs,s,s

times ∈ Fs,s,s

divide ∈ Fs,s,s

modulus ∈ Fs,s,s

negateA(d1) = 0− d1

plusA(d1, d2) = d1 + d2

minusA(d1, d2) = d1 − d2

timesA(d1, d2) = d1 · d2

divideA(d1, d2) =

{
ε if d2 = 0⌊

d1

d2

⌋
otherwise

CHAPTER 6. ALGEBRAIC OPERATIONS 35

modulusA(d1, d2) =

ε if d1 < 0
ε if d2 ≤ 0

d1 − d2 ·
⌊

d1

d2

⌋
otherwise

Furthermore, in [38] we define the following binary arithmetic opera-
tions for integers. Their definition depends on the underlying implemen-
tation of the built-in C++ [23] operators ~, &, |, ^, << and >>, respec-
tively. The bitwise logical operators will be evaluated without errors;
the shift operators will evaluate to ε if the second argument, denoting
the amount of bits to be shifted, is negative or at least the width of the
machine word.

bitnot ∈ Fs,s

bitand ∈ Fs,s,s

bitor ∈ Fs,s,s

bitxor ∈ Fs,s,s

shiftl ∈ Fs,s,s

shiftr ∈ Fs,s,s

6.3.5 Structure Operations

Structured data types, defined in Section 5.3, can be viewed as containers
for data items. The operations defined for structured data types mostly
deal with composing and decomposing data items of structured types.

Tuple
The tuple type, defined in Section 5.3.1, has three operations: composi-
tion, decomposition and substitution. Formally, for all s, s1, . . . , sn ∈ Sβ

such that DA
s = TDAs1 ...DAsn

and for 1 ≤ k ≤ n, we define the following
operations:

conss ∈ Fs1,...,sn,s

components,k ∈ Fs,sk

assigns,k ∈ Fs,sk,s

consAs (d1, . . . , dn) = 〈d1, . . . , dn〉
componentAs,k(〈d1, . . . , dn〉) = dk

assignAs,k(〈d1, . . . , dn〉, e) = 〈d1, . . . , dk−1, e, dk+1, . . . , dn〉

Associative Array
For the two variants of the associative array defined in Section 5.3.2,
there are four basic operations, three of which are analogous to the basic
operations defined for tuples. The fourth operation shifts the elements
of the array by a specified number of positions.

For all s, s1, s2, s
′ ∈ Sβ such that DA

s = ADAs1 ,DAs2 and DA
s′ = I and for

n =
∣∣DA

s1

∣∣, we define the following basic operations:

conss ∈ Fsn
2 ,s

36 CHAPTER 6. ALGEBRAIC OPERATIONS

indexs ∈ Fs,s1,s2

assigns ∈ Fs,s1,s2,s

shifts ∈ Fs,s′,s

consAs (d1, . . . , dn) = 〈d1, . . . , dn〉
indexAs (〈d1, . . . , dn〉, d) = dk

assignAs (〈d1, . . . , dn〉, d, e) = 〈d1, . . . , dk−1, e, dk+1, . . . , dn〉
shiftAs (〈d1, . . . , dn〉, l) = 〈dl′ , . . . , dn, d1, . . . , dl′−1〉

where k = 1 + oDAs1 (d), l′ = l−
∣∣DA

s1

∣∣
⌊

l

|DAs1|
⌋

and sn
2 stands for s2, . . . , s2︸ ︷︷ ︸

n times

.

Variable-Length Buffer
For the variable-length buffer defined in Section 5.3.3, our basic opera-
tions extend the set of operations traditionally defined for queues and
stacks. For all s, s1, s

′ ∈ Sβ and n ≥ 0 such that DA
s = VDAs1 ,n and

DA
s′ = I, and for 0 ≤ k ≤ n, using the short-hand notations (d)m

l for the
sequence dl, . . . , dm and sk

1 for a sequence of s1 of length k, we define the
following operations:

conss ∈ Fsk
1 ,s

enqueues ∈ Fs,s1,s

enqueue-ats ∈ Fs,s1,s′,s

pushs ∈ Fs,s1,s

push-ats ∈ Fs,s1,s′,s

removes ∈ Fs,s

remove-ats ∈ Fs,s′,s

peeks ∈ Fs,s1

peek-ats ∈ Fs,s′,s1

frees ∈ Fs,s′

useds ∈ Fs,s′

consAs ((d)k
1) = 〈(d)k

1〉
enqueueAs (〈(d)k

1〉, d′) =

{ 〈(d)k
1, d

′〉 if k < n
ε otherwise

enqueue-atAs (〈(d)k
1〉, l, d′) =

{ 〈(d)k−l
1 , d′, (d)k

k−l+1〉 if 0 ≤ l ≤ k < n
ε otherwise

pushAs (〈(d)k
1〉, d′) =

{ 〈d′, (d)k
1〉 if k < n

ε otherwise

push-atAs (〈(d)k
1〉, l, d′) =

{ 〈(d)l
1, d

′, (d)k
l+1〉 if 0 ≤ l ≤ k < n

ε otherwise

removeAs (〈(d)k
1〉) =

{ 〈(d)k
2〉 if k ≥ 1

ε otherwise

remove-atAs (〈(d)k
1〉, l) =

{ 〈(d)l
1, (d)k

l+2〉 if 0 ≤ l < k ≥ 1
ε otherwise

CHAPTER 6. ALGEBRAIC OPERATIONS 37

peekAs (〈(d)k
1〉) =

{
d1 if k ≥ 1
ε otherwise

peek-atAs (〈(d)k
1〉, l) =

{
dl+1 if 0 ≤ l < k ≥ 1
ε otherwise

freeAs (〈(d)k
1〉) = n− k

usedAs (〈(d)k
1〉) = k.

The non-orthodox operations that allow the buffer to be accessed in
the middle will be needed for an efficient transformation of some language
constructs discussed in Section 9.2.2.

Tagged Union
For the tagged union defined in Section 5.3.4, we define three operations.
Let s1, . . . , sn ∈ Sβ for some n > 0, and let the corresponding carriers be
DA

s1
, . . . ,DA

sn
. Furthermore, let the sorts s, b ∈ Sβ have the carriers DA

s =
UDAs1 ...DAsn

and DA
b = B = {⊥,>}. We define the following operations for

all 1 ≤ k ≤ n:

conss,k ∈ Fsk,s

components,k ∈ Fs,sk

defineds,k ∈ Fs,b

consAs,k(d) = 〈k, dk〉

componentAs,k(〈l, dl〉) =

{
dl if l = k
ε otherwise

definedAs,k(〈l, dl〉) =

{ > if l = k
⊥ otherwise

6.3.6 Type Conversions

We define three kinds of type conversion operations. The first kind will
convert values between simple elementary types. The other two kinds
are specific to data type systems having constraints. It is possible to
convert values between types that differ only in the constraint, or between
structured types whose component types can be pairwise converted to
each other. The implementation in [38] performs some static analysis and
does not allow conversions between types that have no common values.

The formal definition for the generic conversions is simple: For all
s, s′ ∈ Sβ with the carriers DA

s and DA
s′ , we define

converts,s′ ∈ Fs,s′

convertAs,s′(d) =

d if d ∈ DA
s′

〈k, d〉 if DA
s′ = UDAs1 ...DAsn

and ∃1k : d ∈ DA
sk

d′ if DA
s = UDAs1 ...DAsn

, d = 〈k, d′〉 and d′ ∈ DA
s′

ε otherwise

We use the short-hand notation (d)n
1 for the sequence d1, . . . , dn. For

tuple sorts s, s′ ∈ Sβ of the respective component sorts s1, . . . , sn ∈ Sβ

38 CHAPTER 6. ALGEBRAIC OPERATIONS

and s′1, . . . , s
′
n ∈ Sβ, with

DA
s = TDAs1 ...DAsn

and DA
s′ = TDA

s′1
...DA

s′n
,

we extend the type conversion operation with the rule

convertAs,s′(〈(d)n
1 〉) =

{
consAs′((d

′)n
1) if d′k = convertAsk,s′k

(dk) 6= ε

ε otherwise,

quantifying the condition for all 1 ≤ k ≤ n.
Similarly, for array sorts s, s′ ∈ Sβ with the index sort sx ∈ Sβ and

the item sorts se, s
′
e ∈ Sβ and with the carriers such that

DA
s = ADAsx ,DAse

and DA
s′ = ADAsx ,DA

s′e
and

∣∣DA
sx

∣∣ = n,

we define

convertAs,s′(〈(d)n
1 〉) =

{
consAs′((d

′)n
1) if d′k = convertAse,s′e(dk) 6= ε

ε otherwise.

When DA
s and DA

s′ are one of the simple types B, K, I or EN defined
in Section 5.2, conversions are based on numeric interpretations of the
values. Let s′′ ∈ Sβ with DA

s′′ = I.

ints ∈ Fs,s′′

intAs (d) =

0 if DA
s = B and d = ⊥

1 if DA
s = B and d = >

c(d) if DA
s = K

d if DA
s = I

ni if DA
s = EN and d = 〈i, ni〉

ε otherwise

extAs ∈ Fs′′,s

extAs (d) =

⊥ if DA
s = B and d = 0

> if DA
s = B and d = 1

d′ if DA
s = K and d = c(d′)

d if DA
s = I

〈i, ni〉 if DA
s = EN and ∃i ∈ N : d = ni

ε otherwise

The implementation in [38] combines the two operations as

extAs (intAs′) : DA
s′ → ĎA

s

and provides uniform syntax for all type conversion operations.

6.4 OPERATIONS ON MULTI-SET SORTS

All operations introduced so far have basic sorts as their carriers. As the
arc expressions in Algebraic System Nets are sorted over sets of multi-
sets, we will need to define some operations with multi-set sorts as their
carriers.

CHAPTER 6. ALGEBRAIC OPERATIONS 39

6.4.1 Multi-Set Constructor

For s, s′ ∈ Sβ with the carriers DA
s and DA

s′ = I, respectively, the multi-set
constructor

mset ∈ Fs,s′,µ(s)

msetA(d, n) =

{ DA
s × {0} \ {〈d, 0〉} ∪ {〈d, n〉} if d 6= ε and n ≥ 0

ε otherwise

constructs a multi-set containing some number of a single element.

6.4.2 Empty Multi-Set

For s ∈ Sβ with a carrier DA
s , the empty multi-set over s is defined as

emptys ∈ Fλ,µ(s)

emptyAs () = DA
s × {0}.

6.4.3 Multi-Set Sum and Filter

For s, s′, b ∈ Sβ with the respective carriers DA
s , DA

s′ and DA
b = B =

{⊥,>}, and for the terms T ∈ T
Sµ

b (V) and U ∈ T
Sµ

µ(s′)(V) where V =
Vs1 ∪ . . . ∪ Vsn ∪ Vs for some n ≥ 0 such that x ∈ Vs, xi ∈ Vsi

for si ∈ S
and 1 ≤ i ≤ n, we define the following operations:

sumx,T,U ∈ Fs1,...,sn,µ(s′)

filterx,T ∈ Fµ(s),s1,...,sn,µ(s)

sumA
x,T,U(d1, . . . , dn) =

ε if g(VADAs (V), T)

ε if g(VADAs (V), U)

emptyAs′() if VADAs ,T (V) = ∅∑

v∈VADAs ,T
(V)

eAv (U) otherwise

filterAx,T (µ, d1, . . . , dn) =

ε if g(VAµ (V), T)
emptyAs () if VAµ (V) = ∅∑

v∈VAµ (V)

msetA
(
v(x), µv(v(x), T)

)
otherwise

where the summations are multi-set unions as in Definition 4.10 and

VADAs (V) =
⋃

d∈DAs

{
{〈x1, d1〉, . . . , 〈xn, dn〉, 〈x, d〉}

}

VADAs ,T (V) =
{

v ∈ VADAs (V)
∥∥ eAv (T) = >

}

VAµ (V) =
⋃

d∈µ

{
{〈x1, d1〉, . . . , 〈xn, dn〉, 〈x, d〉}

}

g(V, T) ≡ ∃v ∈ V : eAv (T) = ε

µv(d, T) =

{
µ(d) if eAv (T) = >
0 otherwise.

40 CHAPTER 6. ALGEBRAIC OPERATIONS

The sum and the filter operations overlap in functionality. In typical
models, the multi-set sum is used mostly for initial markings, whereas
the filter is applied in temporal logic formulae and on output arcs.

6.4.4 Multi-Set Transformations

Item Mapping
For s ∈ Sβ with the carrier DA

s , for s′ ∈ Sµ and for the term T ∈ T
Sµ
s (V)

with V = Vs1∪ . . .∪Vsn∪Vs for some n ≥ 0 such that x ∈ Vs, xi ∈ Vsi
for

si ∈ S and 1 ≤ i ≤ n, we define the multi-set item mapping operation

mapx,T ∈ Fs′,s1,...,sn,µ(s)

mapAx,T (µ, d1, . . . , dn) =

ε if g(VAµ (V), T)
ε if ∃d ∈ µ : µ(d) 6∈ I
emptyAs () if VAµ (V) = ∅∑

v∈VAµ (V)

msetA
(
eAv (T), µ(v(x))

)
otherwise

where the summation is a multi-set union as in Definition 4.10 and

VAµ (V) =
⋃

d∈µ

{
{〈x1, d1〉, . . . , 〈xn, dn〉, 〈x, d〉}

}

g(V, T) ≡ ∃v ∈ V : eAv (T) = ε.

Multiplicity Mapping
For s, s′ ∈ Sβ with the carriers DA

s and DA
s′ = I and for the term T ∈

T
Sµ
s (V) with V = Vs1 ∪ . . . ∪ Vsn ∪ Vs ∪ Vs′ for some n ≥ 0 such that

x ∈ Vs, y ∈ Vs′ and xi ∈ Vsi
for si ∈ S and 1 ≤ i ≤ n, we define the

multi-set multiplicity mapping operation

mmapx,y,T ∈ Fµ(s),s1,...,sn,µ(s)

mmapAx,y,T (µ, d1, . . . , dn) =

ε if h(VAµ (V), T)
ε if ∃d∈µ: µ(d) 6∈I
emptyAs () if VAµ (V) = ∅∑

v∈VAµ (V)

msetA
(
v(x), eAv (T)

)
otherwise

where the summation is a multi-set union as in Definition 4.10 and

VAµ (V) =
⋃

d∈µ

{
{〈x1, d1〉, . . . , 〈xn, dn〉, 〈x, d〉, 〈y, µ(d)〉}

}

h(V, T) ≡ ∃v ∈ V : eAv (T) = ε ∨ eAv (T) < 0.

6.4.5 Union and Intersection

For s ∈ Sβ, we define the following multi-set operations:

unions ∈ Fµ(s),µ(s),µ(s)

minuss ∈ Fµ(s),µ(s),µ(s)

unionAs (µ1, µ2) = µ1 + µ2

minusAs (µ1, µ2) = µ1 − µ2

CHAPTER 6. ALGEBRAIC OPERATIONS 41

6.4.6 Scalar Multiplication

With the operations defined so far, it is possible to construct all the multi-
sets needed in practice. The following operation will not add any expres-
sive power to the set of defined operations. Multi-set-valued terms can
be shortened by making use of this operation, just like scalar expressions
can be shortened by making use of grouping, e.g.: a · b+a · c = a · (b+ c).

For s ∈ Sµ and s′ ∈ Sβ with the carrier DA
s′ = I, we define the scalar

multiplication of a multi-set by an integer as follows:

muls ∈ Fs,s′,s

mulAs (µ, d) =

{
d · µ if d ≥ 0
ε otherwise

6.4.7 Comparison

For s ∈ Sµ and b ∈ Sβ with the carriers DA
s and DA

b = B = {⊥,>}, we
define the following binary relations DA

s ×DA
s → B for testing multi-set

equality and containment:

equalsets ∈ Fs,s,b

subsets ∈ Fs,s,b

equalsetAs (µ1, µ2) =

{ > if µ1 = µ2

⊥ otherwise

subsetAs (µ1, µ2) =

{ > if µ1 ≤ µ2

⊥ otherwise

6.4.8 Minimum and Maximum Multiplicity and Cardinality

For s, s′ ∈ Sβ with the carriers DA
s and DA

s′ = I, we define the following
operations:

mins ∈ Fµ(s),s′

maxs ∈ Fµ(s),s′

cards ∈ Fµ(s),s′

minAs (µ) = min({k ‖ 〈d, k〉 ∈ µ ∧ k > 0} ∪max I)
maxAs (µ) = max {k ‖ 〈d, k〉 ∈ µ}
cardAs (µ) =

{ |µ| if |µ| ∈ I
ε otherwise

6.5 SHORT-CIRCUIT OPERATIONS

Some programming languages make use of a technique called short-circuit
evaluation. Under some circumstances, it suffices to evaluate only part
of an expression. The built-in binary operators for logical conjunction
&& and disjunction || and the ternary if-then-else operator ?: of the

42 CHAPTER 6. ALGEBRAIC OPERATIONS

programming languages C [24] and C++ [23] are a good example. The
binary operators can be represented with the ternary operator:

a && b = a ? b : 0

a || b = a ? 1 : b

When the ternary operation is evaluated, its leftmost operand will be
evaluated first. If it evaluates to zero or false, the result of the ternary
operation will be the evaluation of its third operand; otherwise the out-
come will be the evaluation of the second operand.

In [38], there are short-circuit versions of the logical conjunction and
disjunction operators and a generalised (n+1)-ary variant of the selection
operator ?:, which takes a left-hand-side term with a carrier of n elements,
and n right-hand-side terms separated by colons, one of which will be
selected for evaluation based on the outcome of the evaluation of the left-
hand-side argument. The selected right-hand-side term will determine
the outcome of the operation, as defined in Definition 4.7. We shall
define only the selection operation here, since short-circuit disjunctions
and conjunctions can be directly represented with it.

For s′ ∈ Sβ and s ∈ S with the carriers DA
s′ and DA

s and n =
∣∣DA

s′
∣∣, we

define

selects′,sn ∈ Gs′,sn

where sn denotes the sequence s, . . . , s︸ ︷︷ ︸
n times

.

CHAPTER 6. ALGEBRAIC OPERATIONS 43

7 IMPLEMENTING THE ANALYSER

There are some implementation details we would like to point out, since
they affect the exact semantics of the class of algebraic system nets we
have implemented in [38]. Moreover, the way how an algorithm is imple-
mented can be important or even crucial in practice, even if the difference
is just an n-fold increase in execution speed or decrease in memory us-
age for some constant n. We will discuss some optimisations that have
turned out to be extremely useful in practice.

7.1 TRANSITION INSTANCE ANALYSIS

Definition 4.17, the transition pre-enabling rule, does not mention how
the assignments v ∈ VA(V) that pre-enable a transition t ∈ T in a
marking M can be found. A näıve approach would be to enumerate
through all assignments, without paying any attention to the marking M .
Doing so is possible when all input variables of a transition have a finite
carrier, but such an algorithm would have exponential time complexity.
Nevertheless, this is the usual way when a net is unfolded; see e.g. [32,
Definition 13]. This approach does not work very well if the transitions
have a large (or infinite) number of possible assignments (firing modes),
and the transitions are enabled in only a few firing modes in the reachable
states.

Fortunately, there is a more efficient approach for the case when the
input places of a transition are marked sparsely. The process of finding
assignments or substitutions under which two algebraic terms are equiv-
alent is often referred to as unification, e.g. [3, pp. 74–76]. In algebraic
system nets, we can unify input arc inscriptions with a marking of the
net. In this case, a unifier is an assignment for the transition variables
under which the evaluations of the input arc inscriptions are contained
in the corresponding input place markings.

If the algebraic operations are not restricted, there might be pro-
hibitively many unifiers. For instance, consider the constant 2 ∈ I and
the expression x+y. If the variables x and y are known to be non-negative
integers, then three assignments are possible unifiers: {〈x, 0〉, 〈y, 2〉},
{〈x, 1〉, 〈y, 1〉}, and {〈x, 2〉, 〈y, 0〉}. If the constant was n, there would
be n + 1 different unifiers. If either variable was allowed to be negative,
there would be infinitely many unifiers.

In order to avoid a combinatorial explosion, we have to restrict the set
of algebraic terms that the unification algorithm examines to find values
for variables. A natural way of making this restriction is to limit the set
of operations the unification algorithm recognises in such a way that the
choice of unifiers is always unique. This rules out the operation + in our
previous example.

In [39], we distinguish two classes of operations that are recognised by
our algorithm. Reversible unary operations, such as taking the successor
of an element in a sequence, can be “neutralised” by applying a reverse

44 CHAPTER 7. IMPLEMENTING THE ANALYSER

operation, such as the predecessor operator. Other operations that the
algorithm must know are constructors that tie terms together. For in-
stance, we want to be able to unify the variables in the term conss(x, y)
with the constant 〈1, 2〉.

We will give some definitions before we shed some light on the algo-
rithm implemented in [38]. In some pathological cases, the algorithm
reports an error as it fails to find values for the variables needed for
evaluating the transition expressions.

Our algorithm makes use of unifier candidates. Given an algebraic
term and a value the term should evaluate to, the definition yields a set
of variable bindings under which the algebraic term could be compatible
with the value, i.e. evaluate either to the value or fail to be evaluated
because of an undefined variable.

Our definition of unifier candidates reflects our implementation [38].
Although the definition could cover all reversible algebraic operations—
operations computable with injective mappings—it only covers variables
and constructors for structured data types, defined in Section 6.3.5. For
instance, the successor and predecessor operations defined in Section 6.3.2
are outside its scope.1

Definition 7.1 (Unifier candidate) Let Sµ = 〈Sβ ∪ Sµ,F ,G, µ〉 be a multi-
set signature and A be an Sµ-algebra. Let T ∈ T

Sµ
s (V) be a term. A variable

x ∈ V is said to be unifiable from T , denoted x / T , if

1. T = x, or

2. for some n ≥ 0 and s ∈ Sβ , T = conss(T1, . . . , Tn) and for some
k ∈ {1, . . . , n}, x / T ′

k.

Furthermore, let v ∈ VA(V) be a valuation and T ′ ∈ T
Sµ
s a ground term,

and let x / T . A unifier candidate x /T ′ T is inductively defined as follows:

1. T ′, if T = x

2. x /T ′k Tk, if for some n ≥ 0 and s ∈ Sβ , T = conss(T1, . . . , Tn),
T ′ = conss(T

′
1, . . . , T

′
n), and for some k ∈ {1, . . . , n}, x / Tk, and

there is no 1 ≤ j < k such that x / Tj .2

Finally, let d = eAv∅(T
′) be the value a ground term evaluates to. We use the

short-hand notation x /d T for the unifier candidate x /T ′ T .

Definition 7.2 (Term Compatibility) Let A be an algebra with the multi-
set signature Sµ = 〈Sβ ∪ Sµ,F ,G, µ〉. Let T ∈ TSµ(V) be a term, T ′ ∈ TSµ

a ground term and v ∈ VA(V) a valuation. The terms are compatible under
v, denoted

T ∼v T ′,

if either
1This choice not only benefits the programmer but also persons studying a model, who

do not need to know which operations are considered injective or reversible.
2Requiring the smallest k to be chosen ensures that unifier candidates are unique.

CHAPTER 7. IMPLEMENTING THE ANALYSER 45

1. eAv (T) = eAv∅(T
′) or

2. for some n ≥ 0 and s ∈ Sβ , the terms T and T ′ are of the form
conss(T1, . . . , Tn) and conss(T

′
1, . . . , T

′
n), respectively, and for each k

between 1 and n, either Tk ∼v T ′
k or eAv (Tk) = ε.

Let d = eAv∅(T
′) be the value a ground term evaluates to. We use the short-

hand notation T ∼v d for the compatibility check T ∼v T ′.

We have not presented any algorithms yet, but we are about to face
a somewhat philosophical question. Should a unification algorithm be
able to find all possible assignments that enable the transition, or does
it suffice for the algorithm to deal with real models, and report errors
for cases it cannot handle? An implementation that restricts the sets of
supported operations is likely to be more efficient and less prone to errors
than one that tries to handle everything. For instance, when making
basic arithmetic operations reversible, one must take care of arithmetic
precision and exceptional situations.

Variables that are not unifiable by Definitions 7.1 and 7.2 could be han-
dled by nondeterministically picking values for them from their domains
and by checking the terms for compatibility, but doing so is computation-
ally expensive if the domains are large or there are many such variables.
It is easier to report “variables cannot be unified” even though it might
be possible to unify them. According to our experience with practical
models, this works pretty well. One can always gain expressive power by
replacing problematic terms with new variables and guards.

7.1.1 Splitting the Arcs

In typical models, arc expressions consist of elementary multisets (created
with the mset operation) combined with multiset summation (unions). In
order to improve the granularity of our algorithm, we write each input
arc inscription as a such combination of terms. Sanders refers to this as
arc unfolding [50, Section 3].

The claim“any arc with a non-elementary multi-set may be ‘unfolded’
into multiple arcs” by Sanders [50, Section 3] is difficult to fulfil if the
arcs contain multiset-valued variables or other multiset operations than
the two we defined above. Our approach does not restrict the set of
multiset operations, since we do not require that all split arc inscriptions
be elementary multisets.

We distinguish three kinds of split arc inscriptions: ones that contain
unifiable variables, ones that can be evaluated under a partial assignment
incrementally constructed by our algorithm, and others. What matters is
that whenever the unification algorithm finds a complete assignment, all
arc inscriptions are compatible under it with the constants corresponding
to the given marking of the model.

7.1.2 The Unification Algorithm

Our unification algorithm performs a depth-first search on the input arc
inscriptions of the transition, split as described earlier. The algorithm is

46 CHAPTER 7. IMPLEMENTING THE ANALYSER

remarkably simple, since it processes the arcs in a fixed order produced
in static analysis. Static analysis also determines which variables are
unified from which arcs, and verifies that all variables can be unified.

However, when variable-multiplicity arcs are present, the algorithm
cannot guarantee that all variables can always be unified. A variable
unified from a variable-multiplicity arc may remain undefined if the multi-
plicity of the arc evaluates to zero. Even this does not prevent a transition
from being enabled, if the variable is never evaluated due to short-circuit
evaluation or arc multiplicities that evaluate to zero.

The input arc inscriptions i(〈p, t〉) of a transition t are split into items
Sk = 〈Tk,Vk, pk,mk〉 ∈ TSµ(V) × 2V × P × DA, k ∈ {1, . . . , n} for some
n, such that

• the variable sets Vk are pairwise disjoint: Vj ∩ Vk = ∅ if j 6= k

• no Tk refers to a variable outside
⋃n

j=1 Vj: Tk ∈ TSµ(
⋃n

j=1 Vj)

• if Vk = ∅: Tk ∈ TSµ(
⋃k−1

j=1 Vj)

• if Vk 6= ∅: Tk = mset(T ′′
k , T ′

k) and T ′
k ∈ TSµ(

⋃k−1
j=1 Vj) and ∀x ∈ Vk :

x / T ′′
k

• the original input arc inscriptions i(〈p, t〉) can be obtained from the
places pk and split inscriptions Tk by combining terms Tk and Tl

having equal places (pk = pl) via multiset summation (unions)

The last component, mk, is a place-holder for the multiset the term
is supposed to evaluate to. Our algorithm does not refer to it before
initialising it; for convenience, here we can assign it to the empty multiset.

Our unification algorithm is presented in Figure 7.1. The computation
is initiated by invoking Analyse with the split input arc inscriptions S
and their amount n and a marking M ∈MΣ of the net. The computation
step of the depth-first search is divided into two alternatives: processing
a “constant” arc (arc with no new bindable variables), and obtaining new
variable bindings from an arc.

Despite its limitations, the algorithm works except in a few patholog-
ical cases, e.g. when a transition has only one input arc of the form

unions (mset(x, y), mset(y, x))

where x, y ∈ Vs and DA
s = I (the integer type defined in Section 5.2.3).

Since there are no assignment candidates for x and y, no symbolic tokens
can be extracted from the input arc.

An Example
We shall illustrate the algorithm with a simple example, presented in
Figure 7.2. For the sake of simplicity, place inscriptions are omitted from
the example. Let us simulate the algorithm with a marking M having

M(A) = {〈0, 0〉, 〈1, 1〉, 〈2, 1〉, 〈3, 1〉}
M(B) = {〈0, 3〉, 〈1, 2〉, 〈2, 1〉, 〈3, 0〉}

CHAPTER 7. IMPLEMENTING THE ANALYSER 47

Analyse arcs S1..Sn w.r.t. marking M
ANALYSE(S, n,M):
v ← (

⋃n
k=1 Vk)× {ε}

ARCS(S, 1, n,M, v)
Analyse arcs Sk..Sn

ARCS(S, k, n, M, v):
. Sk = 〈Tk,Vk, pk,mk〉
if k = n + 1 then

print v
return

if Vk = ∅ then
CONSTANT(S, k, n, M, v)

else
VARIABLE(S, k, n, M, v)

Evaluate arc Sk

CONSTANT(S, k, n, M, v):
. Sk = 〈Tk,Vk, pk,mk〉
mk ← eAv (Tk)
if mk = ε then

print “undefined arc”, v, Tk

return
if M(pk) ≥ mk then

M ′ ← M
M ′(pk) ← M(pk)−mk

ARCS(S, k + 1, n,M, v)

Analyse arc Sk, augment v
VARIABLE(S, k, n, M, v):
. Sk = 〈Tk,Vk, pk,mk〉
. Tk = mset(T ′′

k , T ′
k)

c ← eAv (T ′
k)

if c = ε then
print “undefined multiplicity”, v, Tk

return
if c = 0 then

mk ← ∅
ARCS(S, k + 1, n, M, v)
return

for each m : M(pk) ≥ 〈m, c〉 do
mk ← 〈m, c〉
v′ ← v
for each x ∈ Vk do

v′(x) ← (x /m T ′′
k)

if
∧k

j=1 Tj ∼v′ mj then
M ′ ← M
M ′(pk) ← M(pk)−mk

ARCS(S, k + 1, n, M ′, v′)

Figure 7.1: The Unification Algorithm.

Σ = 〈N ,A,V , i〉
N = 〈P , T ,F〉
s ∈ Sβ

DA
s = {0, 1, 2, 3}

Pµ(s) = {A, B}
P = Pµ(s)

T = {T}
F = {〈A, T〉, 〈B, T〉}
V = Vs

Vs = {x, y}
i(〈A, T〉) = unions(mset(x, constant1()), mset(succ(x), constant1()))
i(〈B, T〉) = mset(y, pred(x))

i(T) = constant>()

Figure 7.2: An Example Model for Transition Instance Analysis

48 CHAPTER 7. IMPLEMENTING THE ANALYSER

and the input arcs of T split as follows:

S1 = 〈T1,V1, p1,m1〉 = 〈mset(x, constant1()), {x}, A, ∅〉
S2 = 〈T2,V2, p2,m2〉 = 〈mset(succ(x), constant1()), ∅, A, ∅〉
S3 = 〈T3,V3, p3,m3〉 = 〈mset(y, pred(x)), ∅, B, ∅〉.

The call to Analyse makes all variables undefined in the assignment
and invokes Arcs to analyse the first inscription. Since S1 has a non-
empty variable set {x}, the method Variable is invoked in order to
unify the variable x.

The multiplicity of the first inscription evaluates to c = 1. Thus
the loop over m considers all items in M(p1 = A) having a nonzero
multiplicity. Let us assume that it starts with m = 1. The assignment
is augmented to v′(x) = m. The compatibility check passes, and the
token mk = 〈m, 1〉 is subtracted from the marking. The method Arcs
is invoked to analyse the next arc.

As the variable set of the second arc S2 is empty, it is analysed with
the method Constant. The term evaluates to mk = 〈m + 1, 1〉. Since
M(p2 = A) is a super-multiset of the evaluation, the analysis can proceed
to the third arc inscription.

Since the third arc S3 has a variable, it is analysed by Variable.
On this first round with v′(x) = 1, its multiplicity evaluates to zero.
The method Arcs is invoked with k = 4 > n, and the search starts to
backtrack. At this point, the valuation is {〈x, 1〉, 〈y, ε〉}.

The search backtracks to the invocation of Variable that is analysing
S1. Let us assume that the next candidate for m is 2. The compatibility
check is passed, and also S2 can be unified, since M(A) contains both
〈2, 1〉 and 〈3, 1〉. Now the multiplicity of S3 evaluates to c = 1, which
leaves two choices for picking a token from the place B: one valued 1 or
another with the value 2. Both turn out to be compatible with M(B),
and the valuations {〈x, 2〉, 〈y, 1〉} and {〈x, 2〉, 〈y, 2〉} are printed.

The algorithm backs up again to S1, and the only choice left is v′(x) =
3. Again S2 passes the compatibility check, and the multiplicity of S3

evaluates to c = 2. M(B) contains only one item with a big enough
multiplicity, and we get one more assignment, {〈x, 3〉, 〈y, 2〉}. To sum
up, the set of assignments reported by the algorithm is

V = {{〈x, 1〉, 〈y, ε〉}, {〈x, 2〉, 〈y, 0〉}, {〈x, 2〉, 〈y, 1〉}, {〈x, 2〉, 〈y, 2〉}} .

This example shows that our unification algorithm does not necessarily
provide values for all variables. If an output arc of the transition T needs
to evaluate the variable y, the assignment {〈x, 1〉, 〈y, ε〉} that pre-enables
T will not enable T .

Our unification algorithm could probably be optimised considerably.
The pattern matching algorithm presented in [43] would be advantageous
in situations where the marking M does not change much between succes-
sive invocations of the algorithm. This could be useful when generating
the set of reachable states in a depth-first order.

CHAPTER 7. IMPLEMENTING THE ANALYSER 49

7.1.3 Unfolding to Place/Transition Nets

Some classes of high-level Petri Nets can be mapped to Place/Transition
Nets [47], which consist of low-level places and transitions connected via
weighted arcs. In a Place/Transition Net, places may contain a number
of black tokens, which are moved around by the firing of low-level transi-
tions. The transformation to a lower-level formalism is motivated, since
many reduction methods for reachability analysis are only defined for the
low-level Place/Transition Nets.

High-level Petri Nets are usually unfolded to Place/Transition Nets
by mapping each place p ∈ Pµ(s) with s ∈ Sβ to

∣∣DA
s

∣∣ low-level places
and each possible enabled transition instance 〈t, v̂, v〉 with t ∈ T and
v̂, v ∈ VA(V) and eAv̂ (i(t)) = >, to a low-level transition connected with
the low-level places corresponding to the input and output effects t−v̂ and
t+v . See e.g. [32, Section 5.1] for an illustration of this approach.

It is worth noting that this kind of a transformation is independent of
the initial marking and the set of reachable markings; the unfolded net
may contain many places whose markings will never change or transitions
that will never fire. A more efficient unfolding would construct the set of
low-level places incrementally, starting from the low-level places that are
non-empty in the initial marking, and adding necessary low-level places
for each transition instance. Also, some data types, such as the buffer
type, can be modelled with more efficient constructs in some special cases.

The algorithm described in the previous section can be fairly easily
modified for unfolding. Instead of taking the speculative tokens from a
given marking, the unfolding algorithm assumes an “infinite” marking.

7.2 THE EXPRESSION EVALUATOR

Implementing an expression evaluator, the computation of eAv (T), is a
straightforward task, once the interfaces have been defined. In an inter-
preting approach, it is customary to implement the expression evaluator
in a set of functions that recursively call each other. An object-oriented
implementation language, such as our choice C++, allows the expression
evaluator to be implemented in virtual methods, which makes it fairly
easy to add new types of subexpressions, each of which corresponds to
some operations defined in Chapter 6.

The principle of an expression evaluator is very simple: it can be im-
plemented as a procedure that takes an expression (an algebraic term)
and an assignment (values for variables), and evaluates the expression by
calling itself recursively, and by using the evaluated values of the subex-
pressions for computing the value of the expression. The assignment is
only needed for evaluating variable references.

7.2.1 Error Handling

What should happen when a subexpression is undefined, if for instance it
contains a division by zero? One approach is to sweep the problem under

50 CHAPTER 7. IMPLEMENTING THE ANALYSER

the carpet by using special values for undefined subexpressions, such as
the ε defined in our algebra, or the NaN (Not a Number) values used
by many floating-point evaluators. Another way is to use an exception
handling mechanism to abort evaluations when an error occurs.

Our implementation uses a special value (a null pointer) together with
a more specific error reporting mechanism. The expression evaluator is
implemented as a virtual method that takes one parameter, an object
containing the assignment for the variables. When an error occurs, the
expression evaluator will return a special value after passing the assign-
ment object an error code and a reference to the failed expression. A
diagnostic method in the assignment object displays the error code to-
gether with the complete assignment and the subexpression that caused
the error. This is a very useful way of reporting errors, especially those
that occur during transition instance analysis.

7.2.2 Optimisations

One cannot expect much performance from an interpreter-based expres-
sion evaluator. The performance can be improved by introducing optimi-
sations. Some of them transform expressions to simpler equivalent ones,
while others affect the expression evaluator itself.

Constant Folding
Evaluating a variable-free expression always yields the same result. If
the expression is evaluated more than once, computing power will be
wasted. Such expressions, called ground terms or constant expressions,
can be evaluated by the expression parser and replaced with constants
representing their values. This technique is called constant folding. [1]

Constant folding can also improve error checking. If there is an error
in a constant expression, the error can be detected already in the parsing
stage, and it is easy to associate a diagnostic message with the exact
location of the error in the input. Would the error occur at a later
stage, when evaluating the expression in a dynamic context, reporting it
precisely would be more difficult. Also, if not all expressions will ever be
evaluated, errors found during constant folding could go undetected.

Common Subexpression Elimination
Expressions can be viewed as trees, which are a special case of directed
acyclic graphs. A well-known optimisation technique called common
subexpression elimination [1] views the expression as a directed graph.
Identical subexpressions are not represented by identical subtrees, but
by multiple arcs leading to the same subgraph representing the subex-
pression. Instead of parsing an expression to a tree, it can be parsed to
a directed acyclic graph. A simple example is illustrated in Figure 7.3.

Common subexpression elimination has many advantages, and a typ-
ical expression tends to have common subexpressions, at least variable
references. One advantage of the graph representation of expressions is
space efficiency. But only when this technique is combined with other
optimisation techniques, performance issues will become evident. When

CHAPTER 7. IMPLEMENTING THE ANALYSER 51

a aa a

· ·
+

¡¡ª@@R

¡¡ª ¡¡ª@@R @@R
a

·
+
?

?

?

?

Figure 7.3: An Expression a · a + a · a as a Tree and as a Graph

an expression is translated to machine code, each subexpression is typi-
cally assigned one (pseudo) register of the underlying machine. The fewer
subexpressions there are, the less registers will be used and the less com-
putations will be performed, and the easier it will be to schedule the use
of the registers.

Cached Evaluation
During the transition instance analysis process described in Section 7.1,
the same expressions will be evaluated several times, and typically only
one variable will have changed its value between two successive evalua-
tions of an expression.

One way to speed up the expression evaluator is to store the result
of the last evaluation in a cache and return the cached value when the
evaluator is called again. There is only one problem. When the value of
a variable is changed in the assignment, the values of all expressions and
subexpressions that depend on the value of the variable must be wiped
out of the cache.

The overhead involved with managing the cache might over-weigh the
advantage gained from using the cache. In our implementation, we ex-
perimented with a cache that could be disabled as a compile-time option.
Using the cache only slightly improved the performance at the price of
complicating the algorithms and maintaining two copies of expression
evaluation code. We finally decided to replace the cache with an option
that generates executable machine code.

Other Optimisations
It would be tempting to devise transformations for optimising the expres-
sion evaluator further. In a student project of a compiler construction
course, the author implemented, among others, a transformation that was
able to optimise an expression like a + c + b + (b + a) · 3 to (a + b) · 4 + c.
Implementing and especially testing this kind of optimisations consumes
much time, and the gain is often marginal, since the structures affected
by such optimisations may seldom occur in practice.3

7.2.3 Interpreting vs. Compiling

A computer program that implements an abstract machine that executes
computations expressed in some input language is called an interpreter.
The interpreter itself may be executed by another interpreter, but at the

3This also means that thorough testing of such optimisation algorithms is essential: errors
in them are not likely to be discovered with simple test cases.

52 CHAPTER 7. IMPLEMENTING THE ANALYSER

lowest level there are some physical circuits that actually perform the
computations.

Simulating an abstract machines involves an overhead. Each expres-
sion or instruction expressed in the input language must be translated to
a sequence of computations on the underlying machine. If the same com-
putations are repeated several times, maybe varying some parameters,
the computations could be speeded up by translating the input language
to a lower-level language that can be executed on a simpler and faster
abstract machine, or directly on a physical machine.

Expanding the Multi-Set Sum
The multi-set sum operation, described in Section 6.4.3, provides a com-
pact way of representing initial markings and modelling complex actions,
such as broadcasting a message to a number of neighbours.

One of the reasons why this powerful operation is rare in reachability
analysers are implementation difficulties. When a multi-set sum occurs in
an initialisation expression, it can be evaluated in a straightforward way,
since there are no unknown variables. Multi-set sums on cause much more
headache when they occur on arc expressions, since both the summation
condition and the summand may depend on unbound variables.

Originally, we implemented the multi-set sum as a genuine operation,
and the sums were expanded during the transition instance analysis. This
complicated the bookkeeping, since the set of symbolic tokens associated
with a transition varied during the instance analysis. Furthermore, a
multi-set sum whose summation condition depends on other variables
than summation indices cannot be fully expanded at all times. In addi-
tion to maintaining a “processed” flag for each symbolic token handled
by the instance analyser, we had to keep track on the multi-set sum
expressions that were skipped due to an undefined summation condition.

To simplify and to speed up the instance analysis, we decided to ex-
pand the multi-set sums already in the parsing stage. Such a static
transformation trades memory space for speed, since the algebraic term
representing the symbolic expansion of the sum has to be kept in the
memory all the time and not only when the sum actually needs to be
evaluated.

When the static expansion takes place, the only variables whose val-
ues are available are the summation indices. The summation condition,
which selects the index values for which the summand is evaluated, may
depend on other variables. The condition can be translated to a scalar
multiplication by zero or one.

Let there be the basic sorts s, s′, s′′, b ∈ Sβ with the respective carriers

DA
s , DA

s′ , DA
s′′ = I and DA

b = B = {⊥,>}. Let the terms T ∈ T
Sµ

b (V) and

U ∈ T
Sµ

µ(s′)(V) have V such that x ∈ Vs. The multi-set sum term

sumx,T,U

is equivalent to a term containing a chain of applications of the multi-
set union operator defined in Section 6.4.5, enumerating through all the
values d ∈ DA

s and combining the terms

muls(Ud
x , selectb,s′′,s′′(T d

x , constant0(), constant1()))

CHAPTER 7. IMPLEMENTING THE ANALYSER 53

where T d
x and Ud

x denote transformations of the terms T and U such that
each occurrence of x has been replaced with the term constantd().

Our implementation [38] folds constants while transforming the terms,
and it omits the scalar multiplication or the whole term if the multiplicity
is one or zero.

Compiling Expressions
The most obvious performance bottleneck in [38] is the expression evalu-
ator, which makes heavy use of dynamically allocated objects. According
to our work [36], the performance improves vastly when the expressions
are not interpreted but translated to something that can be compiled to
machine code.

The programming languages C [24] and C++ [23] are the most obvious
choices for an intermediate language. Our implementation generates C,
since it is simpler and often more efficient than C++. Each transition
in the model is translated into a function that analyses and fires all
its enabled instances in the specified marking. The code for evaluating
expressions is embedded in the code. We also generate encoding and
decoding functions for managing the reachability graph (see Section 7.3).
These do not need to evaluate expressions.

7.3 MANAGING THE REACHABILITY GRAPH

The limited amount of system memory is a major bottleneck in exhaus-
tive reachability analysis. Algorithms for reachability analysis and model
checking need to keep track on the states that have been explored. In
that way, they can detect cyclic behaviour and limit the investigation of
successors to truly new states.

There are some techniques that only manage the set of reachable states
and utilise similarities between the states. One of them, Binary Decision
Diagrams [4, Chapter 5], has been successfully applied in the verification
of digital circuits. Techniques applied on the analysis of software sys-
tems include a state compaction method for product automata [13] and
a method known as Graph Encoded Tuple Sets [18].

One problem with these techniques is that inserting a state may in-
volve global changes, slowing down disk-based implementations. Another
problem is that states have no identities: there is no way to retrieve a
state from the structure by specifying an index number. It is difficult
to use such a structure for anything else than determining whether a
particular state has been explored.

Since we want to be able to make all sorts of queries on the gener-
ated reachability graph, our approach represents each marking (state)
separately and records also the transition instances that lead from one
marking to another. Our approach encodes the markings in a compact
way, and it saves system memory by maintaining the encoded markings
and transition instances on disk.

The reachability graph storage implemented in [38, 37] builds heavily
on two encoding routines. One inputs a number in a set {0, . . . , n− 1}

54 CHAPTER 7. IMPLEMENTING THE ANALYSER

and appends a string of dlog2 ne binary digits to an encoding buffer.
Another routine encodes a value d ∈ DA using around

⌈
log2

∣∣DA∣∣⌉ binary
digits.4 This is similar to the approach represented in [10], but it was
developed independently.

Our encoding is optimal if n = 2k for some integer k ≥ 0 and if
each item of D occurs with equal probability. More efficient encodings
would be possible if the data to be encoded were known in advance.
For a parameterised model, one could try to estimate probabilities for
different values by analysing smaller state spaces generated with suitable
parameters. We did not consider this option further.

7.3.1 Encoding Markings

The marking M of a net N = 〈P , T ,F〉 is encoded by processing the
places in a systematic order. For each place p ∈ P , the local marking

µ = M(p)

must be encoded. With the assumption that µ : D → N maps most data
items in D to zero, it makes sense to explicitly represent the data items
with nonzero multiplicity. Obviously, each data item can be represented
using dlog2 |D|e binary digits. Therefore, we shall concentrate on the
encoding of the multiplicities and the representation of empty places.

Representing Multiplicities
A multi-set µ can be characterised by two quantities: the total number
of items

t = |µ|
and the number of distinct items

d = |{a ‖ µ(a) > 0}| .
The total number of items can theoretically be any natural number, but a
finite-memory implementation imposes a limit on it, typically 0 ≤ t < 2n

for some n.
An user-defined capacity constraint [38] can reduce the number of bits

required for representing t. If there are m different possibilities for the
total number of tokens in a place, the actual number t can be represented
using dlog2 me bits.

Encoding the total number of items t before the number of distinct
items d has one advantage: it is straightforward to see that 1 ≤ d ≤ t
when t is nonzero. Therefore, d can be represented using dlog2 te bits.
After this, the distinct items

{a ‖ µ(a) > 0}
and their multiplicities are encoded in descending order of µ(a). Clearly

⌈
t

d

⌉
≤ µ(a) ≤ 1 + t− d

4Due to an implementation choice, if
∣∣DA∣∣ cannot be represented in a machine word,

the value will be encoded componentwise, which wastes a fraction of a binary digit for each
component whose domain is not of size 2k for some k.

CHAPTER 7. IMPLEMENTING THE ANALYSER 55

holds for the greatest multiplicity µ(a). If µ(a) = 1 + t− d, it holds that
the other d−1 distinct items must have a multiplicity of 1 in order for the
total number of items to be t. Similarly, if µ(a) =

⌈
t
d

⌉
, the multiplicities

of the remaining items must equal µ(a) or µ(a)− 1.
So, the greatest multiplicity µ(a) can always be represented with

⌈
log2

(
2 + t− d−

⌈
t

d

⌉)⌉

binary digits. After decoding µ(a), the decoder knows the remaining
total cardinality t′ = t−µ(a) and the number of remaining distinct items
d′ = d− 1. When the multiplicities are encoded in descending order, the
encoder always selects the greatest of the remaining multiplicities and
uses less and less bits.

This encoding of multiplicities appears to be quite compact even when
capacity constraints are not used. A simpler encoding might represent the
multiplicities using a fixed number of binary digits for the multiplicity of
each distinct item. For instance, when the multiplicities µ(a) are limited
in the range 0 ≤ µ(a) < 2n for some n, such a simple coding would use
up at least dn bits for encoding d multiplicities, not considering the bits
needed for signalling the end of the encoded stream.

For representing d = 5 multiplicities, the simple encoding would use
at least 5n bits. The optimised encoding needs n bits for representing
the total cardinality. Assuming that it is 8, the number of distinct tokens
is encoded in 3 bits. The greatest multiplicity lies between

⌈
8
5

⌉
= 2 and

8 − 5 + 1 = 4; therefore it can be represented with 2 bits. Clearly, the
improved encoding requires less than n + 3 + 5 · 2 = n + 13 bits. The
difference between 5n and n+13 is tangible in practical implementations,
which typically use n = 16 or n = 32.

Representing Empty Places
In many practical models, there is a substantial number of empty places
in most reachable markings. With our optimised multiplicity encoding,
an empty place requires dlog2 me bits of storage, if there are m different
possibilities for the total number of tokens in the place.

As it is rather uncommon to define tight capacity constraints, rep-
resenting the total cardinalities typically requires one machine word per
place, which easily dominates the encoding of markings where most places
are empty. With the assumption that many places are empty in each
reachable marking, we use a simple bit vector for indicating empty places.
The encoded cardinalities for those places that are marked empty can be
omitted. As an optimisation, the bit vector is not used for places hav-
ing a capacity constraint that can be represented in at most two bits or
forbids a cardinality of zero.

As a further optimisation, we use a variable-length code for represent-
ing the total cardinalities of places with no capacity constraint. This
code favors small cardinalities. Empty places are indicated with one bit,
and places containing one to eight tokens with five bits. Codes for larger
cardinalities are 11, 20 and n + 4 bits long where n is the length of the
machine word.

56 CHAPTER 7. IMPLEMENTING THE ANALYSER

Implicit Places
Some models contain implicit places, places whose local marking is a
function of the local markings of other places. One might ask why such
places occur in models, but they can make models more readable and
ease the transition instance analysis. Nevertheless, the local markings of
these places need not be encoded. Allowing the user to specify marking-
dependent initialisation expressions would be an elegant way to point out
implicit places.

This optimisation is likely to be implemented soon in [38]. It, to-
gether with the capacity constraint, slightly affects the formal semantics:
when the firing of an enabled transition instance would violate a capacity
constraint or be in contradiction with the initialisation expression of an
“implicit place,” the transition instance would not be fired, but it would
be reported to be faulty.

Hashing
A hash value will be computed for the encoded marking. If the hash
value does not exist in a hash table, a search structure that maps hash
values to numbers of corresponding markings, the encoded marking will
represent a new node in the reachability graph. In this case it will be
assigned its own number and stored in the hash table as well as written
to a disk file containing the distinct encoded markings generated so far.

If the hash value exists in the hash table, the encoded markings cor-
responding to it will be fetched from the disk file and compared against
the newly encoded marking. If a match is found, the newly encoded
marking will be assigned the number of the existing marking. Otherwise
the marking will be written to the disk file and added to the hash table.

In order to save memory, we implemented the hash table as a disk-
based B-tree. With a block size of 4096 bytes and a branching degree of
512, this structure requires 8 to 16 bytes per stored marking.

7.3.2 Encoding Transition Instances

The encoded reachability graph includes also transition instances, leading
from one marking to another. Each transition instance consists of a high-
level transition name and an assignment, mapping variables to values.

Each high-level transition t ∈ T is assigned a unique number between
0 and |T |−1. The encoded instance consists of a pair of marking numbers
(the source and the target marking), followed by the transition number
encoded in dlog2 |T |e binary digits and by the encoded assignment.

The assignment is encoded by processing the variables in a systematic
order. One bit is used for signalling that a variable is undefined, if it is
allowed to be undefined.5 When a variable is defined, its encoded value
will be appended to the bit vector representing the assignment.

No search structure for transition instances is needed while generating
the reachability graph. The transition instances can be appended to a
disk file in a linear manner.

5By default, all transition variables must have a value in all enabled transition instances.
Undefined variables occur when the multiplicity of an input arc expression evaluates to zero.

CHAPTER 7. IMPLEMENTING THE ANALYSER 57

Some resources could be saved by allowing the user to specify the vari-
ables whose values should be included in the encoded transition instance.
The omitted values could be reconstructed on demand by running the in-
stance analysis algorithm in the source marking of the event.

58 CHAPTER 7. IMPLEMENTING THE ANALYSER

8 CONSTRUCTING AND ANALYSING MODELS

A formalism without any practical applications is a dead formalism. We
will present two examples that illustrate some of the advantages of the
algebraic operations presented in Chapter 6 over the set of operations
conventionally defined in computer tools for high-level Petri Nets.

8.1 POINT-TO-MULTIPOINT COMMUNICATIONS

Many distributed algorithms designed for computer networks involve op-
erations where a node sends messages to or waits for a message from each
or some of its neighbours. When constructing parameterised models, e.g.
with n nodes, the multi-set sum operator defined in Section 6.4.3 provides
a compact way for writing arc expressions describing such situations.

Consider a system of n nodes connected via a broadcasting network.
The nodes periodically need to synchronise with each other. This is
accomplished by broadcasting messages. When a node is ready for syn-
chronisation, it will send a message to all other nodes and wait for a
message from all other nodes. In order to model this system, we need to
define the neighbourhood relation

N = (U × U) \ {〈d, d〉 ‖ d ∈ U}
with |U | = n.

Without using the multi-set sum operator, this relation, or its projec-
tion

N(u) = {u′ ‖ 〈u, u′〉 ∈ N}
can only be represented for some fixed value of n. Let us consider an
example where n = 4 = |U |. Let A be an algebra with DA

s = U and
DA

s′ = TU,U . Now

N(u) =
{
u′

∥∥ 〈u′, 1〉 ∈ eA{〈x,u〉}(T1)
}

T1 = unions(mset(succ(x), constant1()),
mset(succ(succ(x)), constant1()),
mset(succ(succ(succ(x))), constant1())).

It is easy to see that in this kind of a construct, the length of the term
T1 presented above increases at least linearly with n. The multi-set sum
operator allows for more compact notation, which does not depend on n,
the number of items in the set U :

T1 = sumy,T2,T3

T2 = unequal(x, y)

T3 = mset(y, constant1()).

Now we are ready to represent an Algebraic System Net model of the
system, illustrated in Figures 8.1 and 8.2. The latter uses graphical no-
tation, representing places (elements of P) with circles encircling sort

CHAPTER 8. CONSTRUCTING AND ANALYSING MODELS 59

identifiers, transitions (elements of T) with boxes, and the flow relation
F with directed arcs connecting the images of places and transitions.
Furthermore, the inscription function i is represented with textual in-
scriptions written next to the places, transitions and arcs. Trivial “null”
inscriptions—empty place initialisers and constantly enabled transition
guards—are omitted. We have also labelled the place and transition
symbols with the names used in the purely textual representation of Fig-
ure 8.1.

The alert reader may notice that the place PENDING in Figure 8.1 is
redundant. In all reachable markings of the net, the place BUS contains
a set of tuples ⋃

x∈A

{〈x, y〉 ‖ y ∈ B \ {x}}

where A and B are some subsets of DA
s . Due to the structure of the net,

the place PENDING will contain the set A corresponding to the contents
of the place BUS in all reachable markings.

The redundant place PENDING is needed in the model to circumvent
the limitations of the transition instance analysis algorithm described in
Section 7.1.2. In our algebraic terms, if we allow initialisation expres-
sions of implicit places to depend on the current marking of the net as
suggested in Section 7.3.1, the local marking of the redundant place can
be represented as follows:

i(PENDING) = mmapx,y,T (mapz,U(BUS))

T = constant1()
U = components′,1(z).

Clearly also the place IDLE is a complement place of PENDING. In all
reachable states, the union of the two local markings equals DA

s . In other
words,

i(IDLE) = minuss(sumx′,T ′,U ′ , PENDING)

T ′ = constant>()

U ′ = mset(x′, constant1()).

It is not always clear whether a place is implicit. The theory for
finding implicit or redundant places is called invariant analysis, but it
is not with the scope of this work. However, it may be noted that our
tool [38] is capable of determining whether certain place invariants, as
defined in [32], hold in the reachable states of a model.

8.2 EXISTENTIAL QUANTIFICATION

In some models one would like to apply existential and universal quan-
tification on algebraic terms. For example, minimisation problems, that
is, problems of the form

∃x : ∀y : f(x) ≤ g(x, y),

60 CHAPTER 8. CONSTRUCTING AND ANALYSING MODELS

Σ = 〈N ,A,V , i〉
N = 〈P , T ,F〉

s, s′ ∈ Sβ

DA
s = {0, . . . , n− 1}

DA
s′ = TDAs ,DAs

Pµ(s) = {IDLE, PENDING}
Pµ(s′) = {BUS}

P = Pµ(s) ∪ Pµ(s′)

T = {initiate, finish}
F = {f1, f2, f3, f4, f5, f6}
f1 = 〈IDLE, initiate〉
f2 = 〈initiate , PENDING〉
f3 = 〈initiate , BUS〉
f4 = 〈PENDING, finish〉
f5 = 〈BUS, finish〉
f6 = 〈finish , IDLE〉
V = Vs

Vs = {x}
i(IDLE) = sumy,T ′1,T ′2

i(PENDING) = emptys()

i(BUS) = emptys′()

i(initiate) = constant>()

i(finish) = constant>()

i(f1) = mset(x, constant1())
i(f2) = mset(x, constant1())
i(f3) = sumy,T ′3,T ′4

i(f4) = mset(x, constant1())
i(f5) = sumy,T ′3,T ′4

i(f6) = mset(x, constant1())
T ′

1 = constant>()

T ′
2 = mset(y, constant1())

T ′
3 = unequal(x, y)

T ′
4 = mset(conss′(x, y), constant1()).

Figure 8.1: Algebraic System Net Model of a Synchronisation Protocol

CHAPTER 8. CONSTRUCTING AND ANALYSING MODELS 61

µ´
¶³

µ´
¶³

µ´
¶³

- -

@
@

@
@

@
@

@
@@R ¡

¡
¡

¡
¡

¡
¡

¡¡µ

@
@

@
@

@
@

@
@@I¡

¡
¡

¡
¡

¡
¡

¡¡ª

s

s

s′

X

X

X

X

sumy,T ′1,T ′2

sumy,T ′3,T ′4 sumy,T ′3,T ′4

PENDING

BUS

IDLE

initiate finish

s, s′ ∈ Sβ

DA
s = {0, . . . , n− 1}

DA
s′ = TDAs ,DAs
V = Vs

Vs = {x}
X = mset(x, constant1())
T ′

1 = constant>()

T ′
2 = mset(y, constant1())

T ′
3 = unequal(x, y)

T ′
4 = mset(conss′(x, y), constant1())

Figure 8.2: Graphical Representation of the Model in Figure 8.1

62 CHAPTER 8. CONSTRUCTING AND ANALYSING MODELS

need to be solved every now and then. One solution to this kind of
problems is the introduction of an algebraic operation; another way to
attack the problem is to introduce implicit places, e.g. a place that holds
the current minimum.

Purely existential problems can be solved by counting. If we want to
know whether there exists a token i in a place p such that some logical
property f(i) holds, we can introduce an implicit place that holds the
number of such tokens i in the place p, in all reachable markings. A
similar approach can be taken for problems involving purely universal
quantification, since ∃i : f(i) is equivalent to ¬∀i : ¬f(i).

An existential-universal quantification operation has been considered
for implementation in [38], but it has not been implemented yet. One
problem with such quantification is that if both quantification variables
x and y belong to a data type with n items, the algorithm will need to
test n2 combinations in the worst case. On the other hand, performing
the quantification in one atomic step is an order of magnitude more effi-
cient than modelling it“manually”with a sequence of transitions, causing
numerous uninteresting intermediate states to be generated.

8.3 THE PERFORMANCE OF EXHAUSTIVE ANALYSIS

We shall demonstrate the performance of our reachability analyser im-
plementation with a small example. The distributed data base system
model presented in Figure 8.3 has been translated into the input language
of our tool from an example file distributed with Prod [57].

The model has one parameter, the number of service nodes. The origi-
nal model for Prod, dbm.net, describes a system with ten nodes. Adding
or removing nodes involves changes in several places of the model. The
Maria model refers to the number of service nodes only in the definition
of the data type db_t. The multi-set summations used in the initial-
isation expression of the place INACTIVE and in some arc expressions
expand according to the domain size of this data type.

8.3.1 The Size of the Encoded State Space

Table 8.1 illustrates the performance of our state encoding on a 32-bit
computer system. We analysed the distributed data base model with
Prod using the default option and an unfolding option, and with Maria
using three variants of the model: without and with capacity constraints
for the places, and with capacity constraints and implicit places indicated.
Unlike in the paper [37], this model does not contain the fully redundant
place called UNUSED.

The figures exclude the space required for bookkeeping. In Maria,
the bookkeeping record is a table of file offsets, plus a b-tree of hash
values and state numbers. On a 32-bit system with 32-bit file offsets,
the file offsets occupy 8 bytes per encoded state while the b-tree takes 8
to 16 bytes. The low-level binary string routines in Maria operate on
machine words, but the encoded states are stored as sequences of bytes.

CHAPTER 8. CONSTRUCTING AND ANALYSING MODELS 63

typedef unsigned (1..10) db_t;
typedef struct {

db_t sender;
db_t recipient;

} db_pair_t;

place INACTIVE (0..#db_t) db_t: db_t d: d;
place WAITING (0..1) db_t;
place PERFORMING (0..#db_t) db_t;
place EXCLUSION (0..1) struct {}: {};
place SENT (0..#db_t) db_pair_t;
place RECEIVED (0..#db_t) db_pair_t;
place ACKNOWLEDGED (0..#db_t) db_pair_t;

trans “update and send messages”
in { INACTIVE: s; EXCLUSION: {}; }
out { WAITING: s; SENT: db_t r (r != s): { s, r }; };
trans “receive acknowledgements”
in { WAITING: s; ACKNOWLEDGED: db_t r (r != s): { s, r }; }
out { INACTIVE: s; EXCLUSION: {}; };
trans “receive message”
in { INACTIVE: r; SENT: { s, r }; }
out { PERFORMING: r; RECEIVED: { s, r }; }
gate s != r;
trans “send acknowledgement”
in { PERFORMING: r; RECEIVED: { s, r }; }
out { INACTIVE: r; ACKNOWLEDGED: { s, r }; }
gate s != r;

Figure 8.3: MARIA Model of a Distributed Data Base System

Table 8.1: Encoded State Space Sizes for the Distributed Data Base Model

Model Size Encoded State Space in Bytes
|D| States PROD MARIA (cap.) (red.)
1 2 17 4 2 2
2 7 76 21 14 9
3 28 389 150 111 86
4 109 1,848 724 543 414
5 406 8,113 3,565 3,159 2,396
6 1,459 33,548 15,725 14,266 10,807
7 5,104 132,693 60,786 55,683 43,569
8 17,497 507,400 233,702 217,213 168,089
9 59,050 1,889,585 998,945 952,558 738,397

10 196,831 6,889,068 3,559,389 3,526,147 2,683,381

64 CHAPTER 8. CONSTRUCTING AND ANALYSING MODELS

9 MODELLING COMPUTER PROGRAMS

One of the major goals of this research is to provide a mechanism for
semi-automatic verification of concurrent computer software, such as im-
plementations of communications protocols. Presenting a complete set
of rules for translating concurrent programs into algebraic system nets is
out of the scope of this work, but the data type system has been created
with this transformation in mind. We begin by summarising the features
of our data type system and comparing them with other approaches.
Later on, we sketch the transformation rules for some typical constructs
and make some comparisons to related work.

9.1 DATA TYPES

The rôle of powerful data types may not be ignored. While it is theoreti-
cally possible to represent all data by using integer numbers, it is very dif-
ficult to translate expressions (algebraic terms) manipulating structured
data to equivalent expressions that work with the integer representations
of the data objects. This has been tried in [28, 40], where problems were
encountered e.g. with array indices. Another way to handle data types
is to restrict the source language to allow only easily representable data
types [17], severely restricting the usability of the verification tool.

Table 9.1 summarises the data types supported by some reachability
analysers. A solid circle (•) denotes that the analyser supports the data
type, whereas a hollow circle (◦) means that a feature is partially sup-
ported or there is a mapping to a native data type of the analyser, but
not all constraints are enforced or operations are supported.

The four tools we compare to our reachability analyser for Alge-
braic System Nets, Maria [38], are Prod [57] for Predicate/Transition
Nets [11], Design/CPN [41] for Coloured Petri Nets [26], and a proto-
col analyser Spin [20], which is based on its own formalism, concurrent
processes communicating via message queues.

Of the four reachability analysers, Prod has the scarcest data type
system. Its data model is based on tuples of nonnegative integer num-
bers, which may be assigned lower and upper limits. The constraints in
Maria and Design/CPN are based on Boolean conditions that allow
the definition of types with “holes”, e.g. {i ∈ N ‖ i ≤ 42 ∨ 64 ≤ i ≤ 128}.

There is not much variation among simple types. Design/CPN,
whose algebraic model is based on the Standard Meta Language [42],
has two simple data types that fundamentally differ from the integer-
like types: unbounded strings of characters and floating-point numbers.
Character strings can be mapped to fixed-length character arrays in
Maria and Spin. Floating point arithmetics is not supported in the
other reachability analysers, probably because it highly depends on the
underlying computer system.

The analysers differ more in structured data types. All analysers sup-
port the tuple type. Prod does not support nested tuples, but this does

CHAPTER 9. MODELLING COMPUTER PROGRAMS 65

Table 9.1: Data Types Representable in Different Reachability Analysers

PROD SPIN MARIA DESIGN/CPN
Constraints ◦ • •
Simple Data Types
Boolean ◦ • • •
Character ◦ • • •
Integer • • • •
Enumerated • ◦ • •
Identifier ◦ ◦ • ◦
Floating-Point Number •
Character String ◦ ◦ •
Structured Data Types
Tuple • • • •
Array • • •
Tagged Union ◦ ◦ • ◦
Variable-Length Buffer ◦ • •
Linked List •

not limit the expressive power of its type system, since there are no other
structured data types in Prod. Spin has fixed-length arrays indexed
by integers, and the linked lists of Design/CPN can be constrained to
be of a constant length. In Maria, arrays can be declared with any
data type for indices, but one should keep in mind that an array with n
different elements and m distinct indices has nm possible values.

Only Maria supports the tagged union data type, which is necessary
for modelling object-oriented constructs (Section 9.5) and for supporting
the data type systems of some programming languages. Of the other
analysers, Prod, whose data type system is limited to tuples of integers,
can rather efficiently represent tagged unions of its natively supported
data types. The mapping is straightforward: prepend each tuple with a
tag element. In the other tools, one can form a tuple of an integer and all
the data types belonging to the tagged union. The integer will indicate
the active union component. This is utterly inefficient: while a tagged
union of data items with domain sizes ni has a domain of

∑k
i=1 ni ele-

ments, the domain size of the corresponding tuple mapping is k
∏k

i=1 ni.

The linked list data type of Design/CPN, like the character string,
has an unbounded domain. A list constrained to a maximum length is
equivalent to the variable-length buffer of Maria. Spin has a separate
construct for defining message queues outside the type system.

9.1.1 Expressive Power

Of the data type systems compared in Table 9.1, the data type system
in Prod has the least expressive power. The Spin data type system
appears to be a proper subset of the system implemented in Maria, and
all data types of Maria can be mapped to Design/CPN data types.

66 CHAPTER 9. MODELLING COMPUTER PROGRAMS

9.1.2 Representation

The fundamental difference between the data type systems supported by
Maria and Design/CPN is the boundedness of data types. Bounded
systems have only one disadvantage—possible lack of expressive power.

When a data type has a domain of known size n, each value can be
represented with dlog2 ne bits. This affects especially the representation
of the state space. The encoding described in Section 7.3 clearly out-
performs the one used in Design/CPN, which maintains the data in
the pointer structures of the underlying Standard Meta Language [42]
implementation.

The data types in Prod have bounded domains, but the analyser
does not encourage the use of constraints. Therefore, the state space
encoder often has to deal with tuples of unconstrained machine words.
The coding represents small numbers with fewer bits.

9.2 MESSAGE QUEUES

The Open Systems Interconnection Reference Model [22] and related
models provide a common basis for communications protocols. Protocol
entities in open systems communicate with each other by sending mes-
sages via lower-level entities, which are connected via a physical medium
to the underlying network. The messages are usually buffered at the
receiving end obeying the first-in-first-out discipline. For instance, the
dynamic semantics of SDL, the CCITT Specification and Description
Language [25], builds heavily on such buffering of messages, which are
called “signals” in SDL.

In the idealistic world of SDL, buffers have infinite capacity, while
all practical computing systems have a finite amount of memory. In
many applications, “astronomically large” is a good substitute for infi-
nite. When applying formal methods, especially in exhaustive reachabil-
ity analysis, even models with buffer capacities limited to four messages
may be unanalysable, and one has to hope that if there are errors in the
protocol, they will be discovered also with severely limited capacities.

9.2.1 Previous Approaches

It is possible to represent queues without introducing special data types.
If a queue holds only one kind of data items or if the semantics of the
“queue” allows items to be dequeued in arbitrary order, the queue can be
represented with one simple net place. Usually this is not the case.

We mention two previous approaches for modelling queues. Neither
of them maps message queues directly to native data types, which would
atomise queue operations.

Managing Queues as Circular Arrays
The approach taken in [28, 40] essentially models the queues of the SDL
variant TNSDL [49] as circular arrays. It uses one place containing tokens

CHAPTER 9. MODELLING COMPUTER PROGRAMS 67

(items in the buffer) tagged with the buffer position, and other places
holding pointers to the front and back of the queue.

The advantage of this approach is that the queue contents never will
be shifted. When an item is removed from the buffer, its slot will be
marked empty, and the pointer to the front of the queue will be updated.

Unfortunately, the advantage is also a disadvantage. For instance,
a first-in-first-out buffer of capacity 4 containing the items a, b and c
could be represented as 〈〈a, b, c, ε〉, 〈0, 3〉〉 but also as 〈〈c, ε, a, b〉, 〈2, 1〉〉.
The two structures are identical only when interpreted appropriately. A
simple analysis algorithm may generate many uninteresting “copies” of
the essential state space of a system modelled in such a way.

Managing Queues by Shifting Items
A similar approach, represented in [17], avoids the problem of seemingly
different states by not using pointers. Instead, the buffer contents is
shifted, one item at a time, when an item is removed or inserted. Espe-
cially if a model encompasses several buffers of this kind that can be used
concurrently, its state space is likely to contain several lattices resembling
those depicted in Section 2.2.

9.2.2 Algebraic Support for Queues

The variable-length buffer data type described in Section 5.3.3 suits to
modelling message queues. The contents of the message queue can be
packed in a variable whose type encapsulates a buffer over the message
type. More precisely: assuming that some s ∈ Sβ is the message sort and
DA

s its carrier, the carrier of the associated message buffer sort s′ could
be DA

s′ = VDAs ,n for some buffer length n.

The carrier of s′ could also be some other data type encapsulating
VDAs ,n. For instance, if the system consists of a number of similar buffers,
it could make sense to represent the buffers as an array of buffers, or as
sets of tuples with some components identifying the “owner” of the buffer
and one component holding the buffer contents.

When the underlying formalism includes basic queue operations, there
is no need to pay attention to the shifting operations discussed earlier.
In our class of nets, queue operations can be performed atomically.

Some languages include operations that break the first-in-first-out
principle of queues. For instance, the save operation of SDL [25] makes
it possible to skip over certain messages in the front of a queue and to
process and dequeue a following message. In order to facilitate simple
transformations for this kind of non-orthodox operations, it is advisable
to foresee the modelling formalism with enough expressive power. The
queue operations defined in Section 6.3.5 have indexed variants.

9.3 DYNAMIC RESOURCE ALLOCATION

It is straightforward to model systems that use a fixed amount of re-
sources over their lifetime. For systems that allocate resources dynami-

68 CHAPTER 9. MODELLING COMPUTER PROGRAMS

cally, it is often difficult to foresee the maximum number of resources it
will use in any of its reachable states. In practice, systems always have
some limited number of resources, and an allocation operation may fail
due to lack of available resources. If the pool of available resources is big
enough so that a resource shortage never occurs, the illusion of a truly
dynamic allocation of resources from an infinite pool works.

So, resource allocation can be modelled with a finite pool. In such
models, there is a fixed amount of resources, some of which are available
for allocation. Similar to message queues (Section 9.2), the resource pool
usually has to be kept small in order to be able to analyse the model.

Although dynamic resource management is not particularly difficult
to model, it has been neglected in many approaches. For instance, the
transformation presented in [17] does not allow dynamic process creation.

9.3.1 Process Creation

The computations of a concurrent system are often executed in processes,
each one executing its own algorithm, synchronising with other processes
from time to time. Some systems are implemented with a dynamic num-
ber of processes. For instance, there could be a master process that
listens for requests and creates slave processes, each of which serves one
request before terminating.

The dynamic resource involved are data structures. Processes have a
local state, which has to be maintained somehow, and in order to allow
inter-process communication, each process has to be given a process iden-
tifier. A straightforward approach of modelling processes with Algebraic
System Nets is to introduce a data type for the process identifier and to
store the local variables of each process into data structures that can be
indexed by the process identifier, e.g. into places whose carrier consists of
multi-sets over tuples, one of whose components is the process identifier.

The identifier type defined in Section 5.2.5 suits very well to describing
process identifiers. A pool of available process identifiers can be modelled
with a place that initially contains all process identifiers. Each process
creation operation will consume an identifier from the pool, and each
process termination will restore the identifier to the pool.

When a process terminates, it may be useful to verify that no other
processes hold the process identifier. Let us assume that there are pro-
cesses “thinking” that a particular process still exists, even though it
has terminated. When the process terminated, it returned its identifier
back to the pool, and a new process creation operation may assign the
same identifier to some other process. The processes still holding the old
identifier may then mistake the new process for the old one.

This kind of errors, dangling resource identifiers, can presently be
detected with model checking, but the associated temporal logic formulae
or property automata may become very large. It would be tempting to
introduce an algebraic operation that maps a marking of a net and an
identifier value to a truth value:

J : MΣ × Jn → B : 〈M, j〉 7→
{ > if “j 6∈ M(p)” for all p ∈ P
⊥ otherwise.

CHAPTER 9. MODELLING COMPUTER PROGRAMS 69

The informal notation“j 6∈ M(p)”denotes that the identifier value j does
not occur anywhere in the place marking, not even in a component of a
structured value.

9.3.2 Memory Allocation

As discussed in Section 3.2.1, data structures should be abstracted away
from formal models. Industrial-size programs exhibiting memory man-
agement problems typically are too big to be analysed using formal meth-
ods. One must try to cope with the less complete methods described in
Section 3.1, such as static analysis and regression testing of instrumented
program code.

But what if one absolutely must create a model that involves dynamic
memory allocation? Like with dynamic process creation, the answer lies
in the identifier data type, which can represent pointers to data items.
When a program needs to allocate data items of sort s whose carrier is
DA

s , the generated model will contain an identifier pool (sort s′, carrier
DA

s′) for the“pointers”of DA
s , and the dynamically allocated data items of

sort s will be represented using a sort s′′ having the carrier DA
s′′ = TDA

s′ ,DAs .

This approach uses disjoint sets of pointers for different data types.
There is a fixed pool of available pointers for each dynamically allocated
data type. Dangling identifiers are a problem source also here, since a
program may deallocate an object without removing all references to it.

With this approach, it is possible to model dynamic memory manage-
ment that relies on explicit deallocation of unused data items. Systems
that perform garbage collection, automatically deallocating unused re-
sources, are difficult to model in an efficient way. One option would be
to extend the formalism with a garbage collector, but an extension of such
a global nature would affect many analysis methods and algorithms.

9.4 PROCEDURE CALLS

Structured programming languages require that program statements are
encapsulated into units referred to as procedures. Procedures are very
useful for structuring program code, and they can hide obscuring details
of low-level operations from high-level procedure code. An Algebraic
System Net, however, is a flat formalism: there are just places and tran-
sitions, all on the same level. In order to translate a structural program
to an Algebraic System Net, the structure must be flattened, losing the
structural information.1

Typical programming languages define procedure calls as part of the
expression syntax. In other words, the underlying many-sorted algebra
of a language may contain procedure calls as terms. This provides a way
of defining operations without extending the language core.

1When generating a model of a program, one can provide some structural information by
assigning meaningful identifiers to places and transitions. For instance, transition identifiers
could consist of the name of the program file and the line and column numbers where the
corresponding statement or subexpression of the program begins.

70 CHAPTER 9. MODELLING COMPUTER PROGRAMS

Allowing procedure calls in algebraic terms poses a problem when the
terms are to be translated to a less expressive algebra that does not
encapsulate procedure calls. Only calls to simple procedures that do not
modify their environment e.g. by altering some data structures or by
sending messages over the network, can be translated directly.

One solution is to divide the terms to subterms not containing pro-
cedure calls, and to evaluate the expression in several steps, making the
procedure calls in appropriate places. In this way, one statement in a pro-
gram can be translated into several transitions in an Algebraic System
Net. This approach is analogous with the one outlined in Section 7.2.3.
The transformation given in [17] transforms all procedure calls to several
transitions, without giving special treatment to purely functional proce-
dures that do not modify their environment. In [28, 40], procedure calls
are treated as statements, so they cannot occur in subexpressions.

9.4.1 Scoping

Procedures typically have their own name spaces : variable x in procedure
a is different from variable x in procedure b. It is thus impossible to
represent both variables with just one place X that would hold the values
of the variables. An obvious solution is to incorporate the scope identifier
to the label, creating e.g. places A:X and B:X.

9.4.2 Recursive Procedures

Non-recursive procedure calls can be translated with a simple macro ex-
pansion, replacing each procedure call with the body of the called proce-
dure, substituting the procedure parameters. The transformation repre-
sented in [17] is equivalent to a macro expansion in its expressive power:
it cannot handle cyclic or recursive procedure invocations.

Recursive procedures can easily be implemented with a stack archi-
tecture. Each procedure invocation is executed in its own context. The
contexts can be identified e.g. with the current recursion depth, the cur-
rent number of active procedure invocations. The control flow of the
procedures, the order in which statements will be executed, can be mod-
elled with control places. Each statement will be translated to a sequence
of transitions moving a control token from one control place to another.
When several invocations of a procedure can be active at the same time,
the control token must identify the context, e.g. the recursion depth.

Since the data types in our class of Algebraic System Nets are finite,
we cannot allow infinite recursion depth. Analogous to dynamic resource
management, a limit must be fixed for the recursion depth. If it is big
enough and if the system being analysed does not exhibit infinite behav-
iour, the limit will not restrict the behaviour of the system.

9.4.3 Exception Handling

Exception handling [15] affects the semantics of procedure calls. When
an unexpected condition occurs during the execution of a procedure, the

CHAPTER 9. MODELLING COMPUTER PROGRAMS 71

procedure or the run-time system may raise an exception, transferring
control to the nearest applicable exception handler. If no exception han-
dler can be applied in the procedure, the exception will be raised further
in the calling procedures, until an applicable exception handler is found.

The framework proposed in [15] allows resumption of the action that
raised the exception. Most modern languages do not allow that: it is
impossible for an exception handler to return to the statement that raised
the exception condition. This means that exceptions can be modelled as
a special kind of jump operations, which can return from several levels of
procedure calls in one step, similar to the setjmp and longjmp operations
defined in the C programming language [24].

9.5 OBJECT-ORIENTED CONSTRUCTS

The concept of object-oriented programming, the buzzword of the past
decade, was introduced in the early 1960s. One of the first implemen-
tations, and the original inspiration behind C++ [23] was Simula [6], a
language designed for writing simulations.

Object-oriented programming ties data type definitions and opera-
tions syntactically together. Traditional programming languages based
on many-sorted algebras have typed (sorted) variables and operations
whose signatures indicate the argument types. Object-oriented program-
ming languages have a special kind of data types, called classes, which
have member variables and methods. A class definition can be seen as a
tuple data type definition, with the member variables as the components
of the tuple. Methods are algebraic operations whose definition is syn-
tactically bundled with the class definition. The instances of a class, or
the variables of a class sort, are called objects.

The first C++ implementation [53] translated the object-oriented con-
structs to C code, mapping classes (object types) to structured data
types, and rewriting identifiers to be compatible with the flat name space
of C. We suggest a similar approach, flattening the constructs, for trans-
lating object-oriented programs to Algebraic System Nets.

9.5.1 Inheritance and Polymorphism

Simple objects, class instances, can be represented as tuples of their mem-
ber variables. This is not the whole truth. Objects can inherit properties
from each other. A class derived from a base class inherits all the member
variables of the base class, and it may add new member variables. There
can be inheritance on multiple levels, and several classes can derive from
the same base class. Nevertheless, the inheritance structure can be rep-
resented as a tree or as a directed acyclic graph, if multiple inheritance,
deriving properties from more than one base class, is allowed.

Objects of derived classes, which can sometimes also be used as objects
of a base class, can be represented with a union of structured data types.
Consider a base class C whose members can be represented with the
carrier DA

s of a sort s. A derived class C ′ whose own members can be

72 CHAPTER 9. MODELLING COMPUTER PROGRAMS

represented with the carrier DA
s′ of another sort s′, can be represented as

the tuple TDAs ,DA
s′
.

It is possible for a derived class to override some of the methods
defined for the base class. When a particular method is applied to an
object, the corresponding method defined for the base class will only be
used if it has not been overridden in the class the object belongs to. A
method that performs different operations on different kinds of objects
is called polymorphic.

Polymorphism can be realised by allowing objects to belong either
to a base class or to one of its derived classes. Such objects can be
represented as a tuple of the carrier of the base class and a tagged union
over the carriers of the derived class members, and over a singleton type.
The singleton type applies for objects of the base class, which have no
derived members. The algebraic operations for the union type defined
in Sections 6.3.5 and 6.3.6 can be used to find out the classes whose
instance an object is, and to convert objects of derived classes to objects
of corresponding base classes.

CHAPTER 9. MODELLING COMPUTER PROGRAMS 73

10 CONCLUSION

There exist numerous reachability analysers for models of concurrent
and distributed systems, but most of them lack a powerful data type
system and algebraic operations that would facilitate a straightforward
transformation from a computer program to a formal analysis model.
Such tools are typically used for analysing manually constructed models.

The tedious and time-consuming task of constructing a formal verifi-
cation model of a system can be eased by developing more powerful tools.
We have implemented a freely distributable tool for analysing models em-
ploying a data type system that tolerates the comparison with the data
type systems used in some state-of-the-art reachability analysers.

While the formalism we deploy has not specifically been designed for
constructing models of computer software, the transformation principles
outlined in Chapter 9 should cover the intrinsic constructs of commonly
used procedural and object-oriented programming languages. Some of
the transformations have been presented in earlier work; some of them
appear to be new.

Our description formalism, Algebraic System Nets [32], has a solid
mathematical foundation, and there is active research on efficient analysis
methods for it. A substantial part of the research concentrates on a lower-
level formalism, Place/Transition Nets [47]. Analysis methods developed
for that level can be lifted to our class of nets, since all models constructed
in our formalism can be unfolded to the lower level.

The framework of our formalism is based on many-sorted algebras, de-
fined in Chapter 4. The interpretation rules of our many-sorted algebras
include short-circuit evaluation, a common feature in programming lan-
guages that is easily overlooked. Short-circuit evaluation is not merely an
optimisation; it also affects the semantics when a subexpression skipped
due to short-circuit evaluation could not be evaluated due to an error.

Implementing an expression evaluator is a rather irksome task, but
there is some place for important design choices, such as different opti-
misations, or the way errors are reported. Especially the latter greatly
affects the usability of the expression evaluator, both from the user and
from the programmer perspective.

The biggest user of an expression evaluator in a Petri Net reachability
analyser is the transition instance analysis algorithm described in Sec-
tion 7.1, which finds all actions that can be performed in a given system
state. If the instance analyser silently ignored erroneous actions, as at
least one implementation [57] does, serious errors could be overlooked, or
they could be hard to locate. Our instance analyser reports all erroneous
transition instances, even incomplete ones, and the user will always be
notified when something is wrong in the model.

In addition to the common data types and basic algebraic operations,
our analyser tool implementation [38] defines a total order and a compact
encoding for all data types, including structured and constrained types.

Compact encoding is essential for space efficient management of the
state spaces of complex systems. In our formalism, the nodes of a reach-

74 CHAPTER 10. CONCLUSION

ability graph are sequences of multi-sets over sorted values. We believe
the encoding method described in Section 7.3.1 to be an original inven-
tion. According to Table 8.1, it performs an order of magnitude better
than the method used in a comparable tool.

Currently the reachability analyser we have designed and implemented
lacks some essential features, such as on-the-fly model checking of prop-
erties specified in temporal logic with the presence of fairness constraints,
and various reduction methods that cause uninteresting intermediate
states to be omitted from the reachability graph. These areas are be-
ing investigated, and the implementation is being worked on.

This work discusses specialised front-ends, which translate a system
description given in an application-specific high-level language to a formal
model that can be analysed, but does not refer to an actual implemen-
tation. Our compiler [35] for SDL [25] is being extended with model
generation routines, so that specifications of telecommunications proto-
cols can be input to the reachability analyser. It will be an interesting
exercise to implement transformations for true object-oriented constructs
and exception handling, which should be included in the upcoming ver-
sion of SDL.

CHAPTER 10. CONCLUSION 75

76 CHAPTER 10. CONCLUSION

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers—
Principles, Techniques, and Tools. Addison–Wesley, Reading, MA,
USA, March 1986.

[2] Jonathan Billington. Many-sorted high level nets. In 3rd Workshop
on Petri Nets and Performance Models, pages 166–179, Washington,
DC, USA, 11–13 December 1989. IEEE CS Press, Los Alamitos, CA,
USA.

[3] Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and
Mechanical Theorem Proving. Academic Press, New York, NY, USA,
1973.

[4] Edmund M. Clarke Jr., Orna Grümberg, and Doron A. Peled. Model
Checking. MIT Press, Cambridge, MA, USA, 1999.

[5] Danny Cohen. On holy wars and a plea for peace. IEEE Computer,
14(10):48–54, October 1981.

[6] Ole-Johan Dahl and Kristen Nygaad. SIMULA—an Algol based
simulation language. Communications of the ACM, 9(9):671–678,
September 1966.

[7] Jeremy Dion and Louis Monier. Third Degree: heap usage and leak
profiler, and memory-access error checker for C and C++ programs.
Digital Equipment Corporation, Maynard, MA, USA, 1998.

[8] Anders Ek. Automatic debugging of communicating systems using
the SDT Validator. Technical paper, Telelogic AB, Malmö, Sweden,
September 1998.

[9] Frits Feldbrugge. List of Petri Net tools. Petri Net Newsletter,
22:20–32, October 1985.

[10] Jaco Geldenhuys and Pieter de Villiers. Runtime efficient state com-
paction in SPIN. In Dennis Dams and Mieke Massink, editors, The
5th International SPIN Workshop on Theoretical Aspects of Model
Checking, pages 3–12, Trento, Italy, July 5 1999.

[11] Hartmann J. Genrich. Predicate/Transition Nets. In Wilfried
Brauer, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Petri
Nets: Central Models and their Properties—Advances in Petri Nets
1986, Part I, Proceedings of an Advanced Course, volume 254 of
Lecture Notes in Computer Science, pages 207–247, Bad Honnef,
Germany, September 1986. Springer-Verlag, Berlin, Germany, 1987.

[12] Tristan Gingold. Checker, a memory access detector, 1996. Docu-
mentation for Version 0.8.

BIBLIOGRAPHY 77

[13] Patrice Godefroid and Gerard J. Holzmann. On the verification of
temporal properties. In 13th IFIP Symposium on Protocol Specifica-
tion, Testing and Verification, pages 109–124, Liège, Belgium, May
1993.

[14] Joseph A. Goguen. Abstract errors for abstract data types. In
Erich J. Neuhold, editor, Formal Description of Programming Con-
cepts, pages 491–525. North-Holland Publishing Company, Amster-
dam, The Netherlands, 1978.

[15] John B. Goodenough. Exception handling: Issues and a proposed
notation. Communications of the ACM, 18(12), December 1975.

[16] Bernd Grahlmann. The PEP tool. In Orna Grümberg, editor, Com-
puter Aided Verification, 9th International Conference, CAV ’97,
volume 1254 of Lecture Notes in Computer Science, pages 440–443,
Haifa, Israel, June 1997. Springer-Verlag, Berlin, Germany.

[17] Bernd Grahlmann. Parallel Programs as Petri Nets. Disserta-
tion, Universität Hildesheim, Fachbereich Mathematik, Informatik,
Naturwissenschaften, Hildesheim, Germany, September 1998.

[18] Jean-Charles Grégoire. State space compression in SPIN with
GETSs. In 2nd International SPIN Verification Workshop, New
Brunswick, NJ, USA, August 1996.

[19] Keijo Heljanko. Model checking the branching time temporal logic
CTL. Research Report A45, Helsinki University of Technology, De-
partment of Computer Science and Engineering, Digital Systems
Laboratory, Espoo, Finland, May 1997.

[20] Gerard J. Holzmann. Design and Validation of Computer Protocols.
Prentice Hall, Englewood Cliffs, NJ, USA, 1991.

[21] Nisse Husberg. Verifying SDL programs using Petri nets. In 1998
IEEE International Conference on Systems, Man, and Cybernetics,
volume 1, pages 208–213, San Diego, CA, USA, October 1998. In-
stitute of Electrical and Electronics Engineers, Inc.

[22] Information Processing Systems—OSI Reference Model—The Basic
Model. ISO/IEC 7498-1. International Organization for Standard-
ization, Geneva, Switzerland, 1994.

[23] Information Technology—Programming Languages—C++. ISO/
IEC 14882. International Organization for Standardization, Geneva,
Switzerland, 1998.

[24] Information Technology—Programming Languages—C. ISO/IEC
9899. International Organization for Standardization, Geneva, Swit-
zerland, 1999.

[25] CCITT Specification and Description Language (SDL). Recom-
mendation Z.100. International Telecommunication Union, Geneva,
Switzerland, October 1996.

78 BIBLIOGRAPHY

[26] Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Meth-
ods and Practical Use: Volume 2, Analysis Methods. Monographs
in Theoretical Computer Science. Springer-Verlag, Berlin, Germany,
1995.

[27] Tommi Junttila. Detecting and Exploiting Data Type Symmetries
of Algebraic System Nets during Reachability Analysis. Licentiate’s
thesis, Helsinki University of Technology, Department of Computer
Science and Engineering, Espoo, Finland, December 1999.

[28] Tero Jyrinki. Dynamic analysis of SDL programs with Predicate/
Transition Nets. Technical Report B17, Helsinki University of Tech-
nology, Department of Computer Science and Engineering, Digital
Systems Laboratory, Espoo, Finland, April 1997.

[29] Jukka Kemppainen. ARA Tools, Reference Manual. VTT Electron-
ics, Oulu, Finland, March 1994.

[30] Esa Kettunen, Esa Montonen, and Timo Tuuliniemi. An interac-
tive PrT-net tool for verification of SDL-specifications. Technical
Report B3, Helsinki University of Technology, Department of Com-
puter Science and Engineering, Digital Systems Laboratory, Espoo,
Finland, February 1988.

[31] Ekkart Kindler and Wolfgang Reisig. Algebraic System Nets for
modelling distributed algorithms. Petri Net Newsletter, 51:16–31,
December 1996.

[32] Ekkart Kindler and Hagen Völzer. Flexibility in algebraic nets. In
Jörg Desel and Manuel Silva, editors, Application and Theory of
Petri Nets 1998: 19th International Conference, ICATPN’98, vol-
ume 1420 of Lecture Notes in Computer Science, pages 345–364,
Lisbon, Portugal, June 1998. Springer-Verlag, Berlin, Germany.

[33] Raimo Kujansuu, Leo Ojala, and Heikki Tuominen. Verification and
validation of communication protocols. In Carl A. Sunshine, edi-
tor, Protocol Testing, Specification and Validation, pages 311–313,
Idyllwild, CA, USA, May 1982. North-Holland Publishing Company,
Amsterdam, The Netherlands.

[34] Marek Leszak and Horst Eggert. Petri-Netz-Methoden und -Werk-
zeuge, volume 197 of Informatik-Fachberichte. Springer-Verlag,
Berlin, Germany, October 1988.

[35] Marko Mäkelä. Implementing the front-end of an SDL compiler.
Master’s thesis, Helsinki University of Technology, Department of
Computer Science and Engineering, Espoo, Finland, December 1998.

[36] Marko Mäkelä. Applying compiler techniques to reachability anal-
ysis of high-level models. In Hans-Dieter Burkhard, Ludwik
Czaja, Andrzej Skowron, and Peter Starke, editors, Workshop on
Concurrency, Specification & Programming 2000, number 140 in

BIBLIOGRAPHY 79

Informatik-Bericht, pages 129–142. Humboldt-Universität zu Berlin,
Germany, October 2000.

[37] Marko Mäkelä. Condensed storage of multi-set sequences. In Kurt
Jensen, editor, Practical Use of High-Level Petri Nets, number 547
in DAIMI report PB, pages 111–125. University of Århus, Denmark,
June 2000.

[38] Marko Mäkelä. Maria—Modular Reachability Analyzer for Algebraic
System Nets. Helsinki University of Technology, Laboratory for The-
oretical Computer Science, Espoo, Finland, January 2000. On-line
documentation, 〈URL:http://www.tcs.hut.fi/maria/〉.

[39] Marko Mäkelä. Optimising enabling tests and unfoldings of algebraic
system nets. In Application and Theory of Petri Nets 2001: 21st
International Conference, ICATPN’01, Lecture Notes in Computer
Science, Newcastle upon Tyne, England, June 2001. Springer-Verlag,
Berlin, Germany. To appear.

[40] Markus Malmqvist. Methodology of dynamical analysis of SDL
programs using Predicate/Transition Nets. Technical Report B16,
Helsinki University of Technology, Department of Computer Science
and Engineering, Digital Systems Laboratory, Espoo, Finland, April
1997.

[41] Meta Software Corporation, Cambridge, MA, USA. Design/CPN
Reference Manual for X-Windows, Version 2.0, 1993.

[42] Robin Milner, Mads Tofte, and Robert Harper. The Definition of
Standard ML. MIT Press, Cambridge, MA, USA, 1990.

[43] Daniel P. Miranker. TREAT: A better match algorithm for AI pro-
duction systems. In Howard Forbus and Kenneth Shrobe, editors,
Proceedings of the 6th National Conference on Artificial Intelligence,
pages 42–47, Seattle, WA, USA, July 1987. Morgan Kaufmann, San
Mateo, CA, USA.

[44] Christos H. Papadimitriou. Computational Complexity. Addison–
Wesley, Reading, MA, USA, 1994.

[45] Bruce Perens. Electric Fence Malloc Debugger. Pixar Animation
Studios, 1993. Manual page for Version 2.0.5.

[46] Carl Adam Petri. Kommunikation mit Automaten. Disserta-
tion, Technische Universität Darmstadt, Fachbereich Mathematik,
Physik, Darmstadt, Germany, 1962.

[47] Wolfgang Reisig. Petrinetze—Eine Einführung. Springer-Verlag,
Berlin, Germany, 1986.

[48] Wolfgang Reisig. Petri nets and algebraic specifications. Theoretical
Computer Science, 80:1–34, March 1991.

80 BIBLIOGRAPHY

http://www.tcs.hut.fi/maria/

[49] Erkki Ruohtula, Esa Kettunen, and Heikki Tuominen. TNSDL Book.
Nokia Telecommunications, Inc., 3rd edition, November 1995.

[50] Michael J. Sanders. Efficient computation of enabled transition bind-
ings in high-level Petri nets. In 2000 IEEE International Conference
on Systems, Man and Cybernetics, pages 3153–3158, Nashville, TN,
USA, October 2000.

[51] Sriram Srinivasan. Advanced Perl Programming. O’Reilly & Asso-
ciates, Sebastopol, CA, USA, 1st edition, August 1997.

[52] Harald Störrle. An evaluation of high-end tools for Petri-nets.
Bericht 9802, Ludwig-Maximilians-Universität München, Institut
für Informatik, Munich, Germany, June 1998.

[53] Bjarne Stroustrup. Adding classes to the C language: An exercise
in language evolution. Software—Practice and Experience, pages
139–161, February 1983.

[54] Antti Valmari. State space generation: Efficiency and practicality.
Publications 55, Tampere University of Technology, Tampere, Fin-
land, 1988.

[55] Antti Valmari. The state explosion problem. In Wolfgang Reisig
and Grzegorz Rozenberg, editors, Lectures on Petri Nets I: Basic
models, volume 1491 of Lecture Notes in Computer Science, pages
429–528. Springer-Verlag, Berlin, Germany, 1998.

[56] Kimmo Varpaaniemi. On the stubborn set method in reduced state
space generation. Research Report A51, Helsinki University of Tech-
nology, Department of Computer Science and Engineering, Digital
Systems Laboratory, Espoo, Finland, May 1998.

[57] Kimmo Varpaaniemi, Jaakko Halme, Kari Hiekkanen, and Tino
Pyssysalo. PROD reference manual. Technical Report B13, Helsinki
University of Technology, Department of Computer Science and
Engineering, Digital Systems Laboratory, Espoo, Finland, August
1995.

[58] Larry Wall, Tom Christiansen, and Randal L. Schwartz. Program-
ming Perl. O’Reilly & Associates, Sebastopol, CA, USA, 2nd edition,
May 1997.

[59] Gary Watson. Debug Malloc Library, January 1998. Documentation
for Version 3.3.1.

[60] Colin H. West. Automated protocol validation. In Carl A. Sun-
shine, editor, Protocol Testing, Specification and Validation, pages
361–371, Idyllwild, CA, USA, May 1982. North-Holland Publishing
Company, Amsterdam, The Netherlands.

BIBLIOGRAPHY 81

82 BIBLIOGRAPHY

Index

abstractions, see models, ∼
algebraic definitions

A (algebra), 18
DA,DA

s (carriers), 18
ĎA, ĎA

s (DA ∪ {ε}), 18
ε (undefined symbol), 18
eAv (T) (evaluation of T), 19
F (function symbols), 17
FA (operations), 18

F ⊆ (T ×P)∪ (P ×T) (flow
relation), 21

G (short-circuit symbols), 17
i : P ∪ T ∪ F → TSµ (net

inscriptions), 21
M ∈MΣ (marking), 22
M0 ∈ MΣ (initial marking),

22
µ∈M(A) (multi-set over A),

20
N = 〈P , T ,F〉 (net), 21
P (places), 21
Σ=〈N ,A,V , i〉(algebraic sys-

tem net), 21
S (signature), 17
Sµ (multi-set signature), 20
S (sorts), 17
Sβ (basic sorts), 20
Sµ (multi-set sorts), 20
µ :Sβ→Sµ (sort mapping),

20
TS(V),TS

s (V) (terms), 18
T (transitions), 21
T ∼v T ′ (term compatibil-

ity), 45
t+v (output effect), 23
t−v̂ (input effect), 23
V ,Vs (variables), 18
VA(V) (assignments to V), 19

v∈VA(V) (an assignment),
19

x / T (unifiable variable), 45

x/T ′ T (unifier candidate), 45
algebraic operations, 18, 32–43

on basic sorts, 33–39
on multi-set sorts, 39–42
and, 35
bitand, 36
bitnot, 36
bitor, 36
bitxor, 36
cards, 42
comparison, 34, 42
components,k, 36, 38
conss, 36, 37
conss,k, 38
constantd, 33
converts,s′ , 38
defineds,k, 38
divide, 35
emptys, 40
enqueues, 37
enqueue-ats, 37
equal, 34
equalsets, 42
exts, 39
filterx,T , 40
frees, 37
greater, 34
greaterequal, 34
indexs, 36
ints, 39
less, 34
lessequal, 34
mapx,T , 41
minuss, 41
minus, 35
mmapx,y,U , 41
modulus, 35
mset, 40
muls, 42
negate, 35
not, 35

83

or, 35
peeks, 37
peek-ats, 37
plus, 35
pred, 34
pushs, 37
push-ats, 37
removes, 37
remove-ats, 37
selects′,sn , 42
shiftl, 36
shiftr, 36
short-circuit, 42–43
subsets, 42
succ, 34
sumx,T,U , 40, 53
times, 35
undefined, 33
unequal, 34
unions, 41
useds, 37

algebraic system nets, 21–24
actions, 23–24

performing, 24
analysing, see models, ∼
carriers, see data types
markings, 22–23
operations, see algebraic ∼

algebras, 17–20
multi-set, 20
terms, 17–18

evaluating, 19, 50–54
arc, 21

expressions, see inscriptions
effect, 23

assignments, 19

carriers, see data types
component

of a tuple, 28
of an array, 29

control flow, 71

data types, 25–31
<D (total order on D), 25
D (data type), 25
oD :D→{0, . . . , |D| − 1} (bi-

jective mapping), 18, 26
constraints, 30–31
simple, 26–28

B (boolean), 26
K (character), 27
EN (enumerated), 27
Jn (identifier), 27
I (integer), 27

structured, 28–30
ADx,De (array), 29
VDe,n (buffer), 29
TD1...Dn (tuple), 28
UD1...Dn (union), 30

expressions, see algebras, terms
arc, 21

effect, 23
evaluating, 19, 50–54
initialisation, 21

family (of sets), 17
formal methods, 13–16

garbage collection, see resources

input arc, 21
input effect, 23

inscriptions, 21

marking, 22
initial, 22

model checking, 16
modelling, 65–73

message queues, 67–68
object-orientation, 72–73
procedure calls, 70–72
resource allocation, 68–70

models
abstractions, 7–10

atomicity, 7
drawbacks, 9–10
nondeterminism, 8

analysing, 15–16, 44–58
enabled actions, 44–50
managing states, 54–58
unfolding, 50

constructing, 14–15, 59–73
automatically, 65–73
manually, 59–63

multi-set, 20
algebras, 20
signature, 20

multiplicity, 20

84 INDEX

operation symbols, 17
operations, see algebraic ∼

on basic sorts, 33–39
on multi-set sorts, 39–42
on multi-sets, 20

output arc, 21
output effect, 23

places, 21
capacity constraints, 55
implicit, 57, 60
invariants, 60

pointers, 26, 27, 32, 70
programs, 6–7

analysing, 11–16
exception handling, 71
instrumenting, 12
object-oriented, 72–73
procedures, 70–72
statements, 6, 32

control flow, 71
encapsulating, 70
executing, 71
unreachable, 11

testing, 13

reachability
analysis, see state space, gen-

erating
graph, see state space, stor-

ing
resources

detecting leakages, 12–13
modelling, 68–70

signature, 17
multi-set, 20

simulation, 16
sort, 17

basic and multi-set, 20
specialised front-end, 14–15
state space, 22–23

and data, 14
explosion, 16
generating, 24
locality, 26
reducing, 7

capacity constraints, 55
implicit places, 57, 60

storing, 54–58

transitions, 57
statements, see programs, ∼
symbols, 17
syntactic sugar, 32

terms, see algebras, ∼
testing, 13
total order, 25
transitions, 21

and statements, 32
firing rule, 24
guards, 21
instances, 23–24

analysis, 44–50
enabled, 23
finding enabled, see analy-

sis
undefined, 33

locality, 26
modes, see instances
nondeterministic, 8
reducing the number of, 7
valuations, see instances

valuations, see transitions, ∼
variables, 18

assignments, 19
output, 23
undefined, 19

INDEX 85

HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY FOR THEORETICAL COMPUTER SCIENCE
RESEARCH REPORTS

HUT-TCS-A56 Keijo Heljanko

Deadlock and Reachability Checking with Finite Complete Prefixes. December 1999.

HUT-TCS-A57 Tommi Junttila
Detecting and Exploiting Data Type Symmetries of Algebraic System Nets during
Reachability Analysis. December 1999.

HUT-TCS-A58 Patrik Simons

Extending and Implementing the Stable Model Semantics. April 2000.

HUT-TCS-A59 Tommi Junttila
Computational Complexity of the Place/Transition-Net Symmetry Reduction Method.
April 2000.

HUT-TCS-A60 Javier Esparza, Keijo Heljanko

A New Unfolding Approach to LTL Model Checking. April 2000.

HUT-TCS-A61 Tuomas Aura, Carl Ellison

Privacy and accountability in certificate systems. April 2000.

HUT-TCS-A62 Kari J. Nurmela, Patric R. J. Östergård

Covering a Square with up to 30 Equal Circles. June 2000.

HUT-TCS-A63 Nisse Husberg, Tomi Janhunen, Ilkka Niemelä (Eds.)

Leksa Notes in Computer Science. October 2000.

HUT-TCS-A64 Tuomas Aura

Authorization and availability - aspects of open network security. November 2000.

HUT-TCS-A65 Harri Haanpää

Computational Methods for Ramsey Numbers. November 2000.

HUT-TCS-A66 Heikki Tauriainen
Automated Testing of Büchi Automata Translators for Linear Temporal Logic.
December 2000.

HUT-TCS-A67 Timo Latvala
Model Checking Linear Temporal Logic Properties of Petri Nets with Fairness Constraints.
January 2001.

HUT-TCS-A68 Javier Esparza, Keijo Heljanko

Implementing LTL Model Checking with Net Unfoldings. March 2001.

HUT-TCS-A69 Marko Mäkelä

A Reachability Analyser for Algebraic System Nets. June 2001.

ISBN 951-22-5541-3

ISSN 1457-7615

	Introduction
	Reachability Analysers in the Past and Present
	Related Work
	Outline

	Verification of Concurrent Programs
	Classifying Programs
	Sequential Behaviour
	Concurrent Behaviour

	Making Abstractions
	Atomising Sequences of Actions
	Introducing Nondeterminism

	Computer Tools for Analysis
	Incomplete Methods
	Static Analysis
	Instrumenting Program Code
	Regression Testing

	Formal Methods
	Constructing the Model
	Analysing the Model

	Algebraic System Nets
	Signatures and Algebras
	Signatures, Variables and Terms
	Algebras, Assignments and Evaluations
	Multi-Set Signatures and Algebras

	Algebraic System Nets

	Data Types
	Design Criteria
	Tight Representation
	Expressive Power

	Simple Types
	Boolean
	Character
	Integer
	Enumerated Types
	Identifier Type

	Structured Types
	Tuple
	Associative Array
	Variable-Length Buffer
	Tagged Union

	Constraints
	Computing the Union
	Computing the Intersection

	Algebraic Operations
	Design Criteria
	Variables
	Operations on Basic Sorts
	Constants
	Total Order
	Logical Operations
	Integer Arithmetics
	Structure Operations
	Type Conversions

	Operations on Multi-Set Sorts
	Multi-Set Constructor
	Empty Multi-Set
	Multi-Set Sum and Filter
	Multi-Set Transformations
	Union and Intersection
	Scalar Multiplication
	Comparison
	Minimum and Maximum Multiplicity and Cardinality

	Short-Circuit Operations

	Implementing the Analyser
	Transition Instance Analysis
	Splitting the Arcs
	The Unification Algorithm
	Unfolding to Place/Transition Nets

	The Expression Evaluator
	Error Handling
	Optimisations
	Interpreting vs. Compiling

	Managing the Reachability Graph
	Encoding Markings
	Encoding Transition Instances

	Constructing and Analysing Models
	Point-to-Multipoint Communications
	Existential Quantification
	The Performance of Exhaustive Analysis
	The Size of the Encoded State Space

	Modelling Computer Programs
	Data Types
	Expressive Power
	Representation

	Message Queues
	Previous Approaches
	Algebraic Support for Queues

	Dynamic Resource Allocation
	Process Creation
	Memory Allocation

	Procedure Calls
	Scoping
	Recursive Procedures
	Exception Handling

	Object-Oriented Constructs
	Inheritance and Polymorphism

	Conclusion
	Bibliography
	Index

