
Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 66

Teknill isenkorkeakouluntietojenkaÈsittelyteorian laboratorion tutkimusraportti 66

Espoo2000 HUT-TCS-A66

AUTOMATED TESTING OF BUÈCHI AUTOMATA TRANSLATORS

FORLINEAR TEMPORAL LOGIC

Heikki Tauriainen

ABTEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D'HELSINKI

Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 66

Teknill isenkorkeakouluntietojenkaÈsittelyteorian laboratorion tutkimusraportti 66

Espoo2000 HUT-TCS-A66

AUTOMATED TESTING OF BUÈCHI AUTOMATA TRANSLATORS

FORLINEAR TEMPORAL LOGIC

Heikki Tauriainen

Helsinki University of Technology

Department of Computer ScienceandEngineering

Laboratory for TheoreticalComputer Science

Teknill inenkorkeakoulu

Tietotekniikan osasto

TietojenkaÈsittelyteorian laboratorio

Distribution:

Helsinki University of Technology

Laboratory for TheoreticalComputer Science

P.O.Box 5400

FIN-02015 HUT

Tel. +358-0-451 1

Fax. +358-0-451 3369

E-mail: lab@tcs.hut.®

c Heikki Tauriainen

ISBN 951-22-5275-9

ISSN 1457-7615

Picaset Oy

Helsinki 2000

ABSTRACT: The formal veri�cation of �n ite-statereactiveand concurrent
systemsagainsttemporallogical requirementscanbe doneby model check-
ing, which hasthe advantageof being well suited for automation. How-
ever,reasoning aboutthe correctnessof systemsusingautomatedtechniques
placeshigh demandsfor ensuringthe reliability of the modelchecking tools
themselves.

This workdescribestestingmethodsfor detectingimplementation errors
in a speci�c classof algorithmsrequired in the automata-theoreticmodel
checking procedurefor propositionallinear temporallogic (LTL). Theseal-
gorithmstranslatetemporalrequirementsinto Büchi automata thatareused
in the model checking process.Most of the testmethodscan be easilyin-
tegratedinto an automatictestingtool for translationalgorithm implemen-
tations. Experimental resultsusing a randomized tool for testingthe cor-
rectnessof severalimplementationsincluded in realmodelcheckersarepre-
sented.This testinghasprovedto be an effectivemethodfor �nd ing imple-
mentationerrorsin the translators.

This work alsopresentsa restrictedLTL model checking algorithm de-
signedto work in a verysimple subclassof systems,on which the analysis
of testfailuresis based.This algorithm helpsto automaticallycon�rm the
incorrectnessof a translationalgorithmimplementation.

KEYWORDS: Model checking, linear temporallogic, Büchi automata,algo-
rithm testing

CONTENTS

1 Introduction 1

2 State-Transition Models of Systems 3

3 Linear Temporal Logic 6

4 Automata-Theoretic LTL Model Checking 10
4.1 The LTL Model Checking Problem 10
4.2 Automata-TheoreticApproach to LTL Model Checking . . . 11

4.2.1 Büchi Automata . 11
4.2.2 Kripke StructuresasBüchi Automata 14
4.2.3 SynchronousProduct 15
4.2.4 Solving the LTL Model Checking Problem Using

Büchi Automata . 19
4.2.5 Checking the Existenceof AcceptingExecutions. . . 21
4.2.6 ImplementationConsiderations. 23

5 Testing LTL Translation into Büchi Automata 25
5.1 TestMethodsfor LTL-to-Büchi Translation 26

5.1.1 Analysisof Büchi Automata 26
5.1.2 Usingthe LTL Model Checking Procedure. 32

5.2 TestFailure Analysis . 38

6 Experimental Results 44
6.1 AutomatedTestbench for LTL-to-Büchi Translators 44

6.1.1 Testbench Operation 44
6.1.2 GeneratingInput for the Tests. 45

6.2 TestArrangements . 48
6.3 TestResults . 51

7 Conclusions 63

Bibliography 65

A Emptiness Checking in Global Synchronous Product i

B Correctness of LTL Model Checking Algorithm for Sequential
Kripke Structures iii

C Analysis of the LTL Formula Generation Algorithm x
C.1 Finding the ExpectedNumber of Operatorsin aFormula . . x
C.2 AdjustingOperatorPrioritiesin the Algorithm xiv

D SPIN v3.4.1 Error Analysis xvii

1 INTRODUCTION

The goalof verification is to show that a givenhardwareor softwaresystem
conformsto its speci�cations and cannot behavein waysthat might lead
into unexpected,undesirableor evencritical situations.Formal veri�cation
methodstry to achievethisgoalbyproving thatunintendedbehaviourin the
systemistheoreticallyimpossible.Forexample,thesetechniquescanbeused
in hardwaresystemdesignto check thecorrectnessof hardwarespeci�cations
beforeactuallybuilding the system.This mayevenreducethe overallpro-
duction costsby removing(or decreasing)the possibilitythat designerrors
will needto be �xed in the �n ishedproduct.

Model checking [1, 21] is one of the techniques applied especially in
the formal veri�cation of reactiveand concurrent systemsand their speci-
�cations, e.g.data communicationsprotocols. This technique operateson
a model built from the original speci�cations of the systemto be veri�ed.
Basically, the model is a (possiblyabstracted)representation of the original
system,and its behaviourre�ects the system's behaviourin light of a given
propertyto be veri�ed. Veri�cation then proceedswith checking whether
this formalmodelhasthe givenproperty.

Also the propertiesto be veri�ed need to be stated in a form that sup-
portsexpressingrequirementson the systemmodel in termsof the chosen
modelling formalism. Model checking makeswide useof varioustemporal
logics for expressingtheserequirementsasformulae of a chosentemporal
logic. The requirementsconcernthe system'sbehaviourastime passes(e.g.,
the relativeorder of eventsobservedin the system),and they may include
temporalconceptssuch as“always”,“eventually”or “in�n itely often”. Three
commonlyusedtemporallogicsin modelchecking arethecomputationtree
logic (CTL), the linear temporal logic (LTL), and the full branching time
logic (CTL*). (For adetailedreviewof all theselogics,seee.g.[11].)

Different logicshavedifferent expressivepower,which affectsthe nature
of thepropertiesthatcanbeexpressedin the logic. The varietyin theexpres-
sivenessof different logicsresultsin a largenumberof modelchecking tech-
niques,someof which maybe applicableonly to certain logics. This work
concentrateson model checking propositional linear temporal logic [20]
with techniquesbasedon the generalautomata-theoretic approach to model
checking dueto Vardi andWolper [31, 30].

Like anyothercomplextaskthat requireshigh preciseness,modelcheck-
ing speci�cations of realsystemsismadeeasierthroughtheuseof automated
tools for performing the task. Model checking techniques translatequite
readily into generalveri�cation procedures thatcanin principle beeasilyau-
tomated. Practicaltoolswith abilities for model checking varioustemporal
logicsinclude the model checker SPIN [10] designedfor the veri�cation of
protocols,thePROD tool [33, 34] for theanalysisof systemsmodelledasPred-
icate/Transitionnets[7], andthe SMV hardwaresystemmodelchecker [18]
basedon symbolicveri�cation techniques(seee.g.[11]).

Clearly, the correctnessof the resultsgiven by any software tool that is
usedto reasonabout the propertiesof somesystem(e.g.,anotherpieceof
software)is highly dependenton the correctnessof the tool implementation

1. INTRODUCTION 1

itself. Provingthe tool implementation correctusingautomatedtechniques
would certainly be verydesirable. However,model checking toolsare of-
ten complexpiecesof softwarethemselves,and their full veri�cation is still
out of reach of current algorithmic veri�cation techniquesin practice. In
orderto alleviatetheunavoidablestate explosion problem (seee.g.[29]) that
makesmodelchecking of complexsystemsdif�cult in practice,modelcheck-
ing toolshaveto usemanynontrivial techniquesfor performing their taskin
a memory-ef�cient way. Unfortunately, thesetechniquesmay increasethe
complexityof themodelchecking toolsthemselves,which makesthemmore
proneto implementationerrors.

Testingandsimulation arecommonmethodsforexamining thebehaviour
andreliability of systemswhosedetailedanalysismayotherwisebe too com-
plicated. Even veryinformal testingtechniquescan be of valuablehelp in
uncoveringerrorsin software.Sinceit maybedif�cult to proveimplementa-
tionsof modelchecking algorithmscorrectautomatically, testingcanoffera
simpleapproach applicableto improvingthe robustnessof implementations
of the algorithmsusedin modelchecking tools.

LTL modelchecking toolsbasedon theautomata-theoreticapproach usu-
ally employ a translationof linear temporallogic propertiesinto �n ite-state
automata overin�n ite words(Büchi automata). In comparisonto the other
phasesof LTL model checking, the formula translationphasecan be rel-
ativelyhard to implement. Errors in the implementation of a translation
algorithm may createa sourceof model checking errors that may degrade
the reliability of the tool. This work describesmethodsthat can be used
for testingthis phaseof the model checking procedurefor LTL (referredto
asLTL-to-Büchi translation). The testingmethodscanbe automatedinto a
softwarepackagefor testingrealimplementationsof translationalgorithms—
eventhoseusedin realmodelchecking tools.This workdescribesan imple-
mentationof someof thesemethodsinto arandomizedtestbench for LTL-to-
Büchi translators (an extendedversionof the onedescribedin [26, 27]), to-
getherwith experimental resultsof testsmadeon severalindependenttrans-
lation algorithm implementations.To improvethe capabilitiesof detecting
errorsin the translators,the testbench makesuseof an LTL modelchecking
algorithmfor a restrictedclassof systemmodels.

The following two chapters introduce the formalismsusedto represent
the systemmodelsand the propertiesto be veri�ed. Chapter 4 reviews
the automata-theoreticmodelchecking procedurefor linear temporallogic,
which forms the core of severaltestmethodsfor LTL-to-Büchi translation
algorithms. The testmethodsthemselvesare describedin Chap. 5. The
chapteralsoincludesa descriptionof an LTL model checking algorithmfor
the restrictedclassof modelsthat arisesin the analysisof testresults. The
algorithmenhancesthe powerof the testmethodsbyproviding awayto con-
�rm the failure of a particularLTL-to-Büchi translator. Chapter6 presents
the resultsof applyingsomeof the testmethodsto severalrealLTL-to-Büchi
translationalgorithm implementations. The work endswith someconclu-
sionsin Chap. 7. The four appendicescontain detailson someissuesmen-
tioned only brie�y in the text,such asthe correctnessproofof the restricted
LTL modelchecking algorithmdescribedin Chap5.

1. INTRODUCTION 2

2 STATE-TRANSITION MODELS OF SYSTEMS

Model checking techniques traditionally assumethe systemdescriptionto
be given asa �n ite state-transition graph. The systemis thought to have
a (unique) state at each instant of its operation,and it operatesin discrete
stepsby making transitions from a stateto anotherstate. The model of the
systemisbuilt byexhaustivelyenumeratingall thepossiblestatesthat thesys-
tem canevervisit during its operation(calledthe state space of the system).
Transitionsare then added betweenthe statesto representall the possible
waysin which the systemcan changeits stateduring operation.1 Because
the operationof the systemmay varyaccording to its inputs, it can behave
in manydifferentways.Each of thesewaysis individually calleda behaviour
(or equivalently, an execution) of the system.The model built from the sys-
temcapturesall thesepossibilitiessuch thatanyactualoperationobservedin
the systemcanbe representedasan executionof the model.2 An execution
canbedescribedasasequenceof statesthesystemvisitsduring itsoperation,
or, alternatively, asa sequenceof transitionsthe systemmakeswhen moving
from onestateto another. In this work,executionsof the systemwill always
betreatedassequencesof states.The systemisassumedto haveaunique ini-
tial state whereit beginsits operation.In addition, the modelsareassumed
to havea �n ite statespace.

Model checking a givenpropertyin the systemrequiresthe ability to dis-
tinguish betweenthe executionsof the systemwith respectto the property.
This is done by augmentingeach individual systemstatewith information
describingthe characteristicsof the state. The characteristicsof anysystem
executionarethen determined by the characteristicsof the statesoccurring
in theexecution.The informationassociatedwith thestatescanbeexpressed
in temporallogic byusingasetof atomic propositions, each of which isgiven
a �xed truth value in each individual systemstate.The propositionsacquire
their semanticsfrom the original systemspeci�cation andthe propertyto be
checkedin the model.

An additional assumptionconcerning the executionsof the systemis that
everyindividual executionof the systemis alwaysin�n ite. This is a reason-
ableassumptionabouta reactivesystem(e.g.,a serverprotocol) that should
continue responding to its inputs inde�n itely. We thereforedenythe possi-
bility of any �n ite terminating behaviours in the systemmodel to simplify
the discussion. If the systemhasany �n ite behaviours, they can be inter-
pretedasin�n ite behavioursin which the systemwill stayforeverin the �nal
stateof the terminating behaviouroncereaching it. A systemmodel canbe
augmentedwith extratransitionsandstatesin orderto makeit satisfythis re-
quirement. Additional atomic propositionsmight alsoneedto beintroduced

1In practice, the systemspeci�cations are often given in a more high-levelnotation,
usinge.g.Pr/T nets[7], processalgebras(e.g.CCS [19]) or varioustool-speci�c speci�cation
languages(e.g.PROMELA [9]). TheKripkestructuresdescribedherecanbeconsideredlow-
level semanticalinterpretationsof the systemdescriptions;if necessary, they can be built
evenautomaticallyfrom varioushigh-levelspeci�cations.

2In the discussion,the systemis oftenidenti�ed with its model. Therefore,wewill often
speakof executionsof the systemwhen actuallyreferringto executionsof the model.

2. STATE-TRANSITION MODELS OF SYSTEMS 3

if the goalis to check for the reachability of thesestates.
Formally, thesystemmodelsarede�ned asnode-labelleddirectedgraphs,

calledKripke structures in the model checking context.In orderto exclude
from the graph any state sequencesthat cannot be extendedinto in�n ite
onesbyrepeatedlyappending statesto theendof thesequence,everystateof
the structureis required to haveat leastone successor. This meansthat the
transitionrelationis total.

Let AP denoteagivennonempty�n ite setof atomic propositionsdescrib-
ing the propertiesof the systemstates.

Definition 1 (Kripke structures) A Kripke structure is a quadruple M =
hS;�; s0; � i , where

� S is a finite set of states,

� � � S � S is a transitionrelation that satisfies the condition 8s 2 S :
9s′ 2 S : (s;s′) 2 � ,

� s0 2 S is the initial state, and

� � : S 7! 2AP is a labelling function that associates each individual
state with a set of atomic propositions. Semantically, � (s) represents
the set of propositions that hold in a state s 2 S.

An infinite path in the Kripke structure is an infinite sequence of states
hs0; s1; s2; : : : i 2 Sω 3 such that (sn; sn+1) 2 � for all n � 0. �

In order to reasonabout the propertiesof the executionsof the system
model, it is usefulto consideronly thosepathsthat begin in the initial state
of the Kripke structure. Theseare the pathsthat correspondto the execu-
tions of the system. Given a Kripke structureM = hS;�; s0; � i , the set
fhs0; s1; s2; : : : i 2 Sω j s0 = s0 and(si; si+1) 2 � for all i � 0g is called
the setof executions (or behaviours) of the structure.

The state-labellingfunction � can be usedto project any path in the
Kripke structureonto an in�n ite sequenceof labelsof the statesin the se-
quence. Thesesequencesof state labelscan be consideredin�n ite words
whose“letters” aresubsetsof AP , andthe setof all letters(2AP) is calledthe
alphabet. Moreover,anysubsetL of (2AP)ω can be considereda language
of in�n ite wordsoverthe alphabet2AP . In particular,wewill denoteby LM

the setof wordscorresponding to the executionsof a givenKripke structure
M , and we saythat LM is generated by M . This languageanalogywill be
usedlaterin Chap.4 whendiscussingautomata-theoreticmodelchecking of
linear temporalpropertiesin Kripkestructures.

The following exampledemonstratesthe different conceptsdescribed
above.

3For anynonemptysetX , Xω denotesthe setof all in�n ite sequencesthat canbe con-
structedfrom the elementsof X .

2. STATE-TRANSITION MODELS OF SYSTEMS 4

p1{ }

p1{ }

p2{ }p1 p2,{ }

s 0

s 1

s 2

s 4

s 3

Fig. 2.1: A simple Kripke structure

Example 1 Let AP = f p1; p2g and let M = hS;�; s0; � i be the Kripke
structure defined as follows:

S = f s0; s1; s2; s3; s4g;
� = f (s0; s1); (s0; s2); (s1; s2); (s1; s3); (s1; s4);

(s2; s2); (s3; s0); (s4; s4)g;
s0 = s0;

� (s0) = f p1g;
� (s1) = f p1g;
� (s2) = ; ;
� (s3) = f p1; p2g; and
� (s4) = f p2g:

This Kripke structure can be depicted as the node-labelled directed graph
shown in Fig. 2.1. The states s 2 S correspond to the nodes of the graph, the
transitions (s;s′) 2 � correspond to the directed arcs between nodes, and the
function � gives a label for each node of the graph.

Two executions of M are

x1 = hs0; s1; s3; s0; s1; s3; : : : i and x2 = hs0; s2; s2; s2; : : : i :

They correspond to the infinite sequences of state labels

� x1
= h� (s0); � (s1); � (s3); � (s0); � (s1); � (s3); : : : i
= hfp1g; f p1g; f p1; p2g; f p1g; f p1g; f p1; p2g; : : : i

and
� x2

= h� (s0); � (s2); � (s2); � (s2); : : : i
= hfp1g; ; ; ; ; ; ; : : : i ;

respectively. These sequences of state labels also belong to the language LM

generated by the structure.
The path hs0; s1; s2i is not an execution, because it is finite. The infinite

path hs1; s3; s0; s1; s4; s4; s4; : : : i is not an execution either, since it does not
begin in the initial state s0.

The infinite sequence � = hfp2g; f p1g; f p2g; f p1g; f p2g; f p1g; : : : i does
not belong to the language LM , since M has no execution corresponding to
� . �

2. STATE-TRANSITION MODELS OF SYSTEMS 5

3 LINEAR TEMPORAL LOGIC

This work concentrateson testingmodel checking algorithmsusedin the
veri�cation of propositional linear temporal logic. This logic, introduced
by Pnueli [20], is an extensionof ordinary propositionallogic with temporal
operators, and it can be usedto expressqualitative temporalpropertiesof
individual executionsof aKripkestructure.This chapterpresentsthe formal
de�n ition andsemanticsof LTL. The semanticsof LTL canalsobegivenan
interpretationon Kripkestructures,which providesawayto statea temporal
requirementconcerning all executionsof the structure.This extensionthen
leadsto the model checking problem for LTL, which will be discussedin
Chap.4.

The setof linear temporallogic formulaeisde�ned inductivelyasfollows.
Asbefore,AP denotesa �n ite nonemptysetof atomic propositions.

Definition 2 (Linear temporal logic) The set of linear temporal logic for-
mulae consists of the finite-length strings that can be obtained by the appli-
cation of the following rules:

� All atomic propositions p 2 AP are LTL formulae.

� If ' is an LTL formula, then : ' is an LTL formula.

� If ' and are LTL formulae, then (' _) is an LTL formula.

� If ' is an LTL formula, then X ' is an LTL formula.

� If ' and are LTL formulae, then (' U) is an LTL formula.
�

The semanticsof linear temporallogic formulaearede�ned overin�n ite
sequencesof subsetsof AP asfollows.

Definition 3 (Semantics of LTL) Let � = hy0; y1; y2; : : : i 2 (2AP)ω be an
infinite sequence of subsets of AP , and let ' be a linear temporal logic
formula. Let � i denote the infinite subsequence of � beginning at the i th

successor of y0 in the sequence. That is, � 0 = � = hy0; y1; y2; : : : i , � 1 =
hy1; y2; : : : i , � 2 = hy2; : : : i , and so forth.

We use the notation � j= ' to say that the sequence � satis�es(or alter-
natively, is a model of) the formula ' , and the notation � 6j= ' is used to say
that � does not satisfy ' . The relation j= between the infinite sequences over
subsets of AP and LTL formulae is given by the following conditions:

� � j= p iff p 2 y0, the first element of the sequence � .
� � j= : ' iff � 6j= ' .
� � j= (' _) iff � j= ' or � j= .
� � j= X ' iff � 1 j= ' .
� � j= (' U) iff there exists i � 0 such that � i j= , and for all

0 � j < i , � j j= ':

If ' has no models in (2AP)ω, we say that ' is an unsatis�ableformula.
Conversely, if : ' has no models in (2AP)ω, ' is called a valid LTL formula.

�

3. LINEAR TEMPORAL LOGIC 6

X ' : ϕ

' U : ϕ ϕ ψ

♦' : ϕ

�' : ϕ ϕϕ ϕ

' R : ϕ, ψψ ψ

Fig. 3.1: Illustration of the semantics of the temporal operators X, U, � , � and R

Other logical connectivesand Booleanconstantscan be de�ned asab-

breviationsin the usualway: >
def
� (p _ : p) for an arbitraryatomic proposi-

tion p 2 AP (Booleanconstant“true”), ?
def
� :> (Booleanconstant“false”),

(' ^)
def
� : (: ' _ :) (conjunction), (' !)

def
� (: ' _) (implication),

and(' $)
def
�

�
(' !) ^ (! ')

�
(equivalence).

De�n ition 3 impliesthat thesatis�abilityof anLTL formula in an in�n ite
sequence� 2 (2AP)ω dependsonly on the �r stsubsetof AP in thesequence,
if the formula doesnot contain anyX or U operators. However,the satis�a-
bility of formulaecontaining thesetemporal operators maydependon some
otherpartof the sequenceor eventhe entiresequence.

Intuitively, the subsequences� i of a sequence � represent“the state of
the world” atdiscreteconsecutivetime stepscorresponding to the increasing
valuesof the indexi . Therefore,the sequence� i canbethoughtof following
� 0 “i stepslater” in the future. This analogycan help to understand the
temporalinterpretation of the X andU operators. In the following, weshall
giveaninformaldescriptionof thesemanticsof theseoperators,togetherwith
the de�n itionsof a fewcommonlyusedothertemporaloperatorsthatcanbe
de�ned usingthesebasicoperators.SeealsoFig. 3.1 for an illustration.

The temporalformula X ' is satis�edin an in�n ite sequence� if the for-
mula ' holdsin the in�n ite subsequence� 1 of � , i.e., “at the next time step
in the future”. The X operatoris calledthe “Next time” operator.

The formula (' U) holdsin an in�n ite sequence� if andonly if holds
“now or sometime in the future” (i.e., in somein�n ite subsequence � i of
� , where i � 0), and ' holds “until” becomestrue (i.e., in all in�n ite
subsequencesof the original sequencebeginning atsomenonnegativeindex
lessthan i). Therefore,U is called the “Until” operator. However,' needs
not hold in anysubsequenceof � if alreadyholdsin � 0 (i.e., in the whole
sequence�).

New operatorscanagain bede�ned in termsof the U operator:twocom-

monly usedoperatorsare♦'
def
� (> U '), expressingthat ' eventually holds

3. LINEAR TEMPORAL LOGIC 7

in a sequence,and�'
def
� : ♦: ' , which is usedto saythat ' always holds

in a sequence.We will alsousethe dual of the U operatorR calledthe “Re-

lease”operator,which is de�ned by (' R)
def
� : (: ' U :). Intuitively, the

formula (' R) is true in an in�n ite sequence� if andonly if either holds
“forever”in the sequence(i.e., in all in�n ite subsequencesof �), or if both '
and hold “at thesametime now or somewherein the future” (i.e., in some
in�n ite subsequence � i of � with i � 0), and holds alsoin all “earlier”
subsequences(i.e., in all subsequences� j with 0 � j < i). In this case,'
“releases” in the sequence,so neednot remaintrue anylongerafterthe
�r sttrue occurrenceof ' .

Example 2 Let AP = f p1; p2g, and let � = hy0; y1; y2; : : : i = hfp1g; f p1g;
f p1; p2g; f p1g; f p1g; f p1; p2g; : : : i be an infinite sequence over 2AP . We
show that this sequence satisfies the LTL formula �♦p2, by the direct ap-
plication of the semantics of LTL. This formula corresponds to the property
“p2 is always eventually true in the sequence”, or, in other words, “p2 is true
in the sequence in�n itely often”.

The formula is first rewritten using the basic temporal operators:

� j= �♦p2 iff
� j= �(> U p2) iff
� j= : ♦: (> U p2) iff
� j= :

�
> U : (> U p2)

�
iff

� 6j= > U : (> U p2):

By the semantics of LTL, � j= > U : (> U p2) if there exists an i � 0 such
that � i j= : (> U p2), and for all 0 � j < i , � j j= > . Therefore, � 6j=
> U : (> U p2) holds only if this is not the case. This can occur in two ways:

(1) There is no i � 0 such that � i j= : (> U p2) is true, that is, � i j= > U p2

holds for all i � 0.

(2) For all i � 0 such that � i j= : (> U p2) there exists a 0 � j < i for
which � j 6j= > .

In fact, the case (1) holds in the given sequence. First of all, we note that for
all i � 0, � i j= > :

� i j= > iff
� i j= p1 _ : p1 iff
� i j= p1 or � i j= : p1 iff
� i j= p1 or � i 6j= p1;

which is trivially true, since either p1 2 yi or p1 62yi for all subsets yi 2 2AP

and i � 0.
We then show that for all i � 0, � i j= > U p2. We note that for all k � 0,

� k+3 = � k in the given sequence. By definition, � i j= > U p2 if and only if
there exists an i ′ � i such that � i

0
j= p2 and for all i � j < i ′, � j j= > . It

has already been shown that � j j= > for all j � 0. We also know that � 2 =
hfp1; p2g; f p1g; f p1g; f p1; p2g; f p1g; f p1g; : : : i j= p2. Because � k+3 = � k for
all k � 0, it follows that � 2+3 k j= p2 for all k � 0, and therefore for all i � 0
there must exist an i ′ � i such that � i

0
j= p2, so � j= �♦p2. �

3. LINEAR TEMPORAL LOGIC 8

Let M = hS;�; s0; � i be a Kripke structure.Sincethe labelling function
� mapseverypath in M into an in�n ite sequenceof subsetsof AP , � gives
the temporal interpretation of anypath in the structure.More precisely, the
semanticsof LTL areinterpretedon Kripkestructuresasfollows:

Definition 4 (LTL semantics in Kripke structures) Let x = hs0; s1; s2;
: : : i 2 Sω be an infinite path in a Kripke structure M , and let ' be an
LTL formula. We say that the path x satis�es' , denoted x j= ' , if and only
if the infinite sequence � x = h� (s0); � (s1); � (s2); : : : i satisfies the formula
' .

We say that the Kripke structure M satisfies the LTL formula ' if and only
if all paths x 2 fhs0; s1; s2; : : : i 2 Sω j s0 = s0 and (si; si+1) 2 � for all
i � 0g (i.e., all executions of M) satisfy ' . We denote this by M j= ' . �

The latterpartof thisde�n ition considersonly the executions of thestruc-
tureandthereforedoesnot require anythingof thepathsthatdonot beginin
the initial stateof M . Therefore,evenif M j= ' is true,M maystill contain
pathsx for which x j= ' doesnot hold. Weneverthelessusephraseslike “the
formula ' holds in M ” to meanthat ' holds in all executions of M . This
shouldnot giveriseto anyconfusion,sinceweareusuallynot interestedin
pathsthatarenot executions.

The semanticsof LTL imply that an executionx of a Kripke structureM
satis�esan LTL formula ' if and only if it doesnot satisfyits negation : ' .
However,this“symmetry”doesnot applyto thesatis�abilityof theformula in
the whole structureM . SinceM j= ' holdsif andonly if all behavioursof
M satisfy' , evenasingleexecutionsatisfying: ' (i.e.,acounter-example for
') is suf�cient to show thatM 6j= ' is true. However,this doesnot generally
imply thatM j= : ' would then hold, sincethis isagain astatementoverall
executionsof thestructure.Therefore,althoughit isnotpossiblethatM j= '
andM j= : ' hold atthesametime, it maybethatneither of theseproperties
holds in the structure. This occurs if M hasseveralpathsbeginning in its
initial state, someof which satisfythe property' , while others satisfythe
negatedproperty: ' .

The following exampledemonstratesinterpreting the semanticsof LTL
on the executionsof aKripkestructure.

Example 3 The sequence � of the previous example corresponds to the ex-
ecution x1 = hs0; s1; s3; s0; s1; s3; : : : i of the Kripke structure M given in
Example 1 (see also Fig. 2.1). We showed in the previous example that the
LTL formula �♦p2 holds in this execution.

However, M 6j= �♦p2, because M also has the execution x2 = hs0; s2; s2;
s2; : : : i , and the formula does not hold in the sequence � x2

= h� (s0); � (s2);
� (s2); � (s2); : : : i = hfp1g; ; ; ; ; ; : : : i . This is because p2 is never true in this
execution, which can again be shown using the semantics of LTL as in the
previous example.

(As a matter of fact, the executions x1 and x2 together show that M j=
: �♦p2 does not hold either, since x1 6j= : �♦p2, but x2 j= : �♦p2.) �

3. LINEAR TEMPORAL LOGIC 9

4 AUTOMATA-THEORETIC LTL MODEL CHECKING

This chapter introducesthe model checking problem for linear temporal
logic andreviewsits automata-theoreticsolution,which createsthe needfor
translatingLTL formulae into Büchi automata. Since the model checking
procedureforLTL formsasigni�cant basisfor thetestingtechniquesforLTL-
to-Büchi translationalgorithmimplementations(tobedescribedin Chap.5),
thischapterincludesafairlydetaileddescriptionof thegeneralmodelcheck-
ing procedure.

4.1 THE LTL MODEL CHECKING PROBLEM

In short,LTL model checking tellswhetherall behavioursof a givensystem
modelsatisfyagivenLTL property. For example,onemight be interestedin
con�rm ing that the systemwill alwaysreturn to some“safe”stateafterper-
forming someoperation,regardlessof the outcomeof the operation. (For
example,adatacommunicationsprotocolcould becheckedfor the property
that it will alwaysrecoverfrom lostmessages,assuming that no messagecan
belostin�n itely manytimes.)If thesystemisfoundto haveanexecutionvio-
lating the desiredproperty, the systemhasan errorandneedsto bemodi�ed
in orderto preventthe occurrenceof the undesiredbehaviour.

De�n ition 4 of the previouschaptergivesawayto interpret the semantics
of LTL on theexecutionsof Kripkestructures.The modelchecking problem
for linear temporallogic canthen bestatedasfollows.

Problem 1 (The LTL model checking problem) Given a Kripke structure
M and a linear temporal logic formula ' , does M j= ' hold?

In the LTL model checking problem,linear temporallogic formulae ex-
pressrequirementsconcerning all executionsof a Kripke structure.Alterna-
tively, sincea singlecounter-exampleis suf�cient for provingan LTL prop-
ertyfalsein the setof executionsof the structure,the problemcanbesolved
bychecking whetherthestructurehasanexecutionsatisfyingthenegation of
the sameproperty. By the semanticsof LTL, the nonexistenceof such anex-
ecutionimpliesthat thepropertyitself is true in all executions.However,the
verynaiveapproach of checking each executionof the structurein turn for
the satis�ability (or unsatis�ability) of someproperty(e.g.,by the direct ap-
plication of thesemanticsof LTL) isnot generallyfeasible,sincethenumber
of executionscontainedin the structuremaybein�n ite.

To �nd morepracticalmethodsfor solvingthe model checking problem
for LTL, it isusefulto rephrasethe problemasaquestionaboutthe relation-
ship betweenlanguages[31]. Asmentionedalreadyin Chap. 2, the Kripke
structureM can be seenasgeneratinga languageLM that consistsof the
in�n ite wordsoverstate labels(chosenfrom the set2AP) corresponding to
the executionsof the model. Since also the modelsof an LTL formula
' are in�n ite sequencesof subsetsof AP , the setof all modelsof the for-
mula canactuallybeconsideredanotherlanguageL ϕ of in�n ite wordsover
2AP . Therefore,the model checking problemcanbe statedasthe question

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 10

whetherthe languageLM generatedby the executionsof the systemmodel
iscontainedin the languageL ϕ corresponding to the modelsof the LTL for-
mula, that is,whetherLM � Lϕ. Sinceasinglesystemexecutionsatis�esan
LTL formula ' if andonly if it doesnot satisfyits negation : ' , the formula
' issatis�edin all executionsof thesystemif andonly if M hasno execution
satisfying: ' . Therefore,the problem reducesto the questionwhether no
word in LM belongsto the languageL ¬ϕ corresponding to the negation of
the LTL formula. Finding an answerto this questionamountsto checking
whetherthe intersectionLM \ L¬ϕ of the languagesLM andL¬ϕ isempty.

In general,however, the model checking problem for linear temporal
logic is known to bePSPACE-completein the sizeof the formula [2], which
inevitably limits the practicalapplicabilityof model checking asone of the
reasonsbehind the state explosionproblem. However,current computer
technologyhasmadeLTL modelchecking possibleevenin real-worldprob-
lems, and the bene�ts of model checking in uncoveringerrors in system
speci�cations justify the needfor solvingthis complexproblem.

4.2 AUTOMATA-THEORETIC APPROACH TO LTL MODEL CHECKING

The studyof formal languagesis closelyconnectedwith the theory of au-
tomata. Analogouslyto theviewofKripkestructuresasmodelsof systems,au-
tomatacanbeconsidered“models”of languages,andtheir propertiescanbe
usedfor provingpropertiesof the languagescorresponding to the automata.
Since the LTL model checking problem can be statedasa questionabout
the relationshipbetweentwo languages,the problemcanbesolvedbyusing
automata-theoretictechniques.This generalapproach to model checking is
dueto Vardi andWolper[31]; itsspeci�c applicationto linear temporallogic
is discussedin [30].

4.2.1 BuÈchi Automata

The connectionbetweenLTL model checking and automata theoryarises
from thefactthatthe languageL ϕ consistingof themodelsof alinear tempo-
ral logic formula ' canberepresentedasanondeterministic�n ite automaton
overin�n ite words—a�n ite state-transitionsystem,whosebehavioursgener-
ateall themodelsof the formula. Thesestate-transitionsystemsaretradition-
ally calledBüchi automata. (More formally, anylanguagecorresponding to
the setof modelsof someLTL formula belongsto the classof ! -regular lan-
guages,andeach such languageis recognizablebyanondeterministicBüchi
automaton.Seee.g.[28].)

Insteadof thinking of a Büchi automatonasgeneratingall modelsof an
LTL formula, the automatoncanintuitively beseenasa“machine” with the
ability to tell from anyin�n ite wordoverthealphabet2AP whetherit belongs
to the languageL ϕ corresponding to the modelsof the formula. Therefore,
Büchi automata canbeusedto testthe behavioursof asystemfor the satis�-
ability of linear temporallogic properties.

We usethe following de�n ition for Büchi automata.

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 11

Definition 5 (Büchi automata) A Büchi automaton is a 5-tuple
A = h� ; Q; � ; q0; F i , where

� � is a finite alphabet,

� Q is a finite set of states,

� � � Q � 2� � Q is the transitionrelation1,

� q0 2 Q is the initial state, and

� F = f F1; F2; : : : ; Fng is a finite set of acceptanceconditions, where
Fi � Q for all 1 � i � n.

An executionof A over an infinite word � = hy0; y1; y2; : : : i 2 � ω is an
infinite sequence of states hq0; q1; q2; : : : i 2 Qω such that q0 = q0, and for all
i � 0, (qi; � i; qi+1) 2 � for some � i � � such that yi 2 � i.

Let r = hq0; q1; q2; : : : i 2 Qω be an execution of A over an infinite word
� 2 � ω. Let inf (r) � Q be the set of states occurring infinitely many times in
r . We say that the execution ful�ls the acceptance condition Fi 2 F if and
only if inf (r) \ Fi 6= ; . If this holds for all acceptance conditions Fi 2 F , we
say that r is an acceptingexecution of A over � .

The automaton acceptsan infinite word � 2 � ω if and only if it has an
accepting execution over � . If the automaton has no accepting executions
over � , it rejects� . �

Büchi automata A = h� ; Q; � ; q0; F i with jF j 6= 1 aresometimescalled
generalized Büchi automata to distinguishthem from automata with only
one acceptancecondition. It can be shown (seee.g. [11]) that all Büchi
automata with any nonzeronumber of acceptanceconditions are equally
expressive,sosuch adistinction isnot usedhere.

The languageLA acceptedby the Büchi automatonA consistsof the set
of in�n ite wordsover � acceptedby the automatonA. If the automaton
representsa linear temporallogic formula ' , wewill referto the automaton
asAϕ and to the languageaccepted(or recognized) by the automatonas
LA' .

Büchi automata canbeseenasedge-labelleddirectedgraphs.The nodes
of the grapharethe elementsof the setQ, and the arcsbetweenthe graph
nodesaregivenby the transitionrelationsuch that thereis an arc from state
q 2 Q to anotherstateq′ 2 Q if andonly if (q; � ; q′) 2 � for some� � � .
The arc label � is a set of alphabetsymbols,each of which can causethe
automatonto movefrom the stateq to the stateq′.

De�n ition 5 allowsa Büchi automatonto haveseveralarcsbeginning in
a statesuch that the labelsof thesearcsarenot disjoint (i.e., theycontain a
common symbola 2 �) . Therefore,the automatoncan havemanyexecu-
tionson agivenword. It issuf�cient thatany of theseexecutionsisaccepting
for the automatonto acceptthe word. This nondeterminism is actuallyan

1The “labels”associatedwith the transitionsarede�ned over2Σ insteadof � for conve-
nience. This makesit possibleto combine all alphabetsymbolson which the automaton
can move from a state to anotherstate into the sametransition; seethe de�n ition of the
executionsof aBüchi automaton.

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 12

essentialrequirementfor Büchi automatato beableto expressall linear tem-
poralproperties:it canbeshown that deterministic Büchi automata (with at
mostoneexecutionon anyinput word)arenot asexpressiveasnondetermin-
istic Büchi automata (seee.g.[30]).

Wewill not discussherehow to actuallyobtain aBüchi automatonfrom a
linear temporallogic formula. Thisphasein LTL modelchecking isasome-
what nontrivial taskin itself and may evenbe dif�cult to handle correctly
and ef�c iently in practice,which is suggestedby the experimentsmadein
this andearlierwork [26, 27] with practicalimplementations.Eventhe the-
oretical questionof LTL formula translationinto Büchi automata hasstill
gainedresearch interestwith newandimprovedtranslationalgorithmsaimed
at ef�c ient minimization of the number of statesand transitionsin the con-
structedautomatapresentedyearafteryear. Theearlyalgorithmic techniques
for LTL-to-Büchi translation[31] wererelatedto tableau methods for LTL
(e.g. [35, 16, 12]). Most of the recentalgorithmsfocuson the direct con-
structionof automata. Thesealgorithmstry to usethe syntactic structureof
the LTL formula ef�c iently to guidethe automatonconstructionin orderto
minimize the sizeof the result. This basicapproach waspresentedin [8],
andfurther improvementshavebeenproposedlaterboth insideandaround
the basicconversionphase[5, 24,6].

Not all languagescorresponding to themodelsof LTL formulaehavecon-
ciserepresentationsasBüchi automata. The translationof a linear temporal
logic formula ' into a Büchi automatonmay in the worst caserequire an
automatonwith 2O(|ϕ|) states,wherej' j denotesthe lengthof ' [32].

Example 4 As an example of a Büchi automaton representing a language
defined by an LTL formula, we give a Büchi automaton for the formula �♦p2

from Example 2. Let AP = f p1; p2g, and let A�♦p2 = h� ; Q; � ; q0; F i be
the Büchi automaton, where

� = 2AP =
�

; ; f p1g; f p2g; f p1; p2g
	

,
Q = f q0; q1; q2g,
� =

n �
q0;

�
f p2g; f p1; p2g

	
; q1

�
;
�
q0;

�
; ; f p1g; f p2g; f p1; p2g

	
; q2

�
;

�
q1;

�
f p2g; f p1; p2g

	
; q1

�
;
�
q1;

�
; ; f p1g; f p2g; f p1; p2g

	
; q2

�
;

�
q2;

�
f p2g; f p1; p2g

	
; q1

�
;
�
q2;

�
; ; f p1g; f p2g; f p1; p2g

	
; q2

� o
,

q0 = q0, and
F =

�
f q0; q1g

	
.

The automaton is shown in Fig. 4.1. The states associated with the only
acceptance condition of the automaton are marked with a double circle.

Clearly, no execution of the automaton can visit the state q0 infinitely
often, since the automaton has no transitions with q0 as the target state.
Therefore, all accepting executions of the automaton must visit the state q1

infinitely often. This can happen only if the automaton executes an infi-
nite number of transitions with the label

�
f p2g; f p1; p2g

	
, so any word ac-

cepted by the automaton must contain an infinite number of symbols f p2g
or f p1; p2g. From this it follows that the word must have an infinite num-
ber of suffixes beginning with either of these symbols, and by the semantics
of LTL, p2 holds in any such suffix. Therefore, the automaton accepts an

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 13

p1 p2{ , }p2}{ , }{

p1 p2{ , }p2}{ , }{

p1 p2{ , }p2}{ , }{

p1 p2{ , }p2}{ ,p1}{ ,, }{

p1 p2{ , }p2}{ ,p1}{ ,, }{

p1 p2{ , }p2}{ ,p1}{ ,, }{

1q

0q

2q

Fig. 4.1: A Büchi automaton for the LTL formula �� p2

infinite sequence over 2AP only if p2 holds infinitely often in the sequence,
which corresponds to the LTL property �♦p2.

Conversely, given any infinite sequence over 2AP having the property
�♦p2, the automaton can first move from the state q0 to the state q2, and
then loop between q2 and q1 indefinitely by moving from q2 to q1 whenever
“reading” either of the symbols f p2g or f p1; p2g. The automaton can then re-
main in q1 until it “reads” a symbol other than f p2g or f p1; p2g, which forces
it to return to state q2. The fact that the input sequence satisfies the LTL
property �♦p2 guarantees that the automaton will visit the state q1 infinitely
often, so the input is accepted.

Therefore, the automaton accepts an infinite sequence over 2AP if and
only if the sequence satisfies the LTL property �♦p2. �

4.2.2 Kripke StructuresasBuÈchi Automata

In the end of Chap. 2, the executionsof a Kripke structurewereidenti�ed
with a languageLM of in�n ite wordsover2AP . SincealsoBüchi automata
arerepresentationsfor languages,anyKripke structurecan further be iden-
ti�ed with a Büchi automatonthat acceptsthe languageLM . Informally, a
givenKripkestructurecanbetransformedinto anequivalentBüchi automa-
ton over the alphabet� = 2AP by simply copyingthe label of each state
of the Kripke structureonto everyarc leavingthe state. In addition, all ex-
ecutionsof the automatonare trivially accepting,and thereforeno explicit
acceptanceconditionsarerequired. (This is equivalentto havingoneaccep-
tancecondition including all statesof the automaton.)

More precisely, wehavethe following lemma.

Lemma 1 Let M = hS;�; s0; � i be a Kripke structure. Define the Büchi
automaton AM = h� ; Q; � ; q0; F i , where

� = 2AP ,
Q = S,
� =

�
(s; � ; s′) 2 Q � 2� � Q j (s;s′) 2 �; and � = f � (s)g

	
,

q0 = s0, and
F = ; :

Let � = hy0; y1; y2; : : : i 2 (2AP)ω be an infinite word over subsets of AP .
The automaton AM accepts the word � if and only if the Kripke structure

M has an execution x = hs0; s1; s2; : : : i 2 Sω such that yi = � (si) for all
i � 0.

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 14

Kripke structure M

p1{ }

p1{ }

p2{ }p1 p2,{ }

s 0

s 1

s 2

s 4

s 3

=)

Büchi automaton AM

{ }p1 p2{ }

{ }p1}{ { }p1}{

{ }p1}{

{ }p1}{ { }p1}{

{ }p2}{

3q

1q

4q

2q

0q

,

}{

Fig. 4.2: Converting a Kripke structure into a Büchi automaton

Proof: ()) Assumethat M hasan executionx = hs0; s1; s2; : : : i 2 Sω.
Thus,s0 = s0, andfor all i � 0, (si; si+1) 2 � . Thisexecutioncorrespondsto
theword� = hy0; y1; y2; : : : i 2 (2AP)ω, whereyi = � (si) forall i � 0. Bythe
de�n ition of AM , q0 = s0, andfor all i � 0,

�
si; f yig; si+1

�
2 � . Therefore,

x is an executionof AM over� . Because8F 2 F : inf (r) \ F 6= ; holds
trivially (sinceF isempty),x is anacceptingexecution,andAM acceptsthe
word� .

(() Conversely, assumethatAM acceptsthe word� = hy0; y1; y2; : : : i 2
(2AP)ω. Therefore,it hasan executionr = hq0; q1; q2; : : : i 2 Qω on � ,
whereq0 = q0, and for all i � 0, (qi; � i; qi+1) 2 � for some� i � � such
that yi 2 � i. By de�n ition of AM , this can be the caseonly if for all i � 0,
(qi; qi+1) 2 � , and� i = f � (qi)g. Becauseyi 2 � i, it followsthatyi = � (qi) =
� (si), andsinceq0 = q0 = s0, it followsthat r is an executionof M . �

Example 5 Using the construction in the above lemma, we can construct an
equivalent Büchi automaton AM for the Kripke structure M = hS;�; s0; � i
defined in Example 1. Let AP = f p1; p2g as in the previous examples, and
let AM = h� ; Q; � ; q0; F i , where

� = 2AP =
�

; ; f p1g; f p2g; f p1; p2g
	

,
Q = f q0; q1; q2; q3; q4g,
� =

n�
q0;

�
f p1g

	
; q1

�
;
�
q0;

�
f p1g

	
; q2

�
;
�
q1;

�
f p1g

	
; q2

�
;

�
q1;

�
f p1g

	
; q3

�
;
�
q1;

�
f p1g

	
; q4

�
;
�
q2;

�
;
	

; q2

�
;

�
q3;

�
f p1; p2g

	
; q0

�
;
�
q4;

�
f p2g

	
; q4

� o
,

q0 = q0, and
F = ; .

By Lemma 1, this automaton accepts an infinite sequence over 2AP if and
only if the sequence is the temporal interpretation of an execution of M .
Figure 4.2 illustrates the conversion. �

4.2.3 SynchronousProduct

Any two Büchi automata A1 and A2 corresponding to two languagesLA1

and LA2
can be combinedtogetherinto anotherBüchi automatonthat ac-

ceptspreciselythe languageLA1
\ LA2

(seee.g.[32]). This compositionis

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 15

A2

A1 A2

A1

Fig. 4.3:The languagesLA1
, LA2

andLA1⊗A2

called the synchronous product of A1 and A2 (denotedin the following by
A1
 A2). Since the languageacceptedby the product automatoncorre-
spondsto the intersectionof the languagesacceptedby the automata from
which it wasconstructed,the productautomatoncan alsobe simplycalled
the intersection of twoBüchi automata. SeeFig. 4.3for an illustration.

Theconstructionof thesynchronousproduct,togetherwith theproofthat
it hasthe required properties,aregivenin the following lemma.

Lemma 2 Let A1 = h� 1; Q1; � 1; q0
1; F 1i and A2 = h� 2; Q2; � 2; q0

2; F 2i be
two Büchi automata, where Q1 and Q2 are disjoint, and F 1 = f F 1

1 ; F 1
2 ; : : : ;

F 1
ng and F 2 = f F 2

1 ; F 2
2 ; : : : ; F 2

mg for some n; m � 0. Define the Büchi
automaton A = h� ; Q; � ; q0; F i , where

� = � 1 [� 2,
Q = Q1 � Q2,
� =

n�
(q1; q2); � ; (q′1; q′2)

�
2 Q � 2� � Q j

(q1; � 1; q′1) 2 � 1; (q2; � 2; q′2) 2 � 2; and � = � 1 \ � 2 6= ;
o

,
q0 = (q0

1; q0
2), and

F = f F 1
1 � Q2; F 1

2 � Q2; : : : ; F 1
n � Q2;

Q1 � F 2
1 ; Q1 � F 2

2 ; : : : ; Q1 � F 2
mg:

Assume that � 1 \ � 2 6= ; , and let � = hy0; y1; y2; : : : i 2 (� 1 \ � 2)ω be an
infinite word over � 1 \ � 2.

The automaton A accepts the word � if and only if both A1 and A2 accept
� . Moreover, A will not accept any word in (� 1 [� 2)ω n (� 1 \ � 2)ω.

Proof: ()) Assumethat A1 and A2 both accept� . Then, A1 and A2 have
executionsr 1 = hq1

0; q1
1; q1

2; : : : i 2 Qω
1 and r2 = hq2

0; q2
1; q2

2; : : : i 2 Qω
2 ,

respectively, such that q1
0 = q0

1, q2
0 = q0

2, and for all i � 0 and j 2 f 1; 2g,
(qji ; � ji ; qji+1) 2 � j for some� ji � � j such that yi 2 � ji . By de�n ition of A,
q0 = (q0

1; q0
2) = (q1

0; q2
0),

�
(q1
i ; q2

i); � 1
i \ � 2

i ; (q1
i+1 ; q2

i+1)
�

2 � for all i � 0,
and yi 2 � 1

i \ � 2
i . Therefore,A hasthe executionr = hq0; q1; q2; : : : i 2

(Q1 � Q2)ω such thatqi = (q1
i ; q2

i) 2 Q1 � Q2 for all i � 0.
Since r1 is an acceptingexecutionof A1, there must for all acceptance

conditions F 1
i 2 F 1 (1 � i � n) exista stateq1

ki
2 F 1

i that occurs in�n itely
often in r1. Therefore,for each acceptancecondition F 1

i � Q2 2 F (1 �
i � n), therearein�n itely manyindicesj � 0 such that (in the executionr)
qj 2 F 1

i � Q2, sor intersectseach of the acceptanceconditions F 1
i � Q2 2

F an in�n ite number of times. BecauseQ2 is �n ite, there must for each

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 16

acceptancecondition exista state (q1
ki

; q2
ki

) 2 F 1
i � Q2 (1 � i � n) that

by itself occurs in�n itely many times in the executionr , and thereforethe
acceptancecondition F 1

i � Q2 is ful�lled in r for all 1 � i � n.
A similar argumentshowsthat alsoall acceptanceconditions of the form

Q1 � F 2
j 2 F areful�lled in the executionr . Therefore,r ful�ls all accep-

tanceconditions in F . It followsthat r is an acceptingexecutionof A, soA
accepts� .

(() Assumethen that A accepts� . Therefore,it hasan executionr =
h(q1

0; q2
0); (q1

1; q2
1); (q1

2; q2
2); : : : i 2 (Q1 � Q2)ω, where(q1

0; q2
0) = (q0

1; q0
2), and

for all i � 0,
�
(q1
i ; q2

i); � i; (q1
i+1 ; q2

i+1)
�

2 � for some� i � � such that
yi 2 � i. It followsdirectly from the de�n ition of � that A1 and A2 have
executionsr 1 = hq1

0; q1
1; q1

2; : : : i 2 Qω
1 and r2 = hq2

0; q2
1; q2

2; : : : i 2 Qω
2 on

input � , respectively.
Becauser isanacceptingexecutionof A, thereexistsfor each acceptance

condition F 1
i � Q2 2 F (1 � i � n) a state (q1

ki
; q2
ki

) 2 F 1
i � Q2 that

occurs in�n itely often in r . Therefore,the stateq1
ki

occurs in r 1 an in�n ite
number of times. Similarly, wecan �nd alsofor each acceptancecondition
Q1 � F 2

j 2 F (1 � j � m) a stateq2
kj

2 F 2
j occurringin�n itely often in r 2.

Therefore,r 1 andr2 areacceptingexecutionsof A1 andA2, respectively, so
both automataaccept� .

Finally, it is easyto seefrom the de�n ition of A that A cannotevenhave
an executionover a word � 2 (� 1 [� 2)ω n (� 1 \ � 2)ω, and thereforeit
can neither acceptanyword in this set. Any word in this setwould haveto
contain a symbola 2 (� 1 n � 2) [(� 2 n � 1); however,for all transitions
(q; � ; q′) 2 � of A, � � � 1 \ � 2, soa 62� for all transitionsof A. �

Intuitively, the synchronousproduct of two Büchi automata capturesall
the “legal” synchronous behaviours that the original automata can haveon
any input word. Here, a “legal” synchronousbehaviourcorrespondsto a
parallelexecutionof the original automata such that at each stepof the exe-
cution, the labelson the transitionschosenbytheautomataat thatstepshare
at leastonecommonelement.

Example 6 We compute the synchronous product of the Büchi automaton
AM from Example 5 with the Büchi automaton A�♦p2 from Example 4 (see
the definitions for these automata from pages 15 and 13, respectively).

Since AM and A�♦p2 both have the same alphabet 2AP , their synchronous
product A = AM
 A�♦p2 = h� ; Q; � ; q0; F i will have the same alphabet,
so � = 2AP =

�
; ; f p1g; f p2g; f p1; p2g

	
.

Since AM contains 5 states and A�♦p2 contains 3 states, A has 5 � 3 = 15
states, so

Q = f (q0; q′0); (q1; q′0); (q2; q′0); (q3; q′0); (q4; q′0);
(q0; q′1); : : : ; (q4; q′1);
(q0; q′2); : : : ; (q4; q′2)g;

where the first element of each pair is a state of AM and the second element
is a state of A�♦p2 (for clarity, primes are added to the states of A�♦p2 to
distinguish them from the states of AM).

The initial state q0 of A is (q0; q′0).

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 17

The transition relation � can be constructed as follows. Beginning in
state (q0; q′0), we find the transitions starting from this state by checking
whether any transition (q0; � ; q) of AM can be synchronized with any tran-
sition (q′0; � ′; q′) of A�♦p2 (here, q and q′ can be any states of AM and A�♦p2 ,
respectively). The transitions of AM are

�
q0;

�
f p1g

	
; q1

�
and

�
q0;

�
f p1g

	
; q2

�
;

and the transitions of A�♦p2 are
�
q′0;

�
f p2g; f p1; p2g

	
; q′1

�
and

�
q′0;

�
; ; f p1g; f p2g; f p1; p2g

	
; q′2

�
:

By definition of the synchronous product, two transitions (one of which is
always chosen from AM , the other from A�♦p2) can be synchronized if the
set intersection of the labels associated with the transitions is nonempty. Be-
cause

�
f p1g

	
\

�
f p2g; f p1; p2g

	
= ; , the transition

�
q′0;

�
f p2g; f p1; p2g

	
;

q′1
�

of A�♦p2 cannot be synchronized with either of the transitions of AM .
However, the other transition can be synchronized with either of AM ’s tran-
sitions, so � contains the two transitions

�
(q0; q′0);

�
f p1g

	
; (q1; q′2)

�
and

�
(q0; q′0);

�
f p1g

	
; (q2; q′2)

�
:

By repeating this test for the other 14 states of A, we can construct the full
transition relation � , eventually obtaining the Büchi automaton depicted in
Fig. 4.4.

Finally, the acceptance conditions F are determined by the acceptance
conditions of AM and A�♦p2 . Because AM does not have any acceptance
conditions, but A�♦p2 has one acceptance condition f q′0; q′1g, A will have
one acceptance condition, so

F =
�

f (q0; q′0); (q1; q′0); (q2; q′0); (q3; q′0); (q4; q′0);
(q0; q′1); (q1; q′1); (q2; q′1); (q3; q′1); (q4; q′1)g

	
:

As before, the states belonging to the only acceptance condition of A are
marked with a double circle in Fig. 4.4.

By Lemma 2, we know that the automaton A will accept an infinite word
over 2AP if and only if the word is accepted by both AM and A�♦p2 . As an
example of such an accepting execution, we can take the sequence

r = h(q0; q′0); (q1; q′2); (q3; q′2); (q0; q′1); (q1; q′2); (q3; q′2); (q0; q′1); : : : i

By Lemma 2, this sequence corresponds to the accepting executions

rAM = hq0; q1; q3; q0; q1; q3; : : : i and rA�♦p2

= hq′0; q′2; q′2; q′1; q′2; q′2; q′1; : : : i

of AM and A�♦p2 , respectively. (All executions of AM are accepting.)
By Lemma 1, rAM corresponds to some execution in the Kripke structure

M from which AM was originally constructed (cf. Example 5, page 15). In
addition, by collecting the labels of the transitions in r we obtain the tempo-
ral interpretation hfp1g; f p1g; f p1; p2g; f p1g; f p1g; f p1; p2g; : : : i of this sys-
tem execution. As seen in Example 2 (page 8), we know that the LTL for-
mula �♦p2 holds in this execution. �

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 18

(q ,q’)2 1

(q ,q’)4 2 (q ,q’)0 1 (q ,q’)2 2

(q ,q’)1 0 (q ,q’)11 (q ,q’)3 2 (q ,q’)3 0 (q ,q’)3 1

(q ,q’)0 2

(q ,q’)4 0

{ }p1}{

{ }p1}{

{ }p1}{

(q ,q’)0 0 (q ,q’)2 0

{ }p1}{
{ }p1}{

{ }p1}{

{ }p1}{

{ }p1}{ { }p1}{

{ }p1}{

{ }p1}{

{ }p2}{ { }p2}{

{ }p2}{

}{

}{

}{

{ }p1 p2{ },

{ }p1 p2{ },

{ }p1 p2{ },
{ }p1 p2{ },

{ }p2}{

{ }p2}{
{ }p2}{

{ }p1 p2{ },{ }p1}{

{ }p1}{

{ }p1}{

{ }p1}{

(q ,q’)4 1

(q ,q’)1 2

{ }p1 p2{ },

Fig. 4.4: Synchronous product of two Büchi automata

4.2.4 Solvingthe LTL Model CheckingProblem UsingBuÈchi Automata

Usingthe synchronousproduct,wecan(for anyKripkestructureM andany
Büchi automatonA¬ϕ corresponding to thenegationofagivenLTL formula)
now constructa Büchi automatonthat recognizesthe languageLM \ L¬ϕ.
Asmentionedpreviously, checking this languagefor emptinesscorresponds
to checking whetherthe languageLM is containedin L ϕ, andthereforethe
languagecan be usedto solvethe model checking problem for LTL. This
result followsdirectly from the previoustwo lemmata and can be statedas
the following theorem.

Theorem 1 Let M be a Kripke structure and let A¬ϕ be a Büchi automaton
that accepts the exact set of infinite sequences over 2AP satisfying the linear
temporal logic formula : ' . Let AM be the Büchi automaton obtained from
the Kripke structure M using the construction described in Lemma 1.

The Büchi automaton AM
 A¬ϕ accepts no input word over 2AP if and
only if M j= ' .

Proof: ByLemma1, the automatonAM acceptsan in�n ite wordover2AP if
andonly if the wordis the temporalinterpretationof someexecutionof M .

Lemma2showsthatthesynchronousproductAM
 A¬ϕ ofAM andA¬ϕ is
aBüchi automatonthathasan acceptingexecutionon an in�n ite wordover
2AP if andonly if the wordisacceptedbyboth AM andA¬ϕ, i.e., if andonly

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 19

ϕLTL formula

ϕ

structure M
Kripke

ϕA

AMM

Synchronous
product

M A ϕ
= ?

AM ϕA

M

AM

LTL−to−Büchi
translation

Fig. 4.5: Automata-theoreticmodelchecking procedurefor LTL

if it is the temporalinterpretation of someexecutionof the Kripke structure
M , andit hasthe linear temporalproperty: ' . Therefore,AM
 A¬ϕ hasno
acceptingexecutionsif and only if no executionof M satis�esthe property
: ' . By the semanticsof LTL, this holds if and only if all executionsof M
satisfythe property' , i.e., if andonly if M j= ' . �

By Theorem1, the model checking problem can now be solvedby �r st
convertingthe systemmodelM into acorresponding Büchi automatonAM ,
then intersectingthisautomatonwith theBüchi automatonA¬ϕ constructed
fromthenegation of somelineartemporallogic formula ' , and�nally check-
ing the resultingautomatonfor the existenceof acceptingexecutions. As
statedin the proof, anyacceptingexecutionof the product automatoncor-
respondsto an executionof M that satis�esthe property: ' . Therefore,any
acceptingexecutionof the product automatonhasa corresponding system
executionthatprovidesa counter-example for the propertyM j= ' .

In LTL model checking, checking the emptinessof the languageLM \
L¬ϕ requires constructingthe propertyautomatonfor the negatedformula
: ' . This correspondsto �nd ing an answerto the questionwhetherall the
systemexecutionssatisfythe property' . However,in somecaseswemaybe
only interestedto know whetherany systemexecutionsatis�esthe property
' individually. From Theorem1 it followsthat this problemis equivalent to
model checking the LTL property: ' in the system.In termsof languages,
thisproblemcorrespondsto checking theemptinessof thelanguageLM \ Lϕ

andcanbesolvedusingthe synchronousproductof the systemanda Büchi
automatonconstructedfrom theproperty' itselfby following thesamesteps
asabove.Asamatterof fact,thisvariantof theLTL modelchecking problem
will beusedin the testsfor LTL-to-Büchi translationalgorithmimplementa-
tionsin Sect.5.1.2.

The automata-theoreticmodel checking procedurefor linear temporal
logic is summarizedin Fig. 4.5.

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 20

4.2.5 Checkingthe Existenceof AcceptingExecutions

SolvingtheLTL modelchecking problemwith Büchi automatastill requires
checking whetherthesynchronousproductAM
 A¬ϕ of thesystemautoma-
ton andthe propertyautomatonhasanyacceptingexecutions.This phaseis
oftencalledthe emptiness check, sincethe nonexistenceof anacceptingex-
ecution in the productautomatonimplies that the languageacceptedby the
automatonis empty. The emptinesscheck canbe doneby usingthe graph-
theoreticalconceptof maximal strongly connected components (MSCCs)
of agraph.We shall�r stgivea brief descriptionof this concept.

Informally, asubsetofnodesofa(�n ite) graph(acomponent of thegraph)
is strongly connected if andonly if thereexistsa path in the graphwith zero
or more arcsbetweenany two nodesin the subset. (It is usuallyassumed
thateverynodeis reachablefrom itselfbyanemptypath.)The stronglycon-
nectedcomponentismaximal if anypropersupersetof graphnodescovering
thestronglyconnectedcomponentisnot stronglyconnecteditself.A strongly
connectedcomponentis callednontrivial if thereexistsa path with at least
onearcbetweenanytwonodesof the component.

Clearly, theMSCCsof thegraphmustbedisjoint. Namely, if thereexisted
two unequal maximal stronglyconnectedcomponents,whoseintersection
werenonempty, theunion of thesecomponentswould form anotherstrongly
connectedcomponent. However,this would be in contradiction with the
maximalityof theoriginal stronglyconnectedcomponents.Sinceeach node
of thegraphbelongstosomemaximalstronglyconnectedcomponent(which
maybea trivial MSCC), the union of all MSCCs coversthe entiregraph.

The executionsof aBüchi automatonarein aspecial relationto the non-
trivial MSCCsof theautomaton(seee.g.[11]). Byde�n ition, each execution
of a Büchi automatonA = h� ; Q; � ; q0; F i is an in�n ite sequencer 2 Qω.
Since Q is �n ite but r is in�n ite, there must be at leastone state that oc-
curs in�n itely many times in r , and thereforeinf (r) 6= ; . In addition, no
statein Q n inf (r) occurs in r in�n itely often. From this it followsthat the
executioncan be divided into a �n ite pre�x of statesof Q followed by an
in�n ite subsequenceof statesin inf (r). By de�n ition of inf (r), each statein
inf (r) still occurs in�n itely often in this subsequence. Then, anytwo states
in inf (r) must be reachable from each other in the Büchi automatonby a
pathwith at leastonearc,sinceotherwisethesestatescould not both belong
to inf (r). Becauseof thisproperty, inf (r) isactuallyanontrivial strongly con-
nected component of the automaton.Therefore,thereexistsalsoa (unique)
nontrivial maximal stronglyconnectedcomponentthat includesinf (r).

According to De�n ition 5, anyacceptingexecutionr of A contains(for
all acceptanceconditions Fi 2 F , 1 � i � n) a stateqi 2 Fi that occurs
in�n itely often in the execution,and thereforethe statesqi (1 � i � n)
alsobelongto inf (r). From the abovediscussion,weseethat the accepting
executionr will eventuallyremain within someunique nontrivial maximal
stronglyconnectedcomponentC � Q of the automaton.Sincethis compo-
nent includesinf (r), it alsoholdsthat for all acceptanceconditions Fi 2 F
(1 � i � n), C \ Fi 6= ; . Therefore,the MSCC intersectsall acceptance
conditions of the automaton.

On the other hand, if the automatonhasa nontrivial maximal strongly

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 21

connectedcomponentC that is reachable from the initial stateof the au-
tomaton,and C intersectsall acceptanceconditions of the automaton,the
automatonthen hasan acceptingexecution. Namely, we can in this case
constructsuch anexecutionby�r stfollowingsomepathfrom the initial state
of the automatonto somestatein C andthen extending the pathwith an in-
�n itely repeatingstatecycle. The statesin the cyclemustbe chosensothat
the cycle containsa state from each acceptancecondition of the automa-
ton, and there is an arc from the laststateof the cycleback to its �r ststate.
Theconstructionof thiscycleispossible,becauseC intersectsall acceptance
conditions,andall statesof C arereachablefrom each otherby the strongly
connectednessproperty. The cycle may actually be constructedin many
ways,sincethe particularorderin which the differentacceptanceconditions
areencounteredin the cycleis not relevant to Büchi acceptance.

The previousdiscussionshowsthat a Büchi automatonhasan accepting
executionif andonly if it containsa nontrivial maximalstronglyconnected
componentthat intersectsall the acceptanceconditions of the automaton,
andthe componentis reachablefrom the initial stateof the automaton.

Example 7 We demonstrate the LTL model checking procedure by check-
ing whether the LTL formula : �♦p2 holds in the Kripke structure M of
Example 1 (page 4). That is, we wish to check whether p2 holds only finitely
often in all executions of M . (We already argued in Example 2 that this is not
the case; we shall now show this using the systematic LTL model checking
procedure.)

Model checking the LTL formula : �♦p2 requires first computing the
synchronous product of the Büchi automaton AM (see Example 5) with the
Büchi automaton A¬¬�♦p2 constructed for the negation of the property to be
checked. Since the negated property :: �♦p2 is logically equivalent to �♦p2

by the semantics of LTL, we shall actually need to construct the automaton
A�♦p2 . We have already done this in Example 4 (page 13). We have also
already computed the required product automaton AM
 A�♦p2 in Example 6
(see Fig. 4.4). Thus, the only remaining task is to check whether the product
automaton has any accepting executions starting from the state (q0; q′0).

Using the product state notation from Example 6, the maximal strongly
connected components of the product automaton are

C1 =
�

(q0; q′0)
	

C7 =
�

(q2; q′1)
	

C2 =
�

(q1; q′0)
	

C8 =
�

(q3; q′1)
	

C3 =
�

(q2; q′0)
	

C9 =
�

(q0; q′1); (q0; q′2); (q1; q′2); (q3; q′2)
	

C4 =
�

(q3; q′0)
	

C10 =
�

(q2; q′2)
	

C5 =
�

(q4; q′0)
	

C11 =
�

(q4; q′1); (q4; q′2)
	

C6 =
�

(q1; q′1)
	

(See Sect. 4.2.6 for a discussion on how the MSCCs can be computed in
practice.)

We see that the components C1; : : : ; C8 are trivial and can be discarded.
Of the remaining components, we check whether any of them intersects any
of the acceptance conditions of the product automaton. (As seen in Exam-
ple 6, the product automaton has only one acceptance condition, because
F = f F g =

�
f (q0; q′0); (q1; q′0); (q2; q′0); (q3; q′0); (q4; q′0); (q0; q′1); (q1; q′1);

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 22

(q2; q′1); (q3; q′1); (q4; q′1)g
	

). We see that C9, C10 and C11 are all reachable
from the initial state (q0; q′0), and

C9 \ F =
�

(q0; q′1)
	

6= ; ;
C10 \ F = ; ; and
C11 \ F =

�
(q4; q′1)

	
6= ; :

The existence of reachable nontrivial MSCCs that intersect the single
acceptance condition now confirms that the property does not hold in the
Kripke structure. We can construct an accepting execution for the automa-
ton e.g. with the component C11 by first taking the path h(q0; q′0); (q1; q′2);
(q4; q′2)i to reach the component, and then extending the path with the cy-
cle h(q4; q′2); (q4; q′1); (q4; q′2); (q4; q′1); : : : i that visits the state (q4; q′1) 2 F
infinitely often. We thus obtain the accepting execution

h(q0; q′0); (q1; q′2); (q4; q′2); (q4; q′1); (q4; q′2); (q4; q′1); : : : i :

By Lemma 2, this execution corresponds to the execution hq0; q1; q4; q4;
q4; : : : i of the automaton AM . This sequence in turn corresponds to the
execution hs0; s1; s4; s4; s4; : : : i of the Kripke structure M (by Lemma 1). It
is easy to see that p2 holds infinitely often in this execution, so it is indeed a
counter-example for the LTL property : �♦p2. �

4.2.6 Implementation Considerations

This sectiondescribesa straightforward wayto implement the �nal stepsof
the LTL modelchecking procedureusingsimpleexplicit representationsfor
thestatespaceandtheBüchi automata. Weassumethatwealreadyhavethe
Büchi automatonA¬ϕ corresponding to thenegationof agivenLTL formula
' andthe automatonAM corresponding to someKripkestructureM .

The constructionof the synchronousproduct (asgivenin Lemma 2) re-
sultsin agraphwhosenumberof statesalwaysequalstheproductof thenum-
bers of statesin the automata corresponding to the Kripke structureand to
the LTL property, respectively. Alsothe numberof transitionsin the product
is dependenton the numbersof statesin theseautomata, and it is addition-
ally boundedby the sizeof the alphabet2AP common to both automata.
However,a direct implementation of this constructionmayproducean au-
tomatonhavingstatesthat arenot reachable from its initial state. Clearly,
sinceno executionof anyBüchi automatoncanvisitanyunreachablestates,
thesestatescanberemovedfrom theproductwithout changingthe language
recognizedby the automaton.2 It is suf�cient to computethe productasthe
minimal setof productstatesthatincludestheinitial stateandisclosedunder
the transitionrelation. In practice,this can be doneusinga straightforward
algorithmthat constructsthe productby performing e.g.a depth-�rstsearch
in the structure.The search startsfrom the initial stateof the structureand
then extendsthe structurewith newstatesasrequired by the transitionrela-
tion. Furthermore,the search algorithmcanbe implementedsothat it can
operatedirectly on the Kripke structureM insteadof the Büchi automaton

2Returning to theproductautomatonof Example6, wecould usethis factto removethe
states(q1, q

′

0
), (q2, q

′

0
), (q3, q

′

0
), (q4, q

′

0
), (q1, q

′

1
), (q2, q

′

1
) and(q3, q

′

1
).

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 23

AM corresponding to the Kripke structure,soan explicit automatonconver-
sion is not required. This is easyto seefrom the similarity betweenKripke
structuresandthe corresponding automatade�ned in Lemma1.

Checking the synchronous product for emptinessrequires �nd ing the
product automaton's maximal strongly connectedcomponentsreachable
from its initial state. Thesecan be computedin linear worst-casetime in
the sizeof the product usinge.g. the algorithm due to Tarjan [25]. From
thesecomponentsit is easyto discardthe trivial onesby checking that each
componenteither containsat leasttwostates,or that the statein each single-
statecomponentis connectedto itselfwith anedge.It isalsostraightforward
to check whetheranynontrivial MSCC intersectsall acceptancesetsof the
automatonby simply takingthe union of the setsof acceptanceconditions
associatedwith the statesin the MSCC. The componentcanbediscardedif
the union comprisesonly an incompletesetof acceptanceconditions,since
no acceptingexecutionof the automatoncan then stay in that component
forever.

If the maximalstronglyconnectedcomponentsarecomputedby usinga
depth-�rstsearch algorithm(such asTarjan'salgorithm)startingfrom the ini-
tial stateof the product,the reachability of each componentfrom the initial
stateis guaranteed.If the automatonhasa nontrivial MSCC that intersects
all acceptanceconditions, wecanthen constructan actualexecutionof the
product automatonto obtain a counter-examplefor the propertyM j= ' .
This executioncan be built by �r st �nd ing a path from the initial stateof
the productto somestatein the MSCC andthen extending the pathwith an
acceptingcyclein the MSCC. The pathfrom the initial stateto the MSCC
canbe obtaineddirectly from the depth-�rstsearch stack usedfor searching
the MSCCs. The constructionof a cyclethat intersectsall acceptancecon-
ditions requiresan additional search inside the MSCC. This search can be
donein quadratictime in the sizeof the componentfor anynumber of ac-
ceptanceconditions,e.g.,byusingthe techniquespresentedin [13] or [15].

In practice,it is possibleto combinethe computationof the synchronous
productwith the check for acceptingexecutionsin the productspace.This
resultsin an on-the-fly modelchecking algorithm,whoseadvantageoverthe
straightforward methoddescribedaboveis that it maybe ableto �nd an ac-
cepting execution(i.e., a counter-examplefor the propertyto be veri�ed)
without exploring the full product space. Since a singlecounter-example
is all that is neededfor provingan LTL propertyfalse,it may thereforebe
possibleto do veri�cation in lessspaceif the propertydoesnot hold in the
given Kripke structure. Techniquesfor on-the-�y emptinesschecking and
counter-examplegenerationhavebeen presentedin [3], [4] and [15]. In
this work, however,we shall needonly small Kripke structures,soextreme
memory-ef�ciency in the search for acceptingexecutionsis not of primary
importance. For simplicity, we shall thereforekeepthe product computa-
tion andthe search for acceptingexecutionsseparate.

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 24

5 TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA

Oneof themostdif�cult phasesin theautomata-theoreticLTL modelcheck-
ing procedureis obtaining a Büchi automatonfrom an LTL formula. In
addition to the relativeconceptualcomplexityof the translationin compari-
son to the other phasesof the LTL model checking procedure,dif�culties
are causedby the need for an ef�c ient implementation that generatesas
small automata aspossiblefrom the input formulae. The need for small
automataarisesfrom the exponentialworst-caseimpact (in the lengthof the
LTL formula) that the sizeof an automatonmay haveon the memory re-
quirementsof the model checking process[32]. Thereis no known general
procedureto do the translationef�c iently in a minimal way, and the best
known methodsrely on variousheuristicsin order to minimize the sizeof
the automata [24, 6]. The optimizationsmadefor reducing the sizeof the
automata can thereforeincreasethe complexityof the translationalgorithm
implementationandmakeit moreproneto errors.

Asthe previousdiscussionshows,Büchi automata can be consideredto
representlanguagesof in�n ite wordscorresponding to the modelsof LTL
formulae,andLTL-to-Büchi translationalgorithmsprovidethe toolsfor sys-
tematicallyconstructingthe automata from the formulae. However,errors
in the implementationof thesealgorithmsmayoccasionallycausethe trans-
lation of someformulae to fail. In thesecases,the translatorproducesan
incorrect Büchi automatonthat may in fact recognize a completelydiffer-
ent languagefrom the one corresponding to the property. Using such an
automatonin the following model checking phaseswill then invalidateall
model checking resultsregarding the intendedproperty. In somecasesthe
modelchecking tool maynot evenprovideanyevidenceto the userthatone
of the modelchecking phasesmayhavefailed.

The following sectionsdescribemethodsfor testing the LTL-to-Büchi
translationphaseof LTL model checking. Testingcould certainly help in
improving the reliability of otherpartsof model checkers. Of course,actual
toolsdiffer verymuch in their implementation details,soit maybe dif�cult
to �nd generalmethodssuitable for automatedtestingof different model
checkers.However,mostof the availableimplementationsinclude the LTL-
to-Büchi translationalgorithmin aseparate“black box” programmodule. In
addition, the input for this phase—theLTL formula—isnot usuallydepen-
dent on anypreviouscomputation, sincethe formula is usuallysuppliedby
the user. Therefore,testingthis phaseof the model checking procedurecan
bedoneusinggeneraltechniquesandcanevenbeautomatedtosomeextent,
which allowsthe testmethodsto beappliedto realmodelchecking tools.

The testmethodsto bepresentedarebasedon thedirect analysisof Büchi
automata obtained using different LTL-to-Büchi translationalgorithm im-
plementations,and a more indirect way for testingthe correctnessof the
different translationalgorithmsthrough usingthe entire LTL model check-
ing procedure. The testinginvolvesrunning the translationalgorithm im-
plementationson givenLTL formulaeandchecking the obtainedautomata
for consistency, togetherwith model checking the formulae in givenKripke
structures.In practice,theseLTL formulae and Kripke structurescan even

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 25

be generatedautomaticallyusingrandomized techniques. An essentialpart
of testingis the cross-comparison of different translationalgorithm imple-
mentations. Basically, this meansrunning severaltranslationalgorithm im-
plementationson the sameinput andthen checking whetherthe resultsob-
tainedusingthe different implementationsareconsistent.Further analysis
of contradictory resultsprovidesa wayto determine which of the implemen-
tationshadfailed.

5.1 TEST METHODS FOR LTL-TO-BÜCHI TRANSLATION

The following subsectionsdescribetests[26, 27] that can be madeon the
Büchi automata and the model checking resultsobtained using the LTL-
to-Büchi translationalgorithmsto be tested. In order to automatethe tests
into a reliable implementation for testingthe correctnessof LTL-to-Büchi
translators, the implementation should be kept assimple aspossible. For
this reason,the dif�culty of implementingeach of the presentedtestsis also
considered.Althoughthetestsrequire input, LTL formulaeandKripkestruc-
tures,to beusedfor running theLTL-to-Büchi translationalgorithmsandthe
LTL model checking procedure,the testsareindependentof anyparticular
kind of formulaeor Kripkestructures.

5.1.1 Analysisof BuÈchi Automata

A naturalapproach for testingthe correctnessof LTL-to-Büchi translational-
gorithm implementationsis to try to directlyanalyzetheautomatagenerated
by the implementations.The analysismethodscanbe basedon the seman-
ticsof linear temporallogic.

Let Lϕ andL¬ϕ denotethe languagescorresponding to the setsof models
of a givenLTL formula ' and its negation, respectively. By the semantics
of LTL, no in�n ite sequenceover2AP cansatisfyboth an LTL formula and
its negation, and thereforethe languagesL ϕ and L¬ϕ must be disjoint. On
the other hand, any in�n ite sequence of subsetsof AP satis�eseither an
LTL formula or its negation, again by the semanticsof LTL. Therefore,the
languagesL ϕ andL¬ϕ arein factcomplementary to each otherwith respect
to the set(2AP)ω, soit mustbe that for anyLTL formula ' , L ϕ \ L¬ϕ = ; ,
andLϕ [L¬ϕ = (2AP)ω.

The factthatL ϕ andL¬ϕ aredisjoint providesapartialcorrectnesstestfor
two Büchi automata constructedfrom the formula ' and from its negation
: ' using an LTL-to-Büchi translationalgorithm implementation (or even
two different implementations). The correct translationof theseformulae
shouldresultin twoBüchi automata recognizing the languagesL ϕ andL¬ϕ.
Let Aϕ and A¬ϕ denotethe Büchi automata obtained from ' and : ' , re-
spectively. The synchronousproduct of theseautomata can be usedto test
the automata for their expectedproperties. By Lemma 2, the product au-
tomatonacceptsan in�n ite wordover2AP if andonly if thewordisaccepted
bybothAϕ andA¬ϕ, i.e., if andonly if thewordbelongsto the intersectionof
the languagesrecognized by the automata. Sincethe languageintersection
Lϕ \ L¬ϕ isknown to beempty, thesynchronouscompositionof Aϕ andA¬ϕ

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 26

LTL formula ϕ

PASS FAIL

1Aϕ

ϕ

ϕ
2A

A1
ϕ A2

ϕ
= A1

ϕ A2
ϕ

=

1Aϕ ϕ
2A

ϕ

Synchronous product

Emptiness check

LTL−to−Büchi translator 1 LTL−to−Büchi translator 2

(a)

LTL formulaϕ

1Aϕ

ϕ

ϕ
2A

1Aϕ ϕ
2A

1Aϕ ϕ
2A

PASS FAIL

A2
ϕA1

ϕ
= A2

ϕA1
ϕ

=

ϕ

LTL-to-Büchi translator 1 LTL-to-Büchi translator 2

Union computation

Complement computation

Emptiness check

(b)

Fig. 5.1: (a) Emptiness check for the intersection of Büchi automata Aϕ and A¬ϕ.
(b) Universality check for the union of Aϕ and A¬ϕ

shouldthereforehaveno acceptingexecutions,which canbe con�rmed by
checking the productautomatonAϕ
 A¬ϕ for emptiness.However,if the
product automatonis nonempty, then at leastone of the automata Aϕ and
A¬ϕ doesnot correctlyrecognize the expectedlanguage,and thereforethe
LTL-to-Büchi translationof at leastone of theseformulae musthavefailed.
In this case,the techniquesdescribedin Sect.4.2.5canbeusedto construct
an in�n ite word over2AP incorrectlyacceptedby both Aϕ and A¬ϕ by ex-
tracting it from an acceptingexecutionof the product automaton. If both
automataAϕ andA¬ϕ wereconstructedusingthe sameLTL-to-Büchi trans-
lation algorithm implementation, the failed emptinesscheck immediately
con�rms an error in the implementation.

The abovestepsarecollectedbelow into Test1. SeealsoFig. 5.1(a).

Test 1 (Emptiness check for the intersection of Aϕ and A¬ϕ)
Input: an LTL formula ' .

1. Compute the Büchi automata Aϕ and A¬ϕ using some LTL-to-Büchi
translator implementation (or two different implementations).

2. Compute the synchronous product Aϕ
 A¬ϕ.

3. Check Aϕ
 A¬ϕ for emptiness. If the product automaton accepts any
input word, then either Aϕ or A¬ϕ does not correctly recognize the
language L ϕ or L¬ϕ, respectively. This suggests that the translation of
at least one of the formulae into a Büchi automaton has failed.

�

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 27

We shall shortlyaddressthe questionwhy it can be useful to apply two
different LTL-to-Büchi translatorsfor constructingtheautomataAϕ andA¬ϕ

required in Test1. However,we �r st introduce anothersimilar consistency
check applicableto the automataAϕ andA¬ϕ.

Test1 is not completefor showing the correctnessof an LTL-to-Büchi
translationalgorithm implementation evenon a singleLTL formula. For
example,it iseasyto seethatan implementationthat “cheats”byalwaysgen-
eratingan empty automaton(i.e., an automatonthat rejectsall its inputs)
regardlessof the input formula would trivially passthis test,sinceintersect-
ing any automatonwith an empty automatonresultsin an empty product
automaton.

In principle, the fact that the union of L ϕ and L¬ϕ formsthe universal
language(2AP)ω providesanothertestto be usedtogetherwith Test1 in or-
der to con�rm that the languagesrecognized by the automata Aϕ and A¬ϕ

arecomplementary to each other. It can be shown (seee.g.[30]) that any
two Büchi automata can be combined into anotherBüchi automatonthat
acceptspreciselythe union of the languagesrecognized by the original au-
tomata. Therefore,it might be possibleto check whether the automaton
Aϕ [A¬ϕ acceptsthe universal language,i.e., that the automatonaccepts
everyinput wordover2AP . The existenceof an input wordnot acceptedby
thisautomatonwould again suggestthatoneof the LTL-to-Büchi translation
algorithmimplementationshasanerror.

Unfortunately, the universalitytestfor aBüchi automatonisnot aseasyto
performin practiceastheemptinesscheck—asamatterof fact,thisproblem
isknown to bePSPACE-complete[30]. The languageuniversalitytestmight
�r st be reducedto a languageemptinesscheck, which can be solvedusing
Büchi automata: the fact that the languageL ϕ [L¬ϕ is universal implies
that its complementL ϕ [L¬ϕ mustbe empty. However,this reductiondif-
fers from all previousoperationson Büchi automata in that it involvesthe
complementation of nondeterministic Büchi automata. AlthoughBüchi au-
tomata areclosedunder complementation, the complementation construc-
tion [23] is relativelyhard to implement in comparisonto the other oper-
ationsappliedto Büchi automata sofar. In addition, eventhe optimal con-
structionmaycauseanexponential(2O(n log n)) worst-caseblow-upin thesize
of the automaton.The blow-upis a consequenceof the nondeterminism of
Büchi automataandcannotin generalbeavoided [23].

Althoughthe languageunion universalitytestwasnot usedin the experi-
mentsmadein this workon realLTL-to-Büchi translationalgorithm imple-
mentations,the required stepsarecollectedbelow in Test2. The stepsare
illustratedin Fig. 5.1(b).

Test 2 (Universality check of the union of Aϕ and A¬ϕ)
Input: an LTL formula ' .

1. Compute the Büchi automata Aϕ and A¬ϕ using some LTL-to-Büchi
translator implementation (or two different implementations).

2. Compute the union of Aϕ and A¬ϕ (see e.g. [30]).

3. Using a Büchi automata complementation procedure (see [23]), com-
pute the complement of Aϕ [A¬ϕ.

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 28

4. Check Aϕ [A¬ϕ for emptiness. If this automaton accepts any input
word, then either Aϕ or A¬ϕ does not correctly recognize the language
Lϕ or L¬ϕ, respectively. This suggests that the translation of at least
one of the formulae into a Büchi automaton has failed.

�

Takentogether,Tests1 and 2 areable to show that the languagesrecog-
nized by two Büchi automata Aϕ and A¬ϕ, constructedusingthe sameim-
plementationfrom someinput formula ' , arecomplementaryto each other.
Although this is alreadya valuableresult in itself, the testsarenot powerful
enoughto provethe correctnessof an LTL-to-Büchi translationalgorithm
implementationon anyinput formula evenif both of the testssucceed.The
testsonly con�rm that the relationshipbetweenthe languagesrecognized
by the two automata is asexpected;however,this is not suf�cient for telling
whetherthe languagescorrectlycorrespondto themodelsof theLTL proper-
tiesinvolved.Therefore,thesetestsmayfail to detectsomesystematicerrors
in the translation. For example,if an implementation erroneouslymixed
the namesof the atomic propositionsin the given input formula such that
otherwiseindependentpropositionssharethe samename, the automaton
generatedby the implementation would not correctlyrecognize the models
of the original formula.

This problemcan be helpedby usingtwo or more independentLTL-to-
Büchi translators for the formula translationassuggestedabove. Insteadof
performing the checks only with automata obtained using a single imple-
mentation i (chosenfrom a setof implementationsI), each of the imple-
mentationscan be usedin turn to convert' and : ' into Büchi automata.
Tests1and2 canthenberepeatedon each pairof automataA i

ϕ andAj
¬ϕ con-

structedby any two implementationsi 2 I and j 2 I , respectively. Since
the LTL formula ' uniquely de�nes its setof models(i.e., the languagesL ϕ

and L¬ϕ), all Büchi automata constructedfrom ' (: ') using the different
implementationsshouldacceptthe samelanguageL ϕ (L¬ϕ). Therefore,no
synchronouscompositionof anytwoautomataA i

ϕ andAj
¬ϕ for somei; j 2 I

should haveany acceptingexecutions,and the sameshould alsohold for

the automata Ai
ϕ [Aj

¬ϕ. A successfulrun of all thesetestsprovesthat the
languagesacceptedby the automata A i

ϕ (Ai
¬ϕ) areequivalent. This would

�nally provethe correctnessof the testedimplementationson the formulae
' and: ' , provided that at least one of the implementations participating in
the tests is already known to be correct.

The lack of an implementation that is known to be correctstill leavesa
smallpossibilityfora false positive, i.e.,acasein which all eight possibletests1

betweentheautomatageneratedbysometwoimplementationssucceed,but
the automata arestill incorrect. This will occur if the languagesrecognized
by all automata constructedfrom the sameformula areequivalent to each
other but still not equivalent to the languagecorresponding to the models
of the formula. (For example,considertwo otherwisecorrectLTL-to-Büchi
translatorimplementations,both of which negateeveryinput formula before

11. “Ai
ϕ \ Ai

¬ϕ = ; ?” 2. ”Ai
ϕ [Ai

¬ϕ = ; ?” 3. “Aj
ϕ \ Aj

¬ϕ = ; ?” 4. ”Aj
ϕ [A

j
¬ϕ = ; ?”

5. “Ai
ϕ \ Aj

¬ϕ = ; ?” 6. ”Ai
ϕ [A

j
¬ϕ = ; ?” 7. “Aj

ϕ \ Ai
¬ϕ = ; ?” 8. ”Aj

ϕ [Ai
¬ϕ = ; ?”

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 29

translation.)Intuitively, the probabilityof a falsepositiveshoulddecreaseif
anotherindependentimplementation is included in the tests.

However,evenif none of the implementationsis known to be correct,
which is likely to be the casein practice,testingdifferent implementations
againsteach other still increasesthe intuitive con�dence in the correctness
of the automata if no failuresare detected. This view is basedon the as-
sumptionthat two independentimplementationsarenot likely to fail in the
samewayon the sameinput formula (i.e., by generatingequivalent but in-
correctautomata from the formula). Thus, an inconsistencyis likely to be
detectedin at leastone of the eight possibleteststhat can be madeon the
Büchi automata generatedby two different implementationsif one of the
testedtranslatorshasan error.

Noneof thetestscangivefalse negative answers,however. This isbecause
a testfailure betweentwo automata alwaysimplies that at leastone of the
automata is incorrect:

� A failure in Test1 betweentwo implementationsi; j 2 I implies the
existenceof an input � 2 (2AP)ω recognized by both of the automata
Ai
ϕ and Aj

¬ϕ. (If necessary, such an input can be constructedby the
sametechniquesusedfor extractingcounter-examplesfor LTL prop-
ertiesfrom product automata. SeeSect.4.2.6.) At leastone of these
automata must now be incorrect,sinceno in�n ite sequenceover2AP

canbeamodelof ' and: ' atthesametime. Therefore,oneof theau-
tomata incorrectlyaccepts� . The otherautomatonalsoaccepts� , but
this testdoesnot giveusefulinformation aboutthe correctnessof that
automaton:for example,it maybe that the automatonacceptsevery
input, althoughneither of the formulae is actuallyvalid. Distinguish-
ing the certainly incorrect automatonfrom the two will be discussed
later in Sect.5.2.

� Similarly, a failure in Test2 betweentwo implementationsi; j 2 I
impliesthat thereexistsasequence� 2 (2AP)ω rejected byboth of the
automata Ai

ϕ andAj
¬ϕ. (Such a sequencecould again be constructed

during the emptinesscheck of A i
ϕ [Aj

¬ϕ.) The techniquesusedfor
distinguishingthe incorrect automatonin Test1 can be appliedalso
to thiscaseto determine which oneof the automata incorrectlyrejects
� . (Asabove,nothing canbesaidaboutthe absolutecorrectnessof the
otherautomaton.)

Thedifferenttypesof testsandthetypesof errorstheyareableto detectare
summarizedin Fig. 5.2. However,becauseTest2 is dif�cult to implement,
relyingonlyon Test1 islikely to reducetheoverallef�c iencyof �nd ing errors
in the implementationswith the testingprocedure.The nextsubsectiondis-
cussessomealternativetestingmethodsbasedon moreeasilyimplementable
techniquesthat canhelp to improvetestingef�c iency.

The previoustestshavetheadvantageof being independentof thechosen
LTL formula ' . Therefore,thesetestscan useevenrandomLTL formulae
that arequite easyto generateautomatically. Previousexperiments[26, 27]
suggestthat evensimplerandomlygeneratedinput canbe of usein �nd ing

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 30

ω(2)AP

ϕ ϕ

ActualrelationshipbetweenL ϕ andL¬ϕ

Relationship between
languages recognized
by twoautomata

Error Detectableby

ω(2)AP

Aϕ A ϕ

The languagesrecog-
nized by the automata
arenot disjoint

Test1

ω(2)AP

A ϕAϕ

The union of the lan-
guagesrecognized by
theautomata isnot the
universallanguage

Test2

A ϕ

Aϕ

ω(2)AP
The languagesrecog-
nized by the automata
are complementary
but still incorrect

Running Tests1 and
2 using several inde-
pendent implementa-
tions (may still result
in a falsepositiveun-
less a correct imple-
mentation is available)

Fig. 5.2: Examples of incorrect relationships between languages accepted by two
Büchi automata constructed from ϕ and ¬ϕ by two LTL-to-Büchi implementations
and how to detect them

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 31

errors in LTL-to-Büchi translators. The random testingstrategyis alsothe
approach takenin this work;the detailswill bediscussedlater in Chap.6.

Limited testingcould still be done on the implementationsusing spe-
cially chosenLTL formulae: for example,no Büchi automatonconstructed
from an unsatisfiable LTL formula should haveany acceptingexecutions.
Anotherweakbut simpleconsistencycheck would be to testthat the Büchi
automatonconstructedfrom a valid LTL formula hasevenone accepting
execution. Checksbasedon thesepropertiescould again be implemented
by direct applicationof the emptinesscheck to the automata. Of course,a
cleverimplementation might beableto detectthe validity or unsatis�ability
of a formula directly (e.g.,from the syntactic structureof the formula), with-
out actuallyperforming translationusingmore generaltechniques. There-
fore, relying only on such special casesmaynot be suf�cient for testingall
partsof the implementation;assessingthecoverageof thiskind of testingwill
require takingthe implementationdetailsinto account.Furthermore,these
testsrequire LTL formulae with known special properties,which makesit
moredif�cult to generatethe formulaeautomatically. Of course,onecould
simplyusea preselectedcollection of valid or unsatis�ableformulae instead
andtestonly a fewselectedcases.

This work,however,focuseson �nd ing reasonablygeneraltestingmeth-
odsfor LTL-to-Büchi translators. For that reason,no testingmethodsbased
on LTL formulae with special propertieswill be used,sincetheir effective-
nesson a particularimplementation dependsmorecloselyon the detailsof
theimplementation. Instead,thisworkcontinuesusingtherandominput ap-
proach, treatingthe testedimplementationssimplyas“black boxes”without
looking at their internal details. (Certainly, choosinga setof testformulae
with detailed knowledgeabout the structureof an implementation mayre-
sult in moreeffectivetestsfor thatparticularimplementation,sothis kind of
testingis not a bad strategye.g.in the developmentof a new implementa-
tion.)

5.1.2 Usingthe LTL Model CheckingProcedure

The decision of implementing only Test1 into an automatedtestingtool
is likely to reducethe tool's effectivenessin �nd ing errors in LTL-to-Büchi
translationalgorithm implementations,unlessalternativetestingmethods
are usedto remedythis problem. This subsectiondiscusseshow the LTL
model checking procedure(describedin Chap. 4) canbe appliedto testing
the correctnessof LTL-to-Büchi translators.

GivenaKripkestructureM , thesemanticsofLTL guaranteethatthetruth
valueof anyLTL formula isuniquelyde�ned in the structure.Therefore,no
matterwhich methodsareusedto model check a givenLTL formula ' in
M , themethodsshouldalwaysgivethe sameanswerto thequestionwhether
' holds in M , providedthat all the usedmethodsaresoundand complete
and theyareappliedcorrectly. Sincethe abstractautomata-theoreticmodel
checking procedurefor LTL is soundand complete(by Theorem 1), the
correctnessof the model checking resultsgivenby an LTL model checking
procedureimplementation dependson whetherall phasesof the procedure
arefreeof implementationerrors.

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 32

Therefore,if thereareseveralLTL-to-Büchi translationalgorithm imple-
mentationsavailable, each of them can be usedin turn to converta given
LTL formula into a Büchi automaton,which is then usedto model check
the formula in agivenKripkestructure.In effect,usingdifferent implemen-
tationsfor the formula translationnow correspondsto havingseveral“model
checking procedures”,all of which shouldgivethe sameanswerif none of
the LTL-to-Büchi implementationshaveerrors. Inconsistencies in the an-
swers then suggestthat someof the LTL-to-Büchi translationalgorithmsare
in error,or thatanerroroccurredduring somelaterphasein the LTL model
checking procedure.

Admittedly, applyingthe full LTL model checking procedureto testthe
correctnessof only one of its phasesseemsmore complicatedthan the di-
rectanalysisof Büchi automata. Furthermore,inconsistenciesin the model
checking resultsmaynot necessarilyoriginatefrom theLTL-to-Büchi transla-
tion phase,but someotherphaseinstead.Therefore,it might seemquestion-
ablewhether this method is effectiveand easilyimplementableenoughfor
uncoveringerrorsparticularlyin the LTL-to-Büchi translationphase.How-
ever,this approach is justi�ed becauseof the following main reasons:

� All phasesof the LTL model checking procedureafter the LTL-to-
Büchi translationcan be integratedinto a common implementation
framework.This helpsin trying to isolatethe sourceof model check-
ing resultinconsistenciesinto the formula translationphasethat isper-
formedwith the testedtranslationalgorithmimplementations.In prin-
ciple, this resultsin “an LTL model checker with a replaceableLTL-
to-Büchi translationmodule”.

� Extremememory-ef�ciency is not of primary importancefor the pur-
posesof plain testing,sinceit is not necessaryto usereal-sizedexam-
plesof Kripke structuresastestcases.Therefore,it maybe acceptable
to implement the LTL model checking phaseswith verystraightfor-
wardalgorithms,such asthosedescribedin Sect.4.2.6.In addition, all
of thesealgorithmsarealsoconceptuallymore simple than the algo-
rithms neededfor LTL-to-Büchi translation. Actually, the algorithms
for computing the synchronousproduct of two Büchi automata and
checking it for emptinessby examining its nontrivial MSCCs can be
implementedasre�nementsof abasicgraphdepth-�rstsearch.

For testingpurposes,the LTL model checking procedurecan be simpli-
�ed slightly. To model check an LTL formula ' in a givenKripke structure
M , the formula would normallyneedto benegated �r stto obtain the Büchi
automatonto be usedfor checking the languageLM \ LA: ' for emptiness.
However,when testingLTL-to-Büchi translators, the actual answerto the
questionwhetherthe LTL formula ' holdsin the Kripkestructureisnot rel-
evant,sincethe formula might havebeengeneratedrandomly(andtherefore
it maynot evenrepresentany“useful” property).It is moreimportant to see
whetherthe LTL modelchecking proceduregives the same model checking
results for the formula, whicheverof the testedLTL-to-Büchi translational-
gorithm implementationsis usedin the modelchecking process.Therefore,
it is not necessaryto negate the formula ' beforeconstructinga Büchi au-
tomaton. Instead,it is possibleto simplyconvert' itself into an automaton

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 33

and then proceedwith synchronizing the automatonwith the Kripke struc-
ture asbefore. Asdiscussedat the end of Sect.4.2.4,the resultingproduct
automatoncan be usedto tell whetherany of the executionsof the Kripke
structuresatis�esthe property' individually. It is clear that the answerto
thisquestionshouldalsoremainthe sameregardlessof the methodsusedfor
solvingthisproblem—providedthat theyaresoundandcomplete,of course.
This “modi�ed” model checking procedureis actuallyequivalent to check-
ing whetherthe LTL formula : ' holdsin the structure.

A simple additional re�nement of this testingmethod allowseasily“re-
using” a single Kripke structureto obtain more data for comparison. By
Lemma2, everyexecutionof the synchronouscompositionof twoBüchi au-
tomata correspondsto two synchronousexecutionsof the original automata
(in this case,the systemautomatonAM and the propertyautomatonAϕ).
Thesesynchronousexecutionsbegin in the respectiveinitial statesof the
structures.However,changing the initial stateof the Kripke structurealso
changesthe setof executionsin the structure. Repeatingthe LTL model
checking procedurein the modi�ed structurethen givesa different set of
model checking results, telling whether any in�n ite path beginning in the
new initial state of the Kripke structurehasthe property' . This allowsa
newcomparisonto bemadeon the resultsobtainedusingthe differentLTL-
to-Büchi translationalgorithm implementations: inconsistentresultsagain
suggestthat someof the implementationsmayhavefailed. By considering
each stateof theKripkestructurein turn asthe initial state,the check canbe
repeatedasmanytimesastherearestatesin the Kripkestructure.

Althoughchangingthe initial stateof the Kripke structureessentiallycre-
atesanewKripkestructure,it issuf�cient to synchronize thesystemautoma-
ton AM with the propertyautomatononly once. Severalsynchronizations
wouldberequired only if alsothe transitionrelationof M werechangedor if
the newproductautomata containedstates(i.e., pairsof stateschosenfrom
AM andAϕ, respectively)not included in the resultof anyprevioussynchro-
nization. However,changingthe initial stateof theKripkestructuredoesnot
affectits transitionrelation, and the de�n ition in Lemma 2 guaranteesthat
the product alwayscontainsall possiblestatepairs, independentof the ini-
tial stateof AM . Therefore,the productasde�ned in Lemma2 canactually
be calledthe global synchronous product, sinceit includesall synchronous
executionsof AM andAϕ, no matterin whatstateAM beginsitsexecution.2

Performing all the emptinesschecks in the global synchronousproduct
requireschangesalsoin the emptinesschecking phase.For example,if the
MSCCsof theproductarecomputedusingTarjan'salgorithm,theemptiness
check can be performed“globally” by simply restarting the MSCC search
algorithmin everystate(q; q0), whereq is a stateof AM , andq0 is the initial
stateof Aϕ. During each run of Tarjan's algorithm,each nontrivial MSCC
can then be checked for acceptingexecutionsasdescribedin Sect.4.2.5.
Let (q; q0) be the state in which the MSCC algorithm wasmost recently
restarted. If the search �nds an acceptingexecution,the (modi�ed) Kripke
structurethen hasan executionthatbeginsin the statecorresponding to the
stateq of AM , andthis executionsatis�esthe property' .

2However,seeAppendix A for noteson the practicalimplementation of the globalsyn-
chronousproductandthe followingemptinesscheck.

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 34

LTL formula ϕ

Global
synchronous

product

Global
synchronous

product

ϕA2

AM AM

Emptiness check Emptiness check

Aϕ
1

Y Y YY Y NN

0b2b1
2 b3

2b4
2b5

2 bn−1
2b2

2

structure M
Kripke

AMM

Result comparison

PASS FAIL

1
k k

2k: b = b 1
k k

2k: b = b

N Y YY NNY

0
1b 1b1

1b3
1b4

1b5
1bn−1

1b2

Aϕ
1 AMAM Aϕ

2

ϕϕ
M

LTL−to−Büchi translator 1 LTL−to−Büchi translator 2

Fig.5.3:Model checking result cross-comparison check for two LTL-to-Büchi trans-
lation algorithm implementations

The abovestepsarecollectedtogetherin Test3. SeealsoFig. 5.3.

Test 3 (Model checking result cross-comparison check)
Input: Kripke structure M , LTL formula ' .

1. Convert the formula ' into Büchi automata A i
ϕ using each of the avail-

able LTL-to-Büchi translation algorithm implementations i 2 I .

2. Compute the global synchronous products AM
 Ai
ϕ.

3. Check each product automaton AM
 Ai
ϕ for emptiness, i.e., determine

for each product state (qk; q0
i) (where qk is a state of AM and q0

i is the
initial state of Ai

ϕ) whether the product automaton has any accepting
executions beginning at (qk; q0

i). Denote the answers to this question
by bik 2 f “Y”;“N”g such that bik = “Y” if the product automaton AM

Ai
ϕ can reach an accepting execution from the state (qk; q0

i), and bik =
“N” otherwise. (These answers also tell whether the Kripke structure
M has an execution that satisfies the property ' and begins at the state
corresponding to qk.)

4. Test whether for all states qk of AM , 8i; j 2 I : bik = bjk. If this does not
hold, one of the LTL-to-Büchi translation algorithms must have failed
on the formula ' (under the assumption that all other model checking
phases are performed correctly).

�

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 35

Aswith Tests1 and 2, any inconsistencies detectedin Test3 do not di-
rectly reveal the implementation (or implementations)which had failed.
However,if the model checking resultsobtained using two different LTL-
to-Büchi translatorsareinconsistentin somestateof the Kripke structure,at
leastoneof the automata is again certainly incorrect. This followsfrom the
fact that the truth valuesof the LTL formula ' areuniquely de�ned in any
Kripke structure,sotwo correctmodel checking proceduresfor LTL cannot
givea different answerto the existenceof an executionsatisfying' in any
stateof theKripkestructure.However,asin theprevioustests,theonly thing
that canbe saidaboutthe correctnessof the otherautomatonis that it gives
the correctresult in one particularstateof the Kripke structureM (but not
necessarilyin otherKripkestructures,orevenin otherstatesof M). Thisisall
thatcanbesaidabouttheabsolutecorrectnessof the testedimplementations
alsoin the casewhen there are no inconsistencies in the model checking
results,sothere is a possibilityfor falsepositives.Intuitively, this possibility
could again be madesmallerby running the cross-comparisontestsusing
severalindependentLTL-to-Büchi translationalgorithmimplementations.

Test3 maydetectthe inequivalenceof languagesacceptedby Büchi au-
tomataconstructedbydifferentLTL-to-Büchi translatorsfrom thesameLTL
formula. However,the testis inherentlydependenton the Kripke structures
usedfor modelchecking, andit cannotbepracticallyappliedto proving the
equivalenceof the languagesacceptedbytheautomataevenon asingleLTL
formula. This makesthe testlesspowerful asTests1 and 2 takentogether.
However,sinceTest2 maybe dif�cult to implement andmaythereforenot
beavailable,Test3 mayimprovetheoddsofdetectingerrorsin LTL-to-Büchi
translationalgorithmimplementations.In addition, Test3 canbeautomated
quite easily, sincethe actualteststepsarenot dependenton the formulaeor
the Kripke structuresusedasinput. Therefore,Test3 canbe simplyrun on
e.g.randomlygeneratedformulaeandKripkestructures.

The restof this subsectionfocuseson one additional testto be usedasa
simpleconsistencycheck for asingleLTL-to-Büchi translationalgorithmim-
plementation. This testisbasedon the relationshipbetweenthe satis�ability
of ' and: ' in the sameKripke structure.

In the discussionat the endof Chap.3, it wasnotedthat it is not possible
for both ' and : ' to hold in the sameKripke structure,althoughneither
of theseformulaemight be satis�edin the structure.Let ' andM denotea
givenLTL formula andagivenKripkestructure,respectively. By converting
the formula ' into aBüchi automatonusinganLTL-to-Büchi translatorand
then checking the productautomatonAM
 Aϕ for emptiness,wecantry to
seewhetheranyof theexecutionsof M hastheproperty' . The emptinessof
the automatonAM
 Aϕ suggeststhat no executionof M hasthis property,
and thereforeM j= : ' should hold by the semanticsof LTL. Similarly,
we can alsoconvert the formula : ' into anotherBüchi automatonusing
the sametranslatorand check the emptinessof the automatonAM
 A¬ϕ.
If alsothis automatonis found to be empty, there is a contradiction, since
the emptinessof AM
 A¬ϕ suggeststhat alsoM j= ' shouldhold in the
structure.However,this is impossibleif M j= : ' isalreadyknown to betrue
in the structure.3 Therefore,wemustconcludethat either the formula ' or

3ByDe�n ition 1, Kripkestructureshaveatotal transitionrelation.Therefore,theremust

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 36

LTL formula ϕ

Global
synchronous

product

Global
synchronous

product

AM AM

Emptiness check Emptiness check

N N YY Y YN

0b b4 bn−1b2
ϕ ϕ ϕ ϕ

structure M
Kripke

AMM

Y N NY NYN

0b b1 b3b4b5 bn−1b2
ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ

ϕAAϕ

Result comparison

PASS FAIL

ϕϕ
k kk: b = b = ‘‘N’’ϕ ϕ

kkk: (b = ‘‘Y’’) (b = ‘‘Y’’)

AϕAM AM ϕA

M
ϕ

LTL−to−Büchi translator

Fig. 5.4: Model checking result consistency check for a single LTL-to-Büchi trans-
lation algorithm implementation

: ' wasincorrectlytranslatedinto aBüchi automaton,andtheLTL-to-Büchi
implementationhasanerror.

Thischeck doesnotgivemuch usefulinformationaboutthecorrectnessof
theBüchi automataif either of theproductautomataAM
 Aϕ or AM
 A¬ϕ

is nonempty. To improve the effectivenessof this test,we can again take
advantageof the globalsynchronousproductto obtain moretestdata from a
singleKripke structureby performing the consistencycheck in each stateof
the structure.

Performing the consistencycheck individually on all testedimplementa-
tions requiresconstructingtwo setsof automata Aϕ and A¬ϕ. Each of the
automata Aϕ andA¬ϕ is synchronized with the systemautomatonAM , and
the product automata arechecked for emptiness.The emptinesscheck re-
sultscannow bedirectlyanalyzedusingalsothemodelchecking resultcross-
comparisoncheck (Test3). Thisfactmakesit possibleto combineTests3 and
4 togethersuch that the required product automata need to be computed
only once.

A summaryof the stepsin the model checking resultconsistencycheck
follows.SeealsoFig. 5.4.

Test 4 (Model checking result consistency check)
Input: LTL formula ' , Kripke structure M .

existat leastonein�n ite pathstarting in the initial stateof the structure,andthis pathmust
satisfyeither of the formulaeϕ or : ϕ. Therefore,either of theemptinesschecksmustreturn
with anegativeanswer.

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 37

1. Construct the automata Aϕ and A¬ϕ from the formulae ' and : '
using some LTL-to-Büchi translator.

2. Compute the synchronous products AM
 Aϕ and AM
 A¬ϕ.

3. Check the product automaton AM
 Aϕ for emptiness, i.e. check for
all states (qk; q0) (where qk is a state of AM and q0 is the initial state
of Aϕ) whether the automaton AM
 Aϕ has an accepting execution
starting in the state (qk; q0). Denote the answers to this question by
bϕk 2 f “Y”;“N”g, where bϕk = “Y” if an accepting execution can be
reached, and “N” otherwise.

4. Repeat Step 3 for the product automaton AM
 A¬ϕ. Denote the ob-
tained answers in this case by b¬ϕk .

5. Test whether bϕk = b¬ϕk = “N” for any state qk of AM . If such a state
exists, the model checking results are inconsistent. This suggests that
either the translation of ' or : ' into a Büchi automaton has failed.

�

An inconsistencydetectedin Test4 revealsthe existenceof an input not
recognized by either of the automata Aϕ and A¬ϕ constructedusingsome
LTL-to-Büchi translatorfrom an LTL formula ' andits negatedversion: ' ,
respectively. This meansthat the union of the languagesacceptedby the
two automata is not the universal language2AP . Although Test4 depends
on the Kripke structuresusedfor running the test,it mayhelp in detecting
someof the errors that would otherwisebe left undetectedin caseTest2 is
not available.

When Tests3 and 4 are combined together,it is suf�cient to perform
Test4 on each pair of automata Aϕ and A¬ϕ generatedby a singleimple-
mentation. This is becauseperforming the teston automata generatedby
different implementationscannot�nd anyinconsistenciesthat could not be
detectedby the other tests.4

5.2 TEST FAILURE ANALYSIS

Running different LTL-to-Büchi translatorsagainsteach other doesnot still
giveanyinformationasto which one of thetestedimplementationsmayhave
an error, in casesomeof the testsfail. This makesit dif�cult to determine
which implementation should be �xed. (Tests1, 2 and 4 can detect the

4To seethis,assumethattwodifferentLTL-to-Büchi translatorsi andj passTest3 against
each otheron both formulaeϕ and: ϕ, andboth of the translatorsalsopassTest4 individ-
ually, but Test4 failson two automataAi

ϕ andAj
¬ϕ generatedby the implementations.(As-

sumethat the indicesi andj arechosensuch that thisholds.)Then,bi,ϕ
k = b

j,¬ϕ
k = “N” for

somestateqk of AM . Becausei andj passTest4 individually, it followsthat bi,¬ϕ
k = b

j,ϕ
k =

“Y”.
Becausethe implementationsalsopassTest3, it must be that b

i,ϕ
k = b

j,ϕ
k and b

i,¬ϕ
k =

b
j,¬ϕ
k . Sinceb

i,ϕ
k = b

j,¬ϕ
k = “N”, it now followsthatbj,ϕ

k = b
i,¬ϕ
k = “N”. But then it cannot

bethat the implementationspassTest4 individually, which is acontradiction.
Therefore,if the implementationspassTest3 againsteach otheron ϕ and: ϕ, andeach

of them alsopassesTest4 individually, theycannotfail Test4 againsteach other.

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 38

incorrectnessof evenasingleimplementation;however,theydo not provide
anyuseful information aboutwhich one of the automata usedin the failed
testisclearlyincorrect,which might beusefulfor debugging.)

A simplemethod for distinguishingthe incorrect implementationsfrom
the correct onesis to increasethe number of independentLTL-to-Büchi
translators takingpart in the testsand then to try to look for patternsin the
detectedinconsistencies. For example,if sometranslatorsometimesfails a
testagainst all other testedtranslators, which in turn passall testsagainst
each other, there is likely to be an error in that one translator. However,
this methodmight not beapplicableif therearenot manyimplementations
available,or if the implementationsarenot independent(e.g.,if the imple-
mentationsto betestedareonly differentversionsof aparticulartranslator).

A unifying fact betweenall testsis that it is possibleto constructa wit-
ness—an in�n ite sequenceover2AP—that givesa concreteproofof the test
failure. More importantly, however,the samewitnesscanbe usedto distin-
guishthe incorrectautomatonin anypair of two automata for which oneof
the testsfailed. This then revealsan error in the implementation that gen-
eratedthe incorrect automaton. Intuitively, the role of the witnessin each
failedtestis asfollows:

(i) In Test1, the witnessis a sequencethat is acceptedby two automata
supposedto recognize two complementaryLTL properties' and : ' ,
respectively.

(ii) In Test2, the witnesssequenceis acceptedbyneither of twoautomata
supposedto recognize the properties' and: ' .

(iii) In Test3, thewitnessisasequencethat isacceptedbyoneandrejected
bytheotherof twoautomata,both of which shouldrepresentthesame
property' .

(iv) Analogouslyto Test2, the failureof Test4 canbeprovedwith awitness
that is rejectedby both automata Aϕ andA¬ϕ (supposedly)represent-
ing twocomplementaryLTL properties.

In the �r st threecases,the witnesscanbe obtainedasa sideresultof the
emptinesscheck performedon someBüchi automatonin each of the three
cases.In Tests1 and2, the witnesscanbeextractedfrom the nonemptysyn-
chronousproduct (or the union complement)automatonconstructedfrom
the automata generatedby the LTL-to-Büchi translators from the input for-
mulae. In Test3, thewitnesscanbetakenfrom anonemptyproductautoma-
ton that claimsthe existenceof a pathsatisfyingthe propertyin somesystem
statein which Test3 failed.

In case(iv), the witnesscanbe extractedfrom the systemautomatonAM

insteadof the product automatonusedin Test4. (Of course,the product
automatonisstill neededfor determining the resultof Test4; awitnessexists
only if the testfailed.)

Each caseis thereforeassociatedwith somenonempty Büchi automaton
(in case(iv), AM is nonemptyby de�n ition; seeLemma 1). The witness
is then constructedfrom an accepting execution of this automaton. This
acceptingexecutioncan alwaysbe constructedsothat it consistsof a �n ite

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 39

pre�x of statesfollowed by an in�n itely repeatingcycle of states. In cases
(i)–(iii), such an acceptingexecutioncan be found during the emptiness
check of a Büchi automaton,usingthe techniquesdiscussedin Sect.4.2.5.
In case(iv), anyexecutionof AM havingthedesiredstructuralpropertiescan
be takenasthe witness.(Such an executioncan be found e.g.by a simple
depth-�rstor breadth-�rstsearch in the automaton,stoppingassoonassome
stateof the automatonisvisitedtwice. This is boundto happen,sinceAM is
�n ite andhasa total transitionrelation.)

The labelson the automatontransitionsin the executioncannow bepro-
jectedonto an in�n ite sequence� over2AP by selectinganyof the symbols
in each successivetransitionlabel � into this sequence.It is easyto seefrom
the de�n ition of Büchi automata that the automatonfrom which the execu-
tion wasextractedthen acceptsthis sequence. Since the witnessexecution
alreadyhasa �n ite representation, the elementsof � can be chosensothat
� formsthe concatenationof two �n ite-lengthsequencesoversubsetsof AP
such that the lattersequenceis thoughtto repeatitself in�n itely often.

Let ' and: ' betheLTL formulaethat resultedin the failureof Tests1,2
or 4. (In caseTest3 failed, the only formula involvedin the testis simply
' .) The keyideais now to modelcheck the LTL formula ' again in � , using
an independentimplementation of an LTL model checking procedurefor
this purpose. The result of this check can now be usedasa “yardstick” to
determine which oneof the two Büchi automata is incorrect in each of the
cases(i), (ii), (iii) and(iv) above:

(i) If it is con�rmed that � j= ' holds, then the automatonA¬ϕ con-
structedfor the formula : ' is incorrect.This isbecausetheautomaton
A¬ϕ shouldacceptonly thoseinputs � 2 (2AP)ω for which � 6j= ' is
true. Conversely, con�rm ing that � 6j= ' showsthat the translationof
' into aBüchi automatonhasfailed.

(ii) Con�rm ing that � j= ' implies that the automatonAϕ mustbe incor-
rect, sinceit erroneouslyrejects' (in this case,� is a witnessrejected
byboth Aϕ andA¬ϕ). Likewise,if � 6j= ' , the automatonA¬ϕ is incor-
rect.

(iii) If � j= ' , then the automatonrejecting ' is incorrect; if � 6j= ' , the
automatonthat accepts� doesnot correctly recognize the language
Lϕ.

(iv) Analogousto case(ii).

Insteadof using a generalLTL model checking procedurefor testing
whether � j= ' , it is possibleto model check the formula in the sequence
directly using more simple techniques [14, 27], such asa restrictedLTL
modelchecking algorithmthat operateson in�n ite sequencesover2AP hav-
ing a similar �n ite representation as� above.Intuitively, a restrictedmodel
checkingalgorithmiseasierto implementcorrectlythanageneralalgorithm.
Therefore,it shouldbe possibleto performthe analysisto �nd the incorrect
automatonin a reliableway. This lifts the needfor usinge.g.anotherLTL-
to-Büchi translatorfor testingwhether� j= ' is true.

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 40

Fig. 5.5:A sequential Kripkestructurewithout statelabels

The restof this sectiondescribesan algorithm for model checking the
LTL formula ' in � . In the algorithm, the formula ' is assumedto consist
solelyof atomic propositionsand the operators : , _, X and U. (Since all
otherLTL operatorscanbeexpressedusingthesebasicoperators,' can�r st
be convertedinto this form if necessary;anotherstraightforwardoption is to
extendthe algorithmto supporttheseoperatorsdirectly.)

Actually, � canbeconsideredto bethe temporal interpretation of anexe-
cution of someunderlyingKripke structureM = hS;s0; �; � i . The simplest
such structureisonein which thestatesareconnectedinto asequence.That
is,each stateof the structurehasa unique successor(sinceS is always�n ite,
the successorof the “last” statein the sequenceis oneof its predecessors in
the sequence),andthe statesin the sequencearelabelledwith the elements
of � in the sameorderastheyappearin � . (Thus,� is the only executionof
the structure.)In the following, thesestructuresarecalledsequential Kripke
structures;seeFig. 5.5 for an example.

Definition 6 A sequential Kripke structure hS;s0; �; � i is a Kripke structure
whose each state s 2 S has exactly one successor, and each state of the
structure is reachable from s0 by zero or more arcs. �

Sinceeach stateof the structurehasexactlyonesuccessor,the transition
relation� is actuallya function. In this case,the successorof astates 2 S is
denotedby � (s). For convenience,wealsode�ne � 0(s) = s and � k+1 (s) =
� (� k(s)) for anyintegerk > 0.

The algorithm for model checking an LTL formula ' in a sequential
Kripke structureM is shown in Fig. 5.6. Intuitively, the algorithm works
in a“bottom-up”manneraccording to the syntacticstructureof the formula.
Startingfromtheatomic propositionsoccurringin ' , thealgorithmprocesses
each subformula ' ′ of ' in turn such that each subformula ' ′ is processed
only afterall of itssubformulaehavebeenprocessed.(In practice,thiscanbe
donee.g.byprocessingthesubformulaein thepostorderimposedbyadepth-
�r st search in the parsegraphof ' .) For each states of the structure,the
algorithmthen determineswhetherthe subformula ' ′ holdson the (unique)
in�n ite path that beginsin s. This is repeatedfor the other subformulae of
' , until ' itselfhasbeenprocessed.

The algorithm usesa setResult for storingthe model checking results.
At the end of the algorithm, the setwill contain a pair ('; s) if and only if
the formula ' holdson the in�n ite path beginning in the states. ToEval
denotesthe setof ' 'ssubformulaethat havenot yetbeenprocessed.During
each iteration of the main loop (lines 4–35),the algorithm picksa formula
from this setand then evaluatesit on the pathsstarting from each stateof
the structure.The methodof evaluatinga subformula is determined by the
syntacticstructureof theformula,sothereare�ve mutuallyexclusivecasesto
consider(lines7–34). In each of thesecases,the model checking resultsfor

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 41

1 function eval(ϕ : LtlFormula, M : SequentialKripkeStructure) : Boolean

2 Result := ∅;

3 ToEval := {ϕ0 | ϕ0 is a subformula of ϕ};

4 while ToEval 6= ∅ do begin

5 ϕ0 := a formula in ToEval such that for all proper subformulae ψ of ϕ0, ψ 6∈ ToEval;
6 ToEval := ToEval \ {ϕ0};

7 case ϕ0

8 ϕ0 ∈ AP :

9 for all s ∈ S do

10 if ϕ0 ∈ π(s) then Result := Result ∪ (ϕ0, s);
11 ϕ0 = ¬ψ:

12 for all s ∈ S do

13 if (ψ, s) 6∈ Result then Result := Result ∪ (ϕ0, s);
14 ϕ0 = (ψ1 ∨ ψ2):
15 for all s ∈ S do

16 if (ψ1, s) ∈ Result or (ψ2, s) ∈ Result then Result := Result ∪ (ϕ0, s);
17 ϕ0 = Xψ:

18 for all s ∈ S do

19 if
(

ψ, ρ(s)
)

∈ Result then Result := Result ∪ (ϕ0, s);
20 ϕ0 = (ψ1 Uψ2):
21 s := s0; Marked := ∅;

22 for i := 1 to |S| do begin

23 if (ψ2, s) ∈ Result then begin

24 Result := Result ∪ (ϕ0, s);
25 for all s0∈ Marked do Result := Result ∪ (ϕ0, s0);
26 Marked := ∅;

27 end

28 else if (ψ1, s) ∈ Result then Marked := Marked ∪ {s}
29 else Marked := ∅;

30 s := ρ(s);
31 end;

32 if (ϕ0, s) ∈ Result then

33 for all s0 ∈ Marked do Result := Result ∪ (ϕ0, s0);
34 end;

35 end;

36 if (ϕ, s0) ∈ Result then return “YES” else return “NO”;

37 end;

Fig. 5.6:LTL modelchecking algorithmfor sequential Kripkestructures

the formula ' ′ arecomputedusingpreviouslycomputedinformation about
its constituentformulae. (In the lastcase,the setMarked is usedto keep
information aboutstatesin which the formula may betrue.)

The following propositionestablishesthe correctnessof the algorithm.

Proposition 1 (Correctness of the algorithm) The algorithm of Fig. 5.6 re-
turns the value “YES” if and only if the LTL formula ' holds in the sequential
Kripke structure M .

Proof: SeeAppendix B. �

Asamatterof fact,LTL formulaecanbeeasilytranslatedinto CTL formu-
lae such that the LTL formula holdsin a sequential Kripke structureif and
only if the corresponding CTL formula holdsin the samestructure[14, 27].
The aboveLTL modelchecking algorithmfor sequentialKripkestructuresis
verysimilar toaglobalCTL modelcheckingalgorithm(seee.g.[11]) thathas
beenrestrictedto work only in a certain subclassof Kripke structures.The
complexityof theabovealgorithmcanbeshown to beO(j' j � jSj), wherej' j
denotesthe numberof symbolsin ' .5

5The main loop of the algorithm is executedat mostonce for each subformula of ϕ;

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 42

In practice,the setResult computedin the algorithmcanbeusedto gen-
eratea proof showing whether the formula ' holds in the givensequential
Kripke structure. Basically, this can be doneby applyingLTL semanticsto
the formula and using the Result setto �nd the truth valuesof ' 's subfor-
mulae in the statesof the structure. In the analysisof inconsistentBüchi
automata, the witnessand the proof togethershow that one of the Büchi
automata is incorrect.

The model checking algorithm for sequential Kripke structuresprovides
alsoan algorithmagainstwhich the LTL-to-Büchi translationalgorithm im-
plementationscan be testedin Test3. Obviously, this restrictsthe Kripke
structuresusedin the teststo sequential Kripke structures.However,these
are veryeasyto generateautomaticallyand can be usedin the automatic
testingof LTL-to-Büchi translators.

since jf ϕ′ j ϕ′ is asubformula of ϕgj � jϕj, the loop is thereforeexecutedO(jϕj) times.
The selectionof a subformula from ToEval canbe implementedin constant time, e.g.,if
thesubformulaeare�r stinsertedin thecorrectorderinto a list on line 3 beforeenteringthe
main loop. The orderingcanbedonein linear time in the numberof subformulae.

It is clear that the loopsbetweenlines 9–10,12–13,15–16and 18–19areof complexity
O(jSj); alsothe lines 21–33can be shown to takeO(jSj) time. (This requiresnoting that
the loop betweenlines 22–31insertsat mostone element into Marked in each iteration,
andno elementis insertedinto the setmorethanonce.)

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 43

6 EXPERIMENTAL RESULTS

This chapterbeginswith a descriptionof an automatedtestbench for LTL-
to-Büchi translationalgorithm implementations,basedon the methodsde-
scribedin Chap. 5. This descriptionis followed by an overviewof the ar-
rangementsfor the testsmadewith the testbench on severalLTL-to-Büchi
translationalgorithmimplementations.The chapterendswith asectionpre-
sentingthe obtainedtestresultswith somediscussion.

6.1 AUTOMATED TESTBENCH FOR LTL-TO-BÜCHI TRANSLATORS

The testmethodspresentedin Chap. 5 werepartially implementedinto a
testbench for automaticallytestingLTL-to-Büchi translationalgorithm im-
plementations.The testbench includesTests1, 3 and4, usingthe two latter
teststo try to compensatefor the missingTest2, which wasleft unimple-
mented. To gatherasmuch data aspossiblefor comparison,the testbench
repeatsTests1 and3 for all valid combinationsof theBüchi automatataking
part in the tests,usingglobalsynchronousproducts.1

The testbench usessimplerandomizedalgorithmsfor generatingtheLTL
formulae(usedasinput for theLTL-to-Büchi translatorsto betested)andthe
Kripkestructures(neededin Tests3 and4).

The testbench alsoincludesan implementationof the LTL modelcheck-
ing algorithmforsequentialKripkestructures.It canoptionallybeusedasan-
otheralgorithmwith which the testedalgorithmscanbecomparedin Test3
by restrictingto the useof randomsequential Kripke structures.The algo-
rithm can alsobe usedfor analyzingan inconsistencydetectedin Tests1
or 3 betweentwo implementations,in orderto determine which one of the
implementationsis incorrect.

The testbench wasimplementedin the C++ programming language.The
sourcecodefor the programis available through the author's homepageat
<URL:

�������������
	�	�	��
������������������������������������ ����!���
>.

6.1.1 TestbenchOperation

The automatictestingprocedurebeginswith generatinga formula ' and a
Kripke structure. The testedLTL-to-Büchi translators are then invokedto
obtain Büchi automata A i

ϕ from the formula. This is repeatedalsofor the
negatedformula : ' to obtain the automataA i

¬ϕ neededin Tests1 and4.
Since the input syntax for LTL formulae and the output representation

for Büchi automata areusuallytranslator-speci�c, the testbench usesa sep-
arateinput/output conversion module for each translatorwith a unique in-
put/output representation. This allowsadding new translators into the tests
byattaching anappropriatetranslationmodule into the testbench.

Having obtainedthe Büchi automata, the testbench performsTests1, 3
1The testbench usedhereis an extendedversionof the implementation whoseprevious

versionshavebeendescribedin [26] and[27]. The mostsigni�cant extensionnot included
in previousworkis the incorporationof Test1 into the automatedtestingprocedure.

6. EXPERIMENTAL RESULTS 44

and4 on thegeneratedautomata,usinganinternal implementationfor com-
puting synchronousproductsand checking them for emptiness.(Test3 is
actuallyperformedtwice,usingeach setsof automataAϕ andA¬ϕ.) This im-
plementation is based on the straightforward techniques described in
Sect.4.2.6.Afterall testshavebeenperformed,the testprocedureisrepeated
usinganotherLTL formula or Kripkestructure.

After each testround, the usercan examine the LTL formulae and the
Kripke structureusedin the testround, togetherwith the Büchi automata
generatedby the different implementations in that test round. If Tests1
or 3 detectedan inconsistency, the testbench can optionally givea sugges-
tion aboutwhich of the testedimplementationshad failed. This is doneby
constructinga witnessthat provesa testfailure on someformula ' between
sometwoimplementationsasdescribedin Sect.5.2,andthenusingtheLTL
model checking algorithmfor sequential Kripke structureson the witnessto
determine which oneof the implementationsis incorrect. To justify the re-
sult, the testbench alsogivesa proof whether the property' holds in the
witness.

Afterapredetermined numberof testrounds,the testbench �nally reports
the number of different typesof failuresdetectedin the testsbetweeneach
pair of implementations.Due to implementationerrorsin an LTL-to-Büchi
translator,it maywell occurthatthetranslatorfailstoproduceany acceptable
output on someinput formulae;alsothesekindsof failuresarereportedfor
each implementation takingpart in the tests.

6.1.2 Generating Input for the Tests

The testbench usessimple randomized algorithmsfor generatingLTL for-
mulae and Kripke structuresto be usedasinput for the automatedtestpro-
cedure. The main goal in designing the algorithmswasto obtain simple
proceduresthatgenerateoutput thatsatis�essimplestructuralrequirements.
No formalanalysiswasspeci�cally performedin thedesignof thealgorithms
in orderto makethem satisfyanyexplicit requirementsregarding the output
distribution. Therefore,it is verylikely that the producedoutput is biased
according to anyformal criteria that might be considered(e.g.,that the out-
put of the algorithmsshouldbe “uniformly distributed” according to some
notion of uniformity).

The behaviourof the algorithmscanbeadjustedwith severalparameters.
This enableshavingsome“intuitive” control overthe expectedpropertiesof
the generatedLTL formulaeand the Kripke structures,eventhoughthe ex-
act distributionsremainunknown. Actually, someof the parameterscanbe
adjustedsuch that the algorithmsindeedgenerate“uniform” output accord-
ing to someexplicit criteria. For example,seeAppendix C for the analysis
thatwasdonefor adjustingtherandomformula generationparametersin the
experimentsdescribedlater in this chapter.

LTL formulae. The testbench generatesrandom LTL formulae using a
straightforward recursivealgorithm [26, 27, 5]. The pseudocodefor this al-
gorithm is shown in Fig. 6.1.The algorithmgeneratesformulaewith a parse
treehavinga givennumber of nodes.The algorithm �r st choosesa logical

6. EXPERIMENTAL RESULTS 45

1 function RandomFormula (n : Integer) : LtlFormula

2 if n = 1 then begin

3 p := random symbol in AP ∪ {>,⊥};

4 return p;

5 end

6 else if n = 2 then begin

7 op := random operator in the set {¬,X,�,♦};

8 ϕ := RandomFormula(1) ;

9 return op ϕ;

10 end

11 else

12 op := random operator in the set {¬,X,�,♦,∧,∨,→,↔,U,R};

13 if op ∈ {¬,X,�,♦} then begin

14 ϕ := RandomFormula(n − 1);
15 return op ϕ;

16 end

17 else begin

18 x := random integer in the interval [1, n− 2];
19 ϕ := RandomFormula(x);
20 ψ := RandomFormula(n − x− 1);
21 return (ϕ op ψ);
22 end;

23 end;

24 end;

Fig. 6.1: Pseudocodefor the formula generationalgorithm[27]

or a temporaloperator,recursivelyconstructsone or two smallerformulae
according to the arity of the operator,and �nally concatenatesthe formulae
with thechosenoperatorinto asingleformula. At the leavesof theparsetree
(i.e.,whengeneratingasubformula with aparsetreeof size1), thealgorithm
selectseither an atomic propositionfrom a givensetof propositionsAP or
a Booleanconstant > or ? asthe formula. In the algorithm of Fig. 6.1, n
denotesthe sizeof the parsetreeof the formula.

The full setof operatorssupportedby the testbench implementationcon-
sistsof the unaryoperators f: ; X; �; ♦g and the binary operators f_ ; ^ ;! ;
$; U; Rg. In the testbench implementation, the probability of selecting
each individual operatorinto the generatedformula can be controlled by
specifying a “priority” for each individual operatorasa nonnegativeinteger.
Thesepriorities can be adjustedto disablethe useof someoperatoror op-
erators altogether,for example,if one of the testedLTL-to-Büchi transla-
torsdoesnot supportall the availableoperatorsdirectly. Let OP be the set
of operators from which the algorithm choosesa randomoperatorat some
point in the executionof the algorithm, and let op 2 OP. Denote by
pri (op) � 0 the priority given for op. Then, the probability of selecting
theoperatorinto the formula at thatpoint in theexecutionissimplygivenby
pri (op)=

P
op0∈OP pri (op′). (Of course,pri (op′) mustbepositivefor at least

oneoperatorop′ 2 OP for theprobabilityto bede�ned.) While thismethod
for choosingtheoperatorsiseasyto implement,it caneasilybeseento favour
unaryoperators,sincetheyareavailablefor selectionin two separateplaces
of thealgorithm(lines7 and12). However,it isstill possibleto adjusttheop-
eratorprioritiessothat each generatedformula will havethe sameexpected
numberof each operatorin it; this wasthe criterion usedin the experiments
presentedlater in this chapter. (SeeAppendix C.)

6. EXPERIMENTAL RESULTS 46

Kripke structures. In thiswork,the transitionrelationfor Kripkestructures
is alwaysassumedto be total (De�n ition 1, page4). This must be taken
into accountin the algorithmsfor generatingrandomKripke structures,so
theymustensurethateverystateof each generatedstructurehasat leastone
successor. In the following, this is referredto asthe “successorconstraint”.

Thesimplegraphconstructionalgorithmsusedin the testbench all gener-
ateKripke structureswith a givennumberof statesn. The valuationsfor the
atomic propositionsarede�ned in each stateby choosingthe truth valueof
each propositionp 2 AP randomlyfrom the twopossibilities.Each proposi-
tion is giventhe value“true” with a givenprobabilityt. The algorithmsalso
makeuseof a parameterd (approximating the “density” of the graph,i.e.,
the probabilityof havingan arcbetweenanytwo nodes;the parameterdoes
not, however,affectthearcsthatmustbeaddedbetweenstatesto enforcethe
successorconstraint).Threedifferent typesof graphscanbeused:

1. Randomgraphs.Thesearegeneratedbysimplytakingeach stateof the
structurein turn andadding arandomtransitionbetweenthatstateand
anyotherstatewith the givenprobabilityd. If the resultinggraphdoes
not satisfythe successorconstraint,each stateviolating the constraint
is then connectedto somerandomlyselectedstateof the structure.

2. Randomconnectedgraphs. Theseare random graphssatisfyingthe
successorconstraintwith the additional requirement that each stateof
the structureshouldbe reachablefrom somedesignated“in itial state”
of the structureby zero or more arcs. (The intuition behind such a
requirementisthatthestructurecanthenbethoughtofas“simulating”
the reachablepartof the statespaceof somesystem.)

The pseudocodefor thisalgorithmisshown in Fig. 6.2.The algorithm
uses s0 as the initial state of the Kripke structure. The set
UnreachableNodes keepstrack of the states which cannot yet be
reached from s0 in the graph. The setNodesToProcesscontainsthe
statesthat areknown to be reachable from s0 but havenot yet been
processeditself. Initially, the only such stateis the initial states0.

In each iterationof the outermostloop of the algorithm,the algorithm
choosessomepreviouslyunvisitedstates known to bereachablefrom
s0 (lines 7–8) and then de�nes the valuation for the atomic propo-
sitionsin that state (lines 9–12). After this, s is connectedto some
yet unreachable state s′ (if such a stateexists),making s′ now ready
to be eventuallyvisiteditself (lines 13–18).Then, the algorithm adds
random edgesfrom s to other statesof the structurewith the given
probability d (lines 19–26). (This may causesomeyet unreachable
statesto becomereachablefrom s0, sothe setsUnreachableNodesand
NodesToProcessmust be updatedaccordingly.) Finally, if s still has
no successors,it issimplyconnectedto itselfto maintain the successor
constraint(lines 27–28). (The path from s0 to s in the structurecan
in this casebe seenasa terminating executionof the “system”corre-
sponding to the structure.)

3. Randomsequential structures.Thesestructuressimply consistof the
statesof thestructurearrangedinto asequencewith aback edgeadded

6. EXPERIMENTAL RESULTS 47

1 function RandomGraph(n : Integer, d : Real ∈ [0.0,1.0], t : Real ∈ [0.0,1.0])
: KripkeStructure

2 S := {s0, s1, . . . , sn � 1};

3 NodesToProcess := {s0};

4 UnreachableNodes := {s1, s2, . . . , sn � 1};

5 ρ := ∅;

6 while NodesToProcess 6= ∅ do begin

7 s := a random node in NodesToProcess ;

8 NodesToProcess := NodesToProcess \ {s};

9 π(s) := ∅;

10 for all P ∈ AP do

11 if RandomNumber(0.0, 1.0) < t then

12 π(s) := π(s) ∪ {P};

13 if UnreachableNodes 6= ∅ then begin

14 s0 := a random node in UnreachableNodes ;

15 UnreachableNodes := UnreachableNodes \ {s0};

16 NodesToProcess := NodesToProcess ∪ {s0};

17 ρ := ρ ∪ {(s, s0)};

18 end;

19 for all s0 ∈ S do

20 if RandomNumber(0.0, 1.0) < d then begin

21 ρ := ρ ∪ {(s, s0)};

22 if s0 ∈ UnreachableNodes then begin

23 UnreachableNodes := UnreachableNodes \ {s0};

24 NodesToProcess := NodesToProcess ∪ {s0};

25 end;

26 end;

27 if there is no edge (s, s0) in ρ for any s0∈ S then

28 ρ := ρ ∪ (s, s);
29 end;

30 return 〈S, ρ, s0, π〉;
31 end;

Fig. 6.2:Pseudocodefor the Kripkestructuregenerationalgorithm[27]

from the “last” statein the sequenceto somerandomlyselectedprevi-
ousstatein the sequence(seeFig. 5.5).The parameterd isnot usedin
this case,sinceeach statealwayshasexactlyonesuccessor.

Asmentionedpreviously, usingsequential Kripke structuresasinput
for the testprocedureallows comparingthe model checking results
obtainedusingthe LTL-to-Büchi translators in Test3 with the results
given by the restrictedLTL model checking algorithm of Sect.5.2.
This testingwill be enabledautomaticallyin the testbench whenever
usingsequential structures.

6.2 TEST ARRANGEMENTS

The experimentsin this work were made by running the automatedtest-
ing procedureon severalavailable LTL-to-Büchi translationalgorithm im-
plementations.The implementationstakingpart in the testswere:

ÅSA+ The ÅSA+ implementation is an LTL-to-Büchi translatorderivedfrom
Mauno Rönkkö's C++ classlibrary [22] implementing the translation
algorithm presentedin [8]. The classlibrary is alsoa part of the ÅSA
modelchecking package[17]. The classlibrary wasrewrittento make
useof the containersof the C++ StandardTemplateLibrary (STL), in-
cluding someof the other codeoptimizationsproposedin [22]. The

6. EXPERIMENTAL RESULTS 48

library alsohad to be extendedwith code for computing the accep-
tanceconditions of the generatedautomata. In addition, direct rules
wereimplementedfor theoperators! ; $; � and♦ thatwerehandled
by rewritingrulesin the original implementation.

SPIN 3.x.x ThemodelcheckerSPIN [10] byGerardJ.Holzmannincludesa
module for automatically converting LTL formulae into “never
claims”,which arebasicallyBüchi automata encodedin SPIN's mod-
elling languagePROMELA. Also this implementation is originally
basedon the algorithm in [8], but it includes severaloptimizations
(someof which aredescribedin [6]).

The automatedtestingprocedurehasbeenusedon this implementa-
tion since its version 3.3.3. The testinghasuncoveredsomeimple-
mentation errors in variousversionsof the tool [26, 27]. In this work,
the behaviourof version 3.3.3(July 1999; the �r st version to be ever
testedwith someof themethodspresentedin thiswork)wascompared
with versions3.3.9(January 2000;a version with somecorrectionsto
theLTL-to-Büchi translationmodule,incorporatingfeedback givenon
errors found usingthe testingprocedure)and3.4.1(August2000;the
latestversion at the time of writing) to seehow the behaviourof the
implementationhaschangedbetweenthe differentversions.

LTL2AUT LTL2AUT is the LTL-to-Büchi translatorwritten by the authors
of [5]. It is basedon a translationalgorithmpresentedin the samepa-
per. The implementationactuallycontainsthreedifferentalgorithms:
the “GPVW” algorithm [8] (the samealgorithm on which the previ-
oustwo implementationswerebased),the “GPVW+” algorithmbased
on someimprovementsproposedalreadyin [8], and the “LTL2AUT”
algorithmof [5] itself.

In thiswork,all algorithmsincludedin theLTL2AUT implementation
were tested. In the experiments, these are referred to as
LTL2AUT(GPVW), LTL2AUT(GPVW+) andLTL2AUT(LTL2AUT),
respectively.

PROD The Pr/T net reachability analyzerPROD [33, 34] includesan LTL-
to-Büchi translatormodule basedon the algorithm presentedin [31].
This implementationwasalsoincluded in the testsmadein this work.
The versionusedwasfrom 27July 2000.

The testsweredivided into severalbatchesaccording to the number of
nodesin the parsetreeof the generatedLTL formulae,in orderto (roughly)
seehow thesizeof theBüchi automatageneratedbyeach translatordepends
on the input formula sizein practice. Each batch consistedof 1,000LTL
formulae with a �xed parsetree size. There werea total of eight batches,
each of which consistedof 1,000randomlygeneratedLTL formulae with a
parsetreeof 5; 6; 7; 8; 9; 10; 11and12nodes,respectively.

The operatorsin the formulaewerechosenfrom asetof operatorsdirectly
supportedby all the testedtranslationalgorithm implementations. Even
thoughformulaeincluding unsupportedoperatorscould in somecaseshave
beenrewrittenusingmoreprimitive operatorsbeforegivingthe formula to a

6. EXPERIMENTAL RESULTS 49

translator,this wasnot done,sinceapplyingrewriting rulesto a formula can
changethe sizeof the parsetreeof the formula. This would haveresulted
in testbatcheswith formulaeof varyingparsetreesize,which would in turn
havemadeit more complicatedto investigatethe relationshipbetweenthe
sizesof the formulaeandthe generatedBüchi automata.2 Unfortunately, re-
strictingto operatorsdirectly supportedbyall the testedimplementationsleft
someoperatorsunusedeventhoughsomeimplementationswouldhavebeen
able to acceptthem. Asa matterof fact, all the aboveimplementationsex-
ceptPROD supportedexactlythe sameoperatorsasthe testbench (the unary
operatorsf: ; X; �; ♦g andthebinaryoperatorsf_ ; ^ ; ! ; $; U; Rg) directly.
The PROD tool, however,lackeddirect supportfor theX; $ andR operators,
leavingonly the operators : ; �; ♦; _ ; ^ ; ! andU to be usedfor all the im-
plementations.For this reason,the testprocedurewasrepeatedon the other
implementations,this time allowing the full setof availableoperators to be
usedwhen generatingthe formulae.

A further requirementadoptedfor generatingthe input formulaewasthat
the formulae in each batch should contain the same expected number of
each availableoperator.3 The details on how this wasachievedin practice
canbe found in Appendix C, which containsan analysisof the randomfor-
mula generationalgorithmshown in Fig. 6.1.

The setAP wasin all testbatches�xed to �ve propositions,with each
individual propositionhavingthe probabilityof 0.18of being chosenby the
formula generationalgorithmof Fig. 6.1each time line 3 is executed.Each
of the Booleanconstantshadthe probabilityof 0.05of being selected.

The Kripke structuresfor Tests3 and4 weregeneratedusingthe random
connectedgraphalgorithm(Fig. 6.2).Each graphconsistedof 50states,and
thevalue0.1wasusedfor theapproximategraphdensityd. Each proposition
wasequally likely to getassignedeither of thevalues“true” and“false”in each
state(i.e., the value 0:5 wasusedfor the parametert). A new Kripke struc-
ture wasgeneratedwhenevera new LTL formula wasgenerated,so1,000
structureswereusedin each testbatch.

Each of the testedimplementationslistedabovewasconnectedinto the
testbench with a separateinput/output conversionmodule. All of the tested
translationalgorithm implementationsand the testbench itself were com-

2It maywell be arguedthat an implementation might still in practice“change”the size
of the input formula usinge.g.somesimpli�cation rulesbeforetranslatingthe formula into
a Büchi automaton. However,sincethe implementationsare treatedas“black boxes”in
thiswork,such implementation-dependentissuesareirrelevant to thesimpletestingstrategy
usedhere. It must,nevertheless,be recognized that such internal detailsof a translatorcan
haveasigni�cant effecton thesizeof theautomatageneratedbythe implementation,which
is likely to result in much variation in the sizesof the automata, eventhough seemingly
“�xed-size” formulaeareusedasinput.

3The only reasonfor selectingthis strategyin this work wasto havesomeknowledge
about the distribution of the generatedformulae, insteadof e.g.simply assigning arbitrary
prioritiesto the different operators. Clearly, the chosenstrategyis biasedin comparisonto
someother intuitively reasonablecriteria that might be considered,e.g.that everyformula
of a givenparsetreesizeshouldbe“equally likely” to begenerated.

(However, assuming that the implementations perform some operator-basedcase
analysis—inthe manner of the model checking algorithm of Fig. 5.6, for example—the
chosenformula generationstrategymight help in trying to exerciseeach caseequally often
on the average.)

6. EXPERIMENTAL RESULTS 50

piled from C or C++ sourceswith version2.95.2of the GNU Compiler Col-
lection (� ���). The testswererun in Debian Linux 2.1environmenton Pen-
tium II/III PCswith 256MB ofmemory. In theexperiments,each translation
algorithmimplementationwasgiven128MB of memoryspace:the formula
translationwasinterrupted in casethis memory limit wasexceeded.(This
createsanothersourceof automatongenerationfailuresthat mustbe distin-
guishedfrom thosefailuresin which an implementation fails due to some
other reason.)The testbench itselfwasgivenall availablememoryspacefor
performing thevarioustests;unfortunately, thiswasnot alwaysenoughto per-
form all testson somelargeautomata;seethe discussionin the nextsection.

Finally, a different setof testswererun on the implementationssupport-
ing the “full” setof operators.The goalof thesetestswasto try to seewhether
the observedtest failure ratesin Test 3 (the model checking result cross-
comparisoncheck) seemto haveanydependencyon theapproximatedensity
d of the Kripke structuresusedin the tests,while keepingall other parame-
ters (Kripke structuresize,number of atomic propositions)�xed. Such cor-
relation might give information on how to “best” choosethe value for the
parameterd in orderto maximize the oddsof �nd ing errorsin LTL-to-Büchi
translatorsusingTest3 (at leastin the usedvaluecombinationfor the other
parameters).

The abovetestscorrespondto repeatingthe original experiment(with all
formula parsetreesizes5–12)on all algorithmsexceptPROD usingdifferent
valuesfor theparameterd. Thevalue0:1 wasalreadytestedabove;thevalues
usedfor d in the new testswere0:0, 0:2, 0:3, 0:4, 0:5, 0:6, 0:7, 0:8, 0:9 and
1:0. (If d = 0:0, the algorithm of Fig. 6.2 will generatetree-likestructures
whoseeach “leafnode”isconnectedto itself;if d = 1:0, therewill beanedge
betweeneach pair of states.) In addition, the experimentwasstill repeated
using sequential Kripke structures insteadof random connectedgraphsto
seewhetherthis causesanysigni�cant changein the observedfailure rate.

6.3 TEST RESULTS

Tables6.3and6.4show thenumbersof timeseach of thetestedimplementa-
tionsfailed to generatea Büchi automatonfrom an LTL formula, including
the total numbersof failuresandgeneratedautomata. Here,a failure means
anyreasonthatpreventedatranslatorfromproducing valid outputfrom some
input formula. Basedon thetestresults,thefailurescouldbecategorizedinto
the following types:

(1) The translatorprocesswasterminateddueto afatal internalerror(e.g.,
asegmentation fault).

(2) An internal assertionviolationoccurredin the translator.

(3) The translatorproducedsyntacticallyincorrectoutput according to its
output formatspeci�cation.

(4) The translatorprocessexceededthe memorylimit of 128MB.

6. EXPERIMENTAL RESULTS 51

Table 6.3: Büchi automaton generation failures with operators
f: ; �; ♦; _ ; ^ ; ! ; Ug

Parse

tree size

of random

formulae

Number of automaton generation failures

<number of failures>(<number of failuresdueto memory exhaustion>)

[2000 attempts]

AÊSA+
SPI N

v3.3.3
SPI N

v3.3.9
SPI N

v3.4.1
LTL2AUT

(GPVW)

LTL2AUT

(GPVW+)

LTL2AUT

(LTL2AUT) PROD

5. . . 10 0 0 0 0 0 0 0 0
11 0 2 (2) 0 0 0 0 0 2 (2)
12 0 3 (3) 0 2 (2) 0 0 0 4 (4)

TOTAL 0 5 (5) 0 2 (2) 0 0 0 6 (6)

Number

of

automata
16000 15995 16000 15998 16000 16000 16000 15994

Table 6.4: Büchi automaton generation failures with operators
f: ; X; �; ♦; _ ; ^ ; ! ; $; U; Rg

Parse

tree

size of

random

formu-

lae

Number of automaton generation failures

<number of failures>(<number of failuresdueto memory exhaustion>)

[2000 attempts]

AÊSA+
SPI N

v3.3.3
SPI N

v3.3.9
SPI N

v3.4.1
LTL2AUT

(GPVW)

LTL2AUT

(GPVW+)

LTL2AUT

(LTL2AUT)

5 0 100 (0) 0 0 0 0 0
6 0 137 (0) 0 0 0 0 0
7 0 172 (0) 0 0 0 0 0
8 0 185 (0) 1 (1) 1 (1) 0 0 0
9 0 219 (0) 2 (2) 2 (2) 0 0 0

10 0 235 (1) 4 (4) 5 (5) 0 0 0
11 0 215 (1) 8 (7) 10 (10) 0 0 0
12 0 302 (0) 22 (21) 18 (18) 0 0 0

TOTAL 0 1565 (2) 37 (35) 36 (36) 0 0 0

Number

of au-

tomata
16000 14435 15963 15964 16000 16000 16000

6. EXPERIMENTAL RESULTS 52

Since the fourth type of failure is not (necessarily)due to errors in an
implementation itself, each cell with a nonzero failure rate in Tables6.3
and6.4includesalsothenumberof failuresthatwereactuallyduetomemory
exhaustion.

The failure ratesshown in the tablesare overall formulae given to the
implementations,including both the randomlygeneratedformulaewith the
shown parsetreesizeandthe negated formulae(whoseparsetreeshaveone
additional node) that wereneededto run Tests1 and 4 on the implemen-
tations. Thus,each cell in the tablescorrespondsto the number of failures
amongasetof 2,000formulae.

In theseexperiments,PROD and the variousversionsof SPIN seemedto
require more memorythan the other implementations,which is seenasan
increasingnumberof failuresdueto memoryexhaustionon theseimplemen-
tationsasthe parsetreesizeof the formulaeincreases.The otherimplemen-
tationswereableto operatein 128MB of availablememoryspace.

Table6.3(with testresultsobtainedusinga restrictedsetof formula oper-
ators)doesnot revealerrors in anyof the implementations,sinceall failures
in this tablearedue to memoryexhaustion.However,allowing the useof a
largersetof operators in the testscausedsomeversionsof SPIN (3.3.3and
3.3.9) to behavemore unreliably, resultingin errors of types(1) to (3) de-
scribedabove. SPIN v3.3.3sufferedfrom all thesetypesof errors; version
3.3.9failedonly dueto internal assertionviolations.

Test 1 and Test 3 Results
The resultsof Test1 andTest3 arereportedin Tables6.5and6.6for the two
formula symbolsetsf: ; �; ♦; _ ; ^ ; ! ; Ug andf: ; X; �; ♦; _ ; ^ ;! ;$;U; Rg,
respectively. An important observation was that the ÅSA+, LTL2AUT
(GPVW), LTL2AUT (GPVW+), LTL2AUT (LTL2AUT) and PROD imple-
mentationsnever failed any of thesetestsagainst each other, regardlessof
the formula symbolset. For this reason,the tablescombine the resultsfor
thesealgorithmstogether,andthesealgorithmsarecollectivelyreferredto as
“Å/L/P” in the tables.4 The independenceof thesethree implementations,
togetherwith the observation thatalsoSPIN seemsto “converge”towardsthe
sameresultsasthe tool version number increases,givesa strongsuggestion
that theseimplementationsarequite reliableandcorrect.

Each cell in the top part of each tablecontainsa triple of integersa=b=c
representingthe following information:

� a isthenumberof failedBüchi automataintersectionemptinesschecks
betweentwo supposedlycomplementary Büchi automata (Test 1).
Each nondiagonalelementin thematrixassociatedwith someformula
parse tree sizecorrespondsto testingtwo different implementations
againsteach other,sothemaximum numberof testsperformedis2,000

4There wereslight differencesin the failure rateswhen testingtheseimplementations
against variousversionsof SPIN. This is a consequence of Büchi automatongeneration
failuresthat sometimesoccurredon someof thesetranslators,preventingsomeof the tests
from being performed. The number reportedin the tablesis alwaysthe minimum failure
rateobtainedusingtheseimplementations(i.e., someof the “Å/L/P” implementationsmay
actually havehad a slightly higher failure rate against SPIN by themselvesthan the rate
shown in the table).

6. EXPERIMENTAL RESULTS 53

Table6.5:Failure ratesfor Tests1 and3 with operatorsf: ; �; ♦; _ ; ^ ; ! ; Ug

Parse

tree

size of

random

formu-

lae

Imple-

menta-

tion

Number of test failures

<Test 1 failures> / <Test 3 failures(local failures)> / <Total number of
inconsistent automata detected>

[Diagonal cells: max. 1000 tests; other cells: max. 2000 tests]

AÊ/L/P SPI N v3.3.3 SPI N v3.3.9 SPI N v3.4.1

AÊ/L/P 0 / 0 / 0

S3.3.3 21 / 4(3) / 22 20 / – / 205
S3.3.9 0 / 0 / 0 21 / 4(3) / 22 0 / – / 0

S3.4.1 0 / 0 / 0 21 / 4(3) / 22 0 / 0 / 0 0 / – / 0

AÊ/L/P 0 / 0 / 0

S3.3.3 32 / 8(6) / 33 31 / – / 316
S3.3.9 0 / 0 / 0 32 / 8(6) / 33 0 / – / 0

S3.4.1 0 / 0 / 0 32 / 8(6) / 33 0 / 0 / 0 0 / – / 0

AÊ/L/P 0 / 0 / 0

S3.3.3 49 / 9(7) / 50 48 / – / 487
S3.3.9 0 / 0 / 0 49 / 9(7) / 50 0 / – / 0

S3.4.1 0 / 0 / 0 49 / 9(7) / 50 0 / 0 / 0 0 / – / 0

AÊ/L/P 0 / 0 / 0

S3.3.3 66 / 14(12) / 69 61 / – / 618
S3.3.9 0 / 1(1) / 1 65 / 13(11) / 68 0 / – / 0

S3.4.1 0 / 0 / 0 66 / 14(12) / 69 0 / 1(1) / 1 0 / – / 0

AÊ/L/P 0 / 0 / 0

S3.3.3 69 / 16(8) / 70 69 / – / 699
S3.3.9 0 / 0 / 0 69 / 16(8) / 70 0 / – / 0

S3.4.1 0 / 0 / 0 69 / 16(8) / 70 0 / 0 / 0 0 / – / 0

AÊ/L/P 0 / 0 / 0

S3.3.3 73 / 19(13) / 75 66 / – / 6610
S3.3.9 0 / 1(1) / 1 71 / 18(12) / 74 0 / – / 0

S3.4.1 0 / 0 / 0 73 / 19(13) / 75 0 / 1(1) / 1 0 / – / 0

AÊ/L/P 0 / 0 / 0

S3.3.3 86 / 19(8) / 88 83 / – / 8311
S3.3.9 0 / 2(1) / 2 87 / 17(7) / 87 0 / – / 0

S3.4.1 0 / 0 / 0 87 / 19(8) / 89 0 / 2(1) / 2 0 / – / 0

AÊ/L/P 0 / 0 / 0

S3.3.3 101 / 31(17) /110 91 / – / 9112
S3.3.9 0 / 3(2) / 3 102 / 32(19) /112 0 / – / 0

S3.4.1 0 / 1(0) / 1 102 / 30(17) /110 0 / 2(2) / 2 0 / – / 0

Total number of tests performed

<Test 1> / <Test 3>

[Diagonal cells: max. 8000 tests; other cells: max. 16000 tests]

AÊ/L/P
Å↔Å, L↔L: 8000 / – ; P↔P: 7767 / – ;

Å↔L: 16000 / 16000 ; {Å,L}↔P: 15907 / 15966

S3.3.3 15933 / 15961 7995 / –

S3.3.9 15950 / 15966 15995 / 15995 8000 / –

S3.4.1 15949 / 15964 15993 / 15993 15998 / 15998 7998 / –

6. EXPERIMENTAL RESULTS 54

Table 6.6: Failure rates for Tests 1 and 3 with operators
f: ; X; �; ♦; _ ; ^ ;! ;$;U; Rg

Parse

tree

size of

random

formu-

lae

Imple-

menta-

tion

Number of test failures

<Test 1 failures> / <Test 3 failures(local failures)> / <Total number of
inconsistent automata detected>

[Diagonal cells: max. 1000 tests; other cells: max. 2000 tests]

AÊ/L SPI N v3.3.3 SPI N v3.3.9 SPI N v3.4.1

AÊ/L 0 / 0 / 0

S3.3.3 215 /270(108) /299 35 / – / 355
S3.3.9 17 / 15(8) / 17 227 /263(102) /311 15 / – / 15

S3.4.1 0 / 0 / 0 215 /270(108) /299 17 / 15(8) / 15 0 / – / 0

AÊ/L 0 / 0 / 0

S3.3.3 244 /294(103) /331 26 / – / 266
S3.3.9 11 / 9(6) / 11 253 /290(101) /340 10 / – / 10

S3.4.1 0 / 0 / 0 244 /294(103) /331 11 / 9(6) / 11 0 / – / 0

AÊ/L 0 / 0 / 0

S3.3.3 297 /338(130) /400 45 / – / 457
S3.3.9 17 / 14(9) / 17 311 /334(131) /414 15 / – / 15

S3.4.1 0 / 0 / 0 297 /338(130) /400 17 / 14(9) / 17 0 / – / 0

AÊ/L 0 / 0 / 0

S3.3.3 321 /351(134) /434 46 / – / 468
S3.3.9 24 / 21(10) / 24 329 /339(127) /441 18 / – / 18

S3.4.1 0 / 0 / 0 320 /350(133) /434 24 / 21(10) / 24 0 / – / 0

AÊ/L 0 / 0 / 0

S3.3.3 358 /374(124) /478 51 / – / 519
S3.3.9 30 / 28(19) / 30 376 /366(117) /493 23 / – / 23

S3.4.1 0 / 0 / 0 357 /373(123) /476 30 / 28(19) / 30 0 / – / 0

AÊ/L 0 / 0 / 0

S3.3.3 409 /408(129) /527 46 / – / 4610
S3.3.9 16 / 13(6) / 16 419 /406(127) /536 15 / – / 15

S3.4.1 0 / 0 / 0 407 /407(129) /524 16 / 13(6) / 16 0 / – / 0

AÊ/L 0 / 0 / 0

S3.3.3 470 /452(137) /598 64 / – / 6411
S3.3.9 31 / 25(9) / 31 477 /435(128) /607 22 / – / 22

S3.4.1 0 / 0 / 0 462 /445(133) /592 30 / 24(8) / 29 0 / – / 0

AÊ/L 0 / 0 / 0

S3.3.3 506 /466(150) /622 64 / – / 6412
S3.3.9 35 / 27(12) / 35 512 /444(139) /629 26 / – / 26

S3.4.1 0 / 0 / 0 496 /458(148) /615 35 / 27(12) / 35 0 / – / 0

Total number of tests performed

<Test 1> / <Test 3>

[Diagonal cells: max. 8000 tests; other cells: max. 16000 tests]

AÊ/L Å↔Å, L↔L: 8000 / – ; Å↔L: 16000 / 16000

S3.3.3 14435 / 14435 7139 / –

S3.3.9 15963 / 15963 14410 / 14411 7963 / –

S3.4.1 15964 / 15964 14411 / 14412 15928 / 15957 7965 / –

6. EXPERIMENTAL RESULTS 55

in this case. The diagonalcells correspondto testingan implemen-
tation against itself; the maximum number of testsfor thesecells is
1,000,sinceintersectingtwo Büchi automata generatedby the same
implementation twice doesnot giveanynew information. (However,
althoughnot shown in the table,the “combined” Å/L/P implementa-
tionsweretested2,000timesagainsteach other,andno inconsistencies
weredetected.)

� b is the number of failed model checking result cross-comparison
checks betweentwo implementations(Test3). Each cell again cor-
respondsto at most2,000performedtests;in addition, sinceno im-
plementation can fail this testagainstitself, the diagonalcellsarenot
relevant in this case. The zerosin the diagonalcells corresponding
to the “combined” Å/L/P (Table6.5) or Å/L (Table6.6) implementa-
tion areonly intendedto emphasizethat therewereno inconsistencies
betweentheseimplementations.

The number in boldfacegivesthe failure rate when the resultswere
comparedin each stateof the Kripke structure(corresponding to the
“global” emptinesscheck describedin Sect.5.1.2). The number in
parenthesesgivesthe failure ratewhen the resultswerecomparedonly
locally with respectto asingle“in itial” stateof aKripkestructure.

� c givesthe total number of automata (out of at most2,000automata
involvedin the tests)that weredetermined to be incorrectby either of
the two abovetests.This number can be at mostthe sumof a and b;
usually, it is considerablysmaller,sincean incorrect automatonmay
well fail both of the abovetests.

The lowerpartsof Tables6.5and6.6reportthetotal numbersof each type
of testperformedbetweenanytwo implementations.The differencesin the
numbers of testsperformedis both due to the implementations'occasional
failures to generateBüchi automata and unsuccessful tests caused by the
testbench itself running out of memory. Thissometimesoccurredwith large
Büchi automata that could not be synchronized with the random Kripke
structures(or otherBüchi automatawhenperforming Test1) in thememory
spaceavailableto thetestbench (ca.300MB). (Thesecaseswerenot counted
in the reportedfailure rates,sothe failure ratescorrespondcorrectlyto the
actualnumbersof detectedinconsistencies.)

The growth in the number of observedtest failures can be seen to
(roughly) follow the increasein formula parse tree size. Comparing the
two tableswith each other, it can be seenthat a largervarietyof operators
in the randomlygeneratedLTL formulaeincreasedthe number of observed
testfailures.The resultsrevealerrors in SPIN versions3.3.3and3.3.9,since
theseimplementationssometimesfailedTest1 by themselves(however,ver-
sion 3.3.9 failed only in the testsperformedusing all available operators).
SPIN v3.4.1alwayspassedthis testalsoagainstthe ÅSA+, LTL2AUT (all vari-
ants)and PROD implementations. However,Table 6.5 revealsone incon-
sistencyin the resultcross-comparisoncheck betweenSPIN v3.4.1and the
other implementations(12 nodesin the formula parsetree). Analyzingthis
caseseparatelywith the testbench (i.e., automaticallyconstructinga witness

6. EXPERIMENTAL RESULTS 56

Table6.7:Failureratesfor Test4 on SPIN versions3.3.3and3.3.9(max.1000
tests)

Parse tree size of

random formulae

Operator set used

{¬, � , � ,∨,∧,→, U} {¬, X, � , � ,∨,∧,→,↔, U, R}
SPI N v3.3.3 SPI N v3.3.9 SPI N v3.3.3 SPI N v3.3.9

5 0 0 1 0
6 0 0 6 0
7 0 0 2 0
8 0 1 5 0
9 0 0 5 0

10 0 1 4 0
11 0 1 6 0
12 0 2 3 0

TOTAL 0 5 32 0

Total number of

tests performed
7995 8000 7139 7963

and then analyzingit with the LTL model checking algorithm for sequen-
tial Kripke structures,asdescribedin Sect.5.2)con�rmed the incorrectness
of the Büchi automatongeneratedby SPIN v3.4.1,revealingan error in the
implementation. This analysiscanbefound in Appendix D.

Tests1 and3 oftenrevealedthe “same”errors in the automata. This can
be seenin that the total number of automata that weredetermined to be
incorrectby thesetwo testsis usuallyfar lessthan the sumof the failure rates
of the individual tests. Thesetestscan still be considereduseful together,
sinceTest3 is may detectinconsistencies that are impossibleto �nd using
only Test1.

Test 4 Results
Test4 (the model checking resultconsistencycheck) failed occasionallyon
SPIN versions3.3.3 and 3.3.9. All other implementationspassedthis test
wheneverit could be performed.The failure ratesfor thesetwo implemen-
tationson each setof formula symbolsareshown in Table6.7. (In this case,
each cell of the tablecorrespondsto the numberof failuresin amaximum of
1,000tests.)

Ascan be seenin the table, the failure ratesarerelativelysmall in com-
parisonto the failure ratesin Tests1 and 3. In addition, thesetestsdo not
revealany clear dependencebetweenthe formula sizeand the number of
consistencycheck failures.However,the formula symbolsusedin the differ-
ent testsseemto havea peculiareffecton the failure rates:when usingonly
thesmalleroperatorset,only SPIN v3.3.9everfailed;thesituationwasexactly
the oppositewhen usingthe largersetof operators. This might suggestthat
theerrorsin SPIN v3.3.3mayberelatedto theuseof operatorsmissingin the
smallersetof operators,while theerrorsin SPIN v3.3.9arerelatedonly to the
commonoperators included in both sets.Intuitively, theseerrorsshouldbe
lesslikely to surfacewhen usinga largersetof operators,which might offer
someexplanationto why no errorsweredetectedin SPIN v3.3.9in the tests

6. EXPERIMENTAL RESULTS 57

with a largersetof operators.
Comparingonly themagnitudesof the failure ratesobservedin Test4 and

Test1 (performedon a singleimplementation), Test4 seemsto be lessef�-
cient. However,sincethesetwo testsin factapplyto different kindsof errors
(seeFig. 5.2andthe discussionin Sect.5.1.2),theyreallycomplementeach
other. For example,eventhough Test1 did not revealany inconsistencies
in SPIN v3.3.9in the testswith the smallersetof operators,Test4 failed on
this implementationseveraltimes;thesamephenomenonoccurredreversed
with the sameimplementation using the larger operatorset. (Of course,
sinceTest4 is only an “approximation” of the unimplementedTest2, the
number of detectederrors is likely to remain quite small in comparisonto
e.g.the failure rateobservedin Test1.)

Test 3 and the Approximate Density of Kripke Structures
Asmentionedin theendof theprevioussection,theexperimentwasrepeated
with Kripke structureshaving a different approximate densitythan 0.1, in
orderto seewhetherthe failure ratein Test3 seemsto dependon thevalueof
this testparameterin anysystematicway. The experimentwasalsorepeated
usingsequential Kripke structures.(The densitycan haveno effecton the
failure rateobservedin Test1, becausethis testisbasedon the direct analysis
of Büchi automata insteadof the LTL modelchecking procedure.)

Figure6.8showstheobservedfailure ratesin Test3 betweentheÅSA+ and
SPIN v3.3.3implementationsfor differentvaluesfor theapproximatedensity
d andfor the formula parsetreesizen. Figure6.9 repeatsthe resultsfor the
SPIN v3.3.9implementation. (The �gures useÅSA+ asa referencebecause
the previoustestsgavea strongsuggestionaboutits correctness.The failure
ratesbetweenothercombinationsof implementationsbehavedsimilarly.) In
the diagrams,each point correspondsto the observedfailure rateon 2,000
randomlygeneratedLTL formulaefor a �xed valueof d; “seq.” corresponds
to the failure rateobtainedusingsequential Kripkestructures.

Ascould beexpected,the failure ratesseemto slightlyincreasealongwith
the formula size. The diagramsdo not, however,help in concluding much
aboutthe dependencybetweenthe approximatedensityd and the observed
failure rates,sincethereis somuch �uctuation betweenthe failure rates(es-
pecially with SPIN v3.3.9,whosefailureratesareextremelysmall,justaround
1 %).

However,in many diagramsthe failure rate can be seento drop asthe
graphdensityincreases,at leastaroundthe smallestvaluesof d. In addition,
in all diagramsthefailurerateobtainedwith sequentialKripkestructures(the
rightmostdata point of each diagram)is quite large.Althoughnot generally
shown by the diagrams,theremight be one intuitive argumentsupportinga
hypothesisthat thefailure ratesshoulddecreaseasd increases(i.e.,asthereis
morebranching in the generatedKripkestructures).Namely, themoretran-
sitionstherearebetweendifferent statesof the structure,the morepaths(or
executions)therearein thestructure.Furthermore,themorepathsthereare,
the more likely it is that oneof them is acceptedby a (nonempty)Büchi au-
tomaton,regardlessof whetherthe automatoncorrectlycorrespondsto some
LTL formula or not (sincethe truth valuesfor the atomic propositionswere
chosenat randomin each state). This would then imply that Test3 would

6. EXPERIMENTAL RESULTS 58

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 5

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 5

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 6

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 6

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 7

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 7

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 8

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 8

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s
d

n = 9

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s
d

n = 9

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 10

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 10

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 11

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 11

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 12

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 12

Fig. 6.8:Test3 failure rates(ÅSA+$ SPIN v3.3.3)

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 5

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 5

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 6

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 6

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 7

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 7

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 8

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 8

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 9

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 9

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 10

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 10

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 11

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 11

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 12

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 12

Fig. 6.9:Test3 failure rates(ÅSA+$ SPIN v3.3.9)

6. EXPERIMENTAL RESULTS 59

Table6.10:Averagesizesof successfullygeneratedBüchi automata (number
of states/ numberof transitions);operatorsf: ; �; ♦; _ ; ^ ; ! ; Ug)

Parse

tree

size of

random

formu-

lae

AÊSA+ SPI N

v3.3.3
SPI N

v3.3.9
SPI N

v3.4.1
LTL2AUT

(GPVW)

LTL2AUT

(GPVW+)

LTL2AUT

(LTL2AUT)

PROD

5 5/8 2/4 2/3 2/3 5/8 5/7 4/6 10/62
6 6/11 3/5 3/4 3/4 6/11 5/9 5/8 16/144
7 8/15 4/6 3/5 3/5 7/14 6/12 5/10 25/302
8 9/19 4/7 3/6 3/6 8/17 7/14 6/11 38/712
9 10/26 4/10 4/7 3/6 10/25 8/18 6/13 55/1718

10 12/33 5/12 4/9 4/8 11/29 9/22 7/15 81/3101

11 15/54 6/17 5/10 4/9 14/48 11/31 8/20 125/6292

12 17/67 6/18 5/13 4/11 15/59 12/37 8/22 183/9414

succeedmore often. The high observedfailure ratesfor sequential Kripke
structureswould beconsistentwith this hypothesis,sincethereis only trivial
branching in a sequential Kripkestructure.

It is clear that thereareverymanyparameters,all of which might affect
the number of observedtestfailures. Theseinclude the sizeof the Kripke
structuresandthe methodswith theyweregenerated,togetherwith eventhe
internal behaviourof the testedimplementationsthemselveson a particular
setof LTL formulae. In theseexperiments,however,the differencebetween
the minimum and maximum failure rateswasrelativelysmall (at most,ap-
proximately10 units of percentagechange),so �nd ing an “optimal” value
for d maynot be extremelyessentialto the effectivenessof testing,andeven
sequential Kripke structurescould be used. (Sequential Kripke structures
in Test3 alsohavethe advantagethat they allow the restrictedLTL model
checking algorithmof Sect.5.2 to be usedin the tests.In addition, the syn-
chronousproduct of a sequential Kripke structurewith a Büchi automaton
required in the testsmaybesmallerthan the productobtainedusinga more
generalgraphof the samesize,thussavingmemory.)

Sizes of the Generated Automata
Since the memory requirements of the automata-theoreticLTL model
checkingprocedurearein practicehighlydependenton thesizeof theBüchi
automata usedfor model checking, the sizesof the automata generatedby
the testedimplementationsisalsoof interest.

Tables6.10and6.11collect the averagesizesof theBüchi automata(suc-
cessfully)generatedby each implementation from a sampleof 1,000ran-
domly generatedLTL formulaewith a givenparsetreesize.Theseaverages
shouldbeseenonly asaveryroughcomparisonon the relativeperformance
of the testedimplementations;estimatingthe averagebehaviourof any im-
plementation accuratelyshouldbe doneby takingalsoof the internal struc-
ture of the implementation into account.

Ascould be expected,the sizeof the generatedautomata growswith the

6. EXPERIMENTAL RESULTS 60

Table6.11:Averagesizesof successfullygeneratedBüchi automata (number
of states/ numberof transitions;operatorsf: ; X; �; ♦; _ ; ^ ; ! ; $; U; Rg)

Parse

tree

size of

random

formu-

lae

AÊSA+ SPI N

v3.3.3
SPI N

v3.3.9
SPI N

v3.4.1
LTL2AUT

(GPVW)

LTL2AUT

(GPVW+)

LTL2AUT

(LTL2AUT)

5 6/9 3/5 3/4 3/4 6/9 5/8 5/7
6 7/13 4/6 4/6 3/5 7/12 6/11 6/10
7 8/16 4/7 4/7 3/6 8/16 7/14 6/12
8 11/24 5/10 5/10 4/9 10/23 9/19 8/16
9 13/32 5/12 6/14 5/12 12/30 10/24 9/19

10 16/47 6/16 6/16 5/14 16/45 13/32 10/25
11 19/64 7/18 7/19 6/17 19/60 15/41 12/31
12 23/84 7/22 8/22 7/20 23/80 17/55 13/38

formula size,and increasingthe number of available formula operatorshas
the sameeffect. The resultsshow the differencein the power of different
LTL-to-Büchi translationalgorithms: PROD, which is basedon one of the
�r st translationalgorithmspresentedin the literature [31], had worseper-
formancethan the otheralgorithmsbasedon the GPVW algorithm[8] and
its variants.The automata generatedby ÅSA+ andLTL2AUT (GPVW) were
very closeto each other in size,and the other variantsof LTL2AUT per-
formedevenbetter. The smallestautomata weregeneratedby SPIN v3.4.1;
the two older versionsof the tool werealmostasef�c ient. The SPIN and
PROD tools havethe additional advantageof alwaysgeneratingBüchi au-
tomata with only one acceptancecondition. Such automata can be used
ef�c iently with e.g.the nested-depth-�rst search on-the-�y model checking
algorithm of [3]. This is not the casewith ÅSA+ and the LTL2AUT vari-
antsthat producegeneralizedBüchi automata, usuallywith more than one
acceptancecondition.

Summary
In conclusion,the main resultsof the testswere:

� ÅSA,LTL2AUT (all variants)and PROD behavedveryconsistentlyin
all tests.No errorsweredetectedin anytestsbetweentheseimplemen-
tations.PROD, however,generatedverylargeautomata in comparison
to thoseof the other implementations. This is due to the translation
algorithmthat PROD uses(the algorithm is quite different from those
usedin the other implementations).

� SPIN v3.3.3andv3.3.9sufferedfrom someinternal failuresandsome-
timesalsogeneratedincorrectautomata. One model checking cross-
comparisonfailurewasstill detectedalsowith SPIN v3.4.1whentesting
it againstthe threeaboveimplementations.

Although the automata generatedby the variousSPIN versionswere
verysmall in comparisonto thoseproducedby the other implementa-

6. EXPERIMENTAL RESULTS 61

tions, this seemsto havebeen achieved using variousoptimizations
requiring much memory, increasingalso the complexity of the im-
plementation. This complexitymaybe one reasonbehind the errors
found in the implementation.

� Somenoteson Test 3 (the model checking result cross-comparison
check) were:

– Performing thecross-comparisoncheck with respectto everystate
of the Kripkestructureincreasedtestingef�c iency.

– Althoughbasedon a lesssystematicapproach than Test1, Test3
hadnot signi�cantly worseperformancethanTest1,atleastwhen
allowing the “full” setof operators to be usedin the randomly
generatedLTL formulae(Table6.6). Therefore,it canbe useful
to performalsoTest3 in orderto try to optimizetestingef�c iency.

– Altering the approximatedensityof the Kripke structuresdid not
havesigni�cant effecton theobservedfailure rates;usingsequen-
tial Kripkestructuresasinput did not notablyimproveor degrade
testingef�c iencyeither.

� SinceTest4 complementsboth Test1 andTest3, usingall of the tests
togethercanincreasetestingef�c iency.

In all, theLTL-to-Büchi translatortestbench basedon verystraightforward
implementationtechniquesprovedto bequite effectivein practice,although
someof the testscould not be performeddue to the largesizeof someau-
tomata(sothe testbench itselfranout of memorywhenperforming the tests).
The situationcould besomewhat improvedby usingmoresophisticatedim-
plementation techniquesin the testingprocedure.

6. EXPERIMENTAL RESULTS 62

7 CONCLUSIONS

This workhaspresentedtechniquesfor testingthe correctnessof implemen-
tationsof LTL-to-Büchi translationalgorithmsusedin LTL model checking
toolsbasedon the automata-theoreticapproach. The methodsarebasedon
direct analysisof Büchi automata and the automata-theoreticLTL model
checking procedure. Ultimately, however,the basisfor all presentedtest
methodslies in the semanticsof linear temporal logic—moreprecisely, in
the mutually exclusiverelationshipbetweenthe satis�ability of an LTL for-
mula anditsnegationon anin�n ite pathof aKripkestructure.Thiscommon
basiscanbe seenin the similarity of the testsitself: all testscanbasicallybe
reducedto an emptinesscheck of Büchi automata (with possiblysomeaddi-
tional resultcomparison).

The similar natureof mostof the testsallowstheir easyintegrationinto an
automatictestingtool for LTL-to-Büchi translators. The experimentsmade
in thisworkdid not include Test2 (theuniversalitycheck for theunion of two
Büchi automata), which madeit impossibleto provethe absolutecorrect-
nessof any implementation on a singleLTL formula. However,the cross-
comparisonof severalimplementations against each other, togetherwith
checking theemptinessof theproductof twoBüchi automatathatshouldbe
complementaryto each other,provedto workwell togetheraserrordetection
techniques. Actually, eventhe plain result cross-comparisonapproach has
beensuccessfulin uncoveringimplementation errors in actualLTL model
checking tools[26, 27]: for example,this approach hashelped to improve
the robustnessof the LTL-to-Büchi translationalgorithmimplementationof
the SPIN model checker. The usefulnessof the testingstrategywasagain
con�rmed in this work: severalpreviouslyuntestedimplementationswere
found to behavequite consistentlywith each other,and a previouslyundis-
coverederror wasrevealedin the SPIN model checker. This wasachieved
usingrandomlygeneratedLTL formulaeandKripke structuresof moderate
sizeasinput for the tests.

However,simplerandom“black box” testingis not adequatefor proving
the correctnessof anyLTL-to-Büchi translator. For example,the multitude
of available testparameters makesit veryhard to assessthe actualcoverage
of the tests.The randomKripke structuresand their possiblein�uence on
the effectivenessof testingcould be removedby including alsoTest2 into
the testingprocedure,in which casethe testswould dependonly on the
usedLTL formulae. However,integratingTest2 into the automatictesting
procedurewould require the implementation of a Büchi automata comple-
mentation algorithm with exponentialworst-casespacerequirementsin the
sizeof the input.

Of course,alsothe implementation details could be takeninto account
when adjustingtestparameters. However,eventhough this may increase
testingef�c iency, the testresultswould still remainat bestinconclusive,no
matterhow much testingwasperformed.Ascanbeseenin the experiments
with SPIN v3.4.1,random“black box” testingwill veryrarely�nd anyerrors
in an“almostcorrect”implementation. Increasingthenumberof testsmight
improvethe oddsof �nd ing errors,but the fact that no amountof testingis

7. CONCLUSIONS 63

suf�cient to provethe absolutecorrectnessof an implementationmakesthis
approach somewhatunappealing.

Therefore,the testingtechniquesareprobablybestsuitedfor assistingin
the developmentof anewtranslatorto testits robustnessbeforereleasingthe
implementation, in the hopeof detectingsomeof the remaining easy-to-�x
bugsand omissionsin the implementation. The testmethodsmight also
be of someusein makingoptimizationsor other improvementsto a transla-
tion algorithmimplementation,in orderto testwhetherthe implementation
seemsto preserveitscorrectnessbetweendifferent releases.

Section5.2 presenteda restrictedmodel checking algorithm for sequen-
tial Kripke structures. The algorithm wasusedin the analysisof test fail-
uresbetweentwo LTL-to-Büchi translationalgorithm implementationsin
orderto detectwhich oneof the implementationshadfailed. Sincecounter-
examplesproducedby real LTL model checking tools can usually be in-
terpretedassequential Kripke structures,this algorithm could validate the
counter-examplesfound by the tool asan additional �nal stepof the model
checking procedure[27]. Thisway, the tool could byitselfensurethevalidity
of the counter-example,which providesthe tool a meansfor automatically
detectingan internal failure that would otherwisehaveresultedin a false
negativeanswer. This specialized model checking algorithm mayalsohave
applicationselsewhere.For example,it maybepossibleto furtherextendthe
validation of counter-examplesinto additional propertiesnot directly speci-
�ed in the original propertyto be veri�ed, such asassumptionsconcerning
the environmentof the systemto be veri�ed. The algorithm mayalsohave
someapplicationasasubroutinein moregeneralLTL modelchecking algo-
rithms.

7. CONCLUSIONS 64

Bibliography

[1] E. M. Clarke and E. Emerson. Designand synthesisof synchroniza-
tion skeletonsusingbranching-time temporallogic. In Proceedings of
the Workshop on Logic of Programs, volume 131of Lecture Notes in
Computer Science, pages52–71.Springer-Verlag,1981.

[2] E. M. Clarke and A. P. Sistla. The complexityof propositionallinear
temporallogics. Journal of the Association for Computing Machinery,
32(3):733–749,1985.

[3] C. Courcoubetis,M. Y. Vardi, P. Wolper,andM. Yannakakis.Memory-
ef�c ient algorithmsfor the veri�cation of temporalproperties.Formal
Methods in System Design, 1:275–288,1992.

[4] J.-M. Couvreur. On-the-�y veri�cation of linear temporal logic. In
Proceedings of the World Congress on Formal Methods in the Devel-
opment of Computing Systems (FM’99), volume I, volume 1708 of
Lecture Notes in Computer Science, pages253–271.Springer-Verlag,
1999.

[5] M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved automata
generationfor linear temporal logic. In Proceedings of the 11th In-
ternational Conference on Computer Aided Verification (CAV’99),
volume 1633 of Lecture Notes in Computer Science, pages249–
260. Springer-Verlag, 1999. Seealso“Software packages”at <URL:��������������	�	�	�� ������ ���� � � ��� � ��������� � �� � ��� � � ��	�
�� >.

[6] K. Etessami and G. Holzmann. Optimizing Büchi automata. In Pro-
ceedings of the 11th International Conference on Concurrency Theory
(CONCUR’2000), volume 1877 of Lecture Notes in Computer Sci-
ence, pages153–167.Springer-Verlag,2000.

[7] H. J.Genrich. Predicate/transitionnets.In Petri Nets: Central Models
and Their Properties – Advances in Petri Nets, Part I, volume 254 of
Lecture Notes in Computer Science, pages207–247.Springer-Verlag,
1987.

[8] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-�y
automaticveri�cation of linear temporallogic. In Proceedings of 15th
Workshop Protocol Specification, Testing, and Verification, pages3–18,
1995.

[9] G. Holzmann.Design and Validation of Computer Protocols. Prentice-
Hall, 1991.

[10] G. Holzmann. The model checker SPIN. IEEE Trans-
actions on Software Engineering, 23(5):279–295, May
1997. See also the WWW homepage of the tool at <URL:��������������
 � �
��������� � ����������� ��� ��	�� ��
 � ��������� � � ��
 �
	���� � ���
� ��
���������� >.

BIBLIOGRAPHY 65

[11] E. ClarkeJr., O. Grumberg,andD. Peled.Model Checking. The MIT
Press,2000.

[12] Y. Kesten,Z. Manna,H. McGuire, andA.Pnueli. A decisionalgorithm
for full propositionaltemporallogic. In Proceedings of the 5th Interna-
tional Conference on Computer Aided Verification (CAV’93), volume
697 of Lecture Notes in Computer Science, pages97–109.Springer-
Verlag,1993.

[13] Y. Kesten,A. Pnueli, and L. Raviv. Algorithmic veri�cation of linear
temporallogic speci�cations. In Proceedings of the 25th International
Colloquium on Automata, Languages, and Programming (ICALP’98),
volume 1443 of Lecture Notes in Computer Science, pages1–16.
Springer-Verlag,1998.

[14] O. KupfermanandM. Y. Vardi. Model checking of safetyproperties.In
Proceedings of the 11th International Conference on Computer Aided
Verification (CAV’99), volume1633of Lecture Notes in Computer Sci-
ence, pages172–183.Springer-Verlag,1999.Seealsoan extendedver-
sionat<URL:

��������������	�	�	�� ������ ���� � � ��� � � � �� � ���
����� � ���� >.

[15] T. LatvalaandK. Heljanko. Coping with strongfairness.Fundamenta
Informaticae, 43(1–4):175–193,2000.

[16] O. Lichtenstein and A. Pnueli. Checking that �n ite-state concur-
rent programssatisfytheir linear speci�cation. In Proceedings of
the 12th ACM Symposium on Principles of Programming Languages
(POPL’85), pages97–107.Addison-Wesley, 1985.

[17] J. Lilius. ÅSA: The Åbo System Analyser, 1999. Avail-
able only on the WWW. See the WWW page at <URL:��������������	�	�	�� ��� 	 ��������������� 	 ������� � ����� ��������� � ��� �����

>.

[18] K. L. McMillan. Symbolic model checking – an approach to the state-
explosion problem. PhD thesis,CarnegieMellon University, 1992.

[19] R. Milner . A Calculus of Communicating Systems, volume92 of Lec-
ture Notes in Computer Science. Springer-Verlag,1980.

[20] A. Pnueli. A temporallogic of concurrentprograms.Theoretical Com-
puter Science, 13:45–60,1981.

[21] J.P. Quielle andJ.Sifakis.Speci�cation andveri�cation of concurrent
systemsin CESAR.In Proceedings of the 5th International Symposium
on Programming, volume137of Lecture Notes in Computer Science,
pages337–351.Springer-Verlag,1982.

[22] Mauno Rönkkö. A distributedobject oriented implementation of an
algorithmconvertingaLTL formula to ageneralisedBuchi automaton,
1999.Availableonly on the WWW. SeeMauno Rönkkö'shomepageat
<URL:

������� �����
	�	�	�� ��� 	 ��������������������
 	 �� 	�
�����	��
>.

BIBLIOGRAPHY 66

[23] S.Safra.Complexity of automata on infinite objects. PhD thesis,The
Weizmann Instituteof Science,1989.

[24] F. SomenziandR. Bloem. Ef�c ient Büchi automata from LTL formu-
lae. In Proceedings of the 12th International Conference on Computer
Aided Verification (CAV’00), volume 1855of Lecture Notes in Com-
puter Science, pages247–263.Springer-Verlag,2000.

[25] R. Tarjan. Depth-�r stsearch and linear graphalgorithms.SIAM Jour-
nal on Computing, 1(2):146–160,June 1972.

[26] H. Tauriainen. A randomized testbench for algorithmstranslatinglin-
ear temporal logic formulae into Büchi automata. In Proceedings
of the Workshop Concurrency, Specification and Programming 1999
(CS&P’99), pages251–262.Warsaw University, September1999.

[27] H. Tauriainen and K. Heljanko. TestingSPIN's LTL formula trans-
lation into Büchi automata using randomlygeneratedinput. In Pro-
ceedings of the 7th International SPIN Workshop on Model Checking
of Software (SPIN’2000), volume1885of Lecture Notes in Computer
Science, pages54–72.Springer-Verlag,2000.

[28] W. Thomas. Languages,automata and logic. In G. Rozenbergand
A.Salomaa,editors,Handbook of Formal Languages, volumeIII, pages
385–455.Springer-Verlag,New York,1997.

[29] A. Valmari. The state explosionproblem. In Lectures on Petri Nets
I: Basic Models, volume1491of Lecture Notes in Computer Science,
pages429–528.Springer-Verlag,1998.

[30] M. Y. Vardi. An automata-theoreticapproach to linear temporallogic.
In Logics for Concurrency: Structure versus Automata, volume1043of
Lecture Notes in Computer Science, pages238–265.Springer-Verlag,
1996.

[31] M. Y. Vardi and P. Wolper. An automata-theoreticapproach to auto-
matic programveri�cation. In Proceedings of the 1st IEEE Sympo-
sium on Logic in Computer Science (LICS’86), pages332–344.IEEE
ComputerSocietyPress,1986.

[32] M. Y. Vardi and P. Wolper. Reasoning about in�n ite computations.
Information and Computation, 115(1):1–37,1994.

[33] K. Varpaaniemi, J. Halme, K. Hiekkanen,and T. Pyssysalo.PROD
referencemanual. Technical ReportB13,Helsinki Universityof Tech-
nology, Digit al SystemsLaboratory, 1995.

[34] K. Varpaaniemi, K. Heljanko, and J.Lilius. PROD 3.2 - An advanced
tool for ef�c ient reachability analysis.In Proceedings of the 9th Interna-
tional Conference on Computer Aided Verification (CAV’97), volume
1254of Lecture Notes in Computer Science, pages472–475.Springer-
Verlag,June 1997.

BIBLIOGRAPHY 67

[35] P. Wolper. Temporal logic can be more expressive.Information and
Control, 56(1–2):72–99,1983.

BIBLIOGRAPHY 68

A EMPTINESS CHECKING IN GLOBAL SYNCHRONOUS PROD-
UCT

Asdiscussedin Sect.5.1.2,it is possibleto try to improvethe effectivenessof
Tests3 and4 bycomputingaglobal synchronous product of aBüchi automa-
ton AM corresponding to someKripke structureM with aBüchi automaton
Aϕ corresponding to someLTL property' . In Sect.5.1.2,it wasstatedthat
the constructionpresentedin Lemma2 (page16) resultsin a structurethat
satis�esthe globalsynchronousproductrequirements.

However,a straightforward implementation of this constructionalways
generatesastructurewhosesizeequalstheproductof thesizesofAM andAϕ,
respectively. For emptinesschecking purposes,only the statesthatarereach-
able from the states(q; q0) (including thesestatesthemselves)are actually
needed(here,q is a stateof AM , andq0 is the initial stateof Aϕ). However,
the straightforwardconstructionalwaysgeneratesthe worst-caseproductthat
maycontain statesnot reachablefrom anyof the states(q; q0).

This sameproblemwasaddressedalreadyin Sect.4.2.6,whereonly one
state(q; q0) (the“in itial state”of theproduct,q �xed) wasconsidered.There,
the straightforward productconstructionwasreplacedby a graphsearch al-
gorithm that generatesonly the part of the product that containsthe states
reachablefrom (q; q0). It is veryeasyto generalizethis approach to multiple
“in itial states”of the form (q; q0) by simply restarting the search from each
such state(if the statehasnot alreadybeenvisitedduring the construction).
Althoughthe worst-caseresultsizestill remainsthe same,it maybe avoided
in somecases,which will savememory.

Asstatedin Sect.5.1.2,checking theemptinessof the globalsynchronous
productalsorequiresminor changesin the implementation. It wasproposed
that the algorithm for computing the MSCCs of the product automaton
shouldberestartedin everystate(q; q0) of theproduct(whereq issomestate
of AM andq0 the initial stateof Aϕ). However,simplyrestartingthe MSCC
algorithmin each of thesestateshasthe disadvantagethat somestatesof the
productautomatonmaybe visitedseveraltimesin the different runs of the
MSCC algorithm. This problem can be avoided by applyingTarjan's algo-
rithm to the productautomatononly oncewith the following modi�cations:

� If the search cannot at somepoint �nd any new reachable states,it
mustbecheckedwhethertheproductautomatonstill hasanyunvisited
states.If this is the case,the search mustbe continued (not restarted)
from anypreviouslyunvisitedstate,until all statesof the product au-
tomatonhavebeenvisited.

� If the search �nds a nontrivial MSCC with an acceptingexecution,
it is not immediately clear from which statesof the form (q; q0) the
MSCC is actuallyreachable.This canbedetermined byperforming a
backward search in the productgraphto �nd all the states(q; q0) that
can reach the MSCC, starting the search in anystateof the MSCC.
The statesq then correspondto M 'sstateswith an executionsatisfying
' . (In practice,this search doesnot require extrastoragespacefor the
backward product transition relation. Asa matter of fact, we can do

APPENDIX A. EMPTINESS CHECKING IN GLOBAL SYNCHRONOUS PRODUCT i

without the forward transitionrelation for performing all the searches
in the productautomaton.The only placewherethe forward relation
might at �r st seemto be neededis the search for the MSCCs, but
actuallythe MSCCs of a graphdo not dependon the direction of the
arcsandcanthereforebefoundusingthe reversedtransitionrelation.)

The aboveimprovementswereusedin the implementationof the empti-
nesschecking algorithmof the testbench describedin Sect.6.1.

APPENDIX A. EMPTINESS CHECKING IN GLOBAL SYNCHRONOUS PRODUCT ii

B CORRECTNESS OF LTL MODEL CHECKING ALGORITHM FOR
SEQUENTIAL KRIPKE STRUCTURES

This appendix contains the correctnessproof of the LTL model checking
algorithm for sequential Kripke structures,shown in Fig. 5.6 in Sect.5.2
(page42).

To prove the correctnessof the algorithm, we �r st show that the algo-
rithm alwaysterminates. (In the following discussion,' denotesthe given
LTL formula to be model checked in the sequential Kripke structureM =
hS;s0; �; � i .)

Lemma 3 The algorithm of Fig. 5.6 terminates.

Proof: It is easyto seethat the loopsbetweenlines9–10,12–13,15–16and
18–19will alwaysterminate(if everentered),becausethe setsAP andS are
alwaysassumedto be �n ite.

Alsothe outer loop betweenlines 22 and31 will alwaysterminatewhen-
everit is entered. The termination of this loop would be preventedif the
loop on line 25 never terminated; however,this is not possible,since the
setMarked alwayscontainsonly �n itely manyelements.(The setis initially
emptywhen enteringthe outer loop at line 21, and at mostone elementis
added to it in each iteration of the outer loop. The fact that the number of
iterationsof theouterloop isboundedbyjSj now establishesthe termination
of the outer loop.) By the samereason,alsothe loop on line 33 terminates.

The termination of the main loop (lines4–35)dependson the condition
whether the setToEval is empty (line 4). Since the number of subformu-
lae of ' is boundedby j' j (the number of symbolsin the formula), the set
ToEval (initialized on line 3) initially hasa �n ite number of elements.We
arguethat the algorithmremovessomesubformula from thissetduring each
iteration of the main loop, decreasingthe number of elementsin the set.
This thenestablishes(togetherwith the �n itenessof ToEval andthe factthat
all of the loopsinsidethe main loop terminate) that the setToEval will be
emptyafterexactlyjToEvalj iterations,andthe main loop terminates.

Assumethat the algorithm cannot selectand removean element from
ToEval (lines5–6)during someiterationof themain loop. Thiscanhappen
in twocases:

� The setToEval is empty. However,this would havebeendetectedon
line 4, sothe loop would not havebeenenteredin this caseatall.

� For all ' ′ 2 ToEval, ToEval alsocontainssomepropersubformula
of ' ′. Since 2 ToEval, the sameshouldhold for , and again for
somepropersubformula ′ of . Continuing this way, we would ob-
tain an in�n ite sequenceof different formulae(all in ToEval), each of
which (excluding the �r stone)isapropersubformula of thepreceding
formula in the sequence. But this is clearlyimpossible,sinceToEval
initially containsonly a �n ite numberof formulae.

Therefore,jToEvalj must decreasein each iteration of the main loop, and
the algorithmterminates. �

APPENDIX B. CORRECTNESS OF LTL MODEL CHECKING ALGORITHM FOR SEQUENTIAL KRIPKE STRUCTURES iii

Lemma 4 Let ' ′ be the formula chosen by the algorithm from the set
ToEval in some iteration of the main loop. Then, the set Result contains
no pairs of the form (' ′; s) for any s 2 S in the beginning of the itera-
tion. Furthermore, no subsequent iteration will manipulate pairs of the form
(; s), adding them to or removing them from the set Result, where is a
subformula of ' ′.

Proof: By the proof of Lemma 3, the algorithm mustchoosesomeformula
from ToEval in each iterationof the main loop. It isclearthateveryformula
 chosenby the algorithm in anypreviousiteration must be different from
' ′, sinceotherwise' ′ would alreadyhavebeenremovedfrom ToEval and
could not beselectedagain.

ThesetResult is initially empty. It iseasyto seefrom thealgorithmde�n i-
tion (lines10,13,16,19,24,25and33) thatall pairsaddedto the setResult
during a singleiteration of the main loop areneverassociatedwith anyfor-
mula other than the onepickedfrom ToEval in that iteration. The fact that
all formulaeprocessedbefore' ′ aredifferentfrom ' ′ now establishesthe�r st
partof the lemma.

It is immediatefrom thealgorithmde�n ition that thesetToEval cancon-
tain no subformulaeof ' ′ when ' ′ isselected.The secondpartof the lemma
now followsfrom the fact that ' ′ is removedfrom ToEval in the iteration in
which it isselected,togetherwith thenotethatnothing iseverremovedfrom
the setResult. �

The informal meaning of the previous lemma is that the algorithm
“builds” the contentsof the setResult incrementally, one subformula at a
time.

The following lemmaprovesa resultaboutthe waythat the setResult is
updatedduring each iterationof the main loop of the algorithm.

Lemma 5 Let ' ′ be the subformula chosen by the algorithm from the set
ToEval in some iteration of its main loop. At the end of the iteration, for all
s 2 S, (' ′; s) 2 Result if and only if

(a) [' ′ 2 AP] ' ′ 2 � (s);

(b) [' ′ = :] (; s) 62Result;

(c) [' ′ = (1 _ 2)] (1; s) 2 Result or (2; s) 2 Result;

(d) [' ′ = X]
�
 ; � (s)

�
2 Result;

(e) [' ′ = (1 U 2)] 9j � 0 :
�
 2; � j(s)

�
2 Result

and 80 � k < j :
�
 1; � k(s)

�
2 Result.

Proof: ByLemma4,weknow that8s 2 S : (' ′; s) 62Resultatthebeginning
of theiteration,andthealgorithmwill notmanipulatepairsof theform(; s)
for anysubformula of ' ′ afterthe iteration. Cases(a), (b), (c) and (d) are
now immediate from the de�n ition of the algorithm. We show that case(e)
alsoholds.

The variables is initialized to s0 on line 21 of the algorithm. The loop
betweenlines22 and31 is repeatedjSj times,and the valueof s is updated

APPENDIX B. CORRECTNESS OF LTL MODEL CHECKING ALGORITHM FOR SEQUENTIAL KRIPKE STRUCTURES iv

tρ ()j

ψ1 ψ1 ψ2ψ1

t

(a)
tρ ()jnρ ()t n−1

tρ ()

ψ1 ψ1 ψ2 ψ1 ψ1

t

(b)

Fig. B.1: Illustrationof the proofof Lemma5

to itssuccessorin each iterationof the loop (line 30). Thus,s cyclesthrough
all statesof the Kripke structureM in sequential order. Since the Kripke
structureis sequential, the “last” stateof the sequenceis known to be con-
nectedto somepreviousstatein the sequence. Now, becausethe variables
is still updatedto point to its successoralsoin the lastiterationof the loop, it
followsthats will point to somepreviously visited state of thestructureat the
endof the loop.

Let t be a statein S such that 9j � 0 :
�
 2; � j(t)

�
2 Result and 80 �

k < j :
�
 1; � k(t)

�
2 Result. Without lossof generality, wemayassumethat

j is the smallest nonnegativeintegerfor which
�
 2; � j(t)

�
2 Result is true,

sofor all 0 � k < j ,
�
 2; � k(t)

�
62Result. By the previousnote, thereis an

iterationof the loop betweenlines22 and31 such that the variables points
to the statet. Considernow this iterationof the loop.

If j = 0, it holds that
�
 2; � 0(t)

�
2 Result, that is, (2; t) 2 Result.

The condition on line 23 is now true, andthe lines24–26getexecuted.On
line 24, the pair (' ′; t) is insertedinto Result. Sincethe algorithmneverre-
movesanythingfrom thissetandthealgorithmvisitseach stateof the Kripke
structure,the resultwill hold for all t 2 S for which (2; t) 2 Result at the
endof the casestatement.

If j > 0, therearetwocases(seeFig. B.1):

(a) The algorithmvisitst before� j(t). Since80 � k < j :
�
 1; � k(t)

�
2

Result, it followsthat the condition on line 28 will hold for � 0(t) = t
and all subsequent states� k(t) with 0 � k < j . Therefore,after j
iterationsof the loop, the setMarked will contain all states� 0(t) =
t; � 1(t); : : : ; � j−1(t). The algorithm then proceedsto the state � j(t).
Since

�
 2; � j(t)

�
2 Result, the condition on line 23 is true. The set

Result is now extendedwith all states(' ′; s′), where s′ 2 Marked.
Since we know that t 2 Marked still holds at this point, (' ′; t) 2
Result will hold at the end of this iteration. Becausenothing is ever
removedfrom the setResult, (' ′; t) 2 Result will still hold at the end
of the casestatement.

(b) The algorithmvisits� j(t) beforet. Thiscanhappenif both t and� j(t)
areinsidethecyclecontainedin theKripkestructureM , and� j(t) can
bereached from t throughthe transitionconnectingthe “last” stateof
the sequential structureto one of its predecessors. It now followsthat
thereexistsan integer1 � n � j such that the algorithm hasnot yet
visitedthe state� n−1(t) (or is currently in that state),but it hasalready
visitedthe state� n(t).

Since
�
 1; � k(t)

�
2 Result for all 0 � k < n, all states� k(t) with

0 � k < n will be insertedinto the setMarked during subsequent

APPENDIX B. CORRECTNESS OF LTL MODEL CHECKING ALGORITHM FOR SEQUENTIAL KRIPKE STRUCTURES v

iterationsof the loop, afterwhich the loop terminates. At this point,
the variables points to the state� n(t).

We show that
�
' ′; � n(t)

�
2 Result now holdsat this point of the al-

gorithm, and thereforethe condition on line 32 is true. This will
causethe insertionof elements(' ′; s′) into the setResult for all s′ 2
Marked. Since t 2 Marked, it then followsthat Result will contain
the pair (' ′; t) at the endof the casestatement.

To show that
�
' ′; � n(t)

�
2 Result holdswhen the loop betweenlines

22 and 31 terminates,we �r st note that the claim holds if � n(t) =
� j(t). This is becausethe pair (' ′; � j(t)) hasalreadybeen inserted
into Result when processingthe state� j(t).

If � n(t) 6= � j(t), the algorithmmusthaveprocessed� n(t) before� j(t),
sinceotherwise� j(t) would not be reachablefrom the statet. There-
fore, � n(t) precedes� j(t) in the sequential Kripke structure. Since
80 � k < j :

�
 1; � k(t)

�
2 Result, it alsoholdsthat 8n � k < j :�

 1; � k(t)
�

2 Result. We alsoknow that
�
 2; � j(t)

�
2 Result. Since

� n(t) and � j(t) havealreadybeenvisited,wecanapplycase(a) above
to concludethat

�
' ′; � n(t)

�
2 Result holdswhen the loop terminates.

For theotherdirection,assumethat(' ′; t) 2 Result at theendof thecase
statementfor somet 2 S. We show that therenow existsa j � 0 such that�
 2; � j(t)

�
2 Result andfor all 0 � k < j ,

�
 1; � k(t)

�
2 Result.

By Lemma4, Result containsno pairsof the form (' ′; s′) for anys′ 2 S
in the beginning of the loop betweenlines22–31.Therefore,the pair (' ′; t)
must havebeenadded to this setsomewhereafter line 21. The only places
wherethis canhaveoccurredarelines24,25and33.

In the following, we shall rely on the fact that each stateof the structure
is visitedexactlyonce in the loop. This implies that each state is inserted
at mostonce into the setMarked, which is easyto seefrom the algorithm
de�n ition.

� If (' ′; t) wasinsertedinto Result on line 24, the condition (2; t) 2
Result mustalsohavebeentrue at this point, sinceotherwiseline 24
would not havebeenexecuted.The result now followsimmediately
with j = 0.

� If (' ′; t) wasinsertedinto Result on line 25,theremustexistans′ 2 S
for which the condition (2; s′) 2 Result wastrue in someiterationof
the loop betweenlines 22 and 31. In addition, t 2 Marked wastrue
at this point. SinceMarked wasinitially empty(andt wasnot inserted
into it in that iteration), t wasinsertedinto Marked in someprevious
iterationof the loop. The only placethismayhavehappenedisat line
28, which can havebeenexecutedfor t only if (1; t) 2 Result and
(2; t) 62Result. Sincet wasvisitedbefores′, it mustbeapredecessor
of s′. Therefore,thereexistsa j � 0 such that s′ = � j(t).

If s′ = � (t), the resultnow followswith j = 1.

If � (t) 6= s′, s′ is not an immediate successorof t. Assumethen
that there existsa 0 � k < j such that

�
 1; � k(t)

�
62Result, or

APPENDIX B. CORRECTNESS OF LTL MODEL CHECKING ALGORITHM FOR SEQUENTIAL KRIPKE STRUCTURES vi

�
 2; � k(t)

�
2 Result. When processingthe state� k(t), the algorithm

musthaveexecutedeither lines24–26or the line 29, in both casesset-
ting Marked to beempty(in effect,removingt from thisset).It isnow
impossiblethat t 2 Marked would any longerhold when processing
the states′, which is a contradiction. Therefore,it mustbe that for all
0 � k < j ,

�
 1; � k(t)

�
2 Result, and

�
 2; � k(t)

�
62Result. This

establishesthe resultin this case.

� Assumethat the insertion of (' ′; t) into Result occurredat line 33.
As in the previouscase,t 2 Marked must haveheld at this point,
which canbetrue only if for t andall of its �r stn successors(of which
� n(t) is the laststateprocessedby the loop),

�
 1; � k(t)

�
2 Result and�

 2; � k(t)
�

62Result for all 0 � k � n.

At line 33, the variables points to somepreviouslyvisitedstatein the
sequential Kripke structure. It is necessarythat (' ′; s) 2 Result was
true alreadyat line 32, since otherwisethe loop on line 33 would
not havebeenexecuted.Since Result contained no pairs relatedto
the formula ' ′ beforethe loop on lines 22–31,the pair (' ′; s) must
havebeen insertedinto Result in that loop on line 24 or 25. We
havealreadyshown that the result holds for such states,and there-
fore we may conclude that 9m � 0 :

�
 2; � m(s)

�
2 Result and

80 � k < m :
�
 1; � k(s)

�
2 Result. The result then holds for t

with j = n + m + 1.
�

The following lemmaconnectsthe previousresultswith model checking
LTL in the pathsof the givensequential KripkestructureM .

Lemma 6 Let ' ′ be the subformula of ' that the algorithm of Fig. 5.6
chooses from the set ToEval in the beginning of some iteration of the main
loop. Then, at the end of the algorithm,

8s 2 S : (' ′; s) 2 Result iff � s j= ';

where � s is the (unique) infinite path of M hs; : : : i starting in s.

Proof: If ' ′ 2 AP , the algorithm enters the loop between the
lines 9–10. At the end of the current iteration of the main loop, it now
followsby Lemma 5 (a) that (' ′; s) 2 Result if and only if ' ′ 2 � (s), if
andonly if � s j= ' ′ (by the semanticsof LTL). By Lemma4, the algorithm
doesnot manipulate pairs(' ′; s) afterthis iteration,so(' ′; s) 2 Result still
holdsat the end of the algorithm. The result thereforeholdsfor all atomic
propositionsoccurringin ' .

Assumethen that the resultholdsfor all subformulae ' ′ for which j' ′j �
n. Let ' ′ be a subformula of ' such that all propersubformulaeof ' ′ areat
mostof length n. Therefore,' ′ is either : 1, X 1, (1 _ 2) or (1 U 2),
wherej 1j � n andj 2j � n. We havethe following cases:

APPENDIX B. CORRECTNESS OF LTL MODEL CHECKING ALGORITHM FOR SEQUENTIAL KRIPKE STRUCTURES vii

� If ' ′ = : 1, the loop betweenlines12 and13 is entered.We seethat
at the endof the loop,

(' ′; s) 2 Result iff [Lemma 5 (b)]
(1; s) 62Result iff [induction hypothesis]
� s 6j= 1 iff [semanticsof LTL]
� s j= : 1 iff
� s j= ' ′

for all s 2 S.

� If ' ′ = (1 _ 2), the loopbetweenlines15and16 isexecuted.In this
case,

(' ′; s) 2 Result iff [Lemma 5 (c)]
(1; s) 2 Result or (2; s) 2 Result iff [induction hypothesis]
� s j= 1 or � s j= 2 iff [semanticsof LTL]
� s j= (1 _ 2) iff
� s j= ' ′

for all s 2 S.

� If ' ′ = X 1, the algorithm enters the loop betweenlines 18–19. As
above,weseethat

(' ′; s) 2 Result iff [Lemma 5 (d)]�
 1; � (s)

�
2 Result iff [induction hypothesis]

� ρ(s) j= 1 iff [� ρ(s) = � 1
s]

� 1
s j= 1 iff [semanticsof LTL]

� s j= X 1 iff
� s j= ' ′

for all s 2 S.

� If ' ′ = (1 U 2), the algorithm executesthe casebetweenlines 21–
33.

(' ′; s) 2 Result iff [Lemma 5 (e)]
9j � 0 :

�
 2; � j(s)

�
2 Result

andfor all 0 � k < j;
�
 1; � k(s)

�
2 Result iff [ind. hypothesis]

9j � 0 : � ρj (s) j= 2

andfor all 0 � k < j; � ρk (s) j= 1 iff [LTL semantics]
� s j= (1 U 2) iff
� s j= ' ′

for all s 2 S.

In all previouscases,Lemma4 guaranteesthat the resultwill still hold at
the endof the algorithm. �

We cannow provethe correctnessof the algorithm.

Proposition 1 (Correctness of the algorithm) The algorithm of Fig. 5.6 re-
turns the value “YES” if and only if the LTL formula ' holds in the sequential
Kripke structure M .

APPENDIX B. CORRECTNESS OF LTL MODEL CHECKING ALGORITHM FOR SEQUENTIAL KRIPKE STRUCTURES viii

Proof: It is clearfrom the algorithmde�n ition that ' 2 ToEval holdsafter
line 3 hasbeenexecuted.

By the proof of Lemma 3, the sizeof the setToEval decreasesin each
iterationof themain loop. From thisfollowsthat theremustexistaniteration
in which the algorithm choosesthe the formula ' from ToEval and then
removesit from thisset.At thispoint, therecanbeno propersubformulaeof
' left in the setToEval (otherwise' could not bechosen),sothe algorithm
terminatesafterthis iteration.

ByLemma6, the setResult will afterthis iterationcontain the pair ('; s)
for somes 2 S if andonly if � s j= ' . Sincethe algorithmthen terminates,
thereareno subsequent iterationsthat could changethe contentsof Result.

From the algorithmde�n ition weseethat the algorithmreturnsthe value
“YES” if andonly if ('; s0) 2 Result at the end of the algorithm,i.e. if and
only if � s0 j= ' (again byLemma6).

Becauseeach stateof M hasexactlyonesuccessor,M hasonly oneexe-
cution beginning in its initial states0, andthis executioncorrespondsto the
sequence� s0. Therefore,M j= ' if and only if � s0 j= ' , if and only if the
algorithmreturns`'YES”. �

APPENDIX B. CORRECTNESS OF LTL MODEL CHECKING ALGORITHM FOR SEQUENTIAL KRIPKE STRUCTURES ix

C ANALYSIS OF THE LTL FORMULA GENERATION ALGORITHM

This appendix containsan analysisof the randomLTL formula generation
algorithmpresentedin Fig. 6.1(page46)usedin theLTL-to-Büchi translator
testbench anddescribeshow theparametersin thealgorithmcanbeadjusted
sothateach generatedformula will havethe sameexpectednumberof every
individual logical or temporaloperator. The analysisrelieson the standard
axiomsof probability; for a reference,seeanybasictextbookon probability
or statistics.

C.1 FINDING THE EXPECTED NUMBER OF OPERATORS IN A FORMULA

We will begin with �nd ing the probability with which a given formula of
parsetree sizen generatedby the algorithm of Fig. 6.1 containsexactlyk
instancesof a given operatorop. For this purpose,let Aop,k,n denotethe
randomevent

Aop,k,n : “A formula with aparsetreeof sizen containsk instances
of operatorop”

Let U denotethe setof available unary operators, and let B be the set
of all available binary operators (in the testbench implementation, U =
f: ; X; �; ♦g and B = f_ ; ^ ; ! ; $; U; Rg). Let OP denotethe setof all
operatorsU [B .

Asdescribedin Chap. 6, the testbench implementation assignsto each
operatorop 2 OP an integerpriority pri (op) thatdeterminestheprobability
with which the algorithmwill chooseop wheneverpicking a randomopera-
tor at lines7 or 12. Let Pn(op) denotethisprobabilityfor some�xed formula
parsetreesizen � 1. From the algorithmwecanseethat

Pn(op) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

0 if n = 1

pri (op)
∑

op02 U
pri (op0) if n = 2 andop 2 U

0 if n = 2 andop 2 B

pri (op)
∑

op02 OP

pri (op0) if n � 3

(C.1)

We now proceedby lookingat how the algorithmcangeneratea formula
with a parsetree of sizen sothat the formula containsexactlyk instances
of operatorop. For now, it is assumedthat k � 1; the casek = 0 will be
handled later. When the algorithm is called with the parametern (before

APPENDIX C. ANALYSIS OF THE LTL FORMULA GENERATION ALGORITHM x

anyrecursivecallsareexecuted),it canbeseenthat

P(Aop,k,n)

= Pn(“the algorithmchoosesop”

^ “the algorithmwill laterchooseop k � 1 times”) (C.2)

+ Pn(“the algorithmchoosesanoperatorop′ 6= op”

^ “the algorithmwill laterchooseop k times”)

(It is clearthat the two eventsin the probabilitiesaremutually exclusive,so
the probability of the occurrenceof either event is simply the sum of the
probabilitiesof the individual events. “Later” refers to the recursivecalls
madeby the algorithm.)

The behaviourof thealgorithmin the recursivecallsdependson the arity
of the chosenoperatorand the formula parsetree sizen. (Let arity (op)
denotethearityof op; it isalwayseither 1 or 2.) Alsothenumberof recursive
callsdependson the arity of the chosenoperator. The event“the algorithm
choosesanoperatorop′ 6= op” canbesplit into twomutually exclusivecases
according to the arityof the chosenoperator:

P(Aop,k,n)

= Pn(“the algorithmchoosesop”)

� Parity(op),n(“the algorithmwill laterchooseop k � 1 times”)

+ Pn(“the algorithmchoosesanoperatorop′ 6= op”)

� Parity(op0),n(“the algorithmwill laterchooseop k times”)

= Pn(op) � Parity(op),n(“the algorithmwill laterchooseop k � 1 times”)

+ Pn(“the algorithmchoosesaunaryoperatorop′ 6= op”)

� P1,n(“the algorithmwill laterchooseop k times”) (C.3)

+ Pn(“the algorithmchoosesabinaryoperatorop′ 6= op”)

� P2,n(“the algorithmwill laterchooseop k times”)

We haveusedhere the fact that Pn(“the algorithmchoosesop”) is the
probabilityPn(op) de�ned in (C.1). In (C.3) wealsohave

Pn(“the algorithmchoosesa unaryoperatorop′ 6= op”)

=

8
>>>>>>>>>><

>>>>>>>>>>:

0 if n = 1

∑

op02 U nf opg
pri (op0)

∑

op02 U

pri (op0) if n = 2

∑

op02 U nf opg
pri (op0)

∑

op02 OP

pri (op0) if n � 3

(C.4)

and

Pn(“the algorithmchoosesabinaryoperatorop′ 6= op”)

=

8
><

>:

0 if 1 � n � 2
∑

op02 B nf opg
pri (op0)

∑

op02 OP

pri (op0) if n � 3
(C.5)

APPENDIX C. ANALYSIS OF THE LTL FORMULA GENERATION ALGORITHM xi

If the operatorchosenby the algorithmis a unaryoperator,the algorithm
proceedsto recursivelygenerateasubformula with aparsetreeof sizen � 1.
This can be consideredan independent invocationof the algorithm with a
different value for the parametern. Clearly, n mustbe greateror equal to 2
for anyrecursivecall to begenerated.Thus,for all x � 2,

P1,n(“the algorithmwill laterchooseop x times”)

= P(“a formula with aparsetreeof sizen � 1 containsx instancesof

operatorop”)

= P(Aop,x,n−1) (C.6)

Choosinga binaryoperatorresultsin two recursivecallsto generatetwo
subformulaewith parsetreesof sizem andn� m� 1 for some1 � m � n� 2.
It is safeto assumethat n � 3 in this case,sinceotherwisethe algorithm
cannotchooseabinaryoperator. If each of thepossiblevaluesform isequally
probable,the possiblewaysto split the formula givesrise to n � 2 equally
probablecases.(In addition, thesecasesareagain mutually exclusive:one
might think of partitioning the formula into a “left-hand”anda “right-hand”
subformula.) Therefore,

P2,n(“the algorithmwill laterchooseop x times”)

=
1

n � 2

n−2X

m=1

P(“therearea total of x instancesof op in two formulae

with parsetreesof sizem andn � m � 1, (C.7)

respectively”);

for all x � 3.
This casecan be split further into subcasesaccording to how many in-

stancesof op appearsin each subformula. Therearex + 1 waysto partition
an integerx � 0 into two nonnegative integers such that their sum equals
x. (Thesecasesareagain mutually exclusiveif we think that thereis a “left-
hand” anda “right-hand”subformula.)

P(“therearea total of x instancesof op in two formulaewith parse

treesof sizem andn � m � 1, respectively”)

=
xX

i=0

h
P(“a formula with aparsetreeof sizem containsi instancesof

op”)

� P(“a formula with aparsetreeof sizen � m � 1 contains

x � i instancesof op”)
i

=
xX

i=0

h
P(Aop,i,m)P(Aop,x−i,n−m−1)

i
(C.8)

Applying(C.8) to (C.7), weget

P2,n(“the algorithmwill laterchooseop x times”)

=
1

n � 2

n−2X

m=1

xX

i=0

h
P(Aop,i,m)P(Aop,x−i,n−m−1)

i
(C.9)

APPENDIX C. ANALYSIS OF THE LTL FORMULA GENERATION ALGORITHM xii

Equations(C.1), (C.4), (C.5), (C.6) and (C.9) can now be applied to
(C.3) to obtain theequationfor P(Aop,k,n). Wealsomakenoteof the follow-
ing:

� Sincea formula cannotcontain more operators than therearenodes
in the formula parsetree, and becausethe formula alsocontains at
leastone atomic proposition(or a Booleanconstant), it follows that
P(Aop,k,n) = 0 for all k � n.

� The eventthat the formula doesnot contain an instanceof someop-
eratorop iscomplementaryto the eventthat the formula containsone
or more instancesof that operator. Takingalsothe previousnote into
account,weseethatP(Aop,0,n) = 1 �

P n−1
k=1 P(Aop,k,n).

The probabilityof the eventAop,k,n is then givenby the equation

P(Aop,k,n)

=

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

0 (a)

pri (op)
∑

op02 U
pri (op0) (b)

0 (c)

pri (op)
∑

op02 OP

pri (op0) P(Aop,k−1,n−1) + P(op; k; n) (d)

pri (op)
(n−2)

∑

op02 OP

pri(op0)

n−2P

m=1

k−1P

i=0

h
P(Aop,i,m)P(Aop,k−1−i,n−m−1)

i
(e)

+ P(op; k; n)

1 �
n−1P

k=1
P(Aop,k,n) (f)

(C.10)

(a) if k � n or n = 1
(b) if k = 1, n = 2 andop 2 U
(c) if k = 1, n = 2 andop 2 B
(d) if k � 1, n � 3 andop 2 U
(e) if k � 1, n � 3 andop 2 B
(f) if k = 0 andn � 1

where

P(op; k; n)

=

P

op0∈U\{op}

pri (op′)

P

op0∈OP

pri (op′)
P(Aop,k,n−1)

+

P

op0∈B\{op}

pri (op′)

(n � 2)
P

op0∈OP

pri (op′)

n−2X

m=1

kX

i=0

h
P(Aop,i,m)P(Aop,k−i,n−m−1)

i

APPENDIX C. ANALYSIS OF THE LTL FORMULA GENERATION ALGORITHM xiii

Equation (C.10) expressesthe probabilityP(Aop,k,n) usingprobabilities
P(Aop,k0,n0), whereeither k′ < k or n′ < n (or both). In addition, the proba-
bilities P(Aop,k,n) with k = 1 andn � 2 aregiven. Theseprobabilitiescan
beusedasabasisfor calculatingprobabilitiesP(Aop,k,n) for highervaluesof
k andn. This leadsto a “bottom-up” algorithmthat canbe usedfor �nd ing
the probability for anyvaluesof k and n. (This algorithm can run in poly-
nomial time e.g.if the computedvaluesP(Aop,k,n) arestoredinto an array,
which is then usedto retrievevaluesfor probabilitiesthat havealreadybeen
computed.)

Using the probabilityP(Aop,k,n), the expectednumber of instancesof a
givenoperatorop in a formula with aparsetreeof sizen isnow givenby

Eop,n =
n−1X

k=0

�
k � P(Aop,k,n)

�
(C.11)

C.2 ADJUSTING OPERATOR PRIORITIES IN THE ALGORITHM

To adjustthe prioritiesof the different operatorssothat each generatedfor-
mula (with a �xed parsetree size)will contain the sameexpectednumber
of each individual operator,we �r st note that it is suf�cient to distinguish
the operators only by their arity. This is becauseall choicesmadeby the
algorithm are neverbasedon exactoperatorsymbols. Therefore,we can
identify all unaryoperatorsandall binaryoperatorswith each other,respec-
tively, and proceedto �nd only two priorities pri u and pri b sharedby the
operators of different arity. Therefore,8op 2 U : pri (op) = pri u, and
8op 2 B : pri (op) = pri b. Substitutingtheseinto (C.10) resultsin the
slightlysimpli�ed equation

P(Aop,k,n)

=

8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

0 (a)

1
|U |

(b)

0 (c)

priu
|U |priu+ |B|prib

P(Aop,k−1,n−1) + P(op; k; n) (d)

prib
(n−2)(|U |priu+ |B|prib)

n−2P

m=1

k−1P

i=0

h
P(Aop,i,m)P(Aop,k−1−i,n−m−1)

i
(e)

+ P(op; k; n)

1 �
n−1P

k=1
P(Aop,k,n) (f)

(C.12)

APPENDIX C. ANALYSIS OF THE LTL FORMULA GENERATION ALGORITHM xiv

wherethe conditions (a) to (f) areasbefore,jUj and jB j arethe numbersof
availableoperatorsof differentarities,respectively, and

P (op, k, n)

=

(

|U | −
(

2− arity(op)
)

)

priu

|U |priu + |B|prib
P(Aop ,k,n−1)

+

(

|B| −
(

arity(op)− 1
)

)

prib

(n− 2)(|U |pri u + |B|prib)

n−2
∑

m=1

k
∑

i=0

[

P(Aop ,i,m)P(Aop ,k−i,n−m−1)
]

The problemnow reducesto solvingthe equation Eop1,n
� Eop2,n

= 0 for
any two operators op1 2 U;op2 2 B, where the expectedvaluesarecom-
puted using(C.11). By treatinganotherof the prioritiespri u and pri b asa
constant in this equation, the equation could now in principle be solvedfor
the other priority to �nd the dependencybetweenthe two priorities. How-
ever,solvingthis equation exactlymaybe verytedious in practice. In addi-
tion, since(C.11) dependson the formula parsetreesizen andthe number
of availableunaryand binaryoperators jUj and jB j, it is clear that the rela-
tionshipbetweenpri u andprib will bedifferent for each valuecombination
for the three previousparameters. This meansthat a new equation would
haveto be solvedfor each such combination. (Furthermore,it mayalsooc-
cur that the equation hasno solutionsat all for somevaluesof n, jUj and
jB j.)

Instead,it is possibleto try to �nd approximatevaluesfor the prioritiesby
simplyguessinga valuefor anotherof the prioritiesandthen trying to �nd a
suitablevaluefor the otherpriority such that the differencejEop1,n

� Eop2,n
j

is minimized. Here wecanusethe fact that sincethe algorithmcanchoose
aunaryoperatorin twoseparateplaces,it shouldbethatpri b > pri u.

The valuesfor the prioritiescanbecomputedautomaticallyfor smallval-
uesof n (asusedin the experimentsmadein this work) by usingeventhe
following brute-forceapproach:

1. Let pri u = 1, andlet pri b = pri u + 1.

2. Compute the difference � = Eop1,n
� Eop2,n

, where op1 2 U and
op2 2 B.

3. If � �=2 < � < �=2 for a given tolerance� > 0, return the current
valuesof pri u andpri b andstop.

4. Otherwise,if � < 0, increment pri u; if � > 0, increment pri b. Go
then back to step2 (or stopafter somemaximum iteration limit has
beenexceeded).

Sinceonly smallvaluesof n wereusedin theexperimentsof Chap.6, this
simplistic approach wassuf�cient for �nd ing the valuesfor the parameters
pri u and pri b, using � = 2 � 10−8 asthe tolerance. The priorities could
be found for all n 2 f 5; 6; 7; 8; 9; 10; 11; 12g and for both setsof operators
OP1 = f: ; �; ♦; _ ; ^ ; ! ; Ug and OP2 = f: ; X; �; ♦; _ ; ^ ; ! ; $; U; Rg
usedwith the different LTL-to-Büchi translators. For OP1, jUj = 3 and
jB j = 4; for the setOP2, jUj = 4 andjB j = 6.

APPENDIX C. ANALYSIS OF THE LTL FORMULA GENERATION ALGORITHM xv

TableC.1: Operatorprioritiesfor different operatorsetsanddifferent values
of n

n Operator set used

{¬, � , � ,∨,∧,→, U} {¬, X, � , � ,∨,∧,→,↔, U, R}
priu prib priu prib

5 3667 13443 1678 7357
6 2810 9909 1455 6679
7 2417 7462 2333 8757
8 1305 3736 2914 9959
9 3773 10229 1769 5646

10 1933 5031 2507 7607
11 6771 17072 4133 12061
12 3242 7969 2609 7381

The valuesusedfor the priorities in the experimentsfor different setsof
operatorsandformula parsetreesizesareshown in TableC.1.

APPENDIX C. ANALYSIS OF THE LTL FORMULA GENERATION ALGORITHM xvi

D SPIN V3.4.1 ERROR ANALYSIS

This appendix presentsa shortanalysison the testcasethat uncoveredan
error in SPIN v3.4.1in the experimentsof Chap.6.

In this testcase,the randomlygeneratedformula was

' = ��

�
p4 ^

�
p2 U (:: p3 ^ ♦p4)

� �
;

wherep2, p3 andp4 areatomic propositions.This formula has12nodesin its
parsetree.A fragmentof theBüchi automaton(including itsinitial statewith
all outgoing transitions)generatedby the implementation from this formula
isshown in Fig. D.1.1 It is important that the initial stateof the automatonis
not anacceptingstate(the automatonhasoneacceptancecondition).

The following sequence� providesawitnessthatprovesthe incorrectness
of the automaton:

� = hfp3; p4g; f p3; p4g; f p3; p4g; : : : i :

This witnesswasfound automaticallyusingthe testbench.
It is easyto seethat the automatoncanneverexecutethe transitioncorre-

sponding to thedownwardarrow whengiven� asinput. Instead,theautoma-
ton can only stay foreverin its nonacceptinginitial state,sothe automaton
will rejectthe witness.

However,the formula ' is satisfied in the sequence� , sothe automaton
shouldaccept � :

First of all, � 0 j= p4, so� 0 j= > U p4 � ♦p4. In addition, � 0 j= p3, so
� 0 6j= : p3, from which it followsthat � 0 j= :: p3. Therefore,� 0 j= :: p3 ^
♦p4. This in turn implies that � 0 j= p2 U (:: p3 ^ ♦p4), andsince� 0 j= p4,
� 0 j= p4 ^

�
p2 U (:: p3 ^ ♦p4)

�
is true.

Since � i = � for all i � 0, it now followsthat � i j= p4 ^
�
p2 U (:: p3 ^

♦p4)
�

is true for all i � 0. From this it followsdirectly that � i j= ��

�
p4 ^

�
p2 U (:: p3^ ♦p4)

� �
for all i � 0, soespecially � 0 = � j= ' , andtheformula

is satis�edin the witness.This provesthat the Büchi automatonincorrectly
rejectsthe witness.

(In practice,the testbench did asimilar analysisautomaticallyby�r stcon-
vertingthe witnessinto a sequential Kripke structureconsistingof onestate
with a self-loopandthen modelchecking the formula in the structureusing
the restrictedLTL modelchecking algorithmof Sect.5.2.)

1The sameautomatonwasobtained alsofrom the slightly simpli�ed formula �
�
p4 ^

�
p2 U(p3 ^ � p4)

� �
. Actually, the formula still containssomeredundancy:it canbechecked

that�
�
p4^

�
p2 U(p3^ � p4)

� �
isequivalentto �

�
p4^ (p2 Up3)

�
; however,thisformuladoes

not translateinto the sameautomatonanylonger. It could be arguedthat “real” formulae
to be model checkeddo not usuallycontain this kind of redundancy. However,anyimple-
mentation errors shouldstill be �xed in order to removeany possibilityof everobtaining
incorrectautomata.

APPENDIX D. SPIN V3.4.1 ERROR ANALYSIS xvii

,{p , p3 4 {p , p , p2 3 4}}{ }
,{p , p4 {p , p , p2 3 4}}2{ }

(5 more states)

Fig. D.1: A fragmentof theBüchi automatongeneratedby SPIN v3.4.1from

the formula ��

�
p4 ^

�
p2 U (:: p3 ^ ♦p4)

� �

HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY FOR THEORETICAL COMPUTER SCIENCE

RESEARCH REPORTS

HUT-TCS-A53 Stefan Rönn

Semantics of Semaphores. 1998.

HUT-TCS-A54 Antti Huima

Analysis of Cryptographic Protocols via Symbolic State Space Enumeration. August 1999.

HUT-TCS-A55 Tommi Syrjänen

A Rule-Based Formal Model For Software Configuration. December 1999.

HUT-TCS-A56 Keijo Heljanko

Deadlock and Reachability Checking with Finite Complete Prefixes. December 1999.

HUT-TCS-A57 Tommi Junttila

Detecting and Exploiting Data Type Symmetries of Algebraic System Nets during

Reachability Analysis. December 1999.

HUT-TCS-A58 Patrik Simons

Extending and Implementing the Stable Model Semantics. April 2000.

HUT-TCS-A59 Tommi Junttila

Computational Complexity of the Place/Transition-Net Symmetry Reduction Method.

April 2000.

HUT-TCS-A60 Javier Esparza, Keijo Heljanko

A New Unfolding Approach to LTL Model Checking. April 2000.

HUT-TCS-A61 Tuomas Aura, Carl Ellison

Privacy and accountability in certificate systems. April 2000.

HUT-TCS-A62 Kari J. Nurmela, Patric R. J. Östergård

Covering a Square with up to 30 Equal Circles. June 2000.

HUT-TCS-A63 Nisse Husberg, Tomi Janhunen, Ilkka Niemelä (Eds.)

Leksa Notes in Computer Science. October 2000.

HUT-TCS-A64 Tuomas Aura

Authorization and availability - aspects of open network security. November 2000.

HUT-TCS-A65 Harri Haanpää

Computational Methods for Ramsey Numbers. November 2000.

HUT-TCS-A66 Heikki Tauriainen

Automated Testing of Büchi Automata Translators for Linear Temporal Logic.

December 2000.

ISBN 951-22-5275-9

ISSN 1457-7615

