
Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 67

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 67

Espoo 2001 HUT-TCS-A67

MODEL CHECKING LINEAR TEMPORAL LOGIC PROPERTIES

OF PETRI NETS WITH FAIRNESS CONSTRAINTS

Timo Latvala

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI

Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 67

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 67

Espoo 2001 HUT-TCS-A67

MODEL CHECKING LINEAR TEMPORAL LOGIC PROPERTIES

OF PETRI NETS WITH FAIRNESS CONSTRAINTS

Timo Latvala

Helsinki University of Technology

Department of Computer Science and Engineering

Laboratory for Theoretical Computer Science

Teknillinen korkeakoulu

Tietotekniikan osasto

Tietojenkäsittelyteorian laboratorio

Distribution:

Helsinki University of Technology

Laboratory for Theoretical Computer Science

P.O.Box 5400

FIN-02015 HUT

Tel. +358-0-451 1

Fax. +358-0-451 3369

E-mail: lab@tcs.hut.fi

©c Timo Latvala

ISBN 951-22-5341-0

ISSN 1457-7615

PicaSet Oy

Helsinki 2001

ABSTRACT: Verification of liveness properties of systems requires in many
cases fairness constraints to be imposed on the system. In the context of
modeling and analysis with Petri nets, fairness constraints have been defined
but the results have not been extended to model checking.

In this work Coloured Petri nets are extended with fairness constraints on
the transitions. The semantics of the fairness constraints are defined with a
fair Kripke structure. Model checking linear temporal logic (LTL) proper-
ties of the Petri net is facilitated by introducing a new LTL model checking
procedure. The procedure employs Streett automata to cope with the fair-
ness constraints efficiently. Also, new algorithms for the emptiness checking
problem of Streett automata and counterexample generation are presented.

The new procedure has been implemented in the MARIA analyzer. Some
experiments are performed to test the implementation and compare it with
other ways of coping with fairness constraints. The results show that the pro-
cedure scales well when compared to alternative approaches.

KEYWORDS: Computer aided verification, Petri nets, model checking, fair-
ness, Streett automata, counterexamples

Contents

1 Introduction 1

2 Petri Nets 3
2.1 Preliminaries . 3
2.2 Petri Net Definitions . 4
2.3 Petri Nets and Fairness . 7

3 Automata on Infinite Words 14

4 Model Checking LTL 16
4.1 Linear Temporal Logic . 16
4.2 Automata Theoretic Model Checking 17
4.3 Emptiness Checking of Streett Automata 23

Data Structures . 24
Emptiness Checking Algorithm 26

4.4 Counterexample Generation 28

5 Implementation 33
5.1 The MARIA analyzer . 33
5.2 Implementation . 33
5.3 Experimental Results . 34

6 Conclusions 37

Bibliography 38

Appendices

A Test Net 1 - Maria Description i

B Test Net 2 - Maria Description ii

C LTL Formulae iii
C.1 Mutex model . iii
C.2 Second Test Model . iii

1 INTRODUCTION

The field of computer aided verification is currently evolving rapidly. The
complexity and the distributed nature of many modern systems which pro-
vide critical services have motivated this research, because parallel and dis-
tributed systems can contain subtle errors which can be very hard to find.
Although the state space explosion problem (see e.g. [34]) severely restricts
the applicability of computer aided verification there are currently several
viable methods which have been successfully applied to large systems (see
e.g. [3]). Most of the methods are based on model checking.

Model checking [4, 24] refers to a collection of techniques which all have
in common that a system is verified by checking that a representation of the
state space of the system is a model of a logical formula. This exhaustive
enumeration (explicit or implicit) of the reachable states of the system covers
all behaviors, in contrast to traditional validation techniques such as testing.
However, the perhaps two most important features of model checking com-
pared to other approaches of formal verification are that it is to a large extent
an automated procedure and it is able to produce an error trace if the system
does not conform to the given specification. In this work we will consider
model checking within the automata theoretic framework [35, 36] using an
explicit representation of the state space.

Model checking requires a formal model of the system from which the
state space of the system can be computed. One commonly used class of
formalisms are high-level Petri nets. As the greatest advantage of Petri nets is
often mentioned that they combine a graphical notation with a well-defined
semantics allowing formal analysis [13]. Hence, modeling the behavior of
different types of systems is in many cases convenient using high-level Petri
nets. Static properties can be checked directly from the model, while most
dynamic properties such as safety and liveness properties require that the be-
havior of the net is analyzed. Although both safety properties and liveness
properties of the system can be verified using model checking algorithms
which analyze the reachable state space of the net, the proving of liveness
properties is a bit more involved than the proving of safety properties. Mostly
this is due to that safety properties do not require any additional assumptions
to be made about the behavior of the Petri net model. The same does not,
however, always apply to liveness properties. In many cases certain unwanted
behaviors must be ignored in order to facilitate the model checking of live-
ness properties.

One common technique uses fairness assumptions [9] to restrict the be-
havior of the model, so that certain liveness properties will hold. Without
these assumptions it is difficult to build a model which has the desired prop-
erties. However, no model checking procedure can currently perform the
model checking directly on a Petri net model with fairness assumptions. Cur-
rently the only way is to model check properties of the form “fairness ⇒
property” and potentially modify the model so that the fairness assumptions
can be expressed. The question is how practical this is from a modeling per-
spective, and is it computationally efficient. These issues will be covered in
detail in Section 2.

Motivated by the facts given above, the main contributions of this work

1 INTRODUCTION 1

are the following. We present how the LTL model checking problem for
high-level Petri nets, with fairness constraints imposed on transitions, can
be solved by employing Streett automata in a straightforward manner. We
give an on-the-fly LTL model checking procedure which uses the emptiness
checking for generalized Büchi automata to potentially avoid some of the
more costly Streett automata emptiness checks. Also, simple and memory
efficient algorithms for Streett automata emptiness checking and counterex-
ample generation are developed. The algorithms have been implemented
and tested in the MARIA tool [22]. Most of these results were first presented
in the papers [19, 20].

The rest of this work is structured as follows. In Section 2 we introduce
Petri nets, define Coloured Petri nets and discuss some of the modeling is-
sues. Section 3 covers the necessary automata theory. Linear time temporal
logic (LTL) and the automata theoretic approach to model checking LTL are
described in Section 4. In Section 4 an extension of the normal model check-
ing procedure, which respects the fairness constraints is also introduced. In
Section 5 implementation issues are discussed and also the results of some
experiments are presented. Conclusions and directions for further work are
discussed in Section 6.

2 1 INTRODUCTION

2 PETRI NETS

Petri nets (see for e.g. [26]) are a widely used modeling formalism for con-
current and distributed systems. A Petri net has an explicit representation of
both states and actions, which makes Petri nets a versatile modeling formal-
ism appropriate for many different tasks. There are several kinds of Petri nets
ranging from simple Place/Transition nets to different high-level nets. Here
the basic notions of Petri nets are introduced and the well-known Coloured
Petri nets (CPN) [13] are defined.

2.1 Preliminaries

Multi-sets are very similar to ordinary sets, but true to their name, the cardi-
nality of an element in a multi-set can be any natural number.

Definition 1 A multi-set m, over a non-empty set S, is a function m : S 7→
N, where m(s), s ∈ S, is the number of appearances of s in the multi-set m.
An element s ∈ S is said to belong to the multi-set m iff m(s) 6= 0. The
formal sum

∑

s∈S m(s)〈s〉 is used to represent a multi-set m. By MS(S) we
denote the set of all multi-sets over S.

A simple multi-set m1 over the set {a, b, c} with four elements a, a, b, c is
denoted like this: m1 = 2〈a〉+ 〈b〉 + 〈c〉.

One can define several operations over multi-sets. For this we first define
the monus operator.

Definition 2 Let z1, z2 ∈ N. The monus of z1 and z2, denoted z1
.− z2 is

defined in the following way.

z1
.− z2 =

{

z1 − z2, if z1 ≥ z2
0, otherwise

The normal arithmetic operations + and − can also be extended to multi-
sets.

Definition 3 Addition, comparison, subtraction for multi-sets and the size
of a multi-set are defined in the following way. Let m1, m2 and m be multi-
sets over S.

1. m1 +m2 =
∑

s∈S(m1(s) +m2(s))〈s〉.

2. m1 6= m2 iff ∃s ∈ S : m1(s) 6= m2(s)
m1 ≤ m2 iff ∀s ∈ S : m1(s) ≤ m2(s).

3. |m| =
∑

s∈S m(s)

4. m2 −m1 =
∑

s∈S(m2(s)
.−m1(s))〈s〉.

For instance, if we define m2 = 〈a〉 + 〈b〉 + 0〈c〉 we have that m1 + m2 =
3〈a〉 + 2〈b〉 + 〈c〉. Both associativity and commutativity hold for multi-sets
with the operation “+”.

For the definition of a Coloured Petri Net a semantics and a syntax for ex-
pressions is needed. A concrete syntax for the expressions will not be defined
in this work. We will, however, assume that such a syntax exists and has a
well defined semantics so that the following notations are defined:

2 PETRI NETS 3

• T - The elements of a type T .

• Type(v) - The type of the variable v.

• expr - A legal expression.

• Type(expr) - The type of an expression expr .

• EXPR - The set of all legal expressions.

• Var(expr) - The set of variables in an expression expr.

• A binding b which associates each variable v ∈ V with a corresponding
value b(v) ∈ Type(v).

• Var(b) - The set of variables of a binding b.

• expr〈b〉 - The value obtained by evaluating an expression expr with a
binding b. We require that V ar(expr) ⊆ V ar(b). The evaluation is
performed by substituting each variable by the value given by b.

2.2 Petri Net Definitions

We are now going to define a Coloured Petri Net (CPN). The definition
follows quite faithfully the definition of Coloured Petri Nets in [13]. CPNs
were chosen because they are relatively simple to define while still being
high-level Petri nets. Also, the fact that they are well-known contributed to
their choice. The results to be presented later can easily be generalized to
other high-level Petri net classes.

Definition 4 A tuple Σ = 〈Π, P, T, A,N, C,E,G,M0〉 is a Coloured Petri
Net (CPN) [13] where,

i.) Π is a finite set of non-empty types called colour sets.

ii.) P is a finite set of places.

iii.) T is a finite set of transitions, such that P ∩ T = ∅.

iv.) A is a finite set of arcs, such that P ∩ A = T ∩ A = ∅.

v.) N : A 7→ (P × T) ∪ (T × P) is a node function. A node is either a
place or a transition of the net.

vi.) C : P 7→ Π is a colour function.

vii.) E : A 7→ EXPR is an arc expression function such that ∀a ∈ A :
E (a)〈b〉 ∈ MS(C(p(a))) holds for all legal bindings b, where p(a) is
the place component of N(a).

viii.) G : T 7→ EXPR is a guard function such that G(t)〈b〉 ∈ {true, false}
for any legal binding b and t ∈ T (see Definition 6 below).

4 2 PETRI NETS

ix.) M0 is an initialization function (initial marking), which maps each
place to a closed expression, i.e an expression without variables which
can be evaluated immediately, of type MS(C(p)), i.e. a multi-set over
C(p).

The set of colour sets (i) determines the types and the expressions which can
be used in the arc expressions, guard functions and initialization functions.
The static structure of the net is described by the set of places, transitions,
arcs and the node function (ii, iii, iv, and v). The node function maps each
arc into a pair, where the first element is the source node and the second
element is the destination node. Each place has a colour set attached to it
by the colour function (vi), which determines its type. The arc expression
function (vii) describes the tokens which move between the nodes of the
net and must yield a multi-set which is of the same type as the place the
expression is connected to. With the the guard expression (viii) it is possible
to restrict the arc expression function further with a boolean expression. The
initialization function (ix) maps each place to a closed expression which must
be a multi-set over C(p) (see also the definition of a marking below).

With the static structure of the net defined, the emphasis can now move
to the behavior of the net. The following notation must, however, first be
defined.

• A(x) = {a ∈ A | ∃x′ ∈ P ∪ T : [N(a) = (x, x′) ∨N(a) = (x′, x)]}

• ∀t ∈ T : V ar(t) = {v | v ∈ V ar(G(t)) ∨ ∃a ∈ A(t) : v ∈
V ar(E(a))}.

• ∀(x1, x2) ∈ (P × T ∪ T × P) : E(x1, x2) =
∑

a∈A | N(a)=(x1 ,x2)
E(a).

A(x) returns the set of surrounding arcs, i.e. the arcs that have x as a source
or a destination, for a given node x. V ar(t) is the set of variables of t, while
E(x1, x2) is the expressions of (x1, x2) and returns the multi-set sum of all
expression connected to the arcs which have x1 and x2 as nodes.

Each place in the net can be occupied by tokens. A distribution of tokens
on the places of the net is called a marking. A marking of the net describes
the current global state of the system being modeled.

Definition 5 A token element is a pair (p, c) ∈ P × C(p). The set of all
token elements is denoted by T E . A marking is a multi-set over T E .

Because each marking defines a unique function M ′(p), which maps each
place to a multi-set over the colour set of the place, a marking is usually
presented as a function on P .

Transitions are responsible for changing the marking in a CPN. The pos-
sible instances of a high-level transition are determined by the legal bindings
of the transition. For a legal binding all variables must be bound with a value
of the correct type and the guard of the transition must be true.

Definition 6 A binding of a transition t ∈ T is a binding function on V ar(t)
such that ∀v ∈ V ar(t) : b(v) ∈ Type(v) and G(t)〈b〉 = true. We denote
the binding t〈b〉 and call t〈b〉 an instance of t.

2 PETRI NETS 5

1<true>

color B= bool
var x: P;

pendingrequestquiet

<x> <x>

critical

release

key

<x>

<x>

<x>

<x>

goCrit

P P

P

B

color P = int with 1..N declare ms;P

<true>
<true>

Figure 1: A simple mutex algorithm for N processes.

A legal binding of transition cannot always occur. We require the notion of
enabledness, i.e. when a transition instance can occur and define the results
of an occurrence.

Definition 7 A transition instance t〈b〉 is enabled in a marking M iff

∀p ∈ P : E(p, t)〈b〉 ≤M(p).

The function en(M) returns the transition instances which are enabled in
the marking M . If a transition instance t〈b〉 ∈ en(M) it can occur changing
M into another marking M ′ which is given by

∀p ∈ P : M ′(p) = M(p)− E(p, t)〈b〉+ E(t, p)〈b〉

Hence M ′ is reachable from M , which we denote by M
t〈b〉
→ M ′.

The behavior of a CPN can be described by a Kripke structure.

Definition 8 A triple K = 〈S, ρ, s0〉, where S is a set of markings, ρ is a
transition relation, and s0 an initial state, is the Kripke structure of a CPN
Σ = 〈Π, P, T, A,N, C,E,G,M0〉 where S and ρ are defined inductively as
follows:

1. s0 = M0 ∈ S

2. If M ∈ S and M
t〈b〉
→ M ′, then M ′ ∈ S and 〈M,M ′〉 ∈ ρ.

3. S and ρ have no other elements.

The executions of the net are infinite sequences of states M0M1M2 . . . ∈ S
ω,

where M0 is the initial state and (Mi,Mi+1) ∈ ρ for all i ≥ 0.

A well-known class of distributed algorithms are the mutual exclusion algo-
rithms. The basic problem they solve is how a critical resource should be
shared between N processes in such a way that only one process can enter
the critical section at a time. There are several solutions for this problem,
and one of the simplest is known as the contentious mutex algorithm (see
e.g. [28]). The algorithm has been modeled as an CPN for the case of N

6 2 PETRI NETS

Q=quiet P=pending C=critical

key: true

Q: <1>

P: <2>

Q: <2>

P: <1>
key: true

1 2

4 P: <1> + <2>
key: true

5 Q: <1>
C: <2>

3

6 P: <2>
C: <1>

Q: <2>
C: <1>

7 P: <1>
C: <2>

0 Q: <1> + <2>
key: true

Figure 2: The Kripke structure of the net in Figure 1 for N = 2.

processes in Figure 1 (see Appendix A for the MARIA net description). In the
figure, the letter written in bold italic beside the places describe the colour
set of the place. Underline is used for denoting the initial marking. If a color
declaration has “declare ms” in its definition, the type name can be used to
initialize a place with a multi-set containing each element of the multi-set
once. This has been used in the place “quiet”. The model behaves in the
following way. Any process may spontaneously request access to the critical
section. Access is granted by giving the process the key to the critical section.
As there is only one key, mutual exclusion is assured. The process returns
the key when it exits the critical section. In Figure 2 the Kripke structure for
N = 2 has been generated. Using a model checker for Petri nets, it could
easily be verified that the mutual exclusion property truly holds.

2.3 Petri Nets and Fairness

Applying a model checker to the Kripke structure in Figure 2 and checking
that for all processes that if they try to get access to the critical section they
eventually will, the model checker will report that the property does not hold.
A sequence where always one process gains access to the critical section and
thus denying the others access is possible. If the counterexamples are stud-
ied, one will notice that they all represent executions where one or several
transitions are never fired, even though they are infinitely often enabled. This
sort of unfair behavior, although theoretically possible, is not what one would
expect from a physical system. Usually they contain a scheduler which dis-
allows unfair behavior or it is considered impossible for some other reason.
Clearly, some kind of mechanism is required for disqualifying these unfair
executions and not accepting them as legal counterexamples.

Using fairness assumptions for the transitions is the perhaps the most con-
venient way one can restrict the set of legal executions to the desired ones.
The most common fairness assumptions are known as weak fairness and
strong fairness. In [9] they are defined using the familiar concepts of en-
abledness and occurrence of the relevant events. An event is weakly fair

2 PETRI NETS 7

1<true>1<true> 1<true> 1<true> 1<true> 1<true>

t1 t2 t3 t4SF

p1 p2 p3

p4 p5 p6

color B=bool;
var x: B;

B

<x>

<x>

<x>
<x> <x> <x> <x> <x>

<x>

<x>

<x>
<x>

<x>

<x>
<x>

<x>

t1 t2 t3 t4SF

p1 p2 p3

p4 p5

B

B B

BB B

B B B B

<x> <x> <x><x>
<x>

<x>
<x>

<x><x>

<x> <x><x>

Figure 3: An LTL formula cannot capture fairness in the left net.

when continuous enabledness implies that the event occurs infinitely often.
Weak fairness is usually appropriate for systems with busy waiting to ensure
progress. In a weakly fair scheduler, once a process has been scheduled for
execution, it will eventually be executed. For some situations, however, weak
fairness is not enough. A situation where a process infinitely often requests
access to a critical section, but never gains it, is weakly fair since the process
is not continuously enabled. In this situation strong fairness is appropriate.
Strong fairness assumes that if an event is infinitely often enabled then it will
occur infinitely often. An important thing to notice is that both weak fairness
and strong fairness are expressible in LTL (see Section 4 for details).

In [8] Emerson and Lei presented how to cope with strong fairness con-
straints when model checking CTL properties of a Kripke structure. A similar
method was used to design a BDD based algorithm when the property was
given as an automaton in [11] while in [14] a procedure for model checking
LTL properties of BDDs with strong fairness constraints was presented. How-
ever, no procedure existed prior to this work which directly could perform
LTL model checking of a Petri net model with fairness constraints. The tradi-
tional way of incorporating fairness when model checking Petri nets, exploits
the fact that fairness is expressible by LTL. First, one usually has to add places
and transitions to the model so that the occurrence of transitions is explicitly
visible in the model. These modifications in a sense model a scheduler and
have to be done because LTL can only express properties of markings and
thus cannot express properties of the transitions unless they are explicitly vis-
ible in the Kripke structure. The model is then verified by checking the
formula ′′fairness ⇒ property ′′. This approach has several drawbacks. The
two most obvious ones are that adding places and transitions increases the
size of the state space, and the size of the Büchi automaton representing the
property can grow exponentially in the number of fairness constraints (see
e.g. [10]). A more subtle drawback is that adding the scheduler reduces the
concurrency in the model, which may affect the performance of some partial
order methods (see e.g. [34]).

Consider the net on the left side of Figure 3. It is an example of a net

8 2 PETRI NETS

which must be modified so that the transition t3 can be given strong fairness
constraints with an LTL formula. The reason for this is that it is impossible to
distinguish if t2 or t3 has occurred just by observing the markings. By adding
an additional place p6 to the net as shown on the right net in Figure 3, the
occurrence of t3 can be detected by checking if the place p6 is marked. With
this modification it is now possible to express a strong fairness constraint in
LTL for t3

Modifying the net is not the only way to give transitions fairness con-
straints. The solution suggested in this work is to extend Petri nets with fair-
ness constraints on the transitions. For this to be useful we must also change
the semantics of a legal execution and modify the LTL model checking pro-
cedure accordingly. We begin by extending the definition of a CPN.

Definition 9 A fair CPN (FCPN) is tuple ΣF = 〈Σ,WF, SF 〉 where Σ is a
CPN and WF = {wf1, . . . wfk} a set of weak fairness functions, where wfi :
T 7→ EXPR is a function from the set of transitions to expressions such that
V ar(wfi(t)) ⊆ V ar(t) for all t ∈ T and wfi(t)〈b〉 ∈ {true, false} for any
legal binding b of the expression. SF = {sf1, . . . , sfm} is the corresponding
set of strong fairness functions with similar restrictions. An execution is an

infinite sequence of transitions and markings ξ = M0
t0〈b0〉
→ M1

t1〈b1〉
→ . . . ,

for which Mi

ti〈b〉
→ Mi+1 for some ti〈b〉 and ξ obeys the fairness constraints

defined below.

The expression of a fairness function is true for all instances, which should
be treated as equivalent; if one the instances is fair, the fairness requirement
has been satisfied.

We need to define some notation before the semantics of the fairness con-
straints can be defined.

Let ξ = M0
t0〈b0〉
→ M1

t1〈b1〉
→ . . . be an execution and F a fairness function.

We define ENF,i(ξ) = true if ∃t〈b〉 ∈ en(Mi) : F (t)〈b〉 = true; otherwise
ENF,i(ξ) = false. Also let OCF,i(ξ) = true if F (ti)〈bi〉 = true ; otherwise
OCF,i(ξ) = false. Denote the quantifier “there exist infinitely many” by ∃ω

and let InfENF (ξ) and InfOCF (ξ) be defined in the following way:

InfENF (ξ) =

{

true, if ∃ωi : ENF,i(ξ) = true

false, otherwise.

InfOCF (ξ) =

{

true, if ∃ωi : OCF,i(ξ) = true

false, otherwise.

The strong and weak fairness constraints for transitions can now be defined
conveniently using the previously defined notation. An execution ξ of a
FCPN is legal when it respects the strong fairness constraint, i.e. if a set of
transitions instances, defined by a fairness function F , are infinitely often
enabled implies that they occur infinitely often [13].

∀F ∈ SF : InfENF (ξ) ⇒ InfOCF (ξ).

2 PETRI NETS 9

A legal execution ξ must also obey the weak fairness constraints. The defini-
tion for weak fairness is that persistent enabling implies an occurrence [13].

∀F ∈ WF : ∀i ∈ N : ENF,i(ξ) ⇒ ∃k ≥ i : [¬ENF,k(ξ) ∨ OCF,k(ξ)]

The semantics of our fairness constraints are equivalent to those presented
by Jensen in [13], but the notation is a little different. However, for analysis
purposes these execution based semantics do not suffice. Something similar
to a Kripke structure is needed. In the following discussion we only consider
finite state and finitely branching systems.

The behavior of a fair CPN cannot be described accurately by a Kripke
structure because the fairness constraints are not taken into account in any
way. Some mechanism is needed so that unfair executions can be rejected,
and only those which conform to the fairness constraints are accepted. One
way of doing this by extending the definition of a Kripke structure to fair
Kripke structure.

Definition 10 A tuple KF = 〈S, ρ, s0,W,S〉 is a fair Kripke structure (FKS)
[14], where S is a set of states, ρ ⊆ S × S is a transition relation and s0 ∈
S is the initial state. An execution is an infinite sequence of states σ =
s0s1s2 . . . ∈ Sω, where s0 is the initial state, and for all i ≥ 0, (si, si+1) ∈ ρ.
Computations, i.e. fair executions of the system, are sequences that obey the
fairness requirements (to be defined below). The fairness requirements are
defined by a set of weak fairness requirements1 W = {J1, J2, . . . , Jk}, and
a set of strong fairness requirements, S = {〈L1, U1〉, . . . , 〈Lm, Um〉} where
Ji, Li, Ui ⊆ S.

We define for notational convenience the set

Inf(σ) = {s ∈ S | ∃ωi : σ(i) = s}.

Inf(σ) is the set of states occurring infinitely often in the execution σ. An ex-
ecution σ is a computation if both the weak and strong fairness requirements

are satisfied.
∧k

i=1 Inf(σ)∩Ji 6= ∅ is demanded by the weak fairness require-
ment. The strong fairness requirement demands that

∧m

i=1(Inf(σ) ∩ Li =
∅ ∨ Inf(σ) ∩ Ui 6= ∅).

Using the acceptance conditions, it is possible to only accept the compu-
tations which adhere to the fairness constraints on the transitions. However,
generating a FKS from a FCPN is not completely straightforward. For the
same reason that a normal CPN must sometimes be modified in order for the
LTL formulas to be able to express the fairness assumptions, a FKS cannot
simply be a normal Kripke structure where we have added some fairness sets.
The occurrence of transition instances must be made explicit in the FKS.
Here, this is done by adding an intermediate state for each occurrence of a
transition instance in the FKS2. For instance, if in the normal Kripke struc-
ture the marking Mj is followed by Mj+1 when taking the transition instance

1In order to have consistent terminology weak and strong fairness are used instead of
justice and compassion as in [14].

2In an actual model checker implementation some of the intermediate states would not
have to be added. See Section 5 for details.

10 2 PETRI NETS

t〈b〉, in the FKS this sequence will have an intermediate state. If the inter-
mediate state is denoted by Mi the sequence will be MjMiMj+1. With the
intermediate states added it is now possible to use the justice and compassion
sets to ensure that only executions which obey the fairness constraints on the
transitions are considered legal.

The states of the FKS are defined as pairs 〈M, t〈b〉〉 so that the interme-
diate states can be distinguished from “normal” states. The special symbol
⊥ replaces the transition instance if the state is not an intermediate state.
Hence, to obtain a FKS KF = 〈S, ρ, s0,W,S〉 from a fair CPN system
ΣF = 〈Σ,WF , SF 〉, we define S and ρ inductively as follows:

1. s0 = 〈M0,⊥〉 ∈ S.

2. If 〈M,⊥〉 ∈ S and M
t〈b〉
→ M ′ then, 〈M ′, t〈b〉〉 ∈ S, 〈M ′,⊥〉 ∈ S and

(〈M,⊥〉, 〈M ′, t〈b〉〉) ∈ ρ, (〈M ′, t〈b〉〉, 〈M ′,⊥〉) ∈ ρ.

3. S and ρ have no other elements.

The weak fairness sets and the strong fairness sets are defined as:

1. For each wf i ∈ WF the weak fairness set is

• Ji = {〈M,⊥〉 ∈ S | ∀t〈b〉 ∈ en(M) : wf i(t)〈b〉 = false} ∪
{〈M ′, t〈b〉〉 ∈ S | wf i(t)〈b〉 = true}.

2. For each sf i ∈ SF the strong fairness sets are

• Li = {〈M,⊥〉 ∈ S | ∃t〈b〉 : t〈b〉 ∈ en(M) ∧ sf i(t)〈b〉 = true}
and

• Ui = {〈M ′, t〈b〉〉 ∈ S | sf i(t)〈b〉 = true}.

We are now ready prove that the construction of the FKS is correct, in the
sense that the semantics of the fairness constraints are as we wanted.

Theorem 11 Given a FCPN ΣF , ΣF has a fair execution ξ = M0
t0〈b0〉
→

M1
t1〈b1〉
→ . . . , if and only if the the FKS of the FCPN has a computation ξ ′.

(Under the assumption that ΣF is finite state and finitely branching.)

Proof:
Let ξ′ be the execution of the FKS, where each marking of ξ is mapped to
the corresponding marking in the FKS and the transition instances to the
corresponding intermediate state. This simple mapping is bijective between
ξ and ξ′. It remains to be proven that ξ ′ is a computation. Let Li(ξ

′) =
Li ∩ Inf(ξ′), and let Ui(ξ

′) and Ji(ξ
′) be defined in the same way for Ui and

Ji respectively.
Let us first consider the strong fairness case. If ¬InfENsfi

(ξ) then it
follows that Li(ξ

′) = ∅, because according to the definition of a FKS, Li

includes all the states where a transition instance of the strong fairness set
i is enabled. When Li(ξ) = ∅ all executions is are accepted, as should be
the case. If InfENsfi

(ξ) then Li(ξ) 6= ∅ as it will include all states where a
transition of the set is enabled, and because ΣF is finite state, some state in Li

must occur infinitely often. According to the proposition, now InfOCsfi
(ξ′)

2 PETRI NETS 11

must also hold. Ui(ξ
′) contains all the states which appear infinitely often in

ξ′, where a fair transition instance has just occurred. As InfOCsfi
(ξ) holds

it follows that Ui(ξ
′) 6= ∅ holds, due to the finiteness of ΣF . Hence ξ′ is a

computation of the FKS with respect to the Li and Ui sets and respects strong
fairness.

Let us now consider the weak fairness case. In ξ each weakly fair transition
instance class either is infinitely often not enabled or occurs infinitely often.
Ji(ξ

′) is the set of states, which appear infinitely often in ξ ′, where either no
fair transition instance of wf i is enabled or some instance has just occurred.
If a weak fairness set i is infinitely often not enabled in ξ, the set Ji(ξ

′) will be
non-empty and the execution is accepted as a computation, as it should be.
If a weak fairness set i is infinitely often enabled in ξ, the set Ji will consist
of all the markings where a transition of the set i is not enabled or it has
just occurred. From the definition of weak fairness for a FCPN, projecting
ξ on ξ′ we get for each state sj in the execution ξ′ there is a state sk, where
k ≥ i such that ¬ENwfi,k(ξ) or OCwfi,k(ξ

′). Thus states of Ji(ξ
′) must occur

infinitely often in the execution due to the finiteness of ΣF . Hence ξ′ is
computation of the FKS also with respect to the weak fairness sets.

Consider now a computation ξ ′ of the FKS. The corresponding execution
ξ of the FCPN can be obtained by using the same mapping as above. We
must now prove that ξ is a legal computation of ΣF . From the definition of a
computation we know that in a computation ξ ′, if state which is member of a
set Li appears infinitely often, then also a state which is member ofUi appears
infinitely often in ξ′. This implies for ξ that if a transition instance class
is enabled infinitely often, it also occurs infinitely often. In the previously
defined notation this is expressed

∀F ∈ SF : InfENF (ξ) ⇒ InfOCF (ξ).

Thus ξ also respects the strong fairness constraint.
In each computation states of Ji(ξ

′) must occur infinitely often, because
of the definition of a computation of a FKS. This implies that in the future of
each state in the execution ξ there is either a state where the corresponding
transition to fairness set has occurred or it is not enabled. Using the notation
defined previously it holds that

∀F ∈ WF : ∀i ∈ N : ENF,i(ξ) ⇒ ∃k ≥ i : [¬ENF,k(ξ) ∨OCF,k(ξ)].

Thus ξ respects the weak fairness constraint. ut

The execution based semantics defined previously are equivalent to Jensen’s
semantics for fairness [13]. Thus the theorem also shows that the FKS con-
struction adheres to them.

If we again consider the contentious mutex example, the fairness con-
straints can now be easily added. A fair model can be found in Figure 4.
The goCrit transitions must be equipped with strong fairness constraints, so
that access to the shared variable can be guaranteed for all processes. Weak
fairness is not enough, because if one process gains access to the variable, the
transition is disabled for other since the key place is empty. The request tran-
sition should not be given any fairness constraints, since it should be possible
for a process not to request access to the shared variable indefinitely. Now a
process will always gain access if it tries to.

12 2 PETRI NETS

1<true>

color B= bool
var x: P;

pendingrequestquiet

<x> <x>

critical

release

key

<x>

<x>

<x>

<x>

goCrit

P P

P

B

color P = int with 1..N declare ms;

sf_i:=
x==i

P

<true>
<true>

Figure 4: The fair mutex algorithm.

2 PETRI NETS 13

3 AUTOMATA ON INFINITE WORDS

The close connection between automata on infinite words and LTL is used
by many model checking procedures. Here the necessary automata theory is
introduced and the most important terms are defined.

A Büchi automaton is the basic theoretical construction for every LTL
model checker which uses the automata theoretic approach.

Definition 12 A labeled generalized Büchi automaton (LGBA) [5] is a tu-
ple A = 〈Q,∆, I,F ,D,P〉, where Q is a finite set of states, ∆ ⊆ Q × Q
is the transition relation, I is a set of initial states, F = {F1, F2, . . . , Fn}
with Fi ⊆ Q is a finite set of acceptance sets, D some finite domain (in LTL
model checking D = 2AP for some finite set of atomic propositions AP) and
P : Q 7→ 2D is a labeling function. A run of A is an infinite sequence of
states ρ = q0q1q2 . . . such that q0 ∈ I and for each i ≥ 0, (qi, qi+1) ∈ ∆.

Let the operator Inf(ρ) be defined similarly for a run as for an execution.
A run ρ is accepting if for each acceptance set Fi ∈ F there exists at least one
state q ∈ Fi that appears infinitely often in ρ, i.e. Inf(ρ) ∩ Fi 6= ∅ for each
Fi ∈ F . An infinite word ξ = x0x1x2 . . . ∈ D

ω is accepted iff there exists an
accepting run ρ = q0q1q2 . . . of A such that for each i ≥ 0, xi ∈ P(qi). If
F = {F1} the LGBA corresponds to an ordinary Büchi automaton.

With Streett automata it will be possible to extend the LTL model check-
ing procedure to also cope with strong fairness in an efficient manner.

Definition 13 A Streett automaton (see [33] for an arc labeled version) is
a tuple A = 〈Q,∆, I,Ω,D,P〉, where Q, ∆, I , D and P have the same
meanings as above. Ω = {(L1, U1), . . . , (Lk, Uk)} with Li, Ui ⊆ Q is a set of
pairs of acceptance sets. A run of a Streett automaton is defined in the same
way as for an LGBA. The Streett automaton accepts a run ρ = q0q1q2 . . . if
∧k

i=1(Inf(ρ) ∩ Li = ∅ ∨ Inf(ρ) ∩ Ui 6= ∅).

We can read the acceptance condition as that the automaton accepts when
“for each i, if some state in Li is visited infinitely often, then some state in Ui

is visited infinitely often”. We define the set of infinite words accepted by A
analogously to the LGBA case, using the new acceptance condition Ω.

Streett automata and generalized Büchi automata both accept the class
of ω-regular languages, however, there is no polynomial translation from a
Streett automaton to a Büchi automaton (see e.g. [30]). The converse can
easily be done by letting Li = Q and Ui = Fi.

The set of ω-words the automaton A accepts is denoted by L(A), and it is
called the language of A. L(A) = ∅ denotes that the language accepted by
A is empty. Determining whether L(A) = ∅ is referred to as performing an
emptiness check.

The synchronous product, denoted A = A1 × A2, between two LGBAs
A1 = 〈Q1,∆1, I1,F1,D,P1〉 and A2 = 〈Q2,∆2, I2,F2,D,P2〉 is defined as:

• Q = {(q1, q2) ∈ Q1 ×Q2 | P(q1) ∩ P(q2) 6= ∅},

• ∆ = {〈(ri, si), (ri+1, si+1)〉 ∈ Q×Q | (ri, ri+1) ∈ ∆1 and (si, si+1) ∈
∆2},

14 3 AUTOMATA ON INFINITE WORDS

• I = {(r, s) ∈ Q | r ∈ I1 and s ∈ I2}.

• P(q) = P1(r) ∩ L(s), where r ∈ Q1 and s ∈ Q2.

• F = {F1, F2, . . . , Fn+m} with Fi = {(r, s) ∈ Q | r ∈ F 1
i }, for 1 ≤

i ≤ n and Fi = {(r, s) ∈ Q | s ∈ F 2
i−n}, for n + 1 ≤ i ≤ n+m. Here

F 1
i denotes an acceptance set of A1 and F 2

i that of A2 respectively.

The product is defined analogously for Streett Automata, except that the ac-
ceptance sets are defined in the following way.

• Ω = {(L1, U1), (L2, U2), . . . (Ln+m, Un+m)} such that Li = {(r, s) ∈
Q | r ∈ L1

i } for 1 ≤ i ≤ n and Li = {(r, s) ∈ Q | s ∈ L2
i−n}, for

n + 1 ≤ i ≤ n +m. Replace Li with Ui to get the definition of the U
sets.

Theorem 14 For two LGBAs or Streett Automata L(A× B) = L(A)∩L(B)

Proof:
Let ξ be an infinite word. Assume first that ξ ∈ L(A) ∩ L(B). Let σA be the
corresponding run for A and σB for B respectively. The product automaton
has the initial states common to the two automata, with the common labels.
Therefore a run must start with a state which is common for the automata.
Because the states of A× B have the common labels of the two automata
and the transition relations takes one step, when both of the two automata
can take a step, ξ defines a run σ of A× B which is σA and σB synchronized
according to the definition of the transition relation. Thus σ is a run of the
product automaton if and only if it is defines a run of both automata. The
new acceptance condition spelled out dictates that if a there was a condition
for acceptance in one of the automata, then it is also included as a condition
in the product. The run must thus be accepted by all sets in both automata.
Hence, only words which deal with the sets of both automata are accepted,
i.e. only words common for both automata pass. Thus we can deduce that
ξ ∈ L(A× B).

Consider the case ξ ∈ L(A× B). The corresponding run σ of ξ must
be a run of both automata because the product automatons transition rela-
tion only takes a step when both automata take a step with common labels.
Accepting runs for A and B can easily be constructed by projecting σ onto
its components. As ξ is a word which must be accepted by both automata
acceptance condition, it is also a word in the language of both automata (see
above). Thus ξ ∈ L(A) ∩ L(B). ut

3 AUTOMATA ON INFINITE WORDS 15

4 MODEL CHECKING LTL

Linear temporal logic has established itself as a popular way of specifying
properties of reactive systems. It has been deemed expressive enough for
most purposes, while retaining a relatively simple syntax and semantics. Al-
though there are several ways of model checking LTL, the most used among
tool developers is the automata theoretic approach. Model checking a LTL
formula is PSPACE-complete in the length of the formula (see e.g. [10]).
This means that long formulas tend to be intractable and that only short for-
mulas can be verified efficiently.

4.1 Linear Temporal Logic

Linear temporal logic (LTL) [23] is commonly used for specifying properties
of reactive systems. LTL is interpreted over infinite executions which makes
it appropriate to specifying properties of the executions of a Kripke structure.
In LTL each point of time only has one possible future as opposed to branch-
ing time logics [18]. Hence, for a system to satisfy a LTL formula all its
executions must satisfy the formula.

Given a finite non-empty set of atomic propositions AP , LTL formulas
are defined inductively as follows:

1. Every member p ∈ AP is a LTL formula.

2. If ϕ and ψ are LTL formulas then so are ¬ϕ, ϕ ∨ ψ,X ϕ and ϕ U ψ.

3. There are no other LTL formulas.

An interpretation for a LTL formula is an infinite word ξ = x0x1x2 . . . over
the alphabet 2AP , i.e. a mapping ξ : N 7→ 2AP . The mapping is interpreted
to give the propositions which are true; elements not in the set are inter-
preted as being false. With ξi we mean the suffix starting at index i, namely
xixi+1xi+2 The semantics of LTL are given by the following:

• ξ |= p if p ∈ x0, the first index of ξ, for p ∈ AP .

• ξ |= ¬ϕ if ξ 6|= ϕ.

• ξ |= ϕ ∨ ψ if ξ |= ϕ or ξ |= ψ.

• ξ |= X ϕ if ξ1 |= ϕ.

• ξ |= ϕ U ψ if there exists an i ≥ 0 such that ξi |= ψ and ξj |= ϕ for all
0 ≤ j < i.

The constants T = p ∨ ¬p, for an arbitrary p ∈ AP , and F = ¬T denote
atomic propositions which are always true and respectively false. Commonly
used abbreviations are 3ϕ = T U ϕ, 2ϕ = ¬3¬ϕ and the usual boolean
abbreviations for ∧, ⇒ and ⇔.

LTL formulas can express a variety of properties. The fairness properties
defined in Section 2 can be expressed in the following way:

Weak fairness : 32(enabled) ⇒ 23(occur), or equivalently

23(¬enabled ∨ occur)

Strong fairness : 23(enabled) ⇒ 23(occur)

16 4 MODEL CHECKING LTL

p

X(pUq):

pUq:

pUq: q q q q

q p,q

p,q q

p

p

Figure 5: Sequences which satisfy different LTL formulas.

0

1

{{p0}, }

2

2D

{{p0}}

εD={ , {p0}, {p1}, {p0, p1}}D={ , {p0}, {p1}, {p0, p1}}D={ , {p0}, {p1}, {p0, p1}}
F={{1, 2}}

ε

Figure 6: A Büchi automaton corresponding to 3(p0 ∧ 2¬p1).

Expressing that p and q may not hold at the same time is simple.

2¬(p ∧ q)

More complicated properties do not either require much effort. The follow-
ing states that a process will always be eventually able to enter the critical
section if it tries to.

2(try ⇒ 3crit)

Also properties typical to protocols are expressible in LTL. This states that an
answer is only possible if a request has been sent before.

3ans⇒ (¬ans U req)

There are also properties which cannot be expressed in LTL, such as Petri net
liveness. Petri net liveness is an example of a proper branching time property,
and is expressible in CTL. For more discussion see e.g. [34].

There are two problems related to model checking of LTL, which are es-
pecially interesting for verification of systems modeled with Petri nets.

Model Checking Problem: Given a CPN Σ, and an LTL formula ϕ, does
ξ |= ϕ hold for every execution ξ of Σ.
Fair Model Checking Problem: Given a FCPN ΣF and an LTL formula ψ,
does ξ |= ψ hold for every fair execution ξ of ΣF .

4.2 Automata Theoretic Model Checking

The automata theoretic approach to model checking utilizes the intimate
relationship between LTL and automata on infinite words. In [31] it was first
proven that the set infinite words defined by an LTL formula can be accepted

4 MODEL CHECKING LTL 17

by some automaton on infinite words. Several procedures [10, 6, 7, 32] have
been suggested which construct a LGBA that recognizes all the models of
a given LTL formula. Most model checking procedures are designed for
ordinary Büchi automata but this is not a problem as they are a special case of
the LGBA. An ordinary Büchi automaton can accept the same language as a
LGBA, but for a LGBA with n acceptance sets the ordinary Büchi automaton
can be n-times larger. Figure 6 shows an automaton corresponding to the
formula 3(p0 ∧2¬p1).

Given a LTL property ϕ and a corresponding Büchi automaton, model
checking a system is now possible by interpreting the Kripke structure as a
Büchi automaton. This Büchi automaton represents all the possible execu-
tions of the system. If this system automaton is intersected with the property
automaton, the result is an automaton which accepts all executions which are
common to the two automata. Intersecting the system automaton with an au-
tomaton corresponding to the negation of the property yields an automaton
which has no accepting executions if and only if the system is a model of the
LTL property.

Hence, the steps performed to verify that a system has a property given by
a LTL formula ϕ and solve the model checking problem are the following [5,
17]:

1. Construct a generalized Büchi automaton A¬ϕ corresponding to the
negation of the property ϕ.

2. Generate the Kripke structure of the system and interpret it as a LGBA
K, with F = ∅.

3. Form the product automaton B = A¬ϕ ×K.

4. Check if L(B) = ∅.

If L(B) = ∅ the model of the system has the desired property. Combin-
ing several of these steps into a single algorithm and performing them in
an interleaving manner is referred to as “on-the-fly” model checking [5, 17].
Naturally the procedure can also be done with a simple Büchi automaton, if
the property LGBA is further expanded to a simple Büchi automaton.

Consider the net in Figure 1. If we want to verify that always process one
eventually will gain access if it tries, we first translate the negation of the
formula into a Büchi automaton. The result can be seen in Figure 6. The
atomic proposition p0 is interpreted as “the process tries to enter the critical
section” and p1 is interpreted as “the process has successfully gained access to
the critical section”. Following this the product between the Kripke structure
of the net (see Figure 2) and the automaton is generated. Figure 7 shows a
partially generated product. By examining the partial product we find that
the sequence {(0, 0), (2, 1)(4, 2), (5, 2), (2, 2), (4, 2), (5, 2), (2, 2), . . .} is ac-
cepting, because it is an infinite sequence where states belonging to the ac-
ceptance set occur infinitely often. Hence the property does not hold. The
sequence corresponds to an execution of the net where the second process is
always given access to the critical section.

The afore mentioned procedure is not appropriate for model checking
a FKS and solving the fair model checking problem. What is needed is a

18 4 MODEL CHECKING LTL

F={{(4,2), (5,2), (2,2)}}

(7,0)

(2,0)

(0,0)

(1,0)

(4,0)

(5,1)(6,0)

(3,0)

(2,1)

(4,2)

(5,2)

(2,2)

Figure 7: A partial product between Figure 6 and Figure 2

proc Check (formula ϕ, System K) ≡
LGBA-Automaton A := to-automaton (¬ϕ); Step 1.
LGBA-Automaton B := product (A,K); Step 2.
Streett-Automaton S;
Component mscc;
forall mscc ∈ MSCC (B) do Step 3.

if (¬modelcheck (mscc)) then ; Step 4.
continue;

fi
if (¬hasWF (mscc)) AND

¬wf-modelcheck (mscc)) then Step 5.
continue;

fi
S = ToStreett (mscc);
if (¬hasSF (mscc) AND

¬sf-modelcheck (S)) then Step 6.
continue;

fi
counterexample (S); Step 7.
return true;

od
return false;

.

Figure 8: The new model checking procedure

procedure which can handle both generalized Büchi acceptance sets and
Streett acceptance sets. Of course, the procedure should also avoid using the
more time consuming (see e.g [25]) Streett emptiness checking procedure if
possible.

To solve the fair model checking problem the new procedure, shown in
Figure 8, does the following.

4 MODEL CHECKING LTL 19

1. Constructs a generalized Büchi automaton A¬ϕ.

2. The Kripke structure of the FCPN model is constructed, interpreted
as a LGBA with F = ∅, and simultaneously the product with A¬ϕ is
computed.

3. Tarjan’s algorithm is used to compute a maximal strongly connected
component (MSCC) of the product. A MSCC is a maximal subset of
vertices C of a directed graph, such that for all v1, v2 ∈ C, the vertex
v1 is reachable from v2 and vice versa. The set is maximal in the sense
that if any state is added to this set, it ceases to be a SCC.

4. When a MSCC of the product automaton has been calculated, we
check for generalized Büchi acceptance, i.e. whether there is any ex-
ecution which violates the given property. There cannot exist a fair
counterexample if there is no failing execution. Hence, if the compo-
nent does not contain a state from each Büchi acceptance set (LGBA
acceptance condition), we return to step 3.

5. If a component is accepted, the component is checked if it is weakly
fair. This can be done without generating any intermediate states by
assigning the memberships of the fairness sets in the following manner.
Let the MSCC be denoted by C. For a state s = 〈M,P 〉, where
M is the corresponding marking in the Kripke structure and P the
corresponding state in the formula automaton. Then, for all s ∈ C, s
is member of Fi if:

• ∀t〈b〉 ∈ en(M) : wfi(t)〈b〉 = false, or

• ∃t〈b〉 ∈ en(M), s′ ∈ Q : wfi(t)〈b〉 = true and (s, s′) ∈

∆,M
t〈b〉
→ M ′, s′ = 〈M ′, P ′〉, such that s′ ∈ C.

See Theorem 15 why this works. If the component is accepted, i.e.
it contains all weak fairness set, and has no strong fairness constraints,
we can directly generate a counterexample at step 7 with generalized
Büchi sets interpreted as Streett acceptance sets Ui and with each Li

set initialized to the universal set and other sets computed according to
the definition of a FKS.

6. We now know that the MSCC contains a weakly fair counterexample.
To ensure that there is also a counterexample which is both strongly
and weakly fair, we will use a Streett emptiness checking algorithm on
this MSCC. (Using the Streett emptiness checking to handle strong
fairness constraints goes back to at least [8, 21].) However, we cannot
yet ignore the property sets and the weak fairness sets. Therefore the
weak fairness sets are computed according to the definition of the FKS
and both the property sets and the weak fairness sets are simulated with
Streett acceptance sets, using the technique given in step 5. Before
the component is given to the Streett emptiness algorithm, also the
fairness sets L and U must be computed and the necessary intermediate
states added. Therefore the MSCC is converted to a FKS according
to the definition of a FKS. The correctness of this step is proven in

20 4 MODEL CHECKING LTL

Theorem 16. We simulate the FKS with a Streett automaton and if no
weakly and strongly fair counterexample is found, we continue from
step 3 with the next MSCC of the product automaton.

7. A counterexample is generated by using the subset of vertices of the
MSCC (the Streett emptiness algorithm possibly deletes some states
and edges), which the emptiness checking algorithm gives to the coun-
terexample algorithm.

Theorem 15 Let C be a MSCC of the product automaton. The compo-
nent contains a weakly fair counterexample if and only if the component
interpreted as an automaton, using the set assignments done in step 5, is
non-empty.

Proof:
If C contains a counterexample which is weakly fair, then by step 3 of the
procedure, the sets representing the property must be present in the automa-
ton. If a weakly fair counterexample is present in the component, then for
all weak fairness sets there are transition instances in such a way that the set
is infinitely often disabled or can occur infinitely often. It is easy to see that
all sets will be present if this is possible. The construction of the sets guaran-
tees that a state in C belongs to weak fairness set if no transition of the set is
enabled in the state or a transition of the set occurs and the resulting state is
also in the component meaning it is possible to construct an execution where
it occurs infinitely often. Thus all weak fairness sets are present if there is a
weakly fair counterexample, and thus C is non-empty.

If C is non-empty, we know from step 3 of the procedure that the compo-
nent contains an counterexample. Any execution respecting the acceptance
sets of the property is a counterexample. From the previous part of the proof
we know a weakly fair execution is present in the component if all the sets are
present. As all sets are present in the component, and all states are reachable
from each other, there must exist an execution which goes through both the
property sets and weak fairness sets (a trivial example is an execution which
visits all states of the component infinitely often). This execution is a weakly
fair counterexample. ut

Theorem 16 Let C be a MSCC of the product automaton. The component
contains a strongly fair counterexample if and only if the Streett automaton
C ′ resulting from transforming C according to the definition of a FKS and
simulating the property and weak fairness set with the Streett sets (consider
the CPN marking of each product state only, ignoring the product automaton
state) is non-empty.

Proof:
If C contains a counterexample which is weakly and strongly fair, then by
step 3 of the procedure the property sets must be present in C ′, as they are
simulated by some Streett sets. From Theorem 11 we know that the sets sim-
ulating the weak fairness sets will be present as the counterexample is weakly
fair. As the counterexample is also strongly fair for each strong fairness set
there are transition instances, such that if the set is infinitely often enabled

4 MODEL CHECKING LTL 21

L1, U1, U3

goCrit<1>

L1, U1, L2, L3

(4,2)

goCrit<2>(5,2)

request<2>(2,2)

release<2>

L1, U1

L1, U1

Figure 9: A component of the FKS.

or the set occurs infinitely often. In C ′ each state which has a transition in-
stance enabled, belonging to a fairness set belongs to the corresponding L set,
thus marking all possible states where some set is enabled. An intermediate
state is generated which will belong to the corresponding U set, which will
be inside the component if the occurrence of the transition instance results
in a state which is in the component. Thus the U set marks all the states mak-
ing it possible for the set to occur. Remembering that the Streett acceptance
condition is similar to the strong fairness constraint, clearly the Streett accep-
tance will be satisfied if a strongly fair execution is present in the component.
Thus the component is non-empty.

Let C ′ be non-empty. Any execution respecting the property sets will be a
counterexample. We know from Theorem 11 that any execution respecting
the FKS fairness sets must be both strongly and weakly fair. The simulation of
the generalized Büchi sets (the property and the weak fairness sets) is done by
setting Li = S and Ui = Fi. As each Li is guaranteed to be present, each Ui

must be satisfied which corresponds to the LGBA acceptance condition that
each Fi must be satisfied. Since the component respects the fairness sets it is
possible to construct an execution which respects the fairness sets (otherwise
the component would be empty). Hence the component contains a weakly
and strongly fair counterexample. ut

Corollary 17 The new model checking procedure described in Figure 8
solves the fair model checking problem.

Consider the fair version of the contentious mutex algorithm in Figure 4.
If we run the new model checking procedure, trying to verify the accessibil-
ity property again for the first process, the component {(4, 2), (5, 2), (2, 2)}
will be reported as violating the property during the normal model checking
phase (see Figure 7). We must now check if the counterexample is weakly
and strongly fair. As there are no weakly fair transitions we can skip the
weak fairness phase. There are, however, strongly fair transitions and we
must hence convert the Kripke structure into a Streett automaton with sets
from both the property automaton and the FKS of the FCPN. The set of
the property automaton is converted to L1 and U1 respectively. The goCrit

transition has two strong fairness sets; one for each possible instance. The

22 4 MODEL CHECKING LTL

state (4, 2) will be member of both L2 and L3 because both goCrit〈1 〉 and
goCrit〈2 〉 are enabled in (4, 2). The intermediate state of the strongly fair
transition goCrit〈2〉 will be member of U3. When we examine the possible
executions, we notice that there is no execution which can satisfy the con-
dition for L3, as there is no state which is member of U3 in the component.
The component is hence rejected and not considered strongly fair. This is as
it should since the transition goCrit〈1 〉 is infinitely often enabled but does
not occur infinitely often. If the procedure would be allowed to complete,
we would find that no fair counterexample exists.

The procedure tries to avoid the cost of the more expensive Streett empti-
ness check, whenever possible, by always first testing for weak fairness and
only invoking the Streett check if there are strong fairness constraints en-
abled. This might result in faster running times compared to always perform-
ing the check. Also by performing the verification in an on-the-fly manner,
checking one MSCC at a time, the cost of computing all MSCCs of the
product automaton might be avoided.

There are several other algorithms for automata theoretic model checking
LTL which have been presented in the literature. The nested-depth-first-
search algorithm of [5] was designed for (non-generalized) Büchi automata,
and hence would pay a linear penalty in space in the number of acceptance
sets if it were used here. The algorithm of [14] is similar in the sense it
uses both Büchi and Streett acceptance conditions, however their emptiness
checking procedure is BDD based, as is that of [11]. An algorithm tailored
to handle only generalized Büchi acceptance sets was presented in [6], but
due to some optimizations it makes it could not be used here. It is, however,
somewhat similar to the procedure presented in this work, as it also is a Tarjan
based on-the-fly algorithm.

4.3 Emptiness Checking of Streett Automata

The emptiness checking problem for Streett Automata is not as easily solved
as for Büchi Automata. This is due to the more involved acceptance con-
dition. Formally, we must ascertain if there exists a run ρ of the automaton
A = 〈Q,∆, I, 〈(L1, U1), . . . , (Lk, Uk)〉,D,L〉 such that if a state in a Li set
appears infinitely often in the run, a state from the corresponding Ui set must
be in the run for all 1 ≤ i ≤ k.

From an algorithmic point of view this means that we must determine if
there is cycle (not necessarily simple) in A such that: if the cycle contains
state q ∈ Li it also contains a state v ∈ Ui for all 1 ≤ i ≤ k.

In the following sections S ⊆ Q denotes a MSCC of the automaton. Also

let bits(S) =
∑k

i=1 |S ∩ Li|+ |S ∩ Ui|, |S| = n and |∆| = m.
The main idea of the Streett emptiness checking algorithm goes back at

least to Emerson and Lei [8]. The same idea was also independently de-
veloped in [21]. An improvement on the algorithm was presented in [25].
Several BDD based algorithms also exist [11, 14].

We do the following for all MSCCs of the automaton. The algorithm in
Figure 11 receives a MSCC S of the automaton. All the bad states of the
component are computed. A state s ∈ S is said to be bad if s ∈ Li but there
is no state t ∈ S such that t ∈ Ui. The bad states are deleted and the bad

4 MODEL CHECKING LTL 23

U1

L1
1

U1
2

L2
3 4

Figure 10: A Streett automaton.

states of the remaining states are computed. These two steps are repeated
until no more bad states are found. The procedure is repeated because the
deletion of a state can cause another state to become a bad state. Tarjan’s
algorithm is used to compute the MSCCs of the remaining states. Then the
above procedure is repeated for all components. If no states are removed
from a component it is accepted, if it is non-trivial. A MSCC is non-trivial
if it has more than one state or it has a self-loop. Hence, the algorithm in
broad terms proceeds by partitioning the states of the component into deleted
states, trivial states, and possibly an accepting component also called a good
component.

Consider the component in Figure 10. During the first round of the algo-
rithm state three will be deleted, because no state in the component belongs
to U2.

Tarjan’s algorithm will produce two MSCCs: {1, 2} and {4}. The smaller
component consisting of only one state will pass the acceptance condition
check. No Li set is without a corresponding Ui set. It is, however a trivial
component and hence it will be rejected. The remaining component, con-
sisting of {1, 2}, is both non-trivial and satisfies the acceptance requirements.
The algorithm will accept this as a good component.

Data Structures

The data structures must facilitate fast recomputation of bad states, fast dele-
tion of states and simple implementation of Tarjan’s algorithm, while con-
suming little memory. As memory usually is the critical resource in model
checking the data structures have been designed with this in mind.

The transition relation and the L and U sets are represented by similar
structures. Each state has three lists associated with it, which contain the
successors of the state, the L sets and the U sets of the state respectively.
The algorithm uses three global sets LSet, USet and BadSet, which are
implemented as a combination of a bit vector of size k and a stack. After
a one time initialization, which takes time O(k), with this implementation
set membership can be tested in constant time, union A := A ∪ B, set
intersection A := A ∩ B, set difference A := A \ B, and set clear B := ∅
can be done in O(|B|) time.

The component S is represented by doubly linked list C(S). The list is
doubly linked in order to facilitate fast deletions of states. For each state in

24 4 MODEL CHECKING LTL

proc Empty (S, k) ≡
Queue Q1, Q2;
List B;
boolean change;
InitSets (k);
C(S) := Construct (S);
put (Q1, C(S));
while (Q1 6= ∅) do

C(S) := get (Q1);
change := false;
while (B := Bad (C(S)) 6= ∅) do

C(S) := Remove (C(S), B);
change := true;

od
if (change AND C(S) 6= ∅) then

Tarjan (C(S), Q2);
RemoveLargestMSCC (Q2);
while (Q2 6= ∅) do

B := get (Q2);
C(S) := Remove (C(S), B);
put (Q1,Construct (B));

od
put (Q1, C(S));

else
if (NotTrivial (C(S))) then

Counterexample (C(S));
return true;

fi
fi

od
return false;

.

Figure 11: The emptiness checking algorithm

C(S) we store the component number. Figure 12 shows how C(S), the tran-
sition relation, and the fairness sets are related to each other. The algorithm
uses the following operations:

Construct(S) initializes and returns the data structure C(S).
Remove(C(S), B) removes B from S and returns C(S\B) for B ⊆ S ⊆ V .
Bad(C(S)) returns

⋃

1≤i≤k S ∩ Li|S ∩ Ui = ∅.

Lemma 18 The operation Construct(S) can be implemented with a run-
ning time of O(|S|).

Proof:
The given vertex list S is traversed. For each vertex an entry in the doubly
linked list is created. The component number of each state is initialized to
the next available component number. ut

4 MODEL CHECKING LTL 25

1 2 3 4

Lsetlist Usetlist successors

C(S)

compNr compNr compNr compNr

1 2 3 4

Figure 12: Data structure representing a Streett automaton

Lemma 19 The operation Remove(C(S), B) can be implemented with a
running time of O(|B|).

Proof:
Traversing the given list of bad vertices, B, and removing each entry inC(S),
and resetting the component number of each state to zero takes timeO(|B|).

ut

The operation Remove(C (S),B) is the main reason why a doubly linked
list is used. A simple linked list could in the worst case require a quadratic
overhead in time.

The most time consuming operation, together with the recomputation of
the MSCCs, is the computation of the bad states.

Lemma 20 The operation Bad(C(S)) can be implemented with a running
time of O(|S|+ bits(S)).

Proof:
Traverse the set lists (see Figure 12) of each vertex in C(S). Whenever a
vertex is member of an Li set or a Ui set add the set number to LSet or USet
respectively. This takes time O(|S|+ bits(S)). Form the set BadSet = L\U
and reset LSet and USet. This can be done in time O(min(k, bits(S)) =
O(bits(S)). Add all vertices to a list of bad vertices for which L.setlist ∩
BadSets 6= ∅, reset Badsets and then return the list. This takes time
O(|S|+ bits(S)) giving a total running time of O(|S|+ bits(S)). ut

When compared to [25], this algorithm spends much more time on comput-
ing bad states. The algorithm in [25] can access the bad states in constant
time, due to its more involved data structures.

Emptiness Checking Algorithm

The algorithm described above can be seen in Figure 11. Correctness of
the algorithm can be proved by focusing the attention on how the algorithm
partitions states.

26 4 MODEL CHECKING LTL

proc Bad (C(S)) ≡
Set LSet;
Set USet;
Set BadSet;
State s;
node set;
List badList;
forall s ∈ C(S) do

forall set ∈ s.L.setlist do
LSet := LSet ∪ {set};

od
forall set ∈ s.U.setlist do

USet := USet ∪ {set};
od

od
BadSet := LSet \ USet;
clear (LSet);
clear (USet);
forall s ∈ C(S) do

forall set ∈ s.L.setlist do
if (set ∈ BadSet) then

append(set, badList);
break;

fi
od

od
clear (BadSet);
return badList;

.

Figure 13: The bad algorithm

Theorem 21 The emptiness algorithm will find a good component if it ex-
ists.

Proof:
The main loop of the algorithm maintains the invariant that all vertices are
either bad, trivial or still in the queue. Initially the algorithm puts all states
in the queue. In the second while loop all currently bad states are removed.
If the component has changed, the MSCCs of the remaining states are com-
puted. The MSCCs partitions the remaining states into sets and no states are
lost. If the component has not changed, it either accepted or deemed trivial.
Nowhere are states lost. Hence the invariant holds and the algorithm will
find a good component if it exists. ut

Analysis of the running time of the algorithm shows that there are two major
factor contributing to the running time. The recomputation of the MSCCs
and the computation of the bad states. The algorithm in [25] has an im-
proved running time on the computation of the bad states and the computa-
tion of the MSCCs.

4 MODEL CHECKING LTL 27

Theorem 22 The running time of the algorithm without the Counterexam-
ple algorithm is O((m+ bits(S)) min(n, k))

Proof:
The number of calls to Tarjan’s algorithm is bounded by min(n, k), be-
cause before each call at least one vertex and one fairness set has been taken
care of. Thus the total cost contributed by the calls to Tarjan’s algorithm
is O(m min(n, k)). The same factor min(n, k) bounds the number of calls
to Bad, Construct, and Remove. Hence they contribute O((n + bits(S))
min(n, k)) = O((m+bits(S)) min(n, k)) to the running time giving a total
of O((m+ bits(S)) min(n, k)). ut

The memory usage of the algorithm is linear in the number of states, edges,
sets and members in the fairness sets, as expected. The main drawback of
the algorithm of [25] is the memory overhead used in storing the reverse
transition relation, and storing s.L.setlist and s.U.setlist.

Theorem 23 The memory usage of the emptiness algorithm is bounded by
O(n+m+ k + bits(S))

Proof:
The memory for representing the vertices and the edge information accounts
for the term n+m. The memory required for theC(S) data structure with the
Streett set information amounts to O(n+ bits(S)). Finally the sets Badsets,
L and U use O(k) memory giving a total of O(n+m+ k + bits(S)). ut

The emptiness algorithm presented above is similar to the algorithm in
[25] to the point that this algorithm could be called a simplified version it.
The choices made in this algorithm, however, have favored simplicity and
memory efficiency over speed. The data structures used in this algorithm are
simpler, and thus easier to implement. The algorithm in [25] uses in addition
to to L and U set lists for each state s ∈ S, two doubly linked set lists Li ∩ S
and Ui ∩ S for each 1 ≤ i ≤ k, a doubly linked list of at most length k, and a
doubly linked list of bad set lists Li ∩ S. The algorithm in [25] also requires
the predecessor relation of the automaton for the so called lock-step-search
case, which we have not included because of memory considerations.

In spite of the more involved data structures the memory usage of [25] is
still linear and only larger by a constant factor. Hence, in some cases where
memory can be exchanged for a better running time choosing [25] would be
wise.

4.4 Counterexample Generation

If the emptiness algorithm finds a good component, we still only know that
the property does not hold. For this reason, it is also very important to be able
to generate a counterexample to the given property to ease the the location
of design errors. The ability of model checkers to generate counterexamples
is one reason why model checking is so popular.

The counterexample algorithm is given good component S, from which
it should extract a counterexample. A valid counterexample is a cycle, which

28 4 MODEL CHECKING LTL

respects the acceptance condition that if a state s ∈ Li is on the path there
also is a state t ∈ Ui on the path. Short counterexamples are preferred be-
cause they are considered more informative. Finding a short counterexample
is non-trivial, because the path can be a cycle which contains several loops.
Actually, determining whether there exists a counterexample of length n,
where n is the number of states is NP-complete [2] (proof with a reduction
from a Hamiltonian cycle problem). Clearly it is not feasible to expect to get
the shortest possible counterexample. A reasonable compromise would for
most of the time give short counterexamples, never use excessive amounts of
memory, and also have a low upper limit on the running time.

The new algorithm is an extension of the simple breadth-first search. It
tries to find a cycle back to the initial state, while respecting the acceptance
conditions. The breadth-first search spawns a path tree, where each path
is uniquely determined by the corresponding state on bottom level of the
tree. Under certain conditions the algorithm chooses a path, i.e. a state. The
algorithm chooses a path if it encounters a node s such that

• s ∈ Li and we have not encountered Li previously, or

• s ∈ Ui and we have encountered Li previously.

proc checkstate (s, seenL, seenU, unseenL) ≡
boolean lockpath := false;
forall i ∈ s.L.setlist do

if (i /∈ seenL) then
seen_L := seenL ∪ {i};
lockpath := true;
if (i /∈ seenU) then

unseenL++;
fi

fi
od
forall i ∈ s.U.setlist do

if (i /∈ seenU AND i ∈ seenL) then
unseenL−−;
lockpath := true;

fi
od
return lockpath;

.

Figure 14: The checkstate algorithm.

After the path has been chosen, it is printed from memory, and the breadth-
first search state is reset. Due to this reset at most a linear amount of memory,
in the number of states in the component, is used for book keeping. Then
algorithm proceeds with the breadth-first search towards the initial state. Be-
cause the intermediate states added in the model checking phase should not
affect the length of the path, the algorithm moves immediately to the next
state without logging the move when intermediate states are encountered.

4 MODEL CHECKING LTL 29

This is possible because intermediate states always have a unique successor.
One counter, a variable called unseenL, is maintained by the algorithm to
keep track of how many Li sets have been encountered, for which the corre-
sponding Ui set has not been encountered. The algorithm terminates when
it reaches the initial state and unseenL equals zero.

proc lockpath (s, seenL, seenU, unseenL) ≡
Stack stack;
state t;
node set;
do

push (s, stack);
forall set ∈ s.U.setlist do

if (set /∈ seenU) then
seenU := seenU ∪ {set};
if (set ∈ seenL) then
unseenL−−;
fi

fi
od
t := s;
s := father (t); Go to father
log_father (t, ∅); Reset log

while (s 6= 0);
print_stack (stack);

.

Figure 15: The lockpath algorithm.

The function checkstate, see Figure 14, is the function which determines
if a path is to be chosen by by investigating the given state according to the
conditions given above. If a path is chosen the path is printed and all Ui sets
on the path are marked as seen by the function lockpath.

To analyze the performance of the counterexample algorithm we first con-
sider the auxiliary functions. The running time of the checkstate function is
clearly dependent on the how many sets the state is member of.

Lemma 24 The running time of checkstate(s) (Figure 14) is O(bits({s})).

Proof:
The function traverses the set list of the states and can in O(1) time check if
a specific set has been taken care of. The time required for the traversal is
hence O(bits({s})). ut

For the function lockpath the running time depends on the length of the
path and the number of sets the states are member of.

Lemma 25 The running time of lockpath(s) (see Figure 15) is O(|S| +
bits(S))

30 4 MODEL CHECKING LTL

proc Counterexample (C(S)) ≡
Queue Q;
state s, root, t;
Set seenL;
Set seenU ;
int unseenL := 0;
root := root (C(S));
PrintPathTo (root); Print prefix.
visit (root);
put (Q, root);
log_father (root, 0);
while (Q 6= ∅) do

s := get (Q);
if (checkstate (s, seenL, seenU, unseenL)) then

lockpath (s, seenL, seenU, unseenL);
fi
if (unseenL = 0) then

forall t ∈ succ_in_comp(s) do
if (t = root) then Are we done?

return ;
fi

od
fi
forall t ∈ succ_in_comp (s) do

if (¬(visited (t)) then
visit (t);
put (Q, t);
log_father (t, s); Store the path.

fi
od

od
.

Figure 16: The counterexample algorithm

Proof:
The function must reset the log storing the path, and go through the set lists
of the vertices in the path, and mark all unseen Li sets encountered as seen.
This gives a running time of O(|S|+ bits(S)). ut

The correctness of the algorithm depends on its ability to produce a path
which is adheres to the acceptance conditions. First we consider an inter-
esting special that occurs if the component contains no vertex for which
v ∈

⋃

1,... ,k Li. In this case the search reduces to a simple breadth-first search
for a path back to the root. This can be done in linear time and space. The
path found is also optimal in the sense that it involves the minimum number
of vertices.

Theorem 26 The Counterexample algorithm finds a counterexample, when
given a good component with no vertex belonging to a Li set, and its running

4 MODEL CHECKING LTL 31

time is O(n+m+ bits(S)).

Proof:
Because no state belongs to an Li set, any path back to the root is a valid
counterexample. The algorithm only resets the path if state belongs to an
unseen Li set or a corresponding Ui set, and consequently will not perform
a reset. Hence the algorithm does a breadth-first search for a path back to
the root, potentially doing a checkstate(s) call at each state. It will find a
path to the root (the component is a MSCC), which is the counterexample,
achieving the running time of O(n+m+ bits(S)). ut

The proof for the general case is also quite straightforward. Realizing that
the algorithm after each reset can find a new set is the key to successfully
carry out the proof.

Theorem 27 The Counterexample algorithm always finds a counterexam-
ple when given a good component, and its running time is O((m+ bits(S))
min(n, k)).

Proof:
By keeping track for how many Li sets the corresponding Ui set has not been
seen, the algorithm can be guaranteed to terminate only if the path is a valid
counterexample. The algorithm stores the traversed path up to a reset. After
the reset any state can be visited (the states are always reachable as we are
traversing a MSCC). The algorithm will always find a new Li, or a corre-
sponding Ui after a reset because all states are reachable and visitable and a
new reset will not be performed unless any of the above are found or it enters
the root state and can terminate. Hence the algorithm will always find an ac-
cepting path given a good component. The algorithm performs min(n, 2k)
resets in the worst case. Consequently the algorithm may have to traverse the
graph and perform a checkstate at most min(n, 2k) times. This gives a total
running time of O((n+m + bits(S)) min(n, k)). ut

As we only keep at most a path of length |S| = n the memory consump-
tion of the algorithm is kept reasonable.

Theorem 28 Memory usage of the counterexample algorithm is bounded
by O(n+m+ k + bits(S)).

Proof:
The functions lockpath and checkstate can use the same setsBad, LSet and
USet for their bookkeeping as the emptiness algorithm. Consequently the
algorithm does not need additional data structures to those already created
by the emptiness algorithm, except for a breadth-first search log and father
log, which only incurs a linear penalty in the number of states n. ut

In the worst case this algorithm can produce a counterexample of length
n min(n, 2k). It is possible to construct an algorithm which in the worst
case gives a maximum length of n min(n, k), as presented in [14]. In this
approach, the algorithm does a breadth-first search for all Ui sets for which
the corresponding Li set is non-empty in increasing i order. In [19] the
two approaches were experimentally compared using randomly generated
state spaces. In these experiments the new algorithm had a better average
performance than [14].

32 4 MODEL CHECKING LTL

5 IMPLEMENTATION

The model checking procedure developed and analyzed in this work has
been implemented in the MARIA analyzer [22]. The MARIA analyzer is a
reachability analyzer for algebraic system nets [15, 16, 27], developed at the
Laboratory for Theoretical Computer Science at Helsinki University of Tech-
nology.

5.1 The MARIA analyzer

The MARIA analyzer, or the ModulAr ReachabIlity Analyzer, is a reachability
analyzer for Algebraic System Nets. The intention is to develop an analyzer
with model checking capabilities for a formalism which is powerful enough
to model in a straightforward manner high-level programming languages. By
using language specific front ends, the idea is that MARIA can function as
the analysis tool for several formalisms. Currently a front end for SDL[1] is
under development.

The net class of MARIA is based on an algebra with powerful built-in data
types and expressions. MARIA supports leaf types (bool, char, enum, int, un-
signed) familiar from high-level programming languages and also complex
structured types such as structs, arrays and FIFOs. There are built-in opera-
tions for FIFO operations, multi-set operations, multi-set sums, etc.

The analysis methods of MARIA are still under development. Apart from
the model checking feature developed in this work, MARIA supports exhaus-
tive reachability analysis and reachability graph exploration. It is also possible
to evaluate expressions in the states of the reachability graph. Simple on-the-
fly verification of safety properties is available through detection of constraint
violations and other dynamic errors.

5.2 Implementation

The new model checking algorithm was implemented as a module of the
analyzer. As an implementation platform MARIA was very suitable because
it had almost all of the necessary infrastructure ready. The powerful expres-
sion evaluator of the analyzer made the implementation of the computation
of the fairness sets straightforward. Also, the decision to use an external im-
plementation of the LTL formula to Büchi automaton translator saved time.
Hence, most of the effort was put into implementing the model checking
routines.

The implementation was programmed in C++, like the rest of the ana-
lyzer. The procedure described in this work was followed quite faithfully in
the implementation. Some optimizations were however performed. Man-
agement of the arcs of the product automaton was carefully designed, so that
only during the Streett emptiness checking phase were the arcs kept in main
memory. The Streett emptiness check was also modified so that not all inter-
mediate states were added to the FKS. Only transition instances related to a
strong fairness constraint and some instances related to a weak fairness con-
straint caused an intermediate state to be added. Specifically the transition
instances which belonged to a weak fairness set and could occur so that the

5 IMPLEMENTATION 33

Acknowledge

TimeOut

x==i

x==i

Receive

Receive

<x>
<x>

<x> <x>

<x>

<x>

<x>

<x>

color M= int with 1..n declare ms;
var x: M;

sf_i:=

wf_i:=

M

M M

SendReadyToSend

M

Send

Figure 17: The second test model.

resulting state was still in the current MSCC, caused an intermediate state
to be generated.

5.3 Experimental Results

In order to get some picture on how well the new model checking procedure
performs, some limited experiments were performed with the already famil-
iar contentious mutex model in Figure 4 (see Appendix A for the MARIA

description) and a second simple model in Figure 17 (see Appendix B for the
MARIA description). The second model describes a simple communications
channel, which can loose arbitrary messages. The mutex model was chosen
because it is very simple and yet it includes transitions with strong fairness
constraints. There already are tools which automatically support some no-
tion of fairness close to weak fairness [12], which is why testing strong fairness
constraints is the most interesting. Initially the plan was to use a more in-
tricate model, but the LTL to Büchi automata translator [29], based on the
algorithm presented in [10], could not handle formulas with more than five
fairness constraints on the hardware used. The other model was tested be-
cause it included both weak and strong fairness constraints and therefore it
exercised all aspects of the new algorithm.

To have some kind of reference, all results are compared with the normal
approach of specifying the fairness constraints as LTL formulas. All experi-
ments were performed on a PC with a 266 MHz Intel Pentium II processor
having 128 MB RAM running the Debian/GNU Linux 2.1 operating system.

Two different properties were verified on the mutex model to highlight
two different aspect of the performance of the procedure. The first property
was a property which holds in the system, namely accessibility (2(pending ⇒
3critical)). This was tested in order see how fast and how memory efficient
the algorithm is by measuring the time needed to verify the formula and
the size of the product automaton. The property that the transition request

adheres to the strong fairness constraint, which does not hold for the system,
was used as the second property. With this, it was possible to test how long it

34 5 IMPLEMENTATION

took to generate a counterexample and how long they were. Both formulas
can be found in Appendix C.1. In all measurements the time to translate the
formula to an automaton is also included in the time.

The second model, which included both weak and strong fairness con-
straints, was only tested for a property which held in the model. Using the
old way of including the fairness constraints into the model yielded a prod-
uct state space of size 577 and took 58 seconds to analyze. The figures for
the new procedure were 79 states and two seconds respectively (see the table
in Figure 20). Using the new procedure it was possible to increase the size
of the parameter, while using the “normal” way the model checking did not
complete with N > 3. The formulas used can be found in Appendix C.2.
Note that for neither of the models, no change was necessary to express the
fairness requirement in LTL. The transition occurrences were always visi-
ble for both models from the markings, because the output place for each
transition was unique. Therefore no model changes were needed.

The results for the first property are summarized in the table Figure 18.
Results for the second property are given in the table of Figure 19. The
size figures in parenthesis for the new procedure give the size of the good
component with intermediate states while the other number is the number
of generated product states, without intermediate states. By comparing these
two tables it is evident that the new procedure scales much better than giving
the fairness constraints as LTL formulas in these experiments. Most of the
time consumed by the normal approach is spent in the formula translator,
which needs a lot of time to translate the long formulas. Both the time and
the size grow exponentially for both the new algorithm and the normal way,
which is due to the state space explosion. The lengths of the counterexamples
are very similar with only a few steps difference in favor for the normal way.

New procedure. “Normal” way
N Size Time Size Time (s)
2 21 0 204 8
3 48 0 1919 40
4 109 0 17170 460
5 246 0 145757 9487
6 551 1 - -
7 1224 3 - -
8 2697 7 - -
9 5898 16 - -

10 12881 38 - -

Figure 18: Results for the first property.

5 IMPLEMENTATION 35

New procedure. “Normal” way.
N Size Time (s) Witness Size Time (s) Witness
2 23(10) 0 4 105 12 4
3 50(32) 0 7 1876 140 7
4 123(88) 0 15 15276 2287 15
5 289(224) 0 16 - - -
6 601(544) 0 31 - - -
7 1419(1280) 2 25 - - -
8 3108(2944) 4 25 - - -
9 6193(6656) 10 37 - - -

10 12080(14848) 110 37 - - -

Figure 19: Results for the second property.

New procedure “Normal” way
N Size Time Size Time
2 29 0 1473 374
3 79 0 - -
4 225 0 - -
5 659 1 - -
6 1957 3 - -
7 5847 13 - -

Figure 20: Results for the second test model.

36 5 IMPLEMENTATION

6 CONCLUSIONS

In this work LTL model checking for high-level Petri nets has been extended
to cope with Petri nets, which have fairness constraints on the transitions. Se-
mantics for the fairness constraints are given through a fair Kripke structure.
The fairness semantics is proved to be equivalent to that given in [13]. Using
Streett automata the model checking procedure is extended to handle the
fairness constraints in an efficient manner. Also a new algorithm for solving
the emptiness problem of Streett automata and for generating a counterex-
ample from an accepting component are presented. Most of the ideas were
first presented in the papers [19, 20].

The limited experiments performed indicate that the new procedure for
dealing with fairness constraint is clearly superior to the normal way of cop-
ing with strong fairness constraints. The experiments also indicated that the
method scales fairly well.

Other similar methods have been presented for coping with strong fair-
ness. For CTL model checking the idea was first presented in [8, 21]. The
method was extended to LTL and BDDs in [14]. This work, however, is the
first to extend the method to high-level Petri nets. Semantics for Petri nets
with fairness is not new and is e.g. discussed in [13, 28], but these works do
not give any procedure to model check Petri nets with fairness constraints.

There are still some open questions related to the new LTL model check-
ing procedure. It is clear that not all intermediate states have to be added
when model checking. It should be possible to formulate a better sufficient
condition, which could be statically checked, for transitions in the model
which need the intermediate states to be generated. This could reduce the
number of intermediate states needed in the procedure. It also could be
interesting to generalize this method to encompass the full branching time
logic CTL∗. As CTL∗ model checking can be reduced to several calls to a
LTL model checker [8] this should be possible. Another interesting question
is what kind of effect would the procedure have on partial order methods,
such as the stubborn set method [34].

6 CONCLUSIONS 37

References

[1] CCITT. Specification and description language (SDL). Technical Re-
port Z.100, ITU-T, 1996.

[2] E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. Efficient gen-
eration of counterexamples and witnesses in symbolic model checking.
Technical Report TR CMU-CS-94-204, School of Computer Science,
Carnegie Mellon University, Pittsburg, 1994.

[3] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
Cambridge, Massachusetts, 1999.

[4] E.M. Clarke and E.A. Emerson. Design and synthesis of syncronization
of skeletons using branching time temporal logic. In Proceedings of the
IBM Workshop on Logics of Programs, pages 52–71. Springer-Verlag,
1981. LNCS 131.

[5] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory
efficient algorithms for the verification of temporal properties. Formal
Methods in System Design, 1:275–288, 1992.

[6] J-M. Couvreur. On-the-fly verification of linear temporal logic. In
Proceeding of the World Congress on Formal Methods in the Devel-
opment of Computing Systems (FM’99), volume 1, pages 253–271,
Berlin, 1999. Springer-Verlag. LNCS 1708.

[7] M. Daniele, F. Giunchiglia, and M.Y Vardi. Improved automata gen-
eration for linear temporal logic. In Proceedings of the International
Conference on Computer Aided Verification (CAV’99), pages 249–
260, Berlin, 1999. Springer-Verlag. LNCS 1633.

[8] E.A. Emerson and C-L. Lei. Modalities for model checking: Branching
time logic strikes back. Science of Computer Programming, 8(3):275–
306, 1987.

[9] N. Francez. Fairness. Springer-Verlag, New York, 1986.

[10] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly auto-
matic verification of linear temporal logic. In Proceedings of the 15th
Workshop Protocol Specification, Testing, and Verification, Warsaw,
June 1995. North-Holland.

[11] R. Hojati, V. Singhal, and R.K. Brayton. Edge-Streett / edge-Rabin
automata environment for formal verification using language contain-
ment. Memorandum UCB/ERL M94/12, Electronics Research Labo-
ratory, University of California, Cory Hall, Berkley, 1994.

[12] G.J. Holzmann. The model checker Spin. IEEE Transactions on Soft-
ware Engineering, 23(5):279–295, May 1997.

[13] K. Jensen. Coloured Petri Nets, volume 1. Springer-Verlag, Berlin,
1997.

38 REFERENCES

[14] Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear
temporal properties. In Proceedings of the 25th International Col-
loquium on Automata, Languages and Programming (ICALP 1998),
pages 1–16. Springer-Verlag, 1998. LNCS 1443.

[15] E. Kindler and W. Reisig. Algebraic system nets for modeling dis-
tributed algorithms. Petri Net Newsletter, 51:16–31, 1996.

[16] E. Kindler and H. Völzer. Flexibility in algebraic nets. In Proceedings
of the International Coneference on Application and Theory of Petri
Nets 1998 (ICAPTN’98), pages 345–364. Springer-Verlag, 1998. LNCS
1420.

[17] R.P. Kurshan. Computer-Aided Verfication of Coordinating Processes:
The Automata-Theoretic Approach. Princeon University Press, Prince-
ton, New Jersey, 1994.

[18] L. Lamport. Sometimes is sometimes "not never" - on the temporal
logic of programs. In Proceedings of the 7th ACM Symposium on Prin-
ciples of Programming Languages, pages 174–185, January 1980.

[19] T. Latvala and K. Heljanko. Coping with strong fairness. Fundamenta
Informaticae, 43(1–4):175–193, 2000.

[20] Timo Latvala and K Heljanko. Coping with strong fairness – on-the-fly
emptiness checking for streett automata. In H.-D. Burkhard, L. Czaja,
H-S. Nguyen, and P. Starke, editors, Proceedings of the Workshop on
Concurrency, Specification & Programming (CS& P’99), pages 107–
118, Warsaw, Poland, September 1999.

[21] O. Lichtenstein and A. Pnueli. Checking that finite state programs
satisfy their linear specifination. In Proceedings of the 12th ACM Sym-
posium on Principles of Programming Languages, pages 97–107, 1985.

[22] M. Mäkelä. Maria: Modular reachability analyzer for algebraic system
nets. On-line documentation, 1999. <http://www.tcs.hut.fi/maria>.

[23] A. Pnueli. The temporal logic of programs. In Proceedings of 18th
IEEE Symposium on Foundation of Computer Science, pages 46–57,
1977.

[24] J.P. Quielle and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In Proceedings of the 5th International Symposium
on Programming, pages 337–350, 1981.

[25] M. Rauch Henzinger and J.A. Telle. Faster algorithms for the non-
emptiness of Streett automata and for communication protocol prun-
ing. In Proceedings of the 5th Scandinavian Workshop on Algorithm
Theory(SWAT’96), 1997.

[26] W. Reisig. Petri Nets. An Introduction, volume 4 of EATCS Mono-
graphs on Computer Science. Springer-Verlag, 1985.

REFERENCES 39

[27] W. Reisig. Petri nets and algebraic specifications. Theoretical Com-
puter Science, 80:1–34, March 1991.

[28] W. Reisig. Elements of Distributed Algorithms. Springer-Verlag, Berlin,
1998.

[29] M. Rönkkö. A distributed object oriented implementation of an al-
gorithm converting a LTL formula to a generalised Büchi automaton.
On-line documentation, 1998.
<http://www.abo.fi/ mronkko/LTL2BUCHI/abstract.html>.

[30] S. Safra. Complexity of Automata on Infinite Objects. PhD thesis, The
Weizmann Institute of Science, 1989.

[31] R. Sherman, A. Pnueli, and D. Harel. Is the interesting part of process
logic uninteresting: a translation from PL to PDL. SIAM Journal on
Computing, 13(4):825–839, 1984.

[32] F. Somenzio and R. Bloem. Efficient büchi automata from LTL for-
mulae. In Proceedings of the International Conference on Computer
Aided Verification (CAV2000), pages 248–263. Springer-Verlag, 2000.
LNCS 1855.

[33] W. Thomas. Languages, automata and logic. In G Rozenberg and
A Salomaa, editors, Handbook of Formal Languages, volume 3, pages
385–455. Springer-Verlag, New York, 1997.

[34] A. Valmari. The state explosion problem. In Lectures on Petri Nets I:
Basic Models, pages 429–528. Springer-Verlag, 1998. LNCS 1491.

[35] M.Y. Vardi. An automata-theoretic approach to linear temporal logic.
In Logics for Concurrency: Structure versus Automata, pages 238–266.
Springer-Verlag, 1996. LNCS 1043.

[36] M.Y. Vardi and P. Wolper. An automata-theoretic approach to auto-
matic program verification. In Proceedings of the First Symposium on
Logic in Computer Science, pages 322–331, Cambridge, 1986.

40 REFERENCES

A TEST NET 1 - MARIA DESCRIPTION

�����������	��
���������������������
�����������
����������
���
������� �������!����
�����"���#
"�%$����
���&��������'���
�()��������
������
��������
"���������*
�"�!$"�����+�%,�-,.�	� �����/��

���#
����0����+���!&��	������������213�����#��/ 4.0���5�67
��
����(�
���4�8�67:9

���#&�����������%�'�&��
�'�&���4������*
��<;>=@?�?A8�BC&������D��E9

���#&�����������F&�/��������
&�/�������G���� ���H;JIE?�?K8�BL&�������D��NMO&�������D���&PMQ&N9
&�/������!&��
�4"�*
�(R;JI<?�?A8�BS&������D��T9
&�/������+�#������������/U;JI<??V=�BL&������D��E9

��������
��	��/%&�/��������
&�/�������W���'H;JI<?�?X=�BS0"����/:MY����	�:9

��� ����
"�����"����
��
����
"�FZ���G��	�����
�*
+[&�/�������G���� ���NMK\<9^]_�����)[&"/������!&��
�4��*
�(TMA\<9^]:9

����
"�!`������"���
�*
+[&�/������!&��
�4"�*
�(TMK\E9Y&"/�������W���'NMKa<9^]
�����)[&"/������+�#�����"������/bMK\�]
��������
�(�/�'�D������#��&������D���&cM%;A&�6�6�\�B@9

����
"�FZ���/�������
�*
+[&�/������+�#������������/:Md\<9J]
�����)[&"/�������G��������NMK\<9A&�/������.W���'TMY������]:9

A TEST NET 1 - MARIA DESCRIPTION i

B TEST NET 2 - MARIA DESCRIPTION

�����������	��
���������������������
�����������
����������
���!��� �
��� ����������
�����"���#
"�%$����
���&��������'���
�()��������
������
��������
"���������*
�"�!$"�����+�%,�-,.�	� �����/��

���#
��!&�������
��
����(�
���4�8�6 � 9

��� �'�&���4����	�
�'�&���4����.��
����(�
���4H;*=@?�?K8�BL&��	�����D��T9

���#&�/��������
&�/�������Z�����4'�-	������
�4�&�������D��NMO&���������D���&PM &T9
&�/����������
�4�&���������D��E9
&�/�������Z������	�����!&�������D��E9

��� ����
"�����"����
��
����
"�����
�4
�*
+[&�/�������Z�����4'�-	������
�4TM \<9^])����_[&�/����������
�4NMO\<9J]
$����W	/ '�D���������&��	���D���&PM!;A&�6�6�\�B@9

����
"�F�"�>�	��� ��
�*
+[&�/����������
�4NMO\<9J]������)[&"/�������Z�����4�'�-	����
�4TM \<9J]:9

����
"�%�������	�����
�*
+[&�/����������
�4NMO\<9J]������)[&"/�������Z������������<Md\<9J]
��������
�(�/�'�D������#��&������D���&cM%;A&�6�6�\�B@9

����
"������W�
"�#$	/���4(��
�*
+[&�/�������Z������	�����<Md\<9^]
�����)[&"/�������Z�����4�'�-	����
�4TM \<9J]:9

ii B TEST NET 2 - MARIA DESCRIPTION

C LTL FORMULAE

C.1 Mutex model

New Procedure
Property 1:

����������'����b; ���	���T; ���F&������D���8 ����0�������&�/������F&���
�4��*
�("B!65
� 5���	���T; ���F&������D���8 ����0�������&�/������)�#�"���"������/�B�B@9

Property 2:

����������'���� � 5 ;J���	���T;X���F&��	���D��)8_����0"������&�/�������G���� ���"B�B%65
��� � 5����	���T;X���F&��	���D��)8_����0"������&�/������!&��
�4"�*
�(�B@9

Fairness in Property
Property 1:

����������'R;A&��	���D���&����
;��	� � 5��������T;X���F&������D���&�����0"������&"/������!&��
�4��*
�(�B%65

��� � 5����	���N;X���F&�������D���& ���0"������&�/������)� �����"������/�B�B�B
65

;��	�����	���N;X���F&�������D��)8_���0"������&�/������F&	�
�4��*
�(�B!65
� 5���	���T; ���F&������D���8 ����0�������&�/������)�#�"���"������/�B�B@9

Property 2:

����������'R;A&��	���D���&����
;��	� � 5��������T;X���F&������D���&�����0"������&"/������!&��
�4��*
�(�B%65

��� � 5����	���N;X���F&�������D���& ���0"������&�/������)� �����"������/�B�B�B
65

;�;
��� � 5����	���T;X���%&������D���8 ����0�������&�/�������G�� � ���"B�B%65
;��	� � 5��������T;X���F&������D��)8 ����0"������&"/������!&��
�4��*
�(�BB�B@9

C.2 Second Test Model

New Procedure
����������'����b; ���	���T; ���F&�������D��)8_���0"������&�/������%Z�����4�'�-������
�4"B�65
� 5���	���T; ���F&�������D��)8_���0"������&�/������%Z�������������B�B@9

Fairness in Property
����������'R;�;A&��������D��.&����
;
��� � 5 ; ���F&�������D���& ���0"������&�/������ ��
�4�B%65
��� � 5:;X���C&�������D���& ���0"������&�/������%Z�������������B�B�B
��� ;A&��������D�� ����

;���� � 5����	���N;���;X���F&��������D�� � ����0�������&�/������%Z����4�'�-	� ���
�4�B����

; ��� &��������D�� � ����0�������&�/������ ����
�4�B�B�BB�B
65

;��	�b;J���	���T;X���F&��	�����D��)8 ����0"������&"/�������Z�����4�'�-	����
�4�B!65
� 5���	���T; ���F&�������D��)8_���0"������&�/������%Z�������������B�B�B@9

C LTL FORMULAE iii

HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY FOR THEORETICAL COMPUTER SCIENCE

RESEARCH REPORTS

HUT-TCS-A54 Antti Huima

Analysis of Cryptographic Protocols via Symbolic State Space Enumeration. August 1999.

HUT-TCS-A55 Tommi Syrjänen

A Rule-Based Formal Model For Software Configuration. December 1999.

HUT-TCS-A56 Keijo Heljanko

Deadlock and Reachability Checking with Finite Complete Prefixes. December 1999.

HUT-TCS-A57 Tommi Junttila

Detecting and Exploiting Data Type Symmetries of Algebraic System Nets during

Reachability Analysis. December 1999.

HUT-TCS-A58 Patrik Simons

Extending and Implementing the Stable Model Semantics. April 2000.

HUT-TCS-A59 Tommi Junttila

Computational Complexity of the Place/Transition-Net Symmetry Reduction Method.

April 2000.

HUT-TCS-A60 Javier Esparza, Keijo Heljanko

A New Unfolding Approach to LTL Model Checking. April 2000.

HUT-TCS-A61 Tuomas Aura, Carl Ellison

Privacy and accountability in certificate systems. April 2000.

HUT-TCS-A62 Kari J. Nurmela, Patric R. J. Östergård

Covering a Square with up to 30 Equal Circles. June 2000.

HUT-TCS-A63 Nisse Husberg, Tomi Janhunen, Ilkka Niemelä (Eds.)

Leksa Notes in Computer Science. October 2000.

HUT-TCS-A64 Tuomas Aura

Authorization and availability - aspects of open network security. November 2000.

HUT-TCS-A65 Harri Haanpää

Computational Methods for Ramsey Numbers. November 2000.

HUT-TCS-A66 Heikki Tauriainen

Automated Testing of Büchi Automata Translators for Linear Temporal Logic.

December 2000.

HUT-TCS-A67 Timo Latvala

Model Checking Linear Temporal Logic Properties of Petri Nets with Fairness Constraints.

January 2001.

ISBN 951-22-5341-0

ISSN 1457-7615

