
Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 66

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 66

Espoo 2000 HUT-TCS-A66

AUTOMATED TESTING OF BÜCHI AUTOMATA TRANSLATORS

FOR LINEAR TEMPORAL LOGIC

Heikki Tauriainen

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI

Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 66

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 66

Espoo 2000 HUT-TCS-A66

AUTOMATED TESTING OF BÜCHI AUTOMATA TRANSLATORS

FOR LINEAR TEMPORAL LOGIC

Heikki Tauriainen

Helsinki University of Technology

Department of Computer Science and Engineering

Laboratory for Theoretical Computer Science

Teknillinen korkeakoulu

Tietotekniikan osasto

Tietojenkäsittelyteorian laboratorio

Distribution:

Helsinki University of Technology

Laboratory for Theoretical Computer Science

P.O.Box 5400

FIN-02015 HUT

Tel. +358-0-451 1

Fax. +358-0-451 3369

E-mail: lab@tcs.hut.fi

©c Heikki Tauriainen

ISBN 951-22-5275-9

ISSN 1457-7615

Picaset Oy

Helsinki 2000

ABSTRACT: The formal verification of finite-state reactive and concurrent
systems against temporal logical requirements can be done by model check-
ing, which has the advantage of being well suited for automation. How-
ever, reasoning about the correctness of systems using automated techniques
places high demands for ensuring the reliability of the model checking tools
themselves.

This work describes testing methods for detecting implementation errors
in a specific class of algorithms required in the automata-theoretic model
checking procedure for propositional linear temporal logic (LTL). These al-
gorithms translate temporal requirements into Büchi automata that are used
in the model checking process. Most of the test methods can be easily in-
tegrated into an automatic testing tool for translation algorithm implemen-
tations. Experimental results using a randomized tool for testing the cor-
rectness of several implementations included in real model checkers are pre-
sented. This testing has proved to be an effective method for finding imple-
mentation errors in the translators.

This work also presents a restricted LTL model checking algorithm de-
signed to work in a very simple subclass of systems, on which the analysis
of test failures is based. This algorithm helps to automatically confirm the
incorrectness of a translation algorithm implementation.

KEYWORDS: Model checking, linear temporal logic, Büchi automata, algo-
rithm testing

CONTENTS

1 Introduction 1

2 State-Transition Models of Systems 3

3 Linear Temporal Logic 6

4 Automata-Theoretic LTL Model Checking 10
4.1 The LTL Model Checking Problem 10
4.2 Automata-Theoretic Approach to LTL Model Checking . . . 11

4.2.1 Büchi Automata . 11
4.2.2 Kripke Structures as Büchi Automata 14
4.2.3 Synchronous Product 15
4.2.4 Solving the LTL Model Checking Problem Using

Büchi Automata . 19
4.2.5 Checking the Existence of Accepting Executions . . . 21
4.2.6 Implementation Considerations 23

5 Testing LTL Translation into Büchi Automata 25
5.1 Test Methods for LTL-to-Büchi Translation 26

5.1.1 Analysis of Büchi Automata 26
5.1.2 Using the LTL Model Checking Procedure 32

5.2 Test Failure Analysis . 38

6 Experimental Results 44
6.1 Automated Testbench for LTL-to-Büchi Translators 44

6.1.1 Testbench Operation 44
6.1.2 Generating Input for the Tests 45

6.2 Test Arrangements . 48
6.3 Test Results . 51

7 Conclusions 63

Bibliography 65

A Emptiness Checking in Global Synchronous Product i

B Correctness of LTL Model Checking Algorithm for Sequential
Kripke Structures iii

C Analysis of the LTL Formula Generation Algorithm x
C.1 Finding the Expected Number of Operators in a Formula . . x
C.2 Adjusting Operator Priorities in the Algorithm xiv

D SPIN v3.4.1 Error Analysis xvii

1 INTRODUCTION

The goal of verification is to show that a given hardware or software system
conforms to its specifications and cannot behave in ways that might lead
into unexpected, undesirable or even critical situations. Formal verification
methods try to achieve this goal by proving that unintended behaviour in the
system is theoretically impossible. For example, these techniques can be used
in hardware system design to check the correctness of hardware specifications
before actually building the system. This may even reduce the overall pro-
duction costs by removing (or decreasing) the possibility that design errors
will need to be fixed in the finished product.

Model checking [1, 21] is one of the techniques applied especially in
the formal verification of reactive and concurrent systems and their speci-
fications, e.g. data communications protocols. This technique operates on
a model built from the original specifications of the system to be verified.
Basically, the model is a (possibly abstracted) representation of the original
system, and its behaviour reflects the system’s behaviour in light of a given
property to be verified. Verification then proceeds with checking whether
this formal model has the given property.

Also the properties to be verified need to be stated in a form that sup-
ports expressing requirements on the system model in terms of the chosen
modelling formalism. Model checking makes wide use of various temporal
logics for expressing these requirements as formulae of a chosen temporal
logic. The requirements concern the system’s behaviour as time passes (e.g.,
the relative order of events observed in the system), and they may include
temporal concepts such as “always”, “eventually” or “infinitely often”. Three
commonly used temporal logics in model checking are the computation tree
logic (CTL), the linear temporal logic (LTL), and the full branching time
logic (CTL*). (For a detailed review of all these logics, see e.g. [11].)

Different logics have different expressive power, which affects the nature
of the properties that can be expressed in the logic. The variety in the expres-
siveness of different logics results in a large number of model checking tech-
niques, some of which may be applicable only to certain logics. This work
concentrates on model checking propositional linear temporal logic [20]
with techniques based on the general automata-theoretic approach to model
checking due to Vardi and Wolper [31, 30].

Like any other complex task that requires high preciseness, model check-
ing specifications of real systems is made easier through the use of automated
tools for performing the task. Model checking techniques translate quite
readily into general verification procedures that can in principle be easily au-
tomated. Practical tools with abilities for model checking various temporal
logics include the model checker SPIN [10] designed for the verification of
protocols, the PROD tool [33, 34] for the analysis of systems modelled as Pred-
icate/Transition nets [7], and the SMV hardware system model checker [18]
based on symbolic verification techniques (see e.g. [11]).

Clearly, the correctness of the results given by any software tool that is
used to reason about the properties of some system (e.g., another piece of
software) is highly dependent on the correctness of the tool implementation

1. INTRODUCTION 1

itself. Proving the tool implementation correct using automated techniques
would certainly be very desirable. However, model checking tools are of-
ten complex pieces of software themselves, and their full verification is still
out of reach of current algorithmic verification techniques in practice. In
order to alleviate the unavoidable state explosion problem (see e.g. [29]) that
makes model checking of complex systems difficult in practice, model check-
ing tools have to use many nontrivial techniques for performing their task in
a memory-efficient way. Unfortunately, these techniques may increase the
complexity of the model checking tools themselves, which makes them more
prone to implementation errors.

Testing and simulation are common methods for examining the behaviour
and reliability of systems whose detailed analysis may otherwise be too com-
plicated. Even very informal testing techniques can be of valuable help in
uncovering errors in software. Since it may be difficult to prove implementa-
tions of model checking algorithms correct automatically, testing can offer a
simple approach applicable to improving the robustness of implementations
of the algorithms used in model checking tools.

LTL model checking tools based on the automata-theoretic approach usu-
ally employ a translation of linear temporal logic properties into finite-state
automata over infinite words (Büchi automata). In comparison to the other
phases of LTL model checking, the formula translation phase can be rel-
atively hard to implement. Errors in the implementation of a translation
algorithm may create a source of model checking errors that may degrade
the reliability of the tool. This work describes methods that can be used
for testing this phase of the model checking procedure for LTL (referred to
as LTL-to-Büchi translation). The testing methods can be automated into a
software package for testing real implementations of translation algorithms—
even those used in real model checking tools. This work describes an imple-
mentation of some of these methods into a randomized testbench for LTL-to-
Büchi translators (an extended version of the one described in [26, 27]), to-
gether with experimental results of tests made on several independent trans-
lation algorithm implementations. To improve the capabilities of detecting
errors in the translators, the testbench makes use of an LTL model checking
algorithm for a restricted class of system models.

The following two chapters introduce the formalisms used to represent
the system models and the properties to be verified. Chapter 4 reviews
the automata-theoretic model checking procedure for linear temporal logic,
which forms the core of several test methods for LTL-to-Büchi translation
algorithms. The test methods themselves are described in Chap. 5. The
chapter also includes a description of an LTL model checking algorithm for
the restricted class of models that arises in the analysis of test results. The
algorithm enhances the power of the test methods by providing a way to con-
firm the failure of a particular LTL-to-Büchi translator. Chapter 6 presents
the results of applying some of the test methods to several real LTL-to-Büchi
translation algorithm implementations. The work ends with some conclu-
sions in Chap. 7. The four appendices contain details on some issues men-
tioned only briefly in the text, such as the correctness proof of the restricted
LTL model checking algorithm described in Chap 5.

1. INTRODUCTION 2

2 STATE-TRANSITION MODELS OF SYSTEMS

Model checking techniques traditionally assume the system description to
be given as a finite state-transition graph. The system is thought to have
a (unique) state at each instant of its operation, and it operates in discrete
steps by making transitions from a state to another state. The model of the
system is built by exhaustively enumerating all the possible states that the sys-
tem can ever visit during its operation (called the state space of the system).
Transitions are then added between the states to represent all the possible
ways in which the system can change its state during operation.1 Because
the operation of the system may vary according to its inputs, it can behave
in many different ways. Each of these ways is individually called a behaviour
(or equivalently, an execution) of the system. The model built from the sys-
tem captures all these possibilities such that any actual operation observed in
the system can be represented as an execution of the model.2 An execution
can be described as a sequence of states the system visits during its operation,
or, alternatively, as a sequence of transitions the system makes when moving
from one state to another. In this work, executions of the system will always
be treated as sequences of states. The system is assumed to have a unique ini-
tial state where it begins its operation. In addition, the models are assumed
to have a finite state space.

Model checking a given property in the system requires the ability to dis-
tinguish between the executions of the system with respect to the property.
This is done by augmenting each individual system state with information
describing the characteristics of the state. The characteristics of any system
execution are then determined by the characteristics of the states occurring
in the execution. The information associated with the states can be expressed
in temporal logic by using a set of atomic propositions, each of which is given
a fixed truth value in each individual system state. The propositions acquire
their semantics from the original system specification and the property to be
checked in the model.

An additional assumption concerning the executions of the system is that
every individual execution of the system is always infinite. This is a reason-
able assumption about a reactive system (e.g., a server protocol) that should
continue responding to its inputs indefinitely. We therefore deny the possi-
bility of any finite terminating behaviours in the system model to simplify
the discussion. If the system has any finite behaviours, they can be inter-
preted as infinite behaviours in which the system will stay forever in the final
state of the terminating behaviour once reaching it. A system model can be
augmented with extra transitions and states in order to make it satisfy this re-
quirement. Additional atomic propositions might also need to be introduced

1In practice, the system specifications are often given in a more high-level notation,
using e.g. Pr/T nets [7], process algebras (e.g. CCS [19]) or various tool-specific specification
languages (e.g. PROMELA [9]). The Kripke structures described here can be considered low-
level semantical interpretations of the system descriptions; if necessary, they can be built
even automatically from various high-level specifications.

2In the discussion, the system is often identified with its model. Therefore, we will often
speak of executions of the system when actually referring to executions of the model.

2. STATE-TRANSITION MODELS OF SYSTEMS 3

if the goal is to check for the reachability of these states.
Formally, the system models are defined as node-labelled directed graphs,

called Kripke structures in the model checking context. In order to exclude
from the graph any state sequences that cannot be extended into infinite
ones by repeatedly appending states to the end of the sequence, every state of
the structure is required to have at least one successor. This means that the
transition relation is total.

Let AP denote a given nonempty finite set of atomic propositions describ-
ing the properties of the system states.

Definition 1 (Kripke structures) A Kripke structure is a quadruple M =
〈S, ρ, s0, π〉, where

• S is a finite set of states,

• ρ ⊆ S × S is a transition relation that satisfies the condition ∀s ∈ S :
∃s′ ∈ S : (s, s′) ∈ ρ,

• s0 ∈ S is the initial state, and

• π : S 7→ 2AP is a labelling function that associates each individual
state with a set of atomic propositions. Semantically, π(s) represents
the set of propositions that hold in a state s ∈ S.

An infinite path in the Kripke structure is an infinite sequence of states
〈s0, s1, s2, . . . 〉 ∈ S

ω 3 such that (sn, sn+1) ∈ ρ for all n ≥ 0. �

In order to reason about the properties of the executions of the system
model, it is useful to consider only those paths that begin in the initial state
of the Kripke structure. These are the paths that correspond to the execu-
tions of the system. Given a Kripke structure M = 〈S, ρ, s0, π〉, the set
{〈s0, s1, s2, . . . 〉 ∈ Sω | s0 = s0 and (si, si+1) ∈ ρ for all i ≥ 0} is called
the set of executions (or behaviours) of the structure.

The state-labelling function π can be used to project any path in the
Kripke structure onto an infinite sequence of labels of the states in the se-
quence. These sequences of state labels can be considered infinite words
whose “letters” are subsets of AP , and the set of all letters (2AP) is called the
alphabet. Moreover, any subset L of (2AP)ω can be considered a language
of infinite words over the alphabet 2AP . In particular, we will denote by LM
the set of words corresponding to the executions of a given Kripke structure
M , and we say that LM is generated by M . This language analogy will be
used later in Chap. 4 when discussing automata-theoretic model checking of
linear temporal properties in Kripke structures.

The following example demonstrates the different concepts described
above.

3For any nonempty set X , Xω denotes the set of all infinite sequences that can be con-
structed from the elements of X .

2. STATE-TRANSITION MODELS OF SYSTEMS 4

p1{ }

p1{ }

p2{ }p1 p2,{ }

s 0

s 1

s 2

s 4

s 3

Fig. 2.1: A simple Kripke structure

Example 1 Let AP = {p1, p2} and let M = 〈S, ρ, s0, π〉 be the Kripke
structure defined as follows:

S = {s0, s1, s2, s3, s4},
ρ = {(s0, s1), (s0, s2), (s1, s2), (s1, s3), (s1, s4),

(s2, s2), (s3, s0), (s4, s4)},
s0 = s0,

π(s0) = {p1},
π(s1) = {p1},
π(s2) = ∅,
π(s3) = {p1, p2}, and
π(s4) = {p2}.

This Kripke structure can be depicted as the node-labelled directed graph
shown in Fig. 2.1. The states s ∈ S correspond to the nodes of the graph, the
transitions (s, s′) ∈ ρ correspond to the directed arcs between nodes, and the
function π gives a label for each node of the graph.

Two executions of M are

x1 = 〈s0, s1, s3, s0, s1, s3, . . . 〉 and x2 = 〈s0, s2, s2, s2, . . . 〉.

They correspond to the infinite sequences of state labels

ξx1
= 〈π(s0), π(s1), π(s3), π(s0), π(s1), π(s3), . . . 〉
= 〈{p1}, {p1}, {p1, p2}, {p1}, {p1}, {p1, p2}, . . . 〉

and
ξx2

= 〈π(s0), π(s2), π(s2), π(s2), . . . 〉
= 〈{p1}, ∅, ∅, ∅, . . . 〉,

respectively. These sequences of state labels also belong to the language LM
generated by the structure.

The path 〈s0, s1, s2〉 is not an execution, because it is finite. The infinite
path 〈s1, s3, s0, s1, s4, s4, s4, . . . 〉 is not an execution either, since it does not
begin in the initial state s0.

The infinite sequence ξ = 〈{p2}, {p1}, {p2}, {p1}, {p2}, {p1}, . . . 〉 does
not belong to the language LM , since M has no execution corresponding to
ξ. �

2. STATE-TRANSITION MODELS OF SYSTEMS 5

3 LINEAR TEMPORAL LOGIC

This work concentrates on testing model checking algorithms used in the
verification of propositional linear temporal logic. This logic, introduced
by Pnueli [20], is an extension of ordinary propositional logic with temporal
operators, and it can be used to express qualitative temporal properties of
individual executions of a Kripke structure. This chapter presents the formal
definition and semantics of LTL. The semantics of LTL can also be given an
interpretation on Kripke structures, which provides a way to state a temporal
requirement concerning all executions of the structure. This extension then
leads to the model checking problem for LTL, which will be discussed in
Chap. 4.

The set of linear temporal logic formulae is defined inductively as follows.
As before, AP denotes a finite nonempty set of atomic propositions.

Definition 2 (Linear temporal logic) The set of linear temporal logic for-
mulae consists of the finite-length strings that can be obtained by the appli-
cation of the following rules:

• All atomic propositions p ∈ AP are LTL formulae.

• If ϕ is an LTL formula, then ¬ϕ is an LTL formula.

• If ϕ and ψ are LTL formulae, then (ϕ ∨ ψ) is an LTL formula.

• If ϕ is an LTL formula, then Xϕ is an LTL formula.

• If ϕ and ψ are LTL formulae, then (ϕUψ) is an LTL formula.
�

The semantics of linear temporal logic formulae are defined over infinite
sequences of subsets of AP as follows.

Definition 3 (Semantics of LTL) Let ξ = 〈y0, y1, y2, . . . 〉 ∈ (2AP)ω be an
infinite sequence of subsets of AP , and let ϕ be a linear temporal logic
formula. Let ξi denote the infinite subsequence of ξ beginning at the ith

successor of y0 in the sequence. That is, ξ0 = ξ = 〈y0, y1, y2, . . . 〉, ξ1 =
〈y1, y2, . . . 〉, ξ2 = 〈y2, . . . 〉, and so forth.

We use the notation ξ |= ϕ to say that the sequence ξ satisfies (or alter-
natively, is a model of) the formula ϕ, and the notation ξ 6|= ϕ is used to say
that ξ does not satisfy ϕ. The relation |= between the infinite sequences over
subsets of AP and LTL formulae is given by the following conditions:

• ξ |= p iff p ∈ y0, the first element of the sequence ξ.
• ξ |= ¬ϕ iff ξ 6|= ϕ.
• ξ |= (ϕ ∨ ψ) iff ξ |= ϕ or ξ |= ψ.
• ξ |= Xϕ iff ξ1 |= ϕ.
• ξ |= (ϕUψ) iff there exists i ≥ 0 such that ξi |= ψ, and for all

0 ≤ j < i, ξj |= ϕ.

If ϕ has no models in (2AP)ω, we say that ϕ is an unsatisfiable formula.
Conversely, if ¬ϕ has no models in (2AP)ω, ϕ is called a valid LTL formula.

�

3. LINEAR TEMPORAL LOGIC 6

Xϕ : ϕ

ϕUψ : ϕ ϕ ψ

♦ϕ : ϕ

�ϕ : ϕ ϕϕ ϕ

ϕRψ : ϕ, ψψ ψ

Fig. 3.1: Illustration of the semantics of the temporal operators X, U, ♦, � and R

Other logical connectives and Boolean constants can be defined as ab-

breviations in the usual way: >
def
≡ (p ∨ ¬p) for an arbitrary atomic proposi-

tion p ∈ AP (Boolean constant “true”),⊥
def
≡ ¬> (Boolean constant “false”),

(ϕ∧ψ)
def
≡ ¬(¬ϕ∨¬ψ) (conjunction), (ϕ→ ψ)

def
≡ (¬ϕ ∨ ψ) (implication),

and (ϕ↔ ψ)
def
≡

(

(ϕ→ ψ) ∧ (ψ → ϕ)
)

(equivalence).
Definition 3 implies that the satisfiability of an LTL formula in an infinite

sequence ξ ∈ (2AP)ω depends only on the first subset of AP in the sequence,
if the formula does not contain any X or U operators. However, the satisfia-
bility of formulae containing these temporal operators may depend on some
other part of the sequence or even the entire sequence.

Intuitively, the subsequences ξi of a sequence ξ represent “the state of
the world” at discrete consecutive time steps corresponding to the increasing
values of the index i. Therefore, the sequence ξi can be thought of following
ξ0 “i steps later” in the future. This analogy can help to understand the
temporal interpretation of the X and U operators. In the following, we shall
give an informal description of the semantics of these operators, together with
the definitions of a few commonly used other temporal operators that can be
defined using these basic operators. See also Fig. 3.1 for an illustration.

The temporal formula Xϕ is satisfied in an infinite sequence ξ if the for-
mula ϕ holds in the infinite subsequence ξ1 of ξ, i.e., “at the next time step
in the future”. The X operator is called the “Next time” operator.

The formula (ϕUψ) holds in an infinite sequence ξ if and only if ψ holds
“now or some time in the future” (i.e., in some infinite subsequence ξi of
ξ, where i ≥ 0), and ϕ holds “until” ψ becomes true (i.e., in all infinite
subsequences of the original sequence beginning at some nonnegative index
less than i). Therefore, U is called the “Until” operator. However, ϕ needs
not hold in any subsequence of ξ if ψ already holds in ξ0 (i.e., in the whole
sequence ξ).

New operators can again be defined in terms of the U operator: two com-

monly used operators are ♦ϕ
def
≡ (>Uϕ), expressing that ϕ eventually holds

3. LINEAR TEMPORAL LOGIC 7

in a sequence, and �ϕ
def
≡ ¬♦¬ϕ, which is used to say that ϕ always holds

in a sequence. We will also use the dual of the U operator R called the “Re-

lease” operator, which is defined by (ϕRψ)
def
≡ ¬(¬ϕU¬ψ). Intuitively, the

formula (ϕRψ) is true in an infinite sequence ξ if and only if ψ either holds
“forever” in the sequence (i.e., in all infinite subsequences of ξ), or if both ϕ
and ψ hold “at the same time now or somewhere in the future” (i.e., in some
infinite subsequence ξi of ξ with i ≥ 0), and ψ holds also in all “earlier”
subsequences (i.e., in all subsequences ξj with 0 ≤ j < i). In this case, ϕ
“releases” ψ in the sequence, so ψ need not remain true any longer after the
first true occurrence of ϕ.

Example 2 Let AP = {p1, p2}, and let ξ = 〈y0, y1, y2, . . . 〉 = 〈{p1}, {p1},
{p1, p2}, {p1}, {p1}, {p1, p2}, . . . 〉 be an infinite sequence over 2AP . We
show that this sequence satisfies the LTL formula �♦p2, by the direct ap-
plication of the semantics of LTL. This formula corresponds to the property
“p2 is always eventually true in the sequence”, or, in other words, “p2 is true
in the sequence infinitely often”.

The formula is first rewritten using the basic temporal operators:

ξ |= �♦p2 iff
ξ |= �(>U p2) iff
ξ |= ¬♦¬(>U p2) iff
ξ |= ¬

(

>U¬(>U p2)
)

iff
ξ 6|= >U¬(>U p2).

By the semantics of LTL, ξ |= >U¬(>U p2) if there exists an i ≥ 0 such
that ξi |= ¬(>U p2), and for all 0 ≤ j < i, ξj |= >. Therefore, ξ 6|=
>U¬(>U p2) holds only if this is not the case. This can occur in two ways:

(1) There is no i ≥ 0 such that ξi |= ¬(>U p2) is true, that is, ξi |= >U p2

holds for all i ≥ 0.

(2) For all i ≥ 0 such that ξi |= ¬(>U p2) there exists a 0 ≤ j < i for
which ξj 6|= >.

In fact, the case (1) holds in the given sequence. First of all, we note that for
all i ≥ 0, ξi |= >:

ξi |= > iff
ξi |= p1 ∨ ¬p1 iff
ξi |= p1 or ξi |= ¬p1 iff
ξi |= p1 or ξi 6|= p1,

which is trivially true, since either p1 ∈ yi or p1 6∈ yi for all subsets yi ∈ 2AP

and i ≥ 0.
We then show that for all i ≥ 0, ξi |= >U p2. We note that for all k ≥ 0,

ξk+3 = ξk in the given sequence. By definition, ξi |= >U p2 if and only if
there exists an i′ ≥ i such that ξi′ |= p2 and for all i ≤ j < i′, ξj |= >. It
has already been shown that ξj |= > for all j ≥ 0. We also know that ξ2 =
〈{p1, p2}, {p1}, {p1}, {p1, p2}, {p1}, {p1}, . . . 〉 |= p2. Because ξk+3 = ξk for
all k ≥ 0, it follows that ξ2+3k |= p2 for all k ≥ 0, and therefore for all i ≥ 0
there must exist an i′ ≥ i such that ξi′ |= p2, so ξ |= �♦p2. �

3. LINEAR TEMPORAL LOGIC 8

Let M = 〈S, ρ, s0, π〉 be a Kripke structure. Since the labelling function
π maps every path in M into an infinite sequence of subsets of AP , π gives
the temporal interpretation of any path in the structure. More precisely, the
semantics of LTL are interpreted on Kripke structures as follows:

Definition 4 (LTL semantics in Kripke structures) Let x = 〈s0, s1, s2,
. . . 〉 ∈ Sω be an infinite path in a Kripke structure M , and let ϕ be an
LTL formula. We say that the path x satisfies ϕ, denoted x |= ϕ, if and only
if the infinite sequence ξx = 〈π(s0), π(s1), π(s2), . . . 〉 satisfies the formula
ϕ.

We say that the Kripke structure M satisfies the LTL formula ϕ if and only
if all paths x ∈ {〈s0, s1, s2, . . . 〉 ∈ Sω | s0 = s0 and (si, si+1) ∈ ρ for all
i ≥ 0} (i.e., all executions of M) satisfy ϕ. We denote this by M |= ϕ. �

The latter part of this definition considers only the executions of the struc-
ture and therefore does not require anything of the paths that do not begin in
the initial state of M . Therefore, even if M |= ϕ is true, M may still contain
paths x for which x |= ϕ does not hold. We nevertheless use phrases like “the
formula ϕ holds in M” to mean that ϕ holds in all executions of M . This
should not give rise to any confusion, since we are usually not interested in
paths that are not executions.

The semantics of LTL imply that an execution x of a Kripke structure M
satisfies an LTL formula ϕ if and only if it does not satisfy its negation ¬ϕ.
However, this “symmetry” does not apply to the satisfiability of the formula in
the whole structure M . Since M |= ϕ holds if and only if all behaviours of
M satisfy ϕ, even a single execution satisfying ¬ϕ (i.e., a counter-example for
ϕ) is sufficient to show that M 6|= ϕ is true. However, this does not generally
imply that M |= ¬ϕ would then hold, since this is again a statement over all
executions of the structure. Therefore, although it is not possible thatM |= ϕ
andM |= ¬ϕ hold at the same time, it may be that neither of these properties
holds in the structure. This occurs if M has several paths beginning in its
initial state, some of which satisfy the property ϕ, while others satisfy the
negated property ¬ϕ.

The following example demonstrates interpreting the semantics of LTL
on the executions of a Kripke structure.

Example 3 The sequence ξ of the previous example corresponds to the ex-
ecution x1 = 〈s0, s1, s3, s0, s1, s3, . . . 〉 of the Kripke structure M given in
Example 1 (see also Fig. 2.1). We showed in the previous example that the
LTL formula �♦p2 holds in this execution.

However, M 6|= �♦p2, because M also has the execution x2 = 〈s0, s2, s2,
s2, . . . 〉, and the formula does not hold in the sequence ξx2

= 〈π(s0), π(s2),
π(s2), π(s2), . . . 〉 = 〈{p1}, ∅, ∅, ∅ . . . 〉. This is because p2 is never true in this
execution, which can again be shown using the semantics of LTL as in the
previous example.

(As a matter of fact, the executions x1 and x2 together show that M |=
¬�♦p2 does not hold either, since x1 6|= ¬�♦p2, but x2 |= ¬�♦p2.) �

3. LINEAR TEMPORAL LOGIC 9

4 AUTOMATA-THEORETIC LTL MODEL CHECKING

This chapter introduces the model checking problem for linear temporal
logic and reviews its automata-theoretic solution, which creates the need for
translating LTL formulae into Büchi automata. Since the model checking
procedure for LTL forms a significant basis for the testing techniques for LTL-
to-Büchi translation algorithm implementations (to be described in Chap. 5),
this chapter includes a fairly detailed description of the general model check-
ing procedure.

4.1 THE LTL MODEL CHECKING PROBLEM

In short, LTL model checking tells whether all behaviours of a given system
model satisfy a given LTL property. For example, one might be interested in
confirming that the system will always return to some “safe” state after per-
forming some operation, regardless of the outcome of the operation. (For
example, a data communications protocol could be checked for the property
that it will always recover from lost messages, assuming that no message can
be lost infinitely many times.) If the system is found to have an execution vio-
lating the desired property, the system has an error and needs to be modified
in order to prevent the occurrence of the undesired behaviour.

Definition 4 of the previous chapter gives a way to interpret the semantics
of LTL on the executions of Kripke structures. The model checking problem
for linear temporal logic can then be stated as follows.

Problem 1 (The LTL model checking problem) Given a Kripke structure
M and a linear temporal logic formula ϕ, does M |= ϕ hold?

In the LTL model checking problem, linear temporal logic formulae ex-
press requirements concerning all executions of a Kripke structure. Alterna-
tively, since a single counter-example is sufficient for proving an LTL prop-
erty false in the set of executions of the structure, the problem can be solved
by checking whether the structure has an execution satisfying the negation of
the same property. By the semantics of LTL, the nonexistence of such an ex-
ecution implies that the property itself is true in all executions. However, the
very naive approach of checking each execution of the structure in turn for
the satisfiability (or unsatisfiability) of some property (e.g., by the direct ap-
plication of the semantics of LTL) is not generally feasible, since the number
of executions contained in the structure may be infinite.

To find more practical methods for solving the model checking problem
for LTL, it is useful to rephrase the problem as a question about the relation-
ship between languages [31]. As mentioned already in Chap. 2, the Kripke
structure M can be seen as generating a language LM that consists of the
infinite words over state labels (chosen from the set 2AP) corresponding to
the executions of the model. Since also the models of an LTL formula
ϕ are infinite sequences of subsets of AP , the set of all models of the for-
mula can actually be considered another language Lϕ of infinite words over
2AP . Therefore, the model checking problem can be stated as the question

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 10

whether the language LM generated by the executions of the system model
is contained in the language Lϕ corresponding to the models of the LTL for-
mula, that is, whether LM ⊆ Lϕ. Since a single system execution satisfies an
LTL formula ϕ if and only if it does not satisfy its negation ¬ϕ, the formula
ϕ is satisfied in all executions of the system if and only if M has no execution
satisfying ¬ϕ. Therefore, the problem reduces to the question whether no
word in LM belongs to the language L¬ϕ corresponding to the negation of
the LTL formula. Finding an answer to this question amounts to checking
whether the intersection LM ∩ L¬ϕ of the languages LM and L¬ϕ is empty.

In general, however, the model checking problem for linear temporal
logic is known to be PSPACE-complete in the size of the formula [2], which
inevitably limits the practical applicability of model checking as one of the
reasons behind the state explosion problem. However, current computer
technology has made LTL model checking possible even in real-world prob-
lems, and the benefits of model checking in uncovering errors in system
specifications justify the need for solving this complex problem.

4.2 AUTOMATA-THEORETIC APPROACH TO LTL MODEL CHECKING

The study of formal languages is closely connected with the theory of au-
tomata. Analogously to the view of Kripke structures as models of systems, au-
tomata can be considered “models” of languages, and their properties can be
used for proving properties of the languages corresponding to the automata.
Since the LTL model checking problem can be stated as a question about
the relationship between two languages, the problem can be solved by using
automata-theoretic techniques. This general approach to model checking is
due to Vardi and Wolper [31]; its specific application to linear temporal logic
is discussed in [30].

4.2.1 Büchi Automata

The connection between LTL model checking and automata theory arises
from the fact that the language Lϕ consisting of the models of a linear tempo-
ral logic formula ϕ can be represented as a nondeterministic finite automaton
over infinite words—a finite state-transition system, whose behaviours gener-
ate all the models of the formula. These state-transition systems are tradition-
ally called Büchi automata. (More formally, any language corresponding to
the set of models of some LTL formula belongs to the class of ω-regular lan-
guages, and each such language is recognizable by a nondeterministic Büchi
automaton. See e.g. [28].)

Instead of thinking of a Büchi automaton as generating all models of an
LTL formula, the automaton can intuitively be seen as a “machine” with the
ability to tell from any infinite word over the alphabet 2AP whether it belongs
to the language Lϕ corresponding to the models of the formula. Therefore,
Büchi automata can be used to test the behaviours of a system for the satisfi-
ability of linear temporal logic properties.

We use the following definition for Büchi automata.

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 11

Definition 5 (Büchi automata) A Büchi automaton is a 5-tuple
A = 〈Σ, Q,∆, q0,F〉, where

• Σ is a finite alphabet,

• Q is a finite set of states,

• ∆ ⊆ Q× 2Σ ×Q is the transition relation1,

• q0 ∈ Q is the initial state, and

• F = {F1, F2, . . . , Fn} is a finite set of acceptance conditions, where
Fi ⊆ Q for all 1 ≤ i ≤ n.

An execution of A over an infinite word ξ = 〈y0, y1, y2, . . . 〉 ∈ Σω is an
infinite sequence of states 〈q0, q1, q2, . . . 〉 ∈ Qω such that q0 = q0, and for all
i ≥ 0, (qi, σi, qi+1) ∈ ∆ for some σi ⊆ Σ such that yi ∈ σi.

Let r = 〈q0, q1, q2, . . . 〉 ∈ Qω be an execution of A over an infinite word
ξ ∈ Σω. Let inf(r) ⊆ Q be the set of states occurring infinitely many times in
r. We say that the execution fulfils the acceptance condition Fi ∈ F if and
only if inf(r)∩Fi 6= ∅. If this holds for all acceptance conditions Fi ∈ F , we
say that r is an accepting execution of A over ξ.

The automaton accepts an infinite word ξ ∈ Σω if and only if it has an
accepting execution over ξ. If the automaton has no accepting executions
over ξ, it rejects ξ. �

Büchi automata A = 〈Σ, Q,∆, q0,F〉 with |F| 6= 1 are sometimes called
generalized Büchi automata to distinguish them from automata with only
one acceptance condition. It can be shown (see e.g. [11]) that all Büchi
automata with any nonzero number of acceptance conditions are equally
expressive, so such a distinction is not used here.

The language LA accepted by the Büchi automaton A consists of the set
of infinite words over Σ accepted by the automaton A. If the automaton
represents a linear temporal logic formula ϕ, we will refer to the automaton
as Aϕ and to the language accepted (or recognized) by the automaton as
LAϕ

.
Büchi automata can be seen as edge-labelled directed graphs. The nodes

of the graph are the elements of the set Q, and the arcs between the graph
nodes are given by the transition relation such that there is an arc from state
q ∈ Q to another state q′ ∈ Q if and only if (q, σ, q′) ∈ ∆ for some σ ⊆ Σ.
The arc label σ is a set of alphabet symbols, each of which can cause the
automaton to move from the state q to the state q′.

Definition 5 allows a Büchi automaton to have several arcs beginning in
a state such that the labels of these arcs are not disjoint (i.e., they contain a
common symbol a ∈ Σ). Therefore, the automaton can have many execu-
tions on a given word. It is sufficient that any of these executions is accepting
for the automaton to accept the word. This nondeterminism is actually an

1The “labels” associated with the transitions are defined over 2Σ instead of Σ for conve-
nience. This makes it possible to combine all alphabet symbols on which the automaton
can move from a state to another state into the same transition; see the definition of the
executions of a Büchi automaton.

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 12

essential requirement for Büchi automata to be able to express all linear tem-
poral properties: it can be shown that deterministic Büchi automata (with at
most one execution on any input word) are not as expressive as nondetermin-
istic Büchi automata (see e.g. [30]).

We will not discuss here how to actually obtain a Büchi automaton from a
linear temporal logic formula. This phase in LTL model checking is a some-
what nontrivial task in itself and may even be difficult to handle correctly
and efficiently in practice, which is suggested by the experiments made in
this and earlier work [26, 27] with practical implementations. Even the the-
oretical question of LTL formula translation into Büchi automata has still
gained research interest with new and improved translation algorithms aimed
at efficient minimization of the number of states and transitions in the con-
structed automata presented year after year. The early algorithmic techniques
for LTL-to-Büchi translation [31] were related to tableau methods for LTL
(e.g. [35, 16, 12]). Most of the recent algorithms focus on the direct con-
struction of automata. These algorithms try to use the syntactic structure of
the LTL formula efficiently to guide the automaton construction in order to
minimize the size of the result. This basic approach was presented in [8],
and further improvements have been proposed later both inside and around
the basic conversion phase [5, 24, 6].

Not all languages corresponding to the models of LTL formulae have con-
cise representations as Büchi automata. The translation of a linear temporal
logic formula ϕ into a Büchi automaton may in the worst case require an
automaton with 2O(|ϕ|) states, where |ϕ| denotes the length of ϕ [32].

Example 4 As an example of a Büchi automaton representing a language
defined by an LTL formula, we give a Büchi automaton for the formula �♦p2

from Example 2. Let AP = {p1, p2}, and let A�♦p2 = 〈Σ, Q,∆, q0,F〉 be
the Büchi automaton, where

Σ = 2AP =
{

∅, {p1}, {p2}, {p1, p2}
}

,
Q = {q0, q1, q2},
∆ =

{

(

q0,
{

{p2}, {p1, p2}
}

, q1
)

,
(

q0,
{

∅, {p1}, {p2}, {p1, p2}
}

, q2
)

,
(

q1,
{

{p2}, {p1, p2}
}

, q1
)

,
(

q1,
{

∅, {p1}, {p2}, {p1, p2}
}

, q2
)

,
(

q2,
{

{p2}, {p1, p2}
}

, q1
)

,
(

q2,
{

∅, {p1}, {p2}, {p1, p2}
}

, q2
)

}

,
q0 = q0, and
F =

{

{q0, q1}
}

.

The automaton is shown in Fig. 4.1. The states associated with the only
acceptance condition of the automaton are marked with a double circle.

Clearly, no execution of the automaton can visit the state q0 infinitely
often, since the automaton has no transitions with q0 as the target state.
Therefore, all accepting executions of the automaton must visit the state q1

infinitely often. This can happen only if the automaton executes an infi-
nite number of transitions with the label

{

{p2}, {p1, p2}
}

, so any word ac-
cepted by the automaton must contain an infinite number of symbols {p2}
or {p1, p2}. From this it follows that the word must have an infinite num-
ber of suffixes beginning with either of these symbols, and by the semantics
of LTL, p2 holds in any such suffix. Therefore, the automaton accepts an

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 13

p1 p2{ , }p2}{ , }{

p1 p2{ , }p2}{ , }{

p1 p2{ , }p2}{ , }{

p1 p2{ , }p2}{ ,p1}{ ,, }{

p1 p2{ , }p2}{ ,p1}{ ,, }{

p1 p2{ , }p2}{ ,p1}{ ,, }{

1q

0q

2q

Fig. 4.1: A Büchi automaton for the LTL formula �♦p2

infinite sequence over 2AP only if p2 holds infinitely often in the sequence,
which corresponds to the LTL property �♦p2.

Conversely, given any infinite sequence over 2AP having the property
�♦p2, the automaton can first move from the state q0 to the state q2, and
then loop between q2 and q1 indefinitely by moving from q2 to q1 whenever
“reading” either of the symbols {p2} or {p1, p2}. The automaton can then re-
main in q1 until it “reads” a symbol other than {p2} or {p1, p2}, which forces
it to return to state q2. The fact that the input sequence satisfies the LTL
property �♦p2 guarantees that the automaton will visit the state q1 infinitely
often, so the input is accepted.

Therefore, the automaton accepts an infinite sequence over 2AP if and
only if the sequence satisfies the LTL property �♦p2. �

4.2.2 Kripke Structures as Büchi Automata

In the end of Chap. 2, the executions of a Kripke structure were identified
with a language LM of infinite words over 2AP . Since also Büchi automata
are representations for languages, any Kripke structure can further be iden-
tified with a Büchi automaton that accepts the language LM . Informally, a
given Kripke structure can be transformed into an equivalent Büchi automa-
ton over the alphabet Σ = 2AP by simply copying the label of each state
of the Kripke structure onto every arc leaving the state. In addition, all ex-
ecutions of the automaton are trivially accepting, and therefore no explicit
acceptance conditions are required. (This is equivalent to having one accep-
tance condition including all states of the automaton.)

More precisely, we have the following lemma.

Lemma 1 Let M = 〈S, ρ, s0, π〉 be a Kripke structure. Define the Büchi
automaton AM = 〈Σ, Q,∆, q0,F〉, where

Σ = 2AP ,
Q = S,
∆ =

{

(s, σ, s′) ∈ Q× 2Σ ×Q | (s, s′) ∈ ρ, and σ = {π(s)}
}

,
q0 = s0, and
F = ∅.

Let ξ = 〈y0, y1, y2, . . . 〉 ∈ (2AP)ω be an infinite word over subsets of AP .
The automaton AM accepts the word ξ if and only if the Kripke structure

M has an execution x = 〈s0, s1, s2, . . . 〉 ∈ Sω such that yi = π(si) for all
i ≥ 0.

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 14

Kripke structure M

p1{ }

p1{ }

p2{ }p1 p2,{ }

s 0

s 1

s 2

s 4

s 3

=⇒

Büchi automaton AM

{ }p1 p2{ }

{ }p1}{ { }p1}{

{ }p1}{

{ }p1}{ { }p1}{

{ }p2}{

3q

1q

4q

2q

0q

,

}{

Fig. 4.2: Converting a Kripke structure into a Büchi automaton

Proof: (⇒) Assume that M has an execution x = 〈s0, s1, s2, . . . 〉 ∈ Sω.
Thus, s0 = s0, and for all i ≥ 0, (si, si+1) ∈ ρ. This execution corresponds to
the word ξ = 〈y0, y1, y2, . . . 〉 ∈ (2AP)ω, where yi = π(si) for all i ≥ 0. By the
definition of AM , q0 = s0, and for all i ≥ 0,

(

si, {yi}, si+1

)

∈ ∆. Therefore,
x is an execution of AM over ξ. Because ∀F ∈ F : inf(r) ∩ F 6= ∅ holds
trivially (since F is empty), x is an accepting execution, and AM accepts the
word ξ.

(⇐) Conversely, assume that AM accepts the word ξ = 〈y0, y1, y2, . . . 〉 ∈
(2AP)ω. Therefore, it has an execution r = 〈q0, q1, q2, . . . 〉 ∈ Qω on ξ,
where q0 = q0, and for all i ≥ 0, (qi, σi, qi+1) ∈ ∆ for some σi ⊆ Σ such
that yi ∈ σi. By definition of AM , this can be the case only if for all i ≥ 0,
(qi, qi+1) ∈ ρ, and σi = {π(qi)}. Because yi ∈ σi, it follows that yi = π(qi) =
π(si), and since q0 = q0 = s0, it follows that r is an execution of M . �

Example 5 Using the construction in the above lemma, we can construct an
equivalent Büchi automaton AM for the Kripke structure M = 〈S, ρ, s0, π〉
defined in Example 1. Let AP = {p1, p2} as in the previous examples, and
let AM = 〈Σ, Q,∆, q0,F〉, where

Σ = 2AP =
{

∅, {p1}, {p2}, {p1, p2}
}

,
Q = {q0, q1, q2, q3, q4},
∆ =

{

(

q0,
{

{p1}
}

, q1
)

,
(

q0,
{

{p1}
}

, q2
)

,
(

q1,
{

{p1}
}

, q2
)

,
(

q1,
{

{p1}
}

, q3
)

,
(

q1,
{

{p1}
}

, q4
)

,
(

q2,
{

∅
}

, q2
)

,
(

q3,
{

{p1, p2}
}

, q0
)

,
(

q4,
{

{p2}
}

, q4
)

}

,
q0 = q0, and
F = ∅.

By Lemma 1, this automaton accepts an infinite sequence over 2AP if and
only if the sequence is the temporal interpretation of an execution of M .
Figure 4.2 illustrates the conversion. �

4.2.3 Synchronous Product

Any two Büchi automata A1 and A2 corresponding to two languages LA1

and LA2
can be combined together into another Büchi automaton that ac-

cepts precisely the language LA1
∩ LA2

(see e.g. [32]). This composition is

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 15

A2

A1 A2

A1

Fig. 4.3: The languages LA1
, LA2

and LA1⊗A2

called the synchronous product of A1 and A2 (denoted in the following by
A1 ⊗ A2). Since the language accepted by the product automaton corre-
sponds to the intersection of the languages accepted by the automata from
which it was constructed, the product automaton can also be simply called
the intersection of two Büchi automata. See Fig. 4.3 for an illustration.

The construction of the synchronous product, together with the proof that
it has the required properties, are given in the following lemma.

Lemma 2 Let A1 = 〈Σ1, Q1,∆1, q
0
1,F1〉 and A2 = 〈Σ2, Q2,∆2, q

0
2,F2〉 be

two Büchi automata, where Q1 and Q2 are disjoint, and F1 = {F 1
1 , F

1
2 , . . . ,

F 1
n} and F2 = {F 2

1 , F
2
2 , . . . , F

2
m} for some n,m ≥ 0. Define the Büchi

automaton A = 〈Σ, Q,∆, q0,F〉, where

Σ = Σ1 ∪ Σ2,
Q = Q1 ×Q2,
∆ =

{

(

(q1, q2), σ, (q
′
1, q

′
2)

)

∈ Q× 2Σ ×Q |

(q1, σ1, q
′
1) ∈ ∆1, (q2, σ2, q

′
2) ∈ ∆2, and σ = σ1 ∩ σ2 6= ∅

}

,
q0 = (q0

1, q
0
2), and

F = {F 1
1 ×Q2, F

1
2 ×Q2, . . . , F

1
n ×Q2,

Q1 × F 2
1 , Q1 × F 2

2 , . . . , Q1 × F 2
m}.

Assume that Σ1 ∩ Σ2 6= ∅, and let ξ = 〈y0, y1, y2, . . . 〉 ∈ (Σ1 ∩ Σ2)
ω be an

infinite word over Σ1 ∩ Σ2.
The automaton A accepts the word ξ if and only if both A1 and A2 accept

ξ. Moreover, A will not accept any word in (Σ1 ∪ Σ2)
ω \ (Σ1 ∩ Σ2)

ω.

Proof: (⇒) Assume that A1 and A2 both accept ξ. Then, A1 and A2 have
executions r1 = 〈q1

0, q
1
1, q

1
2, . . . 〉 ∈ Qω

1 and r2 = 〈q2
0, q

2
1, q

2
2, . . . 〉 ∈ Qω

2 ,
respectively, such that q1

0 = q0
1 , q2

0 = q0
2 , and for all i ≥ 0 and j ∈ {1, 2},

(qji , σ
j
i , q

j
i+1) ∈ ∆j for some σji ⊆ Σj such that yi ∈ σji . By definition of A,

q0 = (q0
1, q

0
2) = (q1

0, q
2
0),

(

(q1
i , q

2
i), σ

1
i ∩ σ

2
i , (q

1
i+1, q

2
i+1)

)

∈ ∆ for all i ≥ 0,
and yi ∈ σ1

i ∩ σ
2
i . Therefore, A has the execution r = 〈q0, q1, q2, . . . 〉 ∈

(Q1 ×Q2)
ω such that qi = (q1

i , q
2
i) ∈ Q1 ×Q2 for all i ≥ 0.

Since r1 is an accepting execution of A1, there must for all acceptance
conditions F 1

i ∈ F1 (1 ≤ i ≤ n) exist a state q1
ki
∈ F 1

i that occurs infinitely
often in r1. Therefore, for each acceptance condition F 1

i × Q2 ∈ F (1 ≤
i ≤ n), there are infinitely many indices j ≥ 0 such that (in the execution r)
qj ∈ F 1

i × Q2, so r intersects each of the acceptance conditions F 1
i × Q2 ∈

F an infinite number of times. Because Q2 is finite, there must for each

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 16

acceptance condition exist a state (q1
ki
, q2
ki

) ∈ F 1
i × Q2 (1 ≤ i ≤ n) that

by itself occurs infinitely many times in the execution r, and therefore the
acceptance condition F 1

i ×Q2 is fulfilled in r for all 1 ≤ i ≤ n.
A similar argument shows that also all acceptance conditions of the form

Q1 × F 2
j ∈ F are fulfilled in the execution r. Therefore, r fulfils all accep-

tance conditions in F . It follows that r is an accepting execution of A, so A
accepts ξ.

(⇐) Assume then that A accepts ξ. Therefore, it has an execution r =
〈(q1

0, q
2
0), (q

1
1, q

2
1), (q

1
2, q

2
2), . . . 〉 ∈ (Q1 × Q2)

ω, where (q1
0, q

2
0) = (q0

1, q
0
2), and

for all i ≥ 0,
(

(q1
i , q

2
i), σi, (q

1
i+1, q

2
i+1)

)

∈ ∆ for some σi ⊆ Σ such that
yi ∈ σi. It follows directly from the definition of ∆ that A1 and A2 have
executions r1 = 〈q1

0, q
1
1, q

1
2, . . . 〉 ∈ Qω

1 and r2 = 〈q2
0, q

2
1, q

2
2, . . . 〉 ∈ Qω

2 on
input ξ, respectively.

Because r is an accepting execution of A, there exists for each acceptance
condition F 1

i × Q2 ∈ F (1 ≤ i ≤ n) a state (q1
ki
, q2
ki

) ∈ F 1
i × Q2 that

occurs infinitely often in r. Therefore, the state q1
ki

occurs in r1 an infinite
number of times. Similarly, we can find also for each acceptance condition
Q1 × F 2

j ∈ F (1 ≤ j ≤ m) a state q2
kj
∈ F 2

j occurring infinitely often in r2.
Therefore, r1 and r2 are accepting executions of A1 and A2, respectively, so
both automata accept ξ.

Finally, it is easy to see from the definition of A that A cannot even have
an execution over a word ξ ∈ (Σ1 ∪ Σ2)

ω \ (Σ1 ∩ Σ2)
ω, and therefore it

can neither accept any word in this set. Any word in this set would have to
contain a symbol a ∈ (Σ1 \ Σ2) ∪ (Σ2 \ Σ1); however, for all transitions
(q, σ, q′) ∈ ∆ of A, σ ⊆ Σ1 ∩ Σ2, so a 6∈ σ for all transitions of A. �

Intuitively, the synchronous product of two Büchi automata captures all
the “legal” synchronous behaviours that the original automata can have on
any input word. Here, a “legal” synchronous behaviour corresponds to a
parallel execution of the original automata such that at each step of the exe-
cution, the labels on the transitions chosen by the automata at that step share
at least one common element.

Example 6 We compute the synchronous product of the Büchi automaton
AM from Example 5 with the Büchi automaton A�♦p2 from Example 4 (see
the definitions for these automata from pages 15 and 13, respectively).

Since AM andA�♦p2 both have the same alphabet 2AP , their synchronous
product A = AM ⊗ A�♦p2 = 〈Σ, Q,∆, q0,F〉 will have the same alphabet,
so Σ = 2AP =

{

∅, {p1}, {p2}, {p1, p2}
}

.
Since AM contains 5 states and A�♦p2 contains 3 states, A has 5 · 3 = 15

states, so

Q = {(q0, q
′
0), (q1, q

′
0), (q2, q

′
0), (q3, q

′
0), (q4, q

′
0),

(q0, q
′
1), . . . , (q4, q

′
1),

(q0, q
′
2), . . . , (q4, q

′
2)},

where the first element of each pair is a state of AM and the second element
is a state of A�♦p2 (for clarity, primes are added to the states of A�♦p2 to
distinguish them from the states of AM).

The initial state q0 of A is (q0, q
′
0).

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 17

The transition relation ∆ can be constructed as follows. Beginning in
state (q0, q

′
0), we find the transitions starting from this state by checking

whether any transition (q0, σ, q) of AM can be synchronized with any tran-
sition (q′0, σ

′, q′) of A�♦p2 (here, q and q′ can be any states of AM and A�♦p2 ,
respectively). The transitions of AM are

(

q0,
{

{p1}
}

, q1
)

and
(

q0,
{

{p1}
}

, q2
)

,

and the transitions of A�♦p2 are
(

q′0,
{

{p2}, {p1, p2}
}

, q′1
)

and
(

q′0,
{

∅, {p1}, {p2}, {p1, p2}
}

, q′2
)

.

By definition of the synchronous product, two transitions (one of which is
always chosen from AM , the other from A�♦p2) can be synchronized if the
set intersection of the labels associated with the transitions is nonempty. Be-
cause

{

{p1}
}

∩
{

{p2}, {p1, p2}
}

= ∅, the transition
(

q′0,
{

{p2}, {p1, p2}
}

,
q′1

)

of A�♦p2 cannot be synchronized with either of the transitions of AM .
However, the other transition can be synchronized with either of AM ’s tran-
sitions, so ∆ contains the two transitions

(

(q0, q
′
0),

{

{p1}
}

, (q1, q
′
2)

)

and
(

(q0, q
′
0),

{

{p1}
}

, (q2, q
′
2)

)

.

By repeating this test for the other 14 states of A, we can construct the full
transition relation ∆, eventually obtaining the Büchi automaton depicted in
Fig. 4.4.

Finally, the acceptance conditions F are determined by the acceptance
conditions of AM and A�♦p2 . Because AM does not have any acceptance
conditions, but A�♦p2 has one acceptance condition {q′0, q

′
1}, A will have

one acceptance condition, so

F =
{

{(q0, q
′
0), (q1, q

′
0), (q2, q

′
0), (q3, q

′
0), (q4, q

′
0),

(q0, q
′
1), (q1, q

′
1), (q2, q

′
1), (q3, q

′
1), (q4, q

′
1)}

}

.

As before, the states belonging to the only acceptance condition of A are
marked with a double circle in Fig. 4.4.

By Lemma 2, we know that the automaton A will accept an infinite word
over 2AP if and only if the word is accepted by both AM and A�♦p2 . As an
example of such an accepting execution, we can take the sequence

r = 〈(q0, q
′
0), (q1, q

′
2), (q3, q

′
2), (q0, q

′
1), (q1, q

′
2), (q3, q

′
2), (q0, q

′
1), . . . 〉

By Lemma 2, this sequence corresponds to the accepting executions

rAM
= 〈q0, q1, q3, q0, q1, q3, . . . 〉 and rA�♦p2

= 〈q′0, q
′
2, q

′
2, q

′
1, q

′
2, q

′
2, q

′
1, . . . 〉

of AM and A�♦p2 , respectively. (All executions of AM are accepting.)
By Lemma 1, rAM

corresponds to some execution in the Kripke structure
M from which AM was originally constructed (cf. Example 5, page 15). In
addition, by collecting the labels of the transitions in r we obtain the tempo-
ral interpretation 〈{p1}, {p1}, {p1, p2}, {p1}, {p1}, {p1, p2}, . . . 〉 of this sys-
tem execution. As seen in Example 2 (page 8), we know that the LTL for-
mula �♦p2 holds in this execution. �

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 18

(q ,q’)2 1

(q ,q’)4 2 (q ,q’)0 1 (q ,q’)2 2

(q ,q’)1 0 (q ,q’)11 (q ,q’)3 2 (q ,q’)3 0 (q ,q’)3 1

(q ,q’)0 2

(q ,q’)4 0

{ }p1}{

{ }p1}{

{ }p1}{

(q ,q’)0 0 (q ,q’)2 0

{ }p1}{
{ }p1}{

{ }p1}{

{ }p1}{

{ }p1}{ { }p1}{

{ }p1}{

{ }p1}{

{ }p2}{ { }p2}{

{ }p2}{

}{

}{

}{

{ }p1 p2{ },

{ }p1 p2{ },

{ }p1 p2{ },
{ }p1 p2{ },

{ }p2}{

{ }p2}{
{ }p2}{

{ }p1 p2{ },{ }p1}{

{ }p1}{

{ }p1}{

{ }p1}{

(q ,q’)4 1

(q ,q’)1 2

{ }p1 p2{ },

Fig. 4.4: Synchronous product of two Büchi automata

4.2.4 Solving the LTL Model Checking Problem Using Büchi Automata

Using the synchronous product, we can (for any Kripke structure M and any
Büchi automatonA¬ϕ corresponding to the negation of a given LTL formula)
now construct a Büchi automaton that recognizes the language LM ∩ L¬ϕ.
As mentioned previously, checking this language for emptiness corresponds
to checking whether the language LM is contained in Lϕ, and therefore the
language can be used to solve the model checking problem for LTL. This
result follows directly from the previous two lemmata and can be stated as
the following theorem.

Theorem 1 Let M be a Kripke structure and let A¬ϕ be a Büchi automaton
that accepts the exact set of infinite sequences over 2AP satisfying the linear
temporal logic formula ¬ϕ. Let AM be the Büchi automaton obtained from
the Kripke structure M using the construction described in Lemma 1.

The Büchi automaton AM ⊗ A¬ϕ accepts no input word over 2AP if and
only if M |= ϕ.

Proof: By Lemma 1, the automaton AM accepts an infinite word over 2AP if
and only if the word is the temporal interpretation of some execution of M .

Lemma 2 shows that the synchronous productAM⊗A¬ϕ ofAM andA¬ϕ is
a Büchi automaton that has an accepting execution on an infinite word over
2AP if and only if the word is accepted by both AM and A¬ϕ, i.e., if and only

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 19

ϕLTL formula

ϕ

structure M
Kripke

ϕA

AMM

Synchronous
product

M A ϕ
= ?

AM ϕA

M

AM

LTL−to−Büchi
translation

Fig. 4.5: Automata-theoretic model checking procedure for LTL

if it is the temporal interpretation of some execution of the Kripke structure
M , and it has the linear temporal property ¬ϕ. Therefore, AM ⊗A¬ϕ has no
accepting executions if and only if no execution of M satisfies the property
¬ϕ. By the semantics of LTL, this holds if and only if all executions of M
satisfy the property ϕ, i.e., if and only if M |= ϕ. �

By Theorem 1, the model checking problem can now be solved by first
converting the system model M into a corresponding Büchi automaton AM ,
then intersecting this automaton with the Büchi automaton A¬ϕ constructed
from the negation of some linear temporal logic formula ϕ, and finally check-
ing the resulting automaton for the existence of accepting executions. As
stated in the proof, any accepting execution of the product automaton cor-
responds to an execution of M that satisfies the property ¬ϕ. Therefore, any
accepting execution of the product automaton has a corresponding system
execution that provides a counter-example for the property M |= ϕ.

In LTL model checking, checking the emptiness of the language LM ∩
L¬ϕ requires constructing the property automaton for the negated formula
¬ϕ. This corresponds to finding an answer to the question whether all the
system executions satisfy the property ϕ. However, in some cases we may be
only interested to know whether any system execution satisfies the property
ϕ individually. From Theorem 1 it follows that this problem is equivalent to
model checking the LTL property ¬ϕ in the system. In terms of languages,
this problem corresponds to checking the emptiness of the language LM∩Lϕ
and can be solved using the synchronous product of the system and a Büchi
automaton constructed from the property ϕ itself by following the same steps
as above. As a matter of fact, this variant of the LTL model checking problem
will be used in the tests for LTL-to-Büchi translation algorithm implementa-
tions in Sect. 5.1.2.

The automata-theoretic model checking procedure for linear temporal
logic is summarized in Fig. 4.5.

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 20

4.2.5 Checking the Existence of Accepting Executions

Solving the LTL model checking problem with Büchi automata still requires
checking whether the synchronous productAM⊗A¬ϕ of the system automa-
ton and the property automaton has any accepting executions. This phase is
often called the emptiness check, since the nonexistence of an accepting ex-
ecution in the product automaton implies that the language accepted by the
automaton is empty. The emptiness check can be done by using the graph-
theoretical concept of maximal strongly connected components (MSCCs)
of a graph. We shall first give a brief description of this concept.

Informally, a subset of nodes of a (finite) graph (a component of the graph)
is strongly connected if and only if there exists a path in the graph with zero
or more arcs between any two nodes in the subset. (It is usually assumed
that every node is reachable from itself by an empty path.) The strongly con-
nected component is maximal if any proper superset of graph nodes covering
the strongly connected component is not strongly connected itself. A strongly
connected component is called nontrivial if there exists a path with at least
one arc between any two nodes of the component.

Clearly, the MSCCs of the graph must be disjoint. Namely, if there existed
two unequal maximal strongly connected components, whose intersection
were nonempty, the union of these components would form another strongly
connected component. However, this would be in contradiction with the
maximality of the original strongly connected components. Since each node
of the graph belongs to some maximal strongly connected component (which
may be a trivial MSCC), the union of all MSCCs covers the entire graph.

The executions of a Büchi automaton are in a special relation to the non-
trivial MSCCs of the automaton (see e.g. [11]). By definition, each execution
of a Büchi automaton A = 〈Σ, Q,∆, q0,F〉 is an infinite sequence r ∈ Qω.
Since Q is finite but r is infinite, there must be at least one state that oc-
curs infinitely many times in r, and therefore inf(r) 6= ∅. In addition, no
state in Q \ inf(r) occurs in r infinitely often. From this it follows that the
execution can be divided into a finite prefix of states of Q followed by an
infinite subsequence of states in inf(r). By definition of inf(r), each state in
inf(r) still occurs infinitely often in this subsequence. Then, any two states
in inf(r) must be reachable from each other in the Büchi automaton by a
path with at least one arc, since otherwise these states could not both belong
to inf(r). Because of this property, inf(r) is actually a nontrivial strongly con-
nected component of the automaton. Therefore, there exists also a (unique)
nontrivial maximal strongly connected component that includes inf(r).

According to Definition 5, any accepting execution r of A contains (for
all acceptance conditions Fi ∈ F , 1 ≤ i ≤ n) a state qi ∈ Fi that occurs
infinitely often in the execution, and therefore the states qi (1 ≤ i ≤ n)
also belong to inf(r). From the above discussion, we see that the accepting
execution r will eventually remain within some unique nontrivial maximal
strongly connected component C ⊆ Q of the automaton. Since this compo-
nent includes inf(r), it also holds that for all acceptance conditions Fi ∈ F
(1 ≤ i ≤ n), C ∩ Fi 6= ∅. Therefore, the MSCC intersects all acceptance
conditions of the automaton.

On the other hand, if the automaton has a nontrivial maximal strongly

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 21

connected component C that is reachable from the initial state of the au-
tomaton, and C intersects all acceptance conditions of the automaton, the
automaton then has an accepting execution. Namely, we can in this case
construct such an execution by first following some path from the initial state
of the automaton to some state in C and then extending the path with an in-
finitely repeating state cycle. The states in the cycle must be chosen so that
the cycle contains a state from each acceptance condition of the automa-
ton, and there is an arc from the last state of the cycle back to its first state.
The construction of this cycle is possible, because C intersects all acceptance
conditions, and all states of C are reachable from each other by the strongly
connectedness property. The cycle may actually be constructed in many
ways, since the particular order in which the different acceptance conditions
are encountered in the cycle is not relevant to Büchi acceptance.

The previous discussion shows that a Büchi automaton has an accepting
execution if and only if it contains a nontrivial maximal strongly connected
component that intersects all the acceptance conditions of the automaton,
and the component is reachable from the initial state of the automaton.

Example 7 We demonstrate the LTL model checking procedure by check-
ing whether the LTL formula ¬�♦p2 holds in the Kripke structure M of
Example 1 (page 4). That is, we wish to check whether p2 holds only finitely
often in all executions ofM . (We already argued in Example 2 that this is not
the case; we shall now show this using the systematic LTL model checking
procedure.)

Model checking the LTL formula ¬�♦p2 requires first computing the
synchronous product of the Büchi automaton AM (see Example 5) with the
Büchi automaton A¬¬�♦p2 constructed for the negation of the property to be
checked. Since the negated property ¬¬�♦p2 is logically equivalent to �♦p2

by the semantics of LTL, we shall actually need to construct the automaton
A�♦p2 . We have already done this in Example 4 (page 13). We have also
already computed the required product automatonAM⊗A�♦p2 in Example 6
(see Fig. 4.4). Thus, the only remaining task is to check whether the product
automaton has any accepting executions starting from the state (q0, q

′
0).

Using the product state notation from Example 6, the maximal strongly
connected components of the product automaton are

C1 =
{

(q0, q
′
0)

}

C7 =
{

(q2, q
′
1)

}

C2 =
{

(q1, q
′
0)

}

C8 =
{

(q3, q
′
1)

}

C3 =
{

(q2, q
′
0)

}

C9 =
{

(q0, q
′
1), (q0, q

′
2), (q1, q

′
2), (q3, q

′
2)

}

C4 =
{

(q3, q
′
0)

}

C10 =
{

(q2, q
′
2)

}

C5 =
{

(q4, q
′
0)

}

C11 =
{

(q4, q
′
1), (q4, q

′
2)

}

C6 =
{

(q1, q
′
1)

}

(See Sect. 4.2.6 for a discussion on how the MSCCs can be computed in
practice.)

We see that the components C1, . . . , C8 are trivial and can be discarded.
Of the remaining components, we check whether any of them intersects any
of the acceptance conditions of the product automaton. (As seen in Exam-
ple 6, the product automaton has only one acceptance condition, because
F = {F} =

{

{(q0, q
′
0), (q1, q

′
0), (q2, q

′
0), (q3, q

′
0), (q4, q

′
0), (q0, q

′
1), (q1, q

′
1),

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 22

(q2, q
′
1), (q3, q

′
1), (q4, q

′
1)}

}

). We see that C9, C10 and C11 are all reachable
from the initial state (q0, q

′
0), and

C9 ∩ F =
{

(q0, q
′
1)

}

6= ∅,
C10 ∩ F = ∅, and
C11 ∩ F =

{

(q4, q
′
1)

}

6= ∅.

The existence of reachable nontrivial MSCCs that intersect the single
acceptance condition now confirms that the property does not hold in the
Kripke structure. We can construct an accepting execution for the automa-
ton e.g. with the component C11 by first taking the path 〈(q0, q

′
0), (q1, q

′
2),

(q4, q
′
2)〉 to reach the component, and then extending the path with the cy-

cle 〈(q4, q′2), (q4, q
′
1), (q4, q

′
2), (q4, q

′
1), . . . 〉 that visits the state (q4, q

′
1) ∈ F

infinitely often. We thus obtain the accepting execution

〈(q0, q
′
0), (q1, q

′
2), (q4, q

′
2), (q4, q

′
1), (q4, q

′
2), (q4, q

′
1), . . . 〉.

By Lemma 2, this execution corresponds to the execution 〈q0, q1, q4, q4,
q4, . . . 〉 of the automaton AM . This sequence in turn corresponds to the
execution 〈s0, s1, s4, s4, s4, . . . 〉 of the Kripke structure M (by Lemma 1). It
is easy to see that p2 holds infinitely often in this execution, so it is indeed a
counter-example for the LTL property ¬�♦p2. �

4.2.6 Implementation Considerations

This section describes a straightforward way to implement the final steps of
the LTL model checking procedure using simple explicit representations for
the state space and the Büchi automata. We assume that we already have the
Büchi automaton A¬ϕ corresponding to the negation of a given LTL formula
ϕ and the automaton AM corresponding to some Kripke structure M .

The construction of the synchronous product (as given in Lemma 2) re-
sults in a graph whose number of states always equals the product of the num-
bers of states in the automata corresponding to the Kripke structure and to
the LTL property, respectively. Also the number of transitions in the product
is dependent on the numbers of states in these automata, and it is addition-
ally bounded by the size of the alphabet 2AP common to both automata.
However, a direct implementation of this construction may produce an au-
tomaton having states that are not reachable from its initial state. Clearly,
since no execution of any Büchi automaton can visit any unreachable states,
these states can be removed from the product without changing the language
recognized by the automaton.2 It is sufficient to compute the product as the
minimal set of product states that includes the initial state and is closed under
the transition relation. In practice, this can be done using a straightforward
algorithm that constructs the product by performing e.g. a depth-first search
in the structure. The search starts from the initial state of the structure and
then extends the structure with new states as required by the transition rela-
tion. Furthermore, the search algorithm can be implemented so that it can
operate directly on the Kripke structure M instead of the Büchi automaton

2Returning to the product automaton of Example 6, we could use this fact to remove the
states (q1, q

′

0
), (q2, q

′

0
), (q3, q

′

0
), (q4, q

′

0
), (q1, q

′

1
), (q2, q

′

1
) and (q3, q

′

1
).

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 23

AM corresponding to the Kripke structure, so an explicit automaton conver-
sion is not required. This is easy to see from the similarity between Kripke
structures and the corresponding automata defined in Lemma 1.

Checking the synchronous product for emptiness requires finding the
product automaton’s maximal strongly connected components reachable
from its initial state. These can be computed in linear worst-case time in
the size of the product using e.g. the algorithm due to Tarjan [25]. From
these components it is easy to discard the trivial ones by checking that each
component either contains at least two states, or that the state in each single-
state component is connected to itself with an edge. It is also straightforward
to check whether any nontrivial MSCC intersects all acceptance sets of the
automaton by simply taking the union of the sets of acceptance conditions
associated with the states in the MSCC. The component can be discarded if
the union comprises only an incomplete set of acceptance conditions, since
no accepting execution of the automaton can then stay in that component
forever.

If the maximal strongly connected components are computed by using a
depth-first search algorithm (such as Tarjan’s algorithm) starting from the ini-
tial state of the product, the reachability of each component from the initial
state is guaranteed. If the automaton has a nontrivial MSCC that intersects
all acceptance conditions, we can then construct an actual execution of the
product automaton to obtain a counter-example for the property M |= ϕ.
This execution can be built by first finding a path from the initial state of
the product to some state in the MSCC and then extending the path with an
accepting cycle in the MSCC. The path from the initial state to the MSCC
can be obtained directly from the depth-first search stack used for searching
the MSCCs. The construction of a cycle that intersects all acceptance con-
ditions requires an additional search inside the MSCC. This search can be
done in quadratic time in the size of the component for any number of ac-
ceptance conditions, e.g., by using the techniques presented in [13] or [15].

In practice, it is possible to combine the computation of the synchronous
product with the check for accepting executions in the product space. This
results in an on-the-fly model checking algorithm, whose advantage over the
straightforward method described above is that it may be able to find an ac-
cepting execution (i.e., a counter-example for the property to be verified)
without exploring the full product space. Since a single counter-example
is all that is needed for proving an LTL property false, it may therefore be
possible to do verification in less space if the property does not hold in the
given Kripke structure. Techniques for on-the-fly emptiness checking and
counter-example generation have been presented in [3], [4] and [15]. In
this work, however, we shall need only small Kripke structures, so extreme
memory-efficiency in the search for accepting executions is not of primary
importance. For simplicity, we shall therefore keep the product computa-
tion and the search for accepting executions separate.

4. AUTOMATA-THEORETIC LTL MODEL CHECKING 24

5 TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA

One of the most difficult phases in the automata-theoretic LTL model check-
ing procedure is obtaining a Büchi automaton from an LTL formula. In
addition to the relative conceptual complexity of the translation in compari-
son to the other phases of the LTL model checking procedure, difficulties
are caused by the need for an efficient implementation that generates as
small automata as possible from the input formulae. The need for small
automata arises from the exponential worst-case impact (in the length of the
LTL formula) that the size of an automaton may have on the memory re-
quirements of the model checking process [32]. There is no known general
procedure to do the translation efficiently in a minimal way, and the best
known methods rely on various heuristics in order to minimize the size of
the automata [24, 6]. The optimizations made for reducing the size of the
automata can therefore increase the complexity of the translation algorithm
implementation and make it more prone to errors.

As the previous discussion shows, Büchi automata can be considered to
represent languages of infinite words corresponding to the models of LTL
formulae, and LTL-to-Büchi translation algorithms provide the tools for sys-
tematically constructing the automata from the formulae. However, errors
in the implementation of these algorithms may occasionally cause the trans-
lation of some formulae to fail. In these cases, the translator produces an
incorrect Büchi automaton that may in fact recognize a completely differ-
ent language from the one corresponding to the property. Using such an
automaton in the following model checking phases will then invalidate all
model checking results regarding the intended property. In some cases the
model checking tool may not even provide any evidence to the user that one
of the model checking phases may have failed.

The following sections describe methods for testing the LTL-to-Büchi
translation phase of LTL model checking. Testing could certainly help in
improving the reliability of other parts of model checkers. Of course, actual
tools differ very much in their implementation details, so it may be difficult
to find general methods suitable for automated testing of different model
checkers. However, most of the available implementations include the LTL-
to-Büchi translation algorithm in a separate “black box” program module. In
addition, the input for this phase—the LTL formula—is not usually depen-
dent on any previous computation, since the formula is usually supplied by
the user. Therefore, testing this phase of the model checking procedure can
be done using general techniques and can even be automated to some extent,
which allows the test methods to be applied to real model checking tools.

The test methods to be presented are based on the direct analysis of Büchi
automata obtained using different LTL-to-Büchi translation algorithm im-
plementations, and a more indirect way for testing the correctness of the
different translation algorithms through using the entire LTL model check-
ing procedure. The testing involves running the translation algorithm im-
plementations on given LTL formulae and checking the obtained automata
for consistency, together with model checking the formulae in given Kripke
structures. In practice, these LTL formulae and Kripke structures can even

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 25

be generated automatically using randomized techniques. An essential part
of testing is the cross-comparison of different translation algorithm imple-
mentations. Basically, this means running several translation algorithm im-
plementations on the same input and then checking whether the results ob-
tained using the different implementations are consistent. Further analysis
of contradictory results provides a way to determine which of the implemen-
tations had failed.

5.1 TEST METHODS FOR LTL-TO-BÜCHI TRANSLATION

The following subsections describe tests [26, 27] that can be made on the
Büchi automata and the model checking results obtained using the LTL-
to-Büchi translation algorithms to be tested. In order to automate the tests
into a reliable implementation for testing the correctness of LTL-to-Büchi
translators, the implementation should be kept as simple as possible. For
this reason, the difficulty of implementing each of the presented tests is also
considered. Although the tests require input, LTL formulae and Kripke struc-
tures, to be used for running the LTL-to-Büchi translation algorithms and the
LTL model checking procedure, the tests are independent of any particular
kind of formulae or Kripke structures.

5.1.1 Analysis of Büchi Automata

A natural approach for testing the correctness of LTL-to-Büchi translation al-
gorithm implementations is to try to directly analyze the automata generated
by the implementations. The analysis methods can be based on the seman-
tics of linear temporal logic.

Let Lϕ and L¬ϕ denote the languages corresponding to the sets of models
of a given LTL formula ϕ and its negation, respectively. By the semantics
of LTL, no infinite sequence over 2AP can satisfy both an LTL formula and
its negation, and therefore the languages Lϕ and L¬ϕ must be disjoint. On
the other hand, any infinite sequence of subsets of AP satisfies either an
LTL formula or its negation, again by the semantics of LTL. Therefore, the
languages Lϕ and L¬ϕ are in fact complementary to each other with respect
to the set (2AP)ω, so it must be that for any LTL formula ϕ, Lϕ ∩ L¬ϕ = ∅,
and Lϕ ∪ L¬ϕ = (2AP)ω.

The fact that Lϕ and L¬ϕ are disjoint provides a partial correctness test for
two Büchi automata constructed from the formula ϕ and from its negation
¬ϕ using an LTL-to-Büchi translation algorithm implementation (or even
two different implementations). The correct translation of these formulae
should result in two Büchi automata recognizing the languages Lϕ and L¬ϕ.
Let Aϕ and A¬ϕ denote the Büchi automata obtained from ϕ and ¬ϕ, re-
spectively. The synchronous product of these automata can be used to test
the automata for their expected properties. By Lemma 2, the product au-
tomaton accepts an infinite word over 2AP if and only if the word is accepted
by bothAϕ andA¬ϕ, i.e., if and only if the word belongs to the intersection of
the languages recognized by the automata. Since the language intersection
Lϕ∩L¬ϕ is known to be empty, the synchronous composition ofAϕ and A¬ϕ

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 26

LTL formula ϕ

PASS FAIL

1Aϕ

ϕ

ϕ
2A

A1
ϕ A2

ϕ
= A1

ϕ A2
ϕ

=

1Aϕ ϕ
2A

ϕ

Synchronous product

Emptiness check

LTL−to−Büchi translator 1 LTL−to−Büchi translator 2

(a)

LTL formula ϕ

1Aϕ

ϕ

ϕ
2A

1Aϕ ϕ
2A

1Aϕ ϕ
2A

PASS FAIL

A2
ϕA1

ϕ
= A2

ϕA1
ϕ

=

ϕ

LTL−to−Büchi translator 1 LTL−to−Büchi translator 2

Union computation

Complement computation

Emptiness check

(b)

Fig. 5.1: (a) Emptiness check for the intersection of Büchi automata Aϕ and A¬ϕ.
(b) Universality check for the union of Aϕ and A¬ϕ

should therefore have no accepting executions, which can be confirmed by
checking the product automaton Aϕ ⊗ A¬ϕ for emptiness. However, if the
product automaton is nonempty, then at least one of the automata Aϕ and
A¬ϕ does not correctly recognize the expected language, and therefore the
LTL-to-Büchi translation of at least one of these formulae must have failed.
In this case, the techniques described in Sect. 4.2.5 can be used to construct
an infinite word over 2AP incorrectly accepted by both Aϕ and A¬ϕ by ex-
tracting it from an accepting execution of the product automaton. If both
automata Aϕ and A¬ϕ were constructed using the same LTL-to-Büchi trans-
lation algorithm implementation, the failed emptiness check immediately
confirms an error in the implementation.

The above steps are collected below into Test 1. See also Fig. 5.1 (a).

Test 1 (Emptiness check for the intersection of Aϕ and A¬ϕ)
Input: an LTL formula ϕ.

1. Compute the Büchi automata Aϕ and A¬ϕ using some LTL-to-Büchi
translator implementation (or two different implementations).

2. Compute the synchronous product Aϕ ⊗ A¬ϕ.

3. Check Aϕ ⊗A¬ϕ for emptiness. If the product automaton accepts any
input word, then either Aϕ or A¬ϕ does not correctly recognize the
language Lϕ or L¬ϕ, respectively. This suggests that the translation of
at least one of the formulae into a Büchi automaton has failed.

�

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 27

We shall shortly address the question why it can be useful to apply two
different LTL-to-Büchi translators for constructing the automataAϕ and A¬ϕ

required in Test 1. However, we first introduce another similar consistency
check applicable to the automata Aϕ and A¬ϕ.

Test 1 is not complete for showing the correctness of an LTL-to-Büchi
translation algorithm implementation even on a single LTL formula. For
example, it is easy to see that an implementation that “cheats” by always gen-
erating an empty automaton (i.e., an automaton that rejects all its inputs)
regardless of the input formula would trivially pass this test, since intersect-
ing any automaton with an empty automaton results in an empty product
automaton.

In principle, the fact that the union of Lϕ and L¬ϕ forms the universal
language (2AP)ω provides another test to be used together with Test 1 in or-
der to confirm that the languages recognized by the automata Aϕ and A¬ϕ

are complementary to each other. It can be shown (see e.g. [30]) that any
two Büchi automata can be combined into another Büchi automaton that
accepts precisely the union of the languages recognized by the original au-
tomata. Therefore, it might be possible to check whether the automaton
Aϕ ∪ A¬ϕ accepts the universal language, i.e., that the automaton accepts
every input word over 2AP . The existence of an input word not accepted by
this automaton would again suggest that one of the LTL-to-Büchi translation
algorithm implementations has an error.

Unfortunately, the universality test for a Büchi automaton is not as easy to
perform in practice as the emptiness check—as a matter of fact, this problem
is known to be PSPACE-complete [30]. The language universality test might
first be reduced to a language emptiness check, which can be solved using
Büchi automata: the fact that the language Lϕ ∪ L¬ϕ is universal implies
that its complement Lϕ ∪ L¬ϕ must be empty. However, this reduction dif-
fers from all previous operations on Büchi automata in that it involves the
complementation of nondeterministic Büchi automata. Although Büchi au-
tomata are closed under complementation, the complementation construc-
tion [23] is relatively hard to implement in comparison to the other oper-
ations applied to Büchi automata so far. In addition, even the optimal con-
struction may cause an exponential (2O(n log n)) worst-case blow-up in the size
of the automaton. The blow-up is a consequence of the nondeterminism of
Büchi automata and cannot in general be avoided [23].

Although the language union universality test was not used in the experi-
ments made in this work on real LTL-to-Büchi translation algorithm imple-
mentations, the required steps are collected below in Test 2. The steps are
illustrated in Fig. 5.1 (b).

Test 2 (Universality check of the union of Aϕ and A¬ϕ)
Input: an LTL formula ϕ.

1. Compute the Büchi automata Aϕ and A¬ϕ using some LTL-to-Büchi
translator implementation (or two different implementations).

2. Compute the union of Aϕ and A¬ϕ (see e.g. [30]).

3. Using a Büchi automata complementation procedure (see [23]), com-
pute the complement of Aϕ ∪ A¬ϕ.

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 28

4. Check Aϕ ∪ A¬ϕ for emptiness. If this automaton accepts any input
word, then either Aϕ or A¬ϕ does not correctly recognize the language
Lϕ or L¬ϕ, respectively. This suggests that the translation of at least
one of the formulae into a Büchi automaton has failed.

�

Taken together, Tests 1 and 2 are able to show that the languages recog-
nized by two Büchi automata Aϕ and A¬ϕ, constructed using the same im-
plementation from some input formula ϕ, are complementary to each other.
Although this is already a valuable result in itself, the tests are not powerful
enough to prove the correctness of an LTL-to-Büchi translation algorithm
implementation on any input formula even if both of the tests succeed. The
tests only confirm that the relationship between the languages recognized
by the two automata is as expected; however, this is not sufficient for telling
whether the languages correctly correspond to the models of the LTL proper-
ties involved. Therefore, these tests may fail to detect some systematic errors
in the translation. For example, if an implementation erroneously mixed
the names of the atomic propositions in the given input formula such that
otherwise independent propositions share the same name, the automaton
generated by the implementation would not correctly recognize the models
of the original formula.

This problem can be helped by using two or more independent LTL-to-
Büchi translators for the formula translation as suggested above. Instead of
performing the checks only with automata obtained using a single imple-
mentation i (chosen from a set of implementations I), each of the imple-
mentations can be used in turn to convert ϕ and ¬ϕ into Büchi automata.
Tests 1 and 2 can then be repeated on each pair of automataAi

ϕ andAj¬ϕ con-
structed by any two implementations i ∈ I and j ∈ I , respectively. Since
the LTL formula ϕ uniquely defines its set of models (i.e., the languages Lϕ
and L¬ϕ), all Büchi automata constructed from ϕ (¬ϕ) using the different
implementations should accept the same language Lϕ (L¬ϕ). Therefore, no
synchronous composition of any two automata Ai

ϕ and Aj¬ϕ for some i, j ∈ I
should have any accepting executions, and the same should also hold for
the automata Ai

ϕ ∪ A
j
¬ϕ. A successful run of all these tests proves that the

languages accepted by the automata Ai
ϕ (Ai¬ϕ) are equivalent. This would

finally prove the correctness of the tested implementations on the formulae
ϕ and ¬ϕ, provided that at least one of the implementations participating in
the tests is already known to be correct.

The lack of an implementation that is known to be correct still leaves a
small possibility for a false positive, i.e., a case in which all eight possible tests1

between the automata generated by some two implementations succeed, but
the automata are still incorrect. This will occur if the languages recognized
by all automata constructed from the same formula are equivalent to each
other but still not equivalent to the language corresponding to the models
of the formula. (For example, consider two otherwise correct LTL-to-Büchi
translator implementations, both of which negate every input formula before

11. “Ai
ϕ ∩Ai

¬ϕ = ∅ ?” 2. ”Ai
ϕ ∪ Ai

¬ϕ = ∅ ?” 3. “Aj
ϕ ∩Aj

¬ϕ = ∅ ?” 4. ”Aj
ϕ ∪A

j
¬ϕ = ∅ ?”

5. “Ai
ϕ ∩ Aj

¬ϕ = ∅ ?” 6. ”Ai
ϕ ∪ A

j
¬ϕ = ∅ ?” 7. “Aj

ϕ ∩ Ai
¬ϕ = ∅ ?” 8. ”Aj

ϕ ∪Ai
¬ϕ = ∅ ?”

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 29

translation.) Intuitively, the probability of a false positive should decrease if
another independent implementation is included in the tests.

However, even if none of the implementations is known to be correct,
which is likely to be the case in practice, testing different implementations
against each other still increases the intuitive confidence in the correctness
of the automata if no failures are detected. This view is based on the as-
sumption that two independent implementations are not likely to fail in the
same way on the same input formula (i.e., by generating equivalent but in-
correct automata from the formula). Thus, an inconsistency is likely to be
detected in at least one of the eight possible tests that can be made on the
Büchi automata generated by two different implementations if one of the
tested translators has an error.

None of the tests can give false negative answers, however. This is because
a test failure between two automata always implies that at least one of the
automata is incorrect:

• A failure in Test 1 between two implementations i, j ∈ I implies the
existence of an input ξ ∈ (2AP)ω recognized by both of the automata
Aiϕ and Aj¬ϕ. (If necessary, such an input can be constructed by the
same techniques used for extracting counter-examples for LTL prop-
erties from product automata. See Sect. 4.2.6.) At least one of these
automata must now be incorrect, since no infinite sequence over 2AP

can be a model ofϕ and ¬ϕ at the same time. Therefore, one of the au-
tomata incorrectly accepts ξ. The other automaton also accepts ξ, but
this test does not give useful information about the correctness of that
automaton: for example, it may be that the automaton accepts every
input, although neither of the formulae is actually valid. Distinguish-
ing the certainly incorrect automaton from the two will be discussed
later in Sect. 5.2.

• Similarly, a failure in Test 2 between two implementations i, j ∈ I
implies that there exists a sequence ξ ∈ (2AP)ω rejected by both of the
automata Ai

ϕ and Aj¬ϕ. (Such a sequence could again be constructed

during the emptiness check of Ai
ϕ ∪ A

j
¬ϕ.) The techniques used for

distinguishing the incorrect automaton in Test 1 can be applied also
to this case to determine which one of the automata incorrectly rejects
ξ. (As above, nothing can be said about the absolute correctness of the
other automaton.)

The different types of tests and the types of errors they are able to detect are
summarized in Fig. 5.2. However, because Test 2 is difficult to implement,
relying only on Test 1 is likely to reduce the overall efficiency of finding errors
in the implementations with the testing procedure. The next subsection dis-
cusses some alternative testing methods based on more easily implementable
techniques that can help to improve testing efficiency.

The previous tests have the advantage of being independent of the chosen
LTL formula ϕ. Therefore, these tests can use even random LTL formulae
that are quite easy to generate automatically. Previous experiments [26, 27]
suggest that even simple randomly generated input can be of use in finding

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 30

ω(2)AP

ϕ ϕ

Actual relationship between Lϕ and L¬ϕ

Relationship between
languages recognized
by two automata

Error Detectable by

ω(2)AP

Aϕ A ϕ

The languages recog-
nized by the automata
are not disjoint

Test 1

ω(2)AP

A ϕAϕ

The union of the lan-
guages recognized by
the automata is not the
universal language

Test 2

A ϕ

Aϕ

ω(2)AP
The languages recog-
nized by the automata
are complementary
but still incorrect

Running Tests 1 and
2 using several inde-
pendent implementa-
tions (may still result
in a false positive un-
less a correct imple-
mentation is available)

Fig. 5.2: Examples of incorrect relationships between languages accepted by two
Büchi automata constructed from ϕ and ¬ϕ by two LTL-to-Büchi implementations
and how to detect them

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 31

errors in LTL-to-Büchi translators. The random testing strategy is also the
approach taken in this work; the details will be discussed later in Chap. 6.

Limited testing could still be done on the implementations using spe-
cially chosen LTL formulae: for example, no Büchi automaton constructed
from an unsatisfiable LTL formula should have any accepting executions.
Another weak but simple consistency check would be to test that the Büchi
automaton constructed from a valid LTL formula has even one accepting
execution. Checks based on these properties could again be implemented
by direct application of the emptiness check to the automata. Of course, a
clever implementation might be able to detect the validity or unsatisfiability
of a formula directly (e.g., from the syntactic structure of the formula), with-
out actually performing translation using more general techniques. There-
fore, relying only on such special cases may not be sufficient for testing all
parts of the implementation; assessing the coverage of this kind of testing will
require taking the implementation details into account. Furthermore, these
tests require LTL formulae with known special properties, which makes it
more difficult to generate the formulae automatically. Of course, one could
simply use a preselected collection of valid or unsatisfiable formulae instead
and test only a few selected cases.

This work, however, focuses on finding reasonably general testing meth-
ods for LTL-to-Büchi translators. For that reason, no testing methods based
on LTL formulae with special properties will be used, since their effective-
ness on a particular implementation depends more closely on the details of
the implementation. Instead, this work continues using the random input ap-
proach, treating the tested implementations simply as “black boxes” without
looking at their internal details. (Certainly, choosing a set of test formulae
with detailed knowledge about the structure of an implementation may re-
sult in more effective tests for that particular implementation, so this kind of
testing is not a bad strategy e.g. in the development of a new implementa-
tion.)

5.1.2 Using the LTL Model Checking Procedure

The decision of implementing only Test 1 into an automated testing tool
is likely to reduce the tool’s effectiveness in finding errors in LTL-to-Büchi
translation algorithm implementations, unless alternative testing methods
are used to remedy this problem. This subsection discusses how the LTL
model checking procedure (described in Chap. 4) can be applied to testing
the correctness of LTL-to-Büchi translators.

Given a Kripke structureM , the semantics of LTL guarantee that the truth
value of any LTL formula is uniquely defined in the structure. Therefore, no
matter which methods are used to model check a given LTL formula ϕ in
M , the methods should always give the same answer to the question whether
ϕ holds in M , provided that all the used methods are sound and complete
and they are applied correctly. Since the abstract automata-theoretic model
checking procedure for LTL is sound and complete (by Theorem 1), the
correctness of the model checking results given by an LTL model checking
procedure implementation depends on whether all phases of the procedure
are free of implementation errors.

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 32

Therefore, if there are several LTL-to-Büchi translation algorithm imple-
mentations available, each of them can be used in turn to convert a given
LTL formula into a Büchi automaton, which is then used to model check
the formula in a given Kripke structure. In effect, using different implemen-
tations for the formula translation now corresponds to having several “model
checking procedures”, all of which should give the same answer if none of
the LTL-to-Büchi implementations have errors. Inconsistencies in the an-
swers then suggest that some of the LTL-to-Büchi translation algorithms are
in error, or that an error occurred during some later phase in the LTL model
checking procedure.

Admittedly, applying the full LTL model checking procedure to test the
correctness of only one of its phases seems more complicated than the di-
rect analysis of Büchi automata. Furthermore, inconsistencies in the model
checking results may not necessarily originate from the LTL-to-Büchi transla-
tion phase, but some other phase instead. Therefore, it might seem question-
able whether this method is effective and easily implementable enough for
uncovering errors particularly in the LTL-to-Büchi translation phase. How-
ever, this approach is justified because of the following main reasons:

• All phases of the LTL model checking procedure after the LTL-to-
Büchi translation can be integrated into a common implementation
framework. This helps in trying to isolate the source of model check-
ing result inconsistencies into the formula translation phase that is per-
formed with the tested translation algorithm implementations. In prin-
ciple, this results in “an LTL model checker with a replaceable LTL-
to-Büchi translation module”.

• Extreme memory-efficiency is not of primary importance for the pur-
poses of plain testing, since it is not necessary to use real-sized exam-
ples of Kripke structures as test cases. Therefore, it may be acceptable
to implement the LTL model checking phases with very straightfor-
ward algorithms, such as those described in Sect. 4.2.6. In addition, all
of these algorithms are also conceptually more simple than the algo-
rithms needed for LTL-to-Büchi translation. Actually, the algorithms
for computing the synchronous product of two Büchi automata and
checking it for emptiness by examining its nontrivial MSCCs can be
implemented as refinements of a basic graph depth-first search.

For testing purposes, the LTL model checking procedure can be simpli-
fied slightly. To model check an LTL formula ϕ in a given Kripke structure
M , the formula would normally need to be negated first to obtain the Büchi
automaton to be used for checking the language LM ∩ LA¬ϕ

for emptiness.
However, when testing LTL-to-Büchi translators, the actual answer to the
question whether the LTL formula ϕ holds in the Kripke structure is not rel-
evant, since the formula might have been generated randomly (and therefore
it may not even represent any “useful” property). It is more important to see
whether the LTL model checking procedure gives the same model checking
results for the formula, whichever of the tested LTL-to-Büchi translation al-
gorithm implementations is used in the model checking process. Therefore,
it is not necessary to negate the formula ϕ before constructing a Büchi au-
tomaton. Instead, it is possible to simply convert ϕ itself into an automaton

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 33

and then proceed with synchronizing the automaton with the Kripke struc-
ture as before. As discussed at the end of Sect. 4.2.4, the resulting product
automaton can be used to tell whether any of the executions of the Kripke
structure satisfies the property ϕ individually. It is clear that the answer to
this question should also remain the same regardless of the methods used for
solving this problem—provided that they are sound and complete, of course.
This “modified” model checking procedure is actually equivalent to check-
ing whether the LTL formula ¬ϕ holds in the structure.

A simple additional refinement of this testing method allows easily “re-
using” a single Kripke structure to obtain more data for comparison. By
Lemma 2, every execution of the synchronous composition of two Büchi au-
tomata corresponds to two synchronous executions of the original automata
(in this case, the system automaton AM and the property automaton Aϕ).
These synchronous executions begin in the respective initial states of the
structures. However, changing the initial state of the Kripke structure also
changes the set of executions in the structure. Repeating the LTL model
checking procedure in the modified structure then gives a different set of
model checking results, telling whether any infinite path beginning in the
new initial state of the Kripke structure has the property ϕ. This allows a
new comparison to be made on the results obtained using the different LTL-
to-Büchi translation algorithm implementations: inconsistent results again
suggest that some of the implementations may have failed. By considering
each state of the Kripke structure in turn as the initial state, the check can be
repeated as many times as there are states in the Kripke structure.

Although changing the initial state of the Kripke structure essentially cre-
ates a new Kripke structure, it is sufficient to synchronize the system automa-
ton AM with the property automaton only once. Several synchronizations
would be required only if also the transition relation of M were changed or if
the new product automata contained states (i.e., pairs of states chosen from
AM and Aϕ, respectively) not included in the result of any previous synchro-
nization. However, changing the initial state of the Kripke structure does not
affect its transition relation, and the definition in Lemma 2 guarantees that
the product always contains all possible state pairs, independent of the ini-
tial state of AM . Therefore, the product as defined in Lemma 2 can actually
be called the global synchronous product, since it includes all synchronous
executions of AM and Aϕ, no matter in what state AM begins its execution.2

Performing all the emptiness checks in the global synchronous product
requires changes also in the emptiness checking phase. For example, if the
MSCCs of the product are computed using Tarjan’s algorithm, the emptiness
check can be performed “globally” by simply restarting the MSCC search
algorithm in every state (q, q0), where q is a state of AM , and q0 is the initial
state of Aϕ. During each run of Tarjan’s algorithm, each nontrivial MSCC
can then be checked for accepting executions as described in Sect. 4.2.5.
Let (q, q0) be the state in which the MSCC algorithm was most recently
restarted. If the search finds an accepting execution, the (modified) Kripke
structure then has an execution that begins in the state corresponding to the
state q of AM , and this execution satisfies the property ϕ.

2However, see Appendix A for notes on the practical implementation of the global syn-
chronous product and the following emptiness check.

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 34

LTL formula ϕ

Global
synchronous

product

Global
synchronous

product

ϕA2

AM AM

Emptiness check Emptiness check

Aϕ
1

Y Y YY Y NN

0b2b1
2 b3

2b4
2b5

2 bn−1
2b2

2

structure M
Kripke

AMM

Result comparison

PASS FAIL

1
k k

2k: b = b 1
k k

2k: b = b

N Y YY NNY

0
1b 1b1

1b3
1b4

1b5
1bn−1

1b2

Aϕ
1 AMAM Aϕ

2

ϕϕ
M

LTL−to−Büchi translator 1 LTL−to−Büchi translator 2

Fig. 5.3: Model checking result cross-comparison check for two LTL-to-Büchi trans-
lation algorithm implementations

The above steps are collected together in Test 3. See also Fig. 5.3.

Test 3 (Model checking result cross-comparison check)
Input: Kripke structure M , LTL formula ϕ.

1. Convert the formula ϕ into Büchi automataAi
ϕ using each of the avail-

able LTL-to-Büchi translation algorithm implementations i ∈ I .

2. Compute the global synchronous products AM ⊗ Aiϕ.

3. Check each product automatonAM⊗A
i
ϕ for emptiness, i.e., determine

for each product state (qk, q
0
i) (where qk is a state of AM and q0

i is the
initial state of Ai

ϕ) whether the product automaton has any accepting
executions beginning at (qk, q

0
i). Denote the answers to this question

by bik ∈ {“Y”,“N”} such that bik = “Y” if the product automaton AM ⊗
Aiϕ can reach an accepting execution from the state (qk, q

0
i), and bik =

“N” otherwise. (These answers also tell whether the Kripke structure
M has an execution that satisfies the property ϕ and begins at the state
corresponding to qk.)

4. Test whether for all states qk of AM , ∀i, j ∈ I : bik = bjk. If this does not
hold, one of the LTL-to-Büchi translation algorithms must have failed
on the formula ϕ (under the assumption that all other model checking
phases are performed correctly).

�

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 35

As with Tests 1 and 2, any inconsistencies detected in Test 3 do not di-
rectly reveal the implementation (or implementations) which had failed.
However, if the model checking results obtained using two different LTL-
to-Büchi translators are inconsistent in some state of the Kripke structure, at
least one of the automata is again certainly incorrect. This follows from the
fact that the truth values of the LTL formula ϕ are uniquely defined in any
Kripke structure, so two correct model checking procedures for LTL cannot
give a different answer to the existence of an execution satisfying ϕ in any
state of the Kripke structure. However, as in the previous tests, the only thing
that can be said about the correctness of the other automaton is that it gives
the correct result in one particular state of the Kripke structure M (but not
necessarily in other Kripke structures, or even in other states ofM). This is all
that can be said about the absolute correctness of the tested implementations
also in the case when there are no inconsistencies in the model checking
results, so there is a possibility for false positives. Intuitively, this possibility
could again be made smaller by running the cross-comparison tests using
several independent LTL-to-Büchi translation algorithm implementations.

Test 3 may detect the inequivalence of languages accepted by Büchi au-
tomata constructed by different LTL-to-Büchi translators from the same LTL
formula. However, the test is inherently dependent on the Kripke structures
used for model checking, and it cannot be practically applied to proving the
equivalence of the languages accepted by the automata even on a single LTL
formula. This makes the test less powerful as Tests 1 and 2 taken together.
However, since Test 2 may be difficult to implement and may therefore not
be available, Test 3 may improve the odds of detecting errors in LTL-to-Büchi
translation algorithm implementations. In addition, Test 3 can be automated
quite easily, since the actual test steps are not dependent on the formulae or
the Kripke structures used as input. Therefore, Test 3 can be simply run on
e.g. randomly generated formulae and Kripke structures.

The rest of this subsection focuses on one additional test to be used as a
simple consistency check for a single LTL-to-Büchi translation algorithm im-
plementation. This test is based on the relationship between the satisfiability
of ϕ and ¬ϕ in the same Kripke structure.

In the discussion at the end of Chap. 3, it was noted that it is not possible
for both ϕ and ¬ϕ to hold in the same Kripke structure, although neither
of these formulae might be satisfied in the structure. Let ϕ and M denote a
given LTL formula and a given Kripke structure, respectively. By converting
the formula ϕ into a Büchi automaton using an LTL-to-Büchi translator and
then checking the product automaton AM ⊗Aϕ for emptiness, we can try to
see whether any of the executions of M has the property ϕ. The emptiness of
the automaton AM ⊗ Aϕ suggests that no execution of M has this property,
and therefore M |= ¬ϕ should hold by the semantics of LTL. Similarly,
we can also convert the formula ¬ϕ into another Büchi automaton using
the same translator and check the emptiness of the automaton AM ⊗ A¬ϕ.
If also this automaton is found to be empty, there is a contradiction, since
the emptiness of AM ⊗ A¬ϕ suggests that also M |= ϕ should hold in the
structure. However, this is impossible if M |= ¬ϕ is already known to be true
in the structure.3 Therefore, we must conclude that either the formula ϕ or

3By Definition 1, Kripke structures have a total transition relation. Therefore, there must

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 36

LTL formula ϕ

Global
synchronous

product

Global
synchronous

product

AM AM

Emptiness check Emptiness check

N N YY Y YN

0b b4 bn−1b2
ϕ ϕ ϕ ϕ

structure M
Kripke

AMM

Y N NY NYN

0b b1 b3b4b5 bn−1b2
ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ

ϕAAϕ

Result comparison

PASS FAIL

ϕϕ
k kk: b = b = ‘‘N’’ϕ ϕ

kkk: (b = ‘‘Y’’) (b = ‘‘Y’’)

AϕAM AM ϕA

M
ϕ

LTL−to−Büchi translator

Fig. 5.4: Model checking result consistency check for a single LTL-to-Büchi trans-
lation algorithm implementation

¬ϕ was incorrectly translated into a Büchi automaton, and the LTL-to-Büchi
implementation has an error.

This check does not give much useful information about the correctness of
the Büchi automata if either of the product automata AM⊗Aϕ or AM⊗A¬ϕ

is nonempty. To improve the effectiveness of this test, we can again take
advantage of the global synchronous product to obtain more test data from a
single Kripke structure by performing the consistency check in each state of
the structure.

Performing the consistency check individually on all tested implementa-
tions requires constructing two sets of automata Aϕ and A¬ϕ. Each of the
automata Aϕ and A¬ϕ is synchronized with the system automaton AM , and
the product automata are checked for emptiness. The emptiness check re-
sults can now be directly analyzed using also the model checking result cross-
comparison check (Test 3). This fact makes it possible to combine Tests 3 and
4 together such that the required product automata need to be computed
only once.

A summary of the steps in the model checking result consistency check
follows. See also Fig. 5.4.

Test 4 (Model checking result consistency check)
Input: LTL formula ϕ, Kripke structure M .

exist at least one infinite path starting in the initial state of the structure, and this path must
satisfy either of the formulae ϕ or ¬ϕ. Therefore, either of the emptiness checks must return
with a negative answer.

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 37

1. Construct the automata Aϕ and A¬ϕ from the formulae ϕ and ¬ϕ
using some LTL-to-Büchi translator.

2. Compute the synchronous products AM ⊗ Aϕ and AM ⊗ A¬ϕ.

3. Check the product automaton AM ⊗ Aϕ for emptiness, i.e. check for
all states (qk, q

0) (where qk is a state of AM and q0 is the initial state
of Aϕ) whether the automaton AM ⊗ Aϕ has an accepting execution
starting in the state (qk, q

0). Denote the answers to this question by
bϕk ∈ {“Y”,“N”}, where bϕk = “Y” if an accepting execution can be
reached, and “N” otherwise.

4. Repeat Step 3 for the product automaton AM ⊗ A¬ϕ. Denote the ob-
tained answers in this case by b¬ϕk .

5. Test whether bϕk = b¬ϕk = “N” for any state qk of AM . If such a state
exists, the model checking results are inconsistent. This suggests that
either the translation of ϕ or ¬ϕ into a Büchi automaton has failed.

�

An inconsistency detected in Test 4 reveals the existence of an input not
recognized by either of the automata Aϕ and A¬ϕ constructed using some
LTL-to-Büchi translator from an LTL formula ϕ and its negated version ¬ϕ,
respectively. This means that the union of the languages accepted by the
two automata is not the universal language 2AP . Although Test 4 depends
on the Kripke structures used for running the test, it may help in detecting
some of the errors that would otherwise be left undetected in case Test 2 is
not available.

When Tests 3 and 4 are combined together, it is sufficient to perform
Test 4 on each pair of automata Aϕ and A¬ϕ generated by a single imple-
mentation. This is because performing the test on automata generated by
different implementations cannot find any inconsistencies that could not be
detected by the other tests.4

5.2 TEST FAILURE ANALYSIS

Running different LTL-to-Büchi translators against each other does not still
give any information as to which one of the tested implementations may have
an error, in case some of the tests fail. This makes it difficult to determine
which implementation should be fixed. (Tests 1, 2 and 4 can detect the

4To see this, assume that two different LTL-to-Büchi translators i and j pass Test 3 against
each other on both formulae ϕ and ¬ϕ, and both of the translators also pass Test 4 individ-
ually, but Test 4 fails on two automata Ai

ϕ and Aj
¬ϕ generated by the implementations. (As-

sume that the indices i and j are chosen such that this holds.) Then, b
i,ϕ
k = b

j,¬ϕ
k = “N” for

some state qk of AM . Because i and j pass Test 4 individually, it follows that b
i,¬ϕ
k = b

j,ϕ
k =

“Y”.
Because the implementations also pass Test 3, it must be that b

i,ϕ
k = b

j,ϕ
k and b

i,¬ϕ
k =

b
j,¬ϕ
k . Since b

i,ϕ
k = b

j,¬ϕ
k = “N”, it now follows that b

j,ϕ
k = b

i,¬ϕ
k = “N”. But then it cannot

be that the implementations pass Test 4 individually, which is a contradiction.
Therefore, if the implementations pass Test 3 against each other on ϕ and ¬ϕ, and each

of them also passes Test 4 individually, they cannot fail Test 4 against each other.

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 38

incorrectness of even a single implementation; however, they do not provide
any useful information about which one of the automata used in the failed
test is clearly incorrect, which might be useful for debugging.)

A simple method for distinguishing the incorrect implementations from
the correct ones is to increase the number of independent LTL-to-Büchi
translators taking part in the tests and then to try to look for patterns in the
detected inconsistencies. For example, if some translator sometimes fails a
test against all other tested translators, which in turn pass all tests against
each other, there is likely to be an error in that one translator. However,
this method might not be applicable if there are not many implementations
available, or if the implementations are not independent (e.g., if the imple-
mentations to be tested are only different versions of a particular translator).

A unifying fact between all tests is that it is possible to construct a wit-
ness—an infinite sequence over 2AP—that gives a concrete proof of the test
failure. More importantly, however, the same witness can be used to distin-
guish the incorrect automaton in any pair of two automata for which one of
the tests failed. This then reveals an error in the implementation that gen-
erated the incorrect automaton. Intuitively, the role of the witness in each
failed test is as follows:

(i) In Test 1, the witness is a sequence that is accepted by two automata
supposed to recognize two complementary LTL properties ϕ and ¬ϕ,
respectively.

(ii) In Test 2, the witness sequence is accepted by neither of two automata
supposed to recognize the properties ϕ and ¬ϕ.

(iii) In Test 3, the witness is a sequence that is accepted by one and rejected
by the other of two automata, both of which should represent the same
property ϕ.

(iv) Analogously to Test 2, the failure of Test 4 can be proved with a witness
that is rejected by both automata Aϕ and A¬ϕ (supposedly) represent-
ing two complementary LTL properties.

In the first three cases, the witness can be obtained as a side result of the
emptiness check performed on some Büchi automaton in each of the three
cases. In Tests 1 and 2, the witness can be extracted from the nonempty syn-
chronous product (or the union complement) automaton constructed from
the automata generated by the LTL-to-Büchi translators from the input for-
mulae. In Test 3, the witness can be taken from a nonempty product automa-
ton that claims the existence of a path satisfying the property in some system
state in which Test 3 failed.

In case (iv), the witness can be extracted from the system automaton AM

instead of the product automaton used in Test 4. (Of course, the product
automaton is still needed for determining the result of Test 4; a witness exists
only if the test failed.)

Each case is therefore associated with some nonempty Büchi automaton
(in case (iv), AM is nonempty by definition; see Lemma 1). The witness
is then constructed from an accepting execution of this automaton. This
accepting execution can always be constructed so that it consists of a finite

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 39

prefix of states followed by an infinitely repeating cycle of states. In cases
(i)–(iii), such an accepting execution can be found during the emptiness
check of a Büchi automaton, using the techniques discussed in Sect. 4.2.5.
In case (iv), any execution of AM having the desired structural properties can
be taken as the witness. (Such an execution can be found e.g. by a simple
depth-first or breadth-first search in the automaton, stopping as soon as some
state of the automaton is visited twice. This is bound to happen, since AM is
finite and has a total transition relation.)

The labels on the automaton transitions in the execution can now be pro-
jected onto an infinite sequence ξ over 2AP by selecting any of the symbols
in each successive transition label σ into this sequence. It is easy to see from
the definition of Büchi automata that the automaton from which the execu-
tion was extracted then accepts this sequence. Since the witness execution
already has a finite representation, the elements of ξ can be chosen so that
ξ forms the concatenation of two finite-length sequences over subsets of AP

such that the latter sequence is thought to repeat itself infinitely often.
Let ϕ and ¬ϕ be the LTL formulae that resulted in the failure of Tests 1, 2

or 4. (In case Test 3 failed, the only formula involved in the test is simply
ϕ.) The key idea is now to model check the LTL formula ϕ again in ξ, using
an independent implementation of an LTL model checking procedure for
this purpose. The result of this check can now be used as a “yardstick” to
determine which one of the two Büchi automata is incorrect in each of the
cases (i), (ii), (iii) and (iv) above:

(i) If it is confirmed that ξ |= ϕ holds, then the automaton A¬ϕ con-
structed for the formula ¬ϕ is incorrect. This is because the automaton
A¬ϕ should accept only those inputs η ∈ (2AP)ω for which η 6|= ϕ is
true. Conversely, confirming that ξ 6|= ϕ shows that the translation of
ϕ into a Büchi automaton has failed.

(ii) Confirming that ξ |= ϕ implies that the automaton Aϕ must be incor-
rect, since it erroneously rejects ϕ (in this case, ξ is a witness rejected
by both Aϕ and A¬ϕ). Likewise, if ξ 6|= ϕ, the automaton A¬ϕ is incor-
rect.

(iii) If ξ |= ϕ, then the automaton rejecting ϕ is incorrect; if ξ 6|= ϕ, the
automaton that accepts ξ does not correctly recognize the language
Lϕ.

(iv) Analogous to case (ii).

Instead of using a general LTL model checking procedure for testing
whether ξ |= ϕ, it is possible to model check the formula in the sequence
directly using more simple techniques [14, 27], such as a restricted LTL
model checking algorithm that operates on infinite sequences over 2AP hav-
ing a similar finite representation as ξ above. Intuitively, a restricted model
checking algorithm is easier to implement correctly than a general algorithm.
Therefore, it should be possible to perform the analysis to find the incorrect
automaton in a reliable way. This lifts the need for using e.g. another LTL-
to-Büchi translator for testing whether ξ |= ϕ is true.

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 40

Fig. 5.5: A sequential Kripke structure without state labels

The rest of this section describes an algorithm for model checking the
LTL formula ϕ in ξ. In the algorithm, the formula ϕ is assumed to consist
solely of atomic propositions and the operators ¬, ∨, X and U. (Since all
other LTL operators can be expressed using these basic operators, ϕ can first
be converted into this form if necessary; another straightforward option is to
extend the algorithm to support these operators directly.)

Actually, ξ can be considered to be the temporal interpretation of an exe-
cution of some underlying Kripke structure M = 〈S, s0, ρ, π〉. The simplest
such structure is one in which the states are connected into a sequence. That
is, each state of the structure has a unique successor (since S is always finite,
the successor of the “last” state in the sequence is one of its predecessors in
the sequence), and the states in the sequence are labelled with the elements
of ξ in the same order as they appear in ξ. (Thus, ξ is the only execution of
the structure.) In the following, these structures are called sequential Kripke
structures; see Fig. 5.5 for an example.

Definition 6 A sequential Kripke structure 〈S, s0, ρ, π〉 is a Kripke structure
whose each state s ∈ S has exactly one successor, and each state of the
structure is reachable from s0 by zero or more arcs. �

Since each state of the structure has exactly one successor, the transition
relation ρ is actually a function. In this case, the successor of a state s ∈ S is
denoted by ρ(s). For convenience, we also define ρ0(s) = s and ρk+1(s) =
ρ(ρk(s)) for any integer k > 0.

The algorithm for model checking an LTL formula ϕ in a sequential
Kripke structure M is shown in Fig. 5.6. Intuitively, the algorithm works
in a “bottom-up” manner according to the syntactic structure of the formula.
Starting from the atomic propositions occurring in ϕ, the algorithm processes
each subformula ϕ′ of ϕ in turn such that each subformula ϕ′ is processed
only after all of its subformulae have been processed. (In practice, this can be
done e.g. by processing the subformulae in the postorder imposed by a depth-
first search in the parse graph of ϕ.) For each state s of the structure, the
algorithm then determines whether the subformula ϕ′ holds on the (unique)
infinite path that begins in s. This is repeated for the other subformulae of
ϕ, until ϕ itself has been processed.

The algorithm uses a set Result for storing the model checking results.
At the end of the algorithm, the set will contain a pair (ϕ, s) if and only if
the formula ϕ holds on the infinite path beginning in the state s. ToEval

denotes the set of ϕ’s subformulae that have not yet been processed. During
each iteration of the main loop (lines 4–35), the algorithm picks a formula
from this set and then evaluates it on the paths starting from each state of
the structure. The method of evaluating a subformula is determined by the
syntactic structure of the formula, so there are five mutually exclusive cases to
consider (lines 7–34). In each of these cases, the model checking results for

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 41

1 function eval(ϕ : LtlFormula, M : SequentialKripkeStructure) : Boolean

2 Result := ∅;

3 ToEval := {ϕ′ | ϕ′ is a subformula of ϕ};

4 while ToEval 6= ∅ do begin

5 ϕ′ := a formula in ToEval such that for all proper subformulae ψ of ϕ′, ψ 6∈ ToEval;
6 ToEval := ToEval \ {ϕ′};

7 case ϕ′

8 ϕ′ ∈ AP :

9 for all s ∈ S do

10 if ϕ′ ∈ π(s) then Result := Result ∪ (ϕ′, s);
11 ϕ′ = ¬ψ:

12 for all s ∈ S do

13 if (ψ, s) 6∈ Result then Result := Result ∪ (ϕ′, s);
14 ϕ′ = (ψ1 ∨ ψ2):
15 for all s ∈ S do

16 if (ψ1, s) ∈ Result or (ψ2, s) ∈ Result then Result := Result ∪ (ϕ′, s);
17 ϕ′ = Xψ:

18 for all s ∈ S do

19 if
(

ψ, ρ(s)
)

∈ Result then Result := Result ∪ (ϕ′, s);
20 ϕ′ = (ψ1 Uψ2):
21 s := s0; Marked := ∅;

22 for i := 1 to |S| do begin

23 if (ψ2, s) ∈ Result then begin

24 Result := Result ∪ (ϕ′, s);
25 for all s′ ∈ Marked do Result := Result ∪ (ϕ′, s′);
26 Marked := ∅;

27 end

28 else if (ψ1, s) ∈ Result then Marked := Marked ∪ {s}
29 else Marked := ∅;

30 s := ρ(s);
31 end;

32 if (ϕ′, s) ∈ Result then

33 for all s′ ∈ Marked do Result := Result ∪ (ϕ′, s′);
34 end;

35 end;

36 if (ϕ, s0) ∈ Result then return “YES” else return “NO”;

37 end;

Fig. 5.6: LTL model checking algorithm for sequential Kripke structures

the formula ϕ′ are computed using previously computed information about
its constituent formulae. (In the last case, the set Marked is used to keep
information about states in which the formula may be true.)

The following proposition establishes the correctness of the algorithm.

Proposition 1 (Correctness of the algorithm) The algorithm of Fig. 5.6 re-
turns the value “YES” if and only if the LTL formulaϕ holds in the sequential
Kripke structure M .

Proof: See Appendix B. �

As a matter of fact, LTL formulae can be easily translated into CTL formu-
lae such that the LTL formula holds in a sequential Kripke structure if and
only if the corresponding CTL formula holds in the same structure [14, 27].
The above LTL model checking algorithm for sequential Kripke structures is
very similar to a global CTL model checking algorithm (see e.g. [11]) that has
been restricted to work only in a certain subclass of Kripke structures. The
complexity of the above algorithm can be shown to beO(|ϕ| · |S|), where |ϕ|
denotes the number of symbols in ϕ.5

5The main loop of the algorithm is executed at most once for each subformula of ϕ;

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 42

In practice, the set Result computed in the algorithm can be used to gen-
erate a proof showing whether the formula ϕ holds in the given sequential
Kripke structure. Basically, this can be done by applying LTL semantics to
the formula and using the Result set to find the truth values of ϕ’s subfor-
mulae in the states of the structure. In the analysis of inconsistent Büchi
automata, the witness and the proof together show that one of the Büchi
automata is incorrect.

The model checking algorithm for sequential Kripke structures provides
also an algorithm against which the LTL-to-Büchi translation algorithm im-
plementations can be tested in Test 3. Obviously, this restricts the Kripke
structures used in the tests to sequential Kripke structures. However, these
are very easy to generate automatically and can be used in the automatic
testing of LTL-to-Büchi translators.

since |{ϕ′ |ϕ′ is a subformula of ϕ}| ≤ |ϕ|, the loop is therefore executed O(|ϕ|) times.
The selection of a subformula from ToEval can be implemented in constant time, e.g., if
the subformulae are first inserted in the correct order into a list on line 3 before entering the
main loop. The ordering can be done in linear time in the number of subformulae.

It is clear that the loops between lines 9–10, 12–13, 15–16 and 18–19 are of complexity
O(|S|); also the lines 21–33 can be shown to take O(|S|) time. (This requires noting that
the loop between lines 22–31 inserts at most one element into Marked in each iteration,
and no element is inserted into the set more than once.)

5. TESTING LTL TRANSLATION INTO BÜCHI AUTOMATA 43

6 EXPERIMENTAL RESULTS

This chapter begins with a description of an automated testbench for LTL-
to-Büchi translation algorithm implementations, based on the methods de-
scribed in Chap. 5. This description is followed by an overview of the ar-
rangements for the tests made with the testbench on several LTL-to-Büchi
translation algorithm implementations. The chapter ends with a section pre-
senting the obtained test results with some discussion.

6.1 AUTOMATED TESTBENCH FOR LTL-TO-BÜCHI TRANSLATORS

The test methods presented in Chap. 5 were partially implemented into a
testbench for automatically testing LTL-to-Büchi translation algorithm im-
plementations. The testbench includes Tests 1, 3 and 4, using the two latter
tests to try to compensate for the missing Test 2, which was left unimple-
mented. To gather as much data as possible for comparison, the testbench
repeats Tests 1 and 3 for all valid combinations of the Büchi automata taking
part in the tests, using global synchronous products.1

The testbench uses simple randomized algorithms for generating the LTL
formulae (used as input for the LTL-to-Büchi translators to be tested) and the
Kripke structures (needed in Tests 3 and 4).

The testbench also includes an implementation of the LTL model check-
ing algorithm for sequential Kripke structures. It can optionally be used as an-
other algorithm with which the tested algorithms can be compared in Test 3
by restricting to the use of random sequential Kripke structures. The algo-
rithm can also be used for analyzing an inconsistency detected in Tests 1
or 3 between two implementations, in order to determine which one of the
implementations is incorrect.

The testbench was implemented in the C++ programming language. The
source code for the program is available through the author’s homepage at
<URL: �������������
	�	�	��
������������������������������������ ����!��� >.

6.1.1 Testbench Operation

The automatic testing procedure begins with generating a formula ϕ and a
Kripke structure. The tested LTL-to-Büchi translators are then invoked to
obtain Büchi automata Ai

ϕ from the formula. This is repeated also for the
negated formula ¬ϕ to obtain the automata Ai

¬ϕ needed in Tests 1 and 4.
Since the input syntax for LTL formulae and the output representation

for Büchi automata are usually translator-specific, the testbench uses a sep-
arate input/output conversion module for each translator with a unique in-
put/output representation. This allows adding new translators into the tests
by attaching an appropriate translation module into the testbench.

Having obtained the Büchi automata, the testbench performs Tests 1, 3
1The testbench used here is an extended version of the implementation whose previous

versions have been described in [26] and [27]. The most significant extension not included
in previous work is the incorporation of Test 1 into the automated testing procedure.

6. EXPERIMENTAL RESULTS 44

and 4 on the generated automata, using an internal implementation for com-
puting synchronous products and checking them for emptiness. (Test 3 is
actually performed twice, using each sets of automataAϕ and A¬ϕ.) This im-
plementation is based on the straightforward techniques described in
Sect. 4.2.6. After all tests have been performed, the test procedure is repeated
using another LTL formula or Kripke structure.

After each test round, the user can examine the LTL formulae and the
Kripke structure used in the test round, together with the Büchi automata
generated by the different implementations in that test round. If Tests 1
or 3 detected an inconsistency, the testbench can optionally give a sugges-
tion about which of the tested implementations had failed. This is done by
constructing a witness that proves a test failure on some formula ϕ between
some two implementations as described in Sect. 5.2, and then using the LTL
model checking algorithm for sequential Kripke structures on the witness to
determine which one of the implementations is incorrect. To justify the re-
sult, the testbench also gives a proof whether the property ϕ holds in the
witness.

After a predetermined number of test rounds, the testbench finally reports
the number of different types of failures detected in the tests between each
pair of implementations. Due to implementation errors in an LTL-to-Büchi
translator, it may well occur that the translator fails to produce any acceptable
output on some input formulae; also these kinds of failures are reported for
each implementation taking part in the tests.

6.1.2 Generating Input for the Tests

The testbench uses simple randomized algorithms for generating LTL for-
mulae and Kripke structures to be used as input for the automated test pro-
cedure. The main goal in designing the algorithms was to obtain simple
procedures that generate output that satisfies simple structural requirements.
No formal analysis was specifically performed in the design of the algorithms
in order to make them satisfy any explicit requirements regarding the output
distribution. Therefore, it is very likely that the produced output is biased
according to any formal criteria that might be considered (e.g., that the out-
put of the algorithms should be “uniformly distributed” according to some
notion of uniformity).

The behaviour of the algorithms can be adjusted with several parameters.
This enables having some “intuitive” control over the expected properties of
the generated LTL formulae and the Kripke structures, even though the ex-
act distributions remain unknown. Actually, some of the parameters can be
adjusted such that the algorithms indeed generate “uniform” output accord-
ing to some explicit criteria. For example, see Appendix C for the analysis
that was done for adjusting the random formula generation parameters in the
experiments described later in this chapter.

LTL formulae. The testbench generates random LTL formulae using a
straightforward recursive algorithm [26, 27, 5]. The pseudocode for this al-
gorithm is shown in Fig. 6.1. The algorithm generates formulae with a parse
tree having a given number of nodes. The algorithm first chooses a logical

6. EXPERIMENTAL RESULTS 45

1 function RandomFormula (n : Integer) : LtlFormula

2 if n = 1 then begin

3 p := random symbol in AP ∪ {>,⊥};

4 return p;

5 end

6 else if n = 2 then begin

7 op := random operator in the set {¬,X,�,♦};

8 ϕ := RandomFormula(1);
9 return op ϕ;

10 end

11 else

12 op := random operator in the set {¬,X,�,♦,∧,∨,→,↔,U,R};

13 if op ∈ {¬,X,�,♦} then begin

14 ϕ := RandomFormula(n − 1);
15 return op ϕ;

16 end

17 else begin

18 x := random integer in the interval [1, n− 2];
19 ϕ := RandomFormula(x);
20 ψ := RandomFormula(n − x− 1);
21 return (ϕ op ψ);
22 end;

23 end;

24 end;

Fig. 6.1: Pseudocode for the formula generation algorithm [27]

or a temporal operator, recursively constructs one or two smaller formulae
according to the arity of the operator, and finally concatenates the formulae
with the chosen operator into a single formula. At the leaves of the parse tree
(i.e., when generating a subformula with a parse tree of size 1), the algorithm
selects either an atomic proposition from a given set of propositions AP or
a Boolean constant > or ⊥ as the formula. In the algorithm of Fig. 6.1, n
denotes the size of the parse tree of the formula.

The full set of operators supported by the testbench implementation con-
sists of the unary operators {¬,X,�,♦} and the binary operators {∨,∧,→,
↔,U,R}. In the testbench implementation, the probability of selecting
each individual operator into the generated formula can be controlled by
specifying a “priority” for each individual operator as a nonnegative integer.
These priorities can be adjusted to disable the use of some operator or op-
erators altogether, for example, if one of the tested LTL-to-Büchi transla-
tors does not support all the available operators directly. Let OP be the set
of operators from which the algorithm chooses a random operator at some
point in the execution of the algorithm, and let op ∈ OP . Denote by
pri(op) ≥ 0 the priority given for op. Then, the probability of selecting
the operator into the formula at that point in the execution is simply given by
pri(op)/

∑

op′∈OP pri(op′). (Of course, pri(op ′) must be positive for at least
one operator op ′ ∈ OP for the probability to be defined.) While this method
for choosing the operators is easy to implement, it can easily be seen to favour
unary operators, since they are available for selection in two separate places
of the algorithm (lines 7 and 12). However, it is still possible to adjust the op-
erator priorities so that each generated formula will have the same expected
number of each operator in it; this was the criterion used in the experiments
presented later in this chapter. (See Appendix C.)

6. EXPERIMENTAL RESULTS 46

Kripke structures. In this work, the transition relation for Kripke structures
is always assumed to be total (Definition 1, page 4). This must be taken
into account in the algorithms for generating random Kripke structures, so
they must ensure that every state of each generated structure has at least one
successor. In the following, this is referred to as the “successor constraint”.

The simple graph construction algorithms used in the testbench all gener-
ate Kripke structures with a given number of states n. The valuations for the
atomic propositions are defined in each state by choosing the truth value of
each proposition p ∈ AP randomly from the two possibilities. Each proposi-
tion is given the value “true” with a given probability t. The algorithms also
make use of a parameter d (approximating the “density” of the graph, i.e.,
the probability of having an arc between any two nodes; the parameter does
not, however, affect the arcs that must be added between states to enforce the
successor constraint). Three different types of graphs can be used:

1. Random graphs. These are generated by simply taking each state of the
structure in turn and adding a random transition between that state and
any other state with the given probability d. If the resulting graph does
not satisfy the successor constraint, each state violating the constraint
is then connected to some randomly selected state of the structure.

2. Random connected graphs. These are random graphs satisfying the
successor constraint with the additional requirement that each state of
the structure should be reachable from some designated “initial state”
of the structure by zero or more arcs. (The intuition behind such a
requirement is that the structure can then be thought of as “simulating”
the reachable part of the state space of some system.)

The pseudocode for this algorithm is shown in Fig. 6.2. The algorithm
uses s0 as the initial state of the Kripke structure. The set
UnreachableNodes keeps track of the states which cannot yet be
reached from s0 in the graph. The set NodesToProcess contains the
states that are known to be reachable from s0 but have not yet been
processed itself. Initially, the only such state is the initial state s0.

In each iteration of the outermost loop of the algorithm, the algorithm
chooses some previously unvisited state s known to be reachable from
s0 (lines 7–8) and then defines the valuation for the atomic propo-
sitions in that state (lines 9–12). After this, s is connected to some
yet unreachable state s′ (if such a state exists), making s′ now ready
to be eventually visited itself (lines 13–18). Then, the algorithm adds
random edges from s to other states of the structure with the given
probability d (lines 19–26). (This may cause some yet unreachable
states to become reachable from s0, so the sets UnreachableNodes and
NodesToProcess must be updated accordingly.) Finally, if s still has
no successors, it is simply connected to itself to maintain the successor
constraint (lines 27–28). (The path from s0 to s in the structure can
in this case be seen as a terminating execution of the “system” corre-
sponding to the structure.)

3. Random sequential structures. These structures simply consist of the
states of the structure arranged into a sequence with a back edge added

6. EXPERIMENTAL RESULTS 47

1 function RandomGraph(n : Integer, d : Real ∈ [0.0, 1.0], t : Real ∈ [0.0, 1.0])
: KripkeStructure

2 S := {s0, s1, . . . , sn−1};

3 NodesToProcess := {s0};

4 UnreachableNodes := {s1, s2, . . . , sn−1};

5 ρ := ∅;

6 while NodesToProcess 6= ∅ do begin

7 s := a random node in NodesToProcess ;

8 NodesToProcess := NodesToProcess \ {s};

9 π(s) := ∅;

10 for all P ∈ AP do

11 if RandomNumber(0.0, 1.0) < t then

12 π(s) := π(s) ∪ {P};

13 if UnreachableNodes 6= ∅ then begin

14 s′ := a random node in UnreachableNodes ;

15 UnreachableNodes := UnreachableNodes \ {s′};

16 NodesToProcess := NodesToProcess ∪ {s′};

17 ρ := ρ ∪ {(s, s′)};

18 end;

19 for all s′ ∈ S do

20 if RandomNumber(0.0, 1.0) < d then begin

21 ρ := ρ ∪ {(s, s′)};

22 if s′ ∈ UnreachableNodes then begin

23 UnreachableNodes := UnreachableNodes \ {s′};

24 NodesToProcess := NodesToProcess ∪ {s′};

25 end;

26 end;

27 if there is no edge (s, s′) in ρ for any s′ ∈ S then

28 ρ := ρ ∪ (s, s);
29 end;

30 return 〈S, ρ, s0, π〉;
31 end;

Fig. 6.2: Pseudocode for the Kripke structure generation algorithm [27]

from the “last” state in the sequence to some randomly selected previ-
ous state in the sequence (see Fig. 5.5). The parameter d is not used in
this case, since each state always has exactly one successor.

As mentioned previously, using sequential Kripke structures as input
for the test procedure allows comparing the model checking results
obtained using the LTL-to-Büchi translators in Test 3 with the results
given by the restricted LTL model checking algorithm of Sect. 5.2.
This testing will be enabled automatically in the testbench whenever
using sequential structures.

6.2 TEST ARRANGEMENTS

The experiments in this work were made by running the automated test-
ing procedure on several available LTL-to-Büchi translation algorithm im-
plementations. The implementations taking part in the tests were:

ÅSA+ The ÅSA+ implementation is an LTL-to-Büchi translator derived from
Mauno Rönkkö’s C++ class library [22] implementing the translation
algorithm presented in [8]. The class library is also a part of the ÅSA
model checking package [17]. The class library was rewritten to make
use of the containers of the C++ Standard Template Library (STL), in-
cluding some of the other code optimizations proposed in [22]. The

6. EXPERIMENTAL RESULTS 48

library also had to be extended with code for computing the accep-
tance conditions of the generated automata. In addition, direct rules
were implemented for the operators→,↔,� and ♦ that were handled
by rewriting rules in the original implementation.

SPIN 3.x.x The model checker SPIN [10] by Gerard J. Holzmann includes a
module for automatically converting LTL formulae into “never
claims”, which are basically Büchi automata encoded in SPIN’s mod-
elling language PROMELA. Also this implementation is originally
based on the algorithm in [8], but it includes several optimizations
(some of which are described in [6]).

The automated testing procedure has been used on this implementa-
tion since its version 3.3.3. The testing has uncovered some imple-
mentation errors in various versions of the tool [26, 27]. In this work,
the behaviour of version 3.3.3 (July 1999; the first version to be ever
tested with some of the methods presented in this work) was compared
with versions 3.3.9 (January 2000; a version with some corrections to
the LTL-to-Büchi translation module, incorporating feedback given on
errors found using the testing procedure) and 3.4.1 (August 2000; the
latest version at the time of writing) to see how the behaviour of the
implementation has changed between the different versions.

LTL2AUT LTL2AUT is the LTL-to-Büchi translator written by the authors
of [5]. It is based on a translation algorithm presented in the same pa-
per. The implementation actually contains three different algorithms:
the “GPVW” algorithm [8] (the same algorithm on which the previ-
ous two implementations were based), the “GPVW+” algorithm based
on some improvements proposed already in [8], and the “LTL2AUT”
algorithm of [5] itself.

In this work, all algorithms included in the LTL2AUT implementation
were tested. In the experiments, these are referred to as
LTL2AUT(GPVW), LTL2AUT(GPVW+) and LTL2AUT(LTL2AUT),
respectively.

PROD The Pr/T net reachability analyzer PROD [33, 34] includes an LTL-
to-Büchi translator module based on the algorithm presented in [31].
This implementation was also included in the tests made in this work.
The version used was from 27 July 2000.

The tests were divided into several batches according to the number of
nodes in the parse tree of the generated LTL formulae, in order to (roughly)
see how the size of the Büchi automata generated by each translator depends
on the input formula size in practice. Each batch consisted of 1,000 LTL
formulae with a fixed parse tree size. There were a total of eight batches,
each of which consisted of 1,000 randomly generated LTL formulae with a
parse tree of 5, 6, 7, 8, 9, 10, 11 and 12 nodes, respectively.

The operators in the formulae were chosen from a set of operators directly
supported by all the tested translation algorithm implementations. Even
though formulae including unsupported operators could in some cases have
been rewritten using more primitive operators before giving the formula to a

6. EXPERIMENTAL RESULTS 49

translator, this was not done, since applying rewriting rules to a formula can
change the size of the parse tree of the formula. This would have resulted
in test batches with formulae of varying parse tree size, which would in turn
have made it more complicated to investigate the relationship between the
sizes of the formulae and the generated Büchi automata.2 Unfortunately, re-
stricting to operators directly supported by all the tested implementations left
some operators unused even though some implementations would have been
able to accept them. As a matter of fact, all the above implementations ex-
cept PROD supported exactly the same operators as the testbench (the unary
operators {¬,X,�,♦} and the binary operators {∨,∧,→,↔,U,R}) directly.
The PROD tool, however, lacked direct support for the X,↔ and R operators,
leaving only the operators ¬,�,♦,∨,∧,→ and U to be used for all the im-
plementations. For this reason, the test procedure was repeated on the other
implementations, this time allowing the full set of available operators to be
used when generating the formulae.

A further requirement adopted for generating the input formulae was that
the formulae in each batch should contain the same expected number of
each available operator.3 The details on how this was achieved in practice
can be found in Appendix C, which contains an analysis of the random for-
mula generation algorithm shown in Fig. 6.1.

The set AP was in all test batches fixed to five propositions, with each
individual proposition having the probability of 0.18 of being chosen by the
formula generation algorithm of Fig. 6.1 each time line 3 is executed. Each
of the Boolean constants had the probability of 0.05 of being selected.

The Kripke structures for Tests 3 and 4 were generated using the random
connected graph algorithm (Fig. 6.2). Each graph consisted of 50 states, and
the value 0.1 was used for the approximate graph density d. Each proposition
was equally likely to get assigned either of the values “true” and “false” in each
state (i.e., the value 0.5 was used for the parameter t). A new Kripke struc-
ture was generated whenever a new LTL formula was generated, so 1,000
structures were used in each test batch.

Each of the tested implementations listed above was connected into the
testbench with a separate input/output conversion module. All of the tested
translation algorithm implementations and the testbench itself were com-

2It may well be argued that an implementation might still in practice “change” the size
of the input formula using e.g. some simplification rules before translating the formula into
a Büchi automaton. However, since the implementations are treated as “black boxes” in
this work, such implementation-dependent issues are irrelevant to the simple testing strategy
used here. It must, nevertheless, be recognized that such internal details of a translator can
have a significant effect on the size of the automata generated by the implementation, which
is likely to result in much variation in the sizes of the automata, even though seemingly
“fixed-size” formulae are used as input.

3The only reason for selecting this strategy in this work was to have some knowledge
about the distribution of the generated formulae, instead of e.g. simply assigning arbitrary
priorities to the different operators. Clearly, the chosen strategy is biased in comparison to
some other intuitively reasonable criteria that might be considered, e.g. that every formula
of a given parse tree size should be “equally likely” to be generated.

(However, assuming that the implementations perform some operator-based case
analysis—in the manner of the model checking algorithm of Fig. 5.6, for example—the
chosen formula generation strategy might help in trying to exercise each case equally often
on the average.)

6. EXPERIMENTAL RESULTS 50

piled from C or C++ sources with version 2.95.2 of the GNU Compiler Col-
lection (� ���). The tests were run in Debian Linux 2.1 environment on Pen-
tium II/III PCs with 256 MB of memory. In the experiments, each translation
algorithm implementation was given 128 MB of memory space: the formula
translation was interrupted in case this memory limit was exceeded. (This
creates another source of automaton generation failures that must be distin-
guished from those failures in which an implementation fails due to some
other reason.) The testbench itself was given all available memory space for
performing the various tests; unfortunately, this was not always enough to per-
form all tests on some large automata; see the discussion in the next section.

Finally, a different set of tests were run on the implementations support-
ing the “full” set of operators. The goal of these tests was to try to see whether
the observed test failure rates in Test 3 (the model checking result cross-
comparison check) seem to have any dependency on the approximate density
d of the Kripke structures used in the tests, while keeping all other parame-
ters (Kripke structure size, number of atomic propositions) fixed. Such cor-
relation might give information on how to “best” choose the value for the
parameter d in order to maximize the odds of finding errors in LTL-to-Büchi
translators using Test 3 (at least in the used value combination for the other
parameters).

The above tests correspond to repeating the original experiment (with all
formula parse tree sizes 5–12) on all algorithms except PROD using different
values for the parameter d. The value 0.1 was already tested above; the values
used for d in the new tests were 0.0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and
1.0. (If d = 0.0, the algorithm of Fig. 6.2 will generate tree-like structures
whose each “leaf node” is connected to itself; if d = 1.0, there will be an edge
between each pair of states.) In addition, the experiment was still repeated
using sequential Kripke structures instead of random connected graphs to
see whether this causes any significant change in the observed failure rate.

6.3 TEST RESULTS

Tables 6.3 and 6.4 show the numbers of times each of the tested implementa-
tions failed to generate a Büchi automaton from an LTL formula, including
the total numbers of failures and generated automata. Here, a failure means
any reason that prevented a translator from producing valid output from some
input formula. Based on the test results, the failures could be categorized into
the following types:

(1) The translator process was terminated due to a fatal internal error (e.g.,
a segmentation fault).

(2) An internal assertion violation occurred in the translator.

(3) The translator produced syntactically incorrect output according to its
output format specification.

(4) The translator process exceeded the memory limit of 128 MB.

6. EXPERIMENTAL RESULTS 51

Table 6.3: Büchi automaton generation failures with operators
{¬,�,♦,∨,∧,→,U}

Parse

tree size

of random

formulae

Number of automaton generation failures

<number of failures>(<number of failures due to memory exhaustion>)

[2000 attempts]

ÅSA+
SPIN

v3.3.3

SPIN

v3.3.9

SPIN

v3.4.1

LTL2AUT

(GPVW)

LTL2AUT

(GPVW+)

LTL2AUT

(LTL2AUT) PROD

5. . . 10 0 0 0 0 0 0 0 0

11 0 2 (2) 0 0 0 0 0 2 (2)

12 0 3 (3) 0 2 (2) 0 0 0 4 (4)

TOTAL 0 5 (5) 0 2 (2) 0 0 0 6 (6)

Number

of

automata
16000 15995 16000 15998 16000 16000 16000 15994

Table 6.4: Büchi automaton generation failures with operators
{¬,X,�,♦,∨,∧,→,↔,U,R}

Parse

tree

size of

random

formu-

lae

Number of automaton generation failures

<number of failures>(<number of failures due to memory exhaustion>)

[2000 attempts]

ÅSA+
SPIN

v3.3.3

SPIN

v3.3.9

SPIN

v3.4.1

LTL2AUT

(GPVW)

LTL2AUT

(GPVW+)

LTL2AUT

(LTL2AUT)

5 0 100 (0) 0 0 0 0 0

6 0 137 (0) 0 0 0 0 0

7 0 172 (0) 0 0 0 0 0

8 0 185 (0) 1 (1) 1 (1) 0 0 0

9 0 219 (0) 2 (2) 2 (2) 0 0 0

10 0 235 (1) 4 (4) 5 (5) 0 0 0

11 0 215 (1) 8 (7) 10 (10) 0 0 0

12 0 302 (0) 22 (21) 18 (18) 0 0 0

TOTAL 0 1565 (2) 37 (35) 36 (36) 0 0 0

Number

of au-

tomata
16000 14435 15963 15964 16000 16000 16000

6. EXPERIMENTAL RESULTS 52

Since the fourth type of failure is not (necessarily) due to errors in an
implementation itself, each cell with a nonzero failure rate in Tables 6.3
and 6.4 includes also the number of failures that were actually due to memory
exhaustion.

The failure rates shown in the tables are over all formulae given to the
implementations, including both the randomly generated formulae with the
shown parse tree size and the negated formulae (whose parse trees have one
additional node) that were needed to run Tests 1 and 4 on the implemen-
tations. Thus, each cell in the tables corresponds to the number of failures
among a set of 2,000 formulae.

In these experiments, PROD and the various versions of SPIN seemed to
require more memory than the other implementations, which is seen as an
increasing number of failures due to memory exhaustion on these implemen-
tations as the parse tree size of the formulae increases. The other implemen-
tations were able to operate in 128 MB of available memory space.

Table 6.3 (with test results obtained using a restricted set of formula oper-
ators) does not reveal errors in any of the implementations, since all failures
in this table are due to memory exhaustion. However, allowing the use of a
larger set of operators in the tests caused some versions of SPIN (3.3.3 and
3.3.9) to behave more unreliably, resulting in errors of types (1) to (3) de-
scribed above. SPIN v3.3.3 suffered from all these types of errors; version
3.3.9 failed only due to internal assertion violations.

Test 1 and Test 3 Results
The results of Test 1 and Test 3 are reported in Tables 6.5 and 6.6 for the two
formula symbol sets {¬,�,♦,∨,∧,→,U} and {¬,X,�,♦,∨,∧,→,↔,U,R},
respectively. An important observation was that the ÅSA+, LTL2AUT
(GPVW), LTL2AUT (GPVW+), LTL2AUT (LTL2AUT) and PROD imple-
mentations never failed any of these tests against each other, regardless of
the formula symbol set. For this reason, the tables combine the results for
these algorithms together, and these algorithms are collectively referred to as
“Å/L/P” in the tables.4 The independence of these three implementations,
together with the observation that also SPIN seems to “converge” towards the
same results as the tool version number increases, gives a strong suggestion
that these implementations are quite reliable and correct.

Each cell in the top part of each table contains a triple of integers a/b/c
representing the following information:

• a is the number of failed Büchi automata intersection emptiness checks
between two supposedly complementary Büchi automata (Test 1).
Each nondiagonal element in the matrix associated with some formula
parse tree size corresponds to testing two different implementations
against each other, so the maximum number of tests performed is 2,000

4There were slight differences in the failure rates when testing these implementations
against various versions of SPIN. This is a consequence of Büchi automaton generation
failures that sometimes occurred on some of these translators, preventing some of the tests
from being performed. The number reported in the tables is always the minimum failure
rate obtained using these implementations (i.e., some of the “Å/L/P” implementations may
actually have had a slightly higher failure rate against SPIN by themselves than the rate
shown in the table).

6. EXPERIMENTAL RESULTS 53

Table 6.5: Failure rates for Tests 1 and 3 with operators {¬,�,♦,∨,∧,→,U}

Parse

tree

size of

random

formu-

lae

Imple-

menta-

tion

Number of test failures

<Test 1 failures> / <Test 3 failures (local failures)> / <Total number of

inconsistent automata detected>

[Diagonal cells: max. 1000 tests; other cells: max. 2000 tests]

Å/L/P SPIN v3.3.3 SPIN v3.3.9 SPIN v3.4.1

Å/L/P 0 / 0 / 0

S3.3.3 21 / 4(3) / 22 20 / – / 20
5

S3.3.9 0 / 0 / 0 21 / 4(3) / 22 0 / – / 0

S3.4.1 0 / 0 / 0 21 / 4(3) / 22 0 / 0 / 0 0 / – / 0

Å/L/P 0 / 0 / 0

S3.3.3 32 / 8(6) / 33 31 / – / 31
6

S3.3.9 0 / 0 / 0 32 / 8(6) / 33 0 / – / 0

S3.4.1 0 / 0 / 0 32 / 8(6) / 33 0 / 0 / 0 0 / – / 0

Å/L/P 0 / 0 / 0

S3.3.3 49 / 9(7) / 50 48 / – / 48
7

S3.3.9 0 / 0 / 0 49 / 9(7) / 50 0 / – / 0

S3.4.1 0 / 0 / 0 49 / 9(7) / 50 0 / 0 / 0 0 / – / 0

Å/L/P 0 / 0 / 0

S3.3.3 66 / 14(12) / 69 61 / – / 61
8

S3.3.9 0 / 1(1) / 1 65 / 13(11) / 68 0 / – / 0

S3.4.1 0 / 0 / 0 66 / 14(12) / 69 0 / 1(1) / 1 0 / – / 0

Å/L/P 0 / 0 / 0

S3.3.3 69 / 16(8) / 70 69 / – / 69
9

S3.3.9 0 / 0 / 0 69 / 16(8) / 70 0 / – / 0

S3.4.1 0 / 0 / 0 69 / 16(8) / 70 0 / 0 / 0 0 / – / 0

Å/L/P 0 / 0 / 0

S3.3.3 73 / 19(13) / 75 66 / – / 66
10

S3.3.9 0 / 1(1) / 1 71 / 18(12) / 74 0 / – / 0

S3.4.1 0 / 0 / 0 73 / 19(13) / 75 0 / 1(1) / 1 0 / – / 0

Å/L/P 0 / 0 / 0

S3.3.3 86 / 19(8) / 88 83 / – / 83
11

S3.3.9 0 / 2(1) / 2 87 / 17(7) / 87 0 / – / 0

S3.4.1 0 / 0 / 0 87 / 19(8) / 89 0 / 2(1) / 2 0 / – / 0

Å/L/P 0 / 0 / 0

S3.3.3 101 / 31(17) /110 91 / – / 91
12

S3.3.9 0 / 3(2) / 3 102 / 32(19) /112 0 / – / 0

S3.4.1 0 / 1(0) / 1 102 / 30(17) /110 0 / 2(2) / 2 0 / – / 0

Total number of tests performed

<Test 1> / <Test 3>

[Diagonal cells: max. 8000 tests; other cells: max. 16000 tests]

Å/L/P
Å↔Å, L↔L: 8000 / – ; P↔P: 7767 / – ;

Å↔L: 16000 / 16000 ; {Å,L}↔P: 15907 / 15966

S3.3.3 15933 / 15961 7995 / –

S3.3.9 15950 / 15966 15995 / 15995 8000 / –

S3.4.1 15949 / 15964 15993 / 15993 15998 / 15998 7998 / –

6. EXPERIMENTAL RESULTS 54

Table 6.6: Failure rates for Tests 1 and 3 with operators
{¬,X,�,♦,∨,∧,→,↔,U,R}

Parse

tree

size of

random

formu-

lae

Imple-

menta-

tion

Number of test failures

<Test 1 failures> / <Test 3 failures (local failures)> / <Total number of

inconsistent automata detected>

[Diagonal cells: max. 1000 tests; other cells: max. 2000 tests]

Å/L SPIN v3.3.3 SPIN v3.3.9 SPIN v3.4.1

Å/L 0 / 0 / 0

S3.3.3 215 /270(108)/299 35 / – / 35
5

S3.3.9 17 / 15(8) / 17 227 /263(102)/311 15 / – / 15

S3.4.1 0 / 0 / 0 215 /270(108)/299 17 / 15(8) / 15 0 / – / 0

Å/L 0 / 0 / 0

S3.3.3 244 /294(103)/331 26 / – / 26
6

S3.3.9 11 / 9(6) / 11 253 /290(101)/340 10 / – / 10

S3.4.1 0 / 0 / 0 244 /294(103)/331 11 / 9(6) / 11 0 / – / 0

Å/L 0 / 0 / 0

S3.3.3 297 /338(130)/400 45 / – / 45
7

S3.3.9 17 / 14(9) / 17 311 /334(131)/414 15 / – / 15

S3.4.1 0 / 0 / 0 297 /338(130)/400 17 / 14(9) / 17 0 / – / 0

Å/L 0 / 0 / 0

S3.3.3 321 /351(134)/434 46 / – / 46
8

S3.3.9 24 / 21(10) / 24 329 /339(127)/441 18 / – / 18

S3.4.1 0 / 0 / 0 320 /350(133)/434 24 / 21(10) / 24 0 / – / 0

Å/L 0 / 0 / 0

S3.3.3 358 /374(124)/478 51 / – / 51
9

S3.3.9 30 / 28(19) / 30 376 /366(117)/493 23 / – / 23

S3.4.1 0 / 0 / 0 357 /373(123)/476 30 / 28(19) / 30 0 / – / 0

Å/L 0 / 0 / 0

S3.3.3 409 /408(129)/527 46 / – / 46
10

S3.3.9 16 / 13(6) / 16 419 /406(127)/536 15 / – / 15

S3.4.1 0 / 0 / 0 407 /407(129)/524 16 / 13(6) / 16 0 / – / 0

Å/L 0 / 0 / 0

S3.3.3 470 /452(137)/598 64 / – / 64
11

S3.3.9 31 / 25(9) / 31 477 /435(128)/607 22 / – / 22

S3.4.1 0 / 0 / 0 462 /445(133)/592 30 / 24(8) / 29 0 / – / 0

Å/L 0 / 0 / 0

S3.3.3 506 /466(150)/622 64 / – / 64
12

S3.3.9 35 / 27(12) / 35 512 /444(139)/629 26 / – / 26

S3.4.1 0 / 0 / 0 496 /458(148)/615 35 / 27(12) / 35 0 / – / 0

Total number of tests performed

<Test 1> / <Test 3>

[Diagonal cells: max. 8000 tests; other cells: max. 16000 tests]

Å/L Å↔Å, L↔L: 8000 / – ; Å↔L: 16000 / 16000

S3.3.3 14435 / 14435 7139 / –

S3.3.9 15963 / 15963 14410 / 14411 7963 / –

S3.4.1 15964 / 15964 14411 / 14412 15928 / 15957 7965 / –

6. EXPERIMENTAL RESULTS 55

in this case. The diagonal cells correspond to testing an implemen-
tation against itself; the maximum number of tests for these cells is
1,000, since intersecting two Büchi automata generated by the same
implementation twice does not give any new information. (However,
although not shown in the table, the “combined” Å/L/P implementa-
tions were tested 2,000 times against each other, and no inconsistencies
were detected.)

• b is the number of failed model checking result cross-comparison
checks between two implementations (Test 3). Each cell again cor-
responds to at most 2,000 performed tests; in addition, since no im-
plementation can fail this test against itself, the diagonal cells are not
relevant in this case. The zeros in the diagonal cells corresponding
to the “combined” Å/L/P (Table 6.5) or Å/L (Table 6.6) implementa-
tion are only intended to emphasize that there were no inconsistencies
between these implementations.

The number in boldface gives the failure rate when the results were
compared in each state of the Kripke structure (corresponding to the
“global” emptiness check described in Sect. 5.1.2). The number in
parentheses gives the failure rate when the results were compared only
locally with respect to a single “initial” state of a Kripke structure.

• c gives the total number of automata (out of at most 2,000 automata
involved in the tests) that were determined to be incorrect by either of
the two above tests. This number can be at most the sum of a and b;
usually, it is considerably smaller, since an incorrect automaton may
well fail both of the above tests.

The lower parts of Tables 6.5 and 6.6 report the total numbers of each type
of test performed between any two implementations. The differences in the
numbers of tests performed is both due to the implementations’ occasional
failures to generate Büchi automata and unsuccessful tests caused by the
testbench itself running out of memory. This sometimes occurred with large
Büchi automata that could not be synchronized with the random Kripke
structures (or other Büchi automata when performing Test 1) in the memory
space available to the testbench (ca. 300 MB). (These cases were not counted
in the reported failure rates, so the failure rates correspond correctly to the
actual numbers of detected inconsistencies.)

The growth in the number of observed test failures can be seen to
(roughly) follow the increase in formula parse tree size. Comparing the
two tables with each other, it can be seen that a larger variety of operators
in the randomly generated LTL formulae increased the number of observed
test failures. The results reveal errors in SPIN versions 3.3.3 and 3.3.9, since
these implementations sometimes failed Test 1 by themselves (however, ver-
sion 3.3.9 failed only in the tests performed using all available operators).
SPIN v3.4.1 always passed this test also against the ÅSA+, LTL2AUT (all vari-
ants) and PROD implementations. However, Table 6.5 reveals one incon-
sistency in the result cross-comparison check between SPIN v3.4.1 and the
other implementations (12 nodes in the formula parse tree). Analyzing this
case separately with the testbench (i.e., automatically constructing a witness

6. EXPERIMENTAL RESULTS 56

Table 6.7: Failure rates for Test 4 on SPIN versions 3.3.3 and 3.3.9 (max. 1000
tests)

Parse tree size of

random formulae

Operator set used

{¬,�,♦,∨,∧,→,U} {¬,X,�,♦,∨,∧,→,↔,U,R}
SPIN v3.3.3 SPIN v3.3.9 SPIN v3.3.3 SPIN v3.3.9

5 0 0 1 0

6 0 0 6 0

7 0 0 2 0

8 0 1 5 0

9 0 0 5 0

10 0 1 4 0

11 0 1 6 0

12 0 2 3 0

TOTAL 0 5 32 0

Total number of

tests performed
7995 8000 7139 7963

and then analyzing it with the LTL model checking algorithm for sequen-
tial Kripke structures, as described in Sect. 5.2) confirmed the incorrectness
of the Büchi automaton generated by SPIN v3.4.1, revealing an error in the
implementation. This analysis can be found in Appendix D.

Tests 1 and 3 often revealed the “same” errors in the automata. This can
be seen in that the total number of automata that were determined to be
incorrect by these two tests is usually far less than the sum of the failure rates
of the individual tests. These tests can still be considered useful together,
since Test 3 is may detect inconsistencies that are impossible to find using
only Test 1.

Test 4 Results
Test 4 (the model checking result consistency check) failed occasionally on
SPIN versions 3.3.3 and 3.3.9. All other implementations passed this test
whenever it could be performed. The failure rates for these two implemen-
tations on each set of formula symbols are shown in Table 6.7. (In this case,
each cell of the table corresponds to the number of failures in a maximum of
1,000 tests.)

As can be seen in the table, the failure rates are relatively small in com-
parison to the failure rates in Tests 1 and 3. In addition, these tests do not
reveal any clear dependence between the formula size and the number of
consistency check failures. However, the formula symbols used in the differ-
ent tests seem to have a peculiar effect on the failure rates: when using only
the smaller operator set, only SPIN v3.3.9 ever failed; the situation was exactly
the opposite when using the larger set of operators. This might suggest that
the errors in SPIN v3.3.3 may be related to the use of operators missing in the
smaller set of operators, while the errors in SPIN v3.3.9 are related only to the
common operators included in both sets. Intuitively, these errors should be
less likely to surface when using a larger set of operators, which might offer
some explanation to why no errors were detected in SPIN v3.3.9 in the tests

6. EXPERIMENTAL RESULTS 57

with a larger set of operators.
Comparing only the magnitudes of the failure rates observed in Test 4 and

Test 1 (performed on a single implementation), Test 4 seems to be less effi-
cient. However, since these two tests in fact apply to different kinds of errors
(see Fig. 5.2 and the discussion in Sect. 5.1.2), they really complement each
other. For example, even though Test 1 did not reveal any inconsistencies
in SPIN v3.3.9 in the tests with the smaller set of operators, Test 4 failed on
this implementation several times; the same phenomenon occurred reversed
with the same implementation using the larger operator set. (Of course,
since Test 4 is only an “approximation” of the unimplemented Test 2, the
number of detected errors is likely to remain quite small in comparison to
e.g. the failure rate observed in Test 1.)

Test 3 and the Approximate Density of Kripke Structures
As mentioned in the end of the previous section, the experiment was repeated
with Kripke structures having a different approximate density than 0.1, in
order to see whether the failure rate in Test 3 seems to depend on the value of
this test parameter in any systematic way. The experiment was also repeated
using sequential Kripke structures. (The density can have no effect on the
failure rate observed in Test 1, because this test is based on the direct analysis
of Büchi automata instead of the LTL model checking procedure.)

Figure 6.8 shows the observed failure rates in Test 3 between the ÅSA+ and
SPIN v3.3.3 implementations for different values for the approximate density
d and for the formula parse tree size n. Figure 6.9 repeats the results for the
SPIN v3.3.9 implementation. (The figures use ÅSA+ as a reference because
the previous tests gave a strong suggestion about its correctness. The failure
rates between other combinations of implementations behaved similarly.) In
the diagrams, each point corresponds to the observed failure rate on 2,000
randomly generated LTL formulae for a fixed value of d; “seq.” corresponds
to the failure rate obtained using sequential Kripke structures.

As could be expected, the failure rates seem to slightly increase along with
the formula size. The diagrams do not, however, help in concluding much
about the dependency between the approximate density d and the observed
failure rates, since there is so much fluctuation between the failure rates (es-
pecially with SPIN v3.3.9, whose failure rates are extremely small, just around
1 %).

However, in many diagrams the failure rate can be seen to drop as the
graph density increases, at least around the smallest values of d. In addition,
in all diagrams the failure rate obtained with sequential Kripke structures (the
rightmost data point of each diagram) is quite large. Although not generally
shown by the diagrams, there might be one intuitive argument supporting a
hypothesis that the failure rates should decrease as d increases (i.e., as there is
more branching in the generated Kripke structures). Namely, the more tran-
sitions there are between different states of the structure, the more paths (or
executions) there are in the structure. Furthermore, the more paths there are,
the more likely it is that one of them is accepted by a (nonempty) Büchi au-
tomaton, regardless of whether the automaton correctly corresponds to some
LTL formula or not (since the truth values for the atomic propositions were
chosen at random in each state). This would then imply that Test 3 would

6. EXPERIMENTAL RESULTS 58

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 5

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 5

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 6

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 6

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 7

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 7

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 8

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 8

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s
d

n = 9

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s
d

n = 9

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 10

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 10

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 11

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 11

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 12

10
12
14
16
18
20
22
24
26

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 12

Fig. 6.8: Test 3 failure rates (ÅSA+ ↔ SPIN v3.3.3)

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 5

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 5

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 6

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 6

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 7

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 7

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 8

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 8

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 9

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 9

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 10

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 10

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 11

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 11

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 12

0.0

0.5

1.0

1.5

2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

se
q

.

%
 o

f
fa

ilu
re

s

d

n = 12

Fig. 6.9: Test 3 failure rates (ÅSA+ ↔ SPIN v3.3.9)

6. EXPERIMENTAL RESULTS 59

Table 6.10: Average sizes of successfully generated Büchi automata (number
of states / number of transitions); operators {¬,�,♦,∨,∧,→,U})

Parse

tree

size of

random

formu-

lae

ÅSA+ SPIN

v3.3.3

SPIN

v3.3.9

SPIN

v3.4.1

LTL2AUT

(GPVW)

LTL2AUT

(GPVW+)

LTL2AUT

(LTL2AUT)

PROD

5 5/8 2/4 2/3 2/3 5/8 5/7 4/6 10/62

6 6/11 3/5 3/4 3/4 6/11 5/9 5/8 16/144

7 8/15 4/6 3/5 3/5 7/14 6/12 5/10 25/302

8 9/19 4/7 3/6 3/6 8/17 7/14 6/11 38/712

9 10/26 4/10 4/7 3/6 10/25 8/18 6/13 55/1718

10 12/33 5/12 4/9 4/8 11/29 9/22 7/15 81/3101

11 15/54 6/17 5/10 4/9 14/48 11/31 8/20 125/6292

12 17/67 6/18 5/13 4/11 15/59 12/37 8/22 183/9414

succeed more often. The high observed failure rates for sequential Kripke
structures would be consistent with this hypothesis, since there is only trivial
branching in a sequential Kripke structure.

It is clear that there are very many parameters, all of which might affect
the number of observed test failures. These include the size of the Kripke
structures and the methods with they were generated, together with even the
internal behaviour of the tested implementations themselves on a particular
set of LTL formulae. In these experiments, however, the difference between
the minimum and maximum failure rates was relatively small (at most, ap-
proximately 10 units of percentage change), so finding an “optimal” value
for d may not be extremely essential to the effectiveness of testing, and even
sequential Kripke structures could be used. (Sequential Kripke structures
in Test 3 also have the advantage that they allow the restricted LTL model
checking algorithm of Sect. 5.2 to be used in the tests. In addition, the syn-
chronous product of a sequential Kripke structure with a Büchi automaton
required in the tests may be smaller than the product obtained using a more
general graph of the same size, thus saving memory.)

Sizes of the Generated Automata
Since the memory requirements of the automata-theoretic LTL model
checking procedure are in practice highly dependent on the size of the Büchi
automata used for model checking, the sizes of the automata generated by
the tested implementations is also of interest.

Tables 6.10 and 6.11 collect the average sizes of the Büchi automata (suc-
cessfully) generated by each implementation from a sample of 1,000 ran-
domly generated LTL formulae with a given parse tree size. These averages
should be seen only as a very rough comparison on the relative performance
of the tested implementations; estimating the average behaviour of any im-
plementation accurately should be done by taking also of the internal struc-
ture of the implementation into account.

As could be expected, the size of the generated automata grows with the

6. EXPERIMENTAL RESULTS 60

Table 6.11: Average sizes of successfully generated Büchi automata (number
of states / number of transitions; operators {¬,X,�,♦,∨,∧,→,↔,U,R})

Parse

tree

size of

random

formu-

lae

ÅSA+ SPIN

v3.3.3

SPIN

v3.3.9

SPIN

v3.4.1

LTL2AUT

(GPVW)

LTL2AUT

(GPVW+)

LTL2AUT

(LTL2AUT)

5 6/9 3/5 3/4 3/4 6/9 5/8 5/7

6 7/13 4/6 4/6 3/5 7/12 6/11 6/10

7 8/16 4/7 4/7 3/6 8/16 7/14 6/12

8 11/24 5/10 5/10 4/9 10/23 9/19 8/16

9 13/32 5/12 6/14 5/12 12/30 10/24 9/19

10 16/47 6/16 6/16 5/14 16/45 13/32 10/25

11 19/64 7/18 7/19 6/17 19/60 15/41 12/31

12 23/84 7/22 8/22 7/20 23/80 17/55 13/38

formula size, and increasing the number of available formula operators has
the same effect. The results show the difference in the power of different
LTL-to-Büchi translation algorithms: PROD, which is based on one of the
first translation algorithms presented in the literature [31], had worse per-
formance than the other algorithms based on the GPVW algorithm [8] and
its variants. The automata generated by ÅSA+ and LTL2AUT (GPVW) were
very close to each other in size, and the other variants of LTL2AUT per-
formed even better. The smallest automata were generated by SPIN v3.4.1;
the two older versions of the tool were almost as efficient. The SPIN and
PROD tools have the additional advantage of always generating Büchi au-
tomata with only one acceptance condition. Such automata can be used
efficiently with e.g. the nested-depth-first search on-the-fly model checking
algorithm of [3]. This is not the case with ÅSA+ and the LTL2AUT vari-
ants that produce generalized Büchi automata, usually with more than one
acceptance condition.

Summary
In conclusion, the main results of the tests were:

• ÅSA, LTL2AUT (all variants) and PROD behaved very consistently in
all tests. No errors were detected in any tests between these implemen-
tations. PROD, however, generated very large automata in comparison
to those of the other implementations. This is due to the translation
algorithm that PROD uses (the algorithm is quite different from those
used in the other implementations).

• SPIN v3.3.3 and v3.3.9 suffered from some internal failures and some-
times also generated incorrect automata. One model checking cross-
comparison failure was still detected also with SPIN v3.4.1 when testing
it against the three above implementations.

Although the automata generated by the various SPIN versions were
very small in comparison to those produced by the other implementa-

6. EXPERIMENTAL RESULTS 61

tions, this seems to have been achieved using various optimizations
requiring much memory, increasing also the complexity of the im-
plementation. This complexity may be one reason behind the errors
found in the implementation.

• Some notes on Test 3 (the model checking result cross-comparison
check) were:

– Performing the cross-comparison check with respect to every state
of the Kripke structure increased testing efficiency.

– Although based on a less systematic approach than Test 1, Test 3
had not significantly worse performance than Test 1, at least when
allowing the “full” set of operators to be used in the randomly
generated LTL formulae (Table 6.6). Therefore, it can be useful
to perform also Test 3 in order to try to optimize testing efficiency.

– Altering the approximate density of the Kripke structures did not
have significant effect on the observed failure rates; using sequen-
tial Kripke structures as input did not notably improve or degrade
testing efficiency either.

• Since Test 4 complements both Test 1 and Test 3, using all of the tests
together can increase testing efficiency.

In all, the LTL-to-Büchi translator testbench based on very straightforward
implementation techniques proved to be quite effective in practice, although
some of the tests could not be performed due to the large size of some au-
tomata (so the testbench itself ran out of memory when performing the tests).
The situation could be somewhat improved by using more sophisticated im-
plementation techniques in the testing procedure.

6. EXPERIMENTAL RESULTS 62

7 CONCLUSIONS

This work has presented techniques for testing the correctness of implemen-
tations of LTL-to-Büchi translation algorithms used in LTL model checking
tools based on the automata-theoretic approach. The methods are based on
direct analysis of Büchi automata and the automata-theoretic LTL model
checking procedure. Ultimately, however, the basis for all presented test
methods lies in the semantics of linear temporal logic—more precisely, in
the mutually exclusive relationship between the satisfiability of an LTL for-
mula and its negation on an infinite path of a Kripke structure. This common
basis can be seen in the similarity of the tests itself: all tests can basically be
reduced to an emptiness check of Büchi automata (with possibly some addi-
tional result comparison).

The similar nature of most of the tests allows their easy integration into an
automatic testing tool for LTL-to-Büchi translators. The experiments made
in this work did not include Test 2 (the universality check for the union of two
Büchi automata), which made it impossible to prove the absolute correct-
ness of any implementation on a single LTL formula. However, the cross-
comparison of several implementations against each other, together with
checking the emptiness of the product of two Büchi automata that should be
complementary to each other, proved to work well together as error detection
techniques. Actually, even the plain result cross-comparison approach has
been successful in uncovering implementation errors in actual LTL model
checking tools [26, 27]: for example, this approach has helped to improve
the robustness of the LTL-to-Büchi translation algorithm implementation of
the SPIN model checker. The usefulness of the testing strategy was again
confirmed in this work: several previously untested implementations were
found to behave quite consistently with each other, and a previously undis-
covered error was revealed in the SPIN model checker. This was achieved
using randomly generated LTL formulae and Kripke structures of moderate
size as input for the tests.

However, simple random “black box” testing is not adequate for proving
the correctness of any LTL-to-Büchi translator. For example, the multitude
of available test parameters makes it very hard to assess the actual coverage
of the tests. The random Kripke structures and their possible influence on
the effectiveness of testing could be removed by including also Test 2 into
the testing procedure, in which case the tests would depend only on the
used LTL formulae. However, integrating Test 2 into the automatic testing
procedure would require the implementation of a Büchi automata comple-
mentation algorithm with exponential worst-case space requirements in the
size of the input.

Of course, also the implementation details could be taken into account
when adjusting test parameters. However, even though this may increase
testing efficiency, the test results would still remain at best inconclusive, no
matter how much testing was performed. As can be seen in the experiments
with SPIN v3.4.1, random “black box” testing will very rarely find any errors
in an “almost correct” implementation. Increasing the number of tests might
improve the odds of finding errors, but the fact that no amount of testing is

7. CONCLUSIONS 63

sufficient to prove the absolute correctness of an implementation makes this
approach somewhat unappealing.

Therefore, the testing techniques are probably best suited for assisting in
the development of a new translator to test its robustness before releasing the
implementation, in the hope of detecting some of the remaining easy-to-fix
bugs and omissions in the implementation. The test methods might also
be of some use in making optimizations or other improvements to a transla-
tion algorithm implementation, in order to test whether the implementation
seems to preserve its correctness between different releases.

Section 5.2 presented a restricted model checking algorithm for sequen-
tial Kripke structures. The algorithm was used in the analysis of test fail-
ures between two LTL-to-Büchi translation algorithm implementations in
order to detect which one of the implementations had failed. Since counter-
examples produced by real LTL model checking tools can usually be in-
terpreted as sequential Kripke structures, this algorithm could validate the
counter-examples found by the tool as an additional final step of the model
checking procedure [27]. This way, the tool could by itself ensure the validity
of the counter-example, which provides the tool a means for automatically
detecting an internal failure that would otherwise have resulted in a false
negative answer. This specialized model checking algorithm may also have
applications elsewhere. For example, it may be possible to further extend the
validation of counter-examples into additional properties not directly speci-
fied in the original property to be verified, such as assumptions concerning
the environment of the system to be verified. The algorithm may also have
some application as a subroutine in more general LTL model checking algo-
rithms.

7. CONCLUSIONS 64

Bibliography

[1] E. M. Clarke and E. Emerson. Design and synthesis of synchroniza-
tion skeletons using branching-time temporal logic. In Proceedings of
the Workshop on Logic of Programs, volume 131 of Lecture Notes in
Computer Science, pages 52–71. Springer-Verlag, 1981.

[2] E. M. Clarke and A. P. Sistla. The complexity of propositional linear
temporal logics. Journal of the Association for Computing Machinery,
32(3):733–749, 1985.

[3] C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-
efficient algorithms for the verification of temporal properties. Formal
Methods in System Design, 1:275–288, 1992.

[4] J.-M. Couvreur. On-the-fly verification of linear temporal logic. In
Proceedings of the World Congress on Formal Methods in the Devel-
opment of Computing Systems (FM’99), volume I, volume 1708 of
Lecture Notes in Computer Science, pages 253–271. Springer-Verlag,
1999.

[5] M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved automata
generation for linear temporal logic. In Proceedings of the 11th In-
ternational Conference on Computer Aided Verification (CAV’99),
volume 1633 of Lecture Notes in Computer Science, pages 249–
260. Springer-Verlag, 1999. See also “Software packages” at <URL:��������������	�	�	�� ������ ���� � � ��� � ��������� � �� � ��� � � ��	�
�� >.

[6] K. Etessami and G. Holzmann. Optimizing Büchi automata. In Pro-
ceedings of the 11th International Conference on Concurrency Theory
(CONCUR’2000), volume 1877 of Lecture Notes in Computer Sci-
ence, pages 153–167. Springer-Verlag, 2000.

[7] H. J. Genrich. Predicate/transition nets. In Petri Nets: Central Models
and Their Properties – Advances in Petri Nets, Part I, volume 254 of
Lecture Notes in Computer Science, pages 207–247. Springer-Verlag,
1987.

[8] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly
automatic verification of linear temporal logic. In Proceedings of 15th
Workshop Protocol Specification, Testing, and Verification, pages 3–18,
1995.

[9] G. Holzmann. Design and Validation of Computer Protocols. Prentice-
Hall, 1991.

[10] G. Holzmann. The model checker SPIN. IEEE Trans-
actions on Software Engineering, 23(5):279–295, May
1997. See also the WWW homepage of the tool at <URL:��������������
 � �
��������� � ����������� ��� ��	�� ��
 � ��������� � � ��
 �
	���� � ���
� ��
���������� >.

BIBLIOGRAPHY 65

[11] E. Clarke Jr., O. Grumberg, and D. Peled. Model Checking. The MIT
Press, 2000.

[12] Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. A decision algorithm
for full propositional temporal logic. In Proceedings of the 5th Interna-
tional Conference on Computer Aided Verification (CAV’93), volume
697 of Lecture Notes in Computer Science, pages 97–109. Springer-
Verlag, 1993.

[13] Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear
temporal logic specifications. In Proceedings of the 25th International
Colloquium on Automata, Languages, and Programming (ICALP’98),
volume 1443 of Lecture Notes in Computer Science, pages 1–16.
Springer-Verlag, 1998.

[14] O. Kupferman and M. Y. Vardi. Model checking of safety properties. In
Proceedings of the 11th International Conference on Computer Aided
Verification (CAV’99), volume 1633 of Lecture Notes in Computer Sci-
ence, pages 172–183. Springer-Verlag, 1999. See also an extended ver-
sion at <URL: ��������������	�	�	�� ������ ���� � � ��� � � � �� � ���
����� � ���� >.

[15] T. Latvala and K. Heljanko. Coping with strong fairness. Fundamenta
Informaticae, 43(1–4):175–193, 2000.

[16] O. Lichtenstein and A. Pnueli. Checking that finite-state concur-
rent programs satisfy their linear specification. In Proceedings of
the 12th ACM Symposium on Principles of Programming Languages
(POPL’85), pages 97–107. Addison-Wesley, 1985.

[17] J. Lilius. ÅSA: The Åbo System Analyser, 1999. Avail-
able only on the WWW. See the WWW page at <URL:��������������	�	�	�� ��� 	 ��������������� 	 ������� � ����� ��������� � ��� ����� >.

[18] K. L. McMillan. Symbolic model checking – an approach to the state-
explosion problem. PhD thesis, Carnegie Mellon University, 1992.

[19] R. Milner. A Calculus of Communicating Systems, volume 92 of Lec-
ture Notes in Computer Science. Springer-Verlag, 1980.

[20] A. Pnueli. A temporal logic of concurrent programs. Theoretical Com-
puter Science, 13:45–60, 1981.

[21] J. P. Quielle and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In Proceedings of the 5th International Symposium
on Programming, volume 137 of Lecture Notes in Computer Science,
pages 337–351. Springer-Verlag, 1982.

[22] Mauno Rönkkö. A distributed object oriented implementation of an
algorithm converting a LTL formula to a generalised Buchi automaton,
1999. Available only on the WWW. See Mauno Rönkkö’s homepage at
<URL: ������� �����
	�	�	�� ��� 	 ��������������������
 	 �� 	�
�����	�� >.

BIBLIOGRAPHY 66

[23] S. Safra. Complexity of automata on infinite objects. PhD thesis, The
Weizmann Institute of Science, 1989.

[24] F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formu-
lae. In Proceedings of the 12th International Conference on Computer
Aided Verification (CAV’00), volume 1855 of Lecture Notes in Com-
puter Science, pages 247–263. Springer-Verlag, 2000.

[25] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Jour-
nal on Computing, 1(2):146–160, June 1972.

[26] H. Tauriainen. A randomized testbench for algorithms translating lin-
ear temporal logic formulae into Büchi automata. In Proceedings
of the Workshop Concurrency, Specification and Programming 1999
(CS&P’99), pages 251–262. Warsaw University, September 1999.

[27] H. Tauriainen and K. Heljanko. Testing SPIN’s LTL formula trans-
lation into Büchi automata using randomly generated input. In Pro-
ceedings of the 7th International SPIN Workshop on Model Checking
of Software (SPIN’2000), volume 1885 of Lecture Notes in Computer
Science, pages 54–72. Springer-Verlag, 2000.

[28] W. Thomas. Languages, automata and logic. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages, volume III, pages
385–455. Springer-Verlag, New York, 1997.

[29] A. Valmari. The state explosion problem. In Lectures on Petri Nets
I: Basic Models, volume 1491 of Lecture Notes in Computer Science,
pages 429–528. Springer-Verlag, 1998.

[30] M. Y. Vardi. An automata-theoretic approach to linear temporal logic.
In Logics for Concurrency: Structure versus Automata, volume 1043 of
Lecture Notes in Computer Science, pages 238–265. Springer-Verlag,
1996.

[31] M. Y. Vardi and P. Wolper. An automata-theoretic approach to auto-
matic program verification. In Proceedings of the 1st IEEE Sympo-
sium on Logic in Computer Science (LICS’86), pages 332–344. IEEE
Computer Society Press, 1986.

[32] M. Y. Vardi and P. Wolper. Reasoning about infinite computations.
Information and Computation, 115(1):1–37, 1994.

[33] K. Varpaaniemi, J. Halme, K. Hiekkanen, and T. Pyssysalo. PROD
reference manual. Technical Report B13, Helsinki University of Tech-
nology, Digital Systems Laboratory, 1995.

[34] K. Varpaaniemi, K. Heljanko, and J. Lilius. PROD 3.2 - An advanced
tool for efficient reachability analysis. In Proceedings of the 9th Interna-
tional Conference on Computer Aided Verification (CAV’97), volume
1254 of Lecture Notes in Computer Science, pages 472–475. Springer-
Verlag, June 1997.

BIBLIOGRAPHY 67

[35] P. Wolper. Temporal logic can be more expressive. Information and
Control, 56(1–2):72–99, 1983.

BIBLIOGRAPHY 68

A EMPTINESS CHECKING IN GLOBAL SYNCHRONOUS PROD-
UCT

As discussed in Sect. 5.1.2, it is possible to try to improve the effectiveness of
Tests 3 and 4 by computing a global synchronous product of a Büchi automa-
ton AM corresponding to some Kripke structure M with a Büchi automaton
Aϕ corresponding to some LTL property ϕ. In Sect. 5.1.2, it was stated that
the construction presented in Lemma 2 (page 16) results in a structure that
satisfies the global synchronous product requirements.

However, a straightforward implementation of this construction always
generates a structure whose size equals the product of the sizes ofAM andAϕ,
respectively. For emptiness checking purposes, only the states that are reach-
able from the states (q, q0) (including these states themselves) are actually
needed (here, q is a state of AM , and q0 is the initial state of Aϕ). However,
the straightforward construction always generates the worst-case product that
may contain states not reachable from any of the states (q, q0).

This same problem was addressed already in Sect. 4.2.6, where only one
state (q, q0) (the “initial state” of the product, q fixed) was considered. There,
the straightforward product construction was replaced by a graph search al-
gorithm that generates only the part of the product that contains the states
reachable from (q, q0). It is very easy to generalize this approach to multiple
“initial states” of the form (q, q0) by simply restarting the search from each
such state (if the state has not already been visited during the construction).
Although the worst-case result size still remains the same, it may be avoided
in some cases, which will save memory.

As stated in Sect. 5.1.2, checking the emptiness of the global synchronous
product also requires minor changes in the implementation. It was proposed
that the algorithm for computing the MSCCs of the product automaton
should be restarted in every state (q, q0) of the product (where q is some state
of AM and q0 the initial state of Aϕ). However, simply restarting the MSCC
algorithm in each of these states has the disadvantage that some states of the
product automaton may be visited several times in the different runs of the
MSCC algorithm. This problem can be avoided by applying Tarjan’s algo-
rithm to the product automaton only once with the following modifications:

• If the search cannot at some point find any new reachable states, it
must be checked whether the product automaton still has any unvisited
states. If this is the case, the search must be continued (not restarted)
from any previously unvisited state, until all states of the product au-
tomaton have been visited.

• If the search finds a nontrivial MSCC with an accepting execution,
it is not immediately clear from which states of the form (q, q0) the
MSCC is actually reachable. This can be determined by performing a
backward search in the product graph to find all the states (q, q0) that
can reach the MSCC, starting the search in any state of the MSCC.
The states q then correspond to M ’s states with an execution satisfying
ϕ. (In practice, this search does not require extra storage space for the
backward product transition relation. As a matter of fact, we can do

APPENDIX A. EMPTINESS CHECKING IN GLOBAL SYNCHRONOUS PRODUCT i

without the forward transition relation for performing all the searches
in the product automaton. The only place where the forward relation
might at first seem to be needed is the search for the MSCCs, but
actually the MSCCs of a graph do not depend on the direction of the
arcs and can therefore be found using the reversed transition relation.)

The above improvements were used in the implementation of the empti-
ness checking algorithm of the testbench described in Sect. 6.1.

APPENDIX A. EMPTINESS CHECKING IN GLOBAL SYNCHRONOUS PRODUCT ii

B CORRECTNESS OF LTL MODEL CHECKING ALGORITHM FOR
SEQUENTIAL KRIPKE STRUCTURES

This appendix contains the correctness proof of the LTL model checking
algorithm for sequential Kripke structures, shown in Fig. 5.6 in Sect. 5.2
(page 42).

To prove the correctness of the algorithm, we first show that the algo-
rithm always terminates. (In the following discussion, ϕ denotes the given
LTL formula to be model checked in the sequential Kripke structure M =
〈S, s0, ρ, π〉.)

Lemma 3 The algorithm of Fig. 5.6 terminates.

Proof: It is easy to see that the loops between lines 9–10, 12–13, 15–16 and
18–19 will always terminate (if ever entered), because the sets AP and S are
always assumed to be finite.

Also the outer loop between lines 22 and 31 will always terminate when-
ever it is entered. The termination of this loop would be prevented if the
loop on line 25 never terminated; however, this is not possible, since the
set Marked always contains only finitely many elements. (The set is initially
empty when entering the outer loop at line 21, and at most one element is
added to it in each iteration of the outer loop. The fact that the number of
iterations of the outer loop is bounded by |S| now establishes the termination
of the outer loop.) By the same reason, also the loop on line 33 terminates.

The termination of the main loop (lines 4–35) depends on the condition
whether the set ToEval is empty (line 4). Since the number of subformu-
lae of ϕ is bounded by |ϕ| (the number of symbols in the formula), the set
ToEval (initialized on line 3) initially has a finite number of elements. We
argue that the algorithm removes some subformula from this set during each
iteration of the main loop, decreasing the number of elements in the set.
This then establishes (together with the finiteness of ToEval and the fact that
all of the loops inside the main loop terminate) that the set ToEval will be
empty after exactly |ToEval | iterations, and the main loop terminates.

Assume that the algorithm cannot select and remove an element from
ToEval (lines 5–6) during some iteration of the main loop. This can happen
in two cases:

• The set ToEval is empty. However, this would have been detected on
line 4, so the loop would not have been entered in this case at all.

• For all ϕ′ ∈ ToEval , ToEval also contains some proper subformula ψ
of ϕ′. Since ψ ∈ ToEval , the same should hold for ψ, and again for
some proper subformula ψ′ of ψ. Continuing this way, we would ob-
tain an infinite sequence of different formulae (all in ToEval), each of
which (excluding the first one) is a proper subformula of the preceding
formula in the sequence. But this is clearly impossible, since ToEval

initially contains only a finite number of formulae.

Therefore, |ToEval | must decrease in each iteration of the main loop, and
the algorithm terminates. �

APPENDIX B. CORRECTNESS OF LTL MODEL CHECKING ALGORITHM FOR SEQUENTIAL KRIPKE STRUCTURES iii

Lemma 4 Let ϕ′ be the formula chosen by the algorithm from the set
ToEval in some iteration of the main loop. Then, the set Result contains
no pairs of the form (ϕ′, s) for any s ∈ S in the beginning of the itera-
tion. Furthermore, no subsequent iteration will manipulate pairs of the form
(ψ, s), adding them to or removing them from the set Result , where ψ is a
subformula of ϕ′.

Proof: By the proof of Lemma 3, the algorithm must choose some formula
from ToEval in each iteration of the main loop. It is clear that every formula
ψ chosen by the algorithm in any previous iteration must be different from
ϕ′, since otherwise ϕ′ would already have been removed from ToEval and
could not be selected again.

The set Result is initially empty. It is easy to see from the algorithm defini-
tion (lines 10, 13, 16, 19, 24, 25 and 33) that all pairs added to the set Result

during a single iteration of the main loop are never associated with any for-
mula other than the one picked from ToEval in that iteration. The fact that
all formulae processed before ϕ′ are different from ϕ′ now establishes the first
part of the lemma.

It is immediate from the algorithm definition that the set ToEval can con-
tain no subformulae of ϕ′ when ϕ′ is selected. The second part of the lemma
now follows from the fact that ϕ′ is removed from ToEval in the iteration in
which it is selected, together with the note that nothing is ever removed from
the set Result . �

The informal meaning of the previous lemma is that the algorithm
“builds” the contents of the set Result incrementally, one subformula at a
time.

The following lemma proves a result about the way that the set Result is
updated during each iteration of the main loop of the algorithm.

Lemma 5 Let ϕ′ be the subformula chosen by the algorithm from the set
ToEval in some iteration of its main loop. At the end of the iteration, for all
s ∈ S, (ϕ′, s) ∈ Result if and only if

(a) [ϕ′ ∈ AP] ϕ′ ∈ π(s);

(b) [ϕ′ = ¬ψ] (ψ, s) 6∈ Result ;

(c) [ϕ′ = (ψ1 ∨ ψ2)] (ψ1, s) ∈ Result or (ψ2, s) ∈ Result ;

(d) [ϕ′ = Xψ]
(

ψ, ρ(s)
)

∈ Result ;

(e) [ϕ′ = (ψ1 Uψ2)] ∃j ≥ 0 :
(

ψ2, ρ
j(s)

)

∈ Result

and ∀0 ≤ k < j :
(

ψ1, ρ
k(s)

)

∈ Result .

Proof: By Lemma 4, we know that ∀s ∈ S : (ϕ′, s) 6∈ Result at the beginning
of the iteration, and the algorithm will not manipulate pairs of the form (ψ, s)
for any subformula ψ of ϕ′ after the iteration. Cases (a), (b), (c) and (d) are
now immediate from the definition of the algorithm. We show that case (e)
also holds.

The variable s is initialized to s0 on line 21 of the algorithm. The loop
between lines 22 and 31 is repeated |S| times, and the value of s is updated

APPENDIX B. CORRECTNESS OF LTL MODEL CHECKING ALGORITHM FOR SEQUENTIAL KRIPKE STRUCTURES iv

tρ ()j

ψ1 ψ1 ψ2ψ1

t

(a)
tρ ()jnρ ()t n−1

tρ ()

ψ1 ψ1 ψ2 ψ1 ψ1

t

(b)

Fig. B.1: Illustration of the proof of Lemma 5

to its successor in each iteration of the loop (line 30). Thus, s cycles through
all states of the Kripke structure M in sequential order. Since the Kripke
structure is sequential, the “last” state of the sequence is known to be con-
nected to some previous state in the sequence. Now, because the variable s
is still updated to point to its successor also in the last iteration of the loop, it
follows that s will point to some previously visited state of the structure at the
end of the loop.

Let t be a state in S such that ∃j ≥ 0 :
(

ψ2, ρ
j(t)

)

∈ Result and ∀0 ≤
k < j :

(

ψ1, ρ
k(t)

)

∈ Result . Without loss of generality, we may assume that
j is the smallest nonnegative integer for which

(

ψ2, ρ
j(t)

)

∈ Result is true,
so for all 0 ≤ k < j,

(

ψ2, ρ
k(t)

)

6∈ Result . By the previous note, there is an
iteration of the loop between lines 22 and 31 such that the variable s points
to the state t. Consider now this iteration of the loop.

If j = 0, it holds that
(

ψ2, ρ
0(t)

)

∈ Result, that is, (ψ2, t) ∈ Result.
The condition on line 23 is now true, and the lines 24–26 get executed. On
line 24, the pair (ϕ′, t) is inserted into Result . Since the algorithm never re-
moves anything from this set and the algorithm visits each state of the Kripke
structure, the result will hold for all t ∈ S for which (ψ2, t) ∈ Result at the
end of the case statement.

If j > 0, there are two cases (see Fig. B.1):

(a) The algorithm visits t before ρj(t). Since ∀0 ≤ k < j :
(

ψ1, ρ
k(t)

)

∈
Result , it follows that the condition on line 28 will hold for ρ0(t) = t
and all subsequent states ρk(t) with 0 ≤ k < j. Therefore, after j
iterations of the loop, the set Marked will contain all states ρ0(t) =
t, ρ1(t), . . . , ρj−1(t). The algorithm then proceeds to the state ρj(t).
Since

(

ψ2, ρ
j(t)

)

∈ Result , the condition on line 23 is true. The set
Result is now extended with all states (ϕ′, s′), where s′ ∈ Marked .
Since we know that t ∈ Marked still holds at this point, (ϕ′, t) ∈
Result will hold at the end of this iteration. Because nothing is ever
removed from the set Result , (ϕ′, t) ∈ Result will still hold at the end
of the case statement.

(b) The algorithm visits ρj(t) before t. This can happen if both t and ρj(t)
are inside the cycle contained in the Kripke structure M , and ρj(t) can
be reached from t through the transition connecting the “last” state of
the sequential structure to one of its predecessors. It now follows that
there exists an integer 1 ≤ n ≤ j such that the algorithm has not yet
visited the state ρn−1(t) (or is currently in that state), but it has already
visited the state ρn(t).

Since
(

ψ1, ρ
k(t)

)

∈ Result for all 0 ≤ k < n, all states ρk(t) with
0 ≤ k < n will be inserted into the set Marked during subsequent

APPENDIX B. CORRECTNESS OF LTL MODEL CHECKING ALGORITHM FOR SEQUENTIAL KRIPKE STRUCTURES v

iterations of the loop, after which the loop terminates. At this point,
the variable s points to the state ρn(t).

We show that
(

ϕ′, ρn(t)
)

∈ Result now holds at this point of the al-
gorithm, and therefore the condition on line 32 is true. This will
cause the insertion of elements (ϕ′, s′) into the set Result for all s′ ∈
Marked . Since t ∈ Marked , it then follows that Result will contain
the pair (ϕ′, t) at the end of the case statement.

To show that
(

ϕ′, ρn(t)
)

∈ Result holds when the loop between lines
22 and 31 terminates, we first note that the claim holds if ρn(t) =
ρj(t). This is because the pair (ϕ′, ρj(t)) has already been inserted
into Result when processing the state ρj(t).

If ρn(t) 6= ρj(t), the algorithm must have processed ρn(t) before ρj(t),
since otherwise ρj(t) would not be reachable from the state t. There-
fore, ρn(t) precedes ρj(t) in the sequential Kripke structure. Since
∀0 ≤ k < j :

(

ψ1, ρ
k(t)

)

∈ Result , it also holds that ∀n ≤ k < j :
(

ψ1, ρ
k(t)

)

∈ Result . We also know that
(

ψ2, ρ
j(t)

)

∈ Result . Since
ρn(t) and ρj(t) have already been visited, we can apply case (a) above
to conclude that

(

ϕ′, ρn(t)
)

∈ Result holds when the loop terminates.

For the other direction, assume that (ϕ′, t) ∈ Result at the end of the case

statement for some t ∈ S. We show that there now exists a j ≥ 0 such that
(

ψ2, ρ
j(t)

)

∈ Result and for all 0 ≤ k < j,
(

ψ1, ρ
k(t)

)

∈ Result .
By Lemma 4, Result contains no pairs of the form (ϕ′, s′) for any s′ ∈ S

in the beginning of the loop between lines 22–31. Therefore, the pair (ϕ′, t)
must have been added to this set somewhere after line 21. The only places
where this can have occurred are lines 24, 25 and 33.

In the following, we shall rely on the fact that each state of the structure
is visited exactly once in the loop. This implies that each state is inserted
at most once into the set Marked , which is easy to see from the algorithm
definition.

• If (ϕ′, t) was inserted into Result on line 24, the condition (ψ2, t) ∈
Result must also have been true at this point, since otherwise line 24
would not have been executed. The result now follows immediately
with j = 0.

• If (ϕ′, t) was inserted into Result on line 25, there must exist an s′ ∈ S
for which the condition (ψ2, s

′) ∈ Result was true in some iteration of
the loop between lines 22 and 31. In addition, t ∈ Marked was true
at this point. Since Marked was initially empty (and t was not inserted
into it in that iteration), t was inserted into Marked in some previous
iteration of the loop. The only place this may have happened is at line
28, which can have been executed for t only if (ψ1, t) ∈ Result and
(ψ2, t) 6∈ Result . Since t was visited before s′, it must be a predecessor
of s′. Therefore, there exists a j ≥ 0 such that s′ = ρj(t).

If s′ = ρ(t), the result now follows with j = 1.

If ρ(t) 6= s′, s′ is not an immediate successor of t. Assume then
that there exists a 0 ≤ k < j such that

(

ψ1, ρ
k(t)

)

6∈ Result , or

APPENDIX B. CORRECTNESS OF LTL MODEL CHECKING ALGORITHM FOR SEQUENTIAL KRIPKE STRUCTURES vi

(

ψ2, ρ
k(t)

)

∈ Result . When processing the state ρk(t), the algorithm
must have executed either lines 24–26 or the line 29, in both cases set-
ting Marked to be empty (in effect, removing t from this set). It is now
impossible that t ∈ Marked would any longer hold when processing
the state s′, which is a contradiction. Therefore, it must be that for all
0 ≤ k < j,

(

ψ1, ρ
k(t)

)

∈ Result , and
(

ψ2, ρ
k(t)

)

6∈ Result . This
establishes the result in this case.

• Assume that the insertion of (ϕ′, t) into Result occurred at line 33.
As in the previous case, t ∈ Marked must have held at this point,
which can be true only if for t and all of its first n successors (of which
ρn(t) is the last state processed by the loop),

(

ψ1, ρ
k(t)

)

∈ Result and
(

ψ2, ρ
k(t)

)

6∈ Result for all 0 ≤ k ≤ n.

At line 33, the variable s points to some previously visited state in the
sequential Kripke structure. It is necessary that (ϕ′, s) ∈ Result was
true already at line 32, since otherwise the loop on line 33 would
not have been executed. Since Result contained no pairs related to
the formula ϕ′ before the loop on lines 22–31, the pair (ϕ′, s) must
have been inserted into Result in that loop on line 24 or 25. We
have already shown that the result holds for such states, and there-
fore we may conclude that ∃m ≥ 0 :

(

ψ2, ρ
m(s)

)

∈ Result and
∀0 ≤ k < m :

(

ψ1, ρ
k(s)

)

∈ Result . The result then holds for t
with j = n +m+ 1.

�

The following lemma connects the previous results with model checking
LTL in the paths of the given sequential Kripke structure M .

Lemma 6 Let ϕ′ be the subformula of ϕ that the algorithm of Fig. 5.6
chooses from the set ToEval in the beginning of some iteration of the main
loop. Then, at the end of the algorithm,

∀s ∈ S : (ϕ′, s) ∈ Result iff ξs |= ϕ,

where ξs is the (unique) infinite path of M 〈s, . . . 〉 starting in s.

Proof: If ϕ′ ∈ AP , the algorithm enters the loop between the
lines 9–10. At the end of the current iteration of the main loop, it now
follows by Lemma 5 (a) that (ϕ′, s) ∈ Result if and only if ϕ′ ∈ π(s), if
and only if ξs |= ϕ′ (by the semantics of LTL). By Lemma 4, the algorithm
does not manipulate pairs (ϕ′, s) after this iteration, so (ϕ′, s) ∈ Result still
holds at the end of the algorithm. The result therefore holds for all atomic
propositions occurring in ϕ.

Assume then that the result holds for all subformulae ϕ′ for which |ϕ′| ≤
n. Let ϕ′ be a subformula of ϕ such that all proper subformulae of ϕ′ are at
most of length n. Therefore, ϕ′ is either ¬ψ1, Xψ1, (ψ1 ∨ ψ2) or (ψ1 Uψ2),
where |ψ1| ≤ n and |ψ2| ≤ n. We have the following cases:

APPENDIX B. CORRECTNESS OF LTL MODEL CHECKING ALGORITHM FOR SEQUENTIAL KRIPKE STRUCTURES vii

• If ϕ′ = ¬ψ1, the loop between lines 12 and 13 is entered. We see that
at the end of the loop,

(ϕ′, s) ∈ Result iff [Lemma 5 (b)]
(ψ1, s) 6∈ Result iff [induction hypothesis]
ξs 6|= ψ1 iff [semantics of LTL]
ξs |= ¬ψ1 iff
ξs |= ϕ′

for all s ∈ S.

• If ϕ′ = (ψ1∨ψ2), the loop between lines 15 and 16 is executed. In this
case,

(ϕ′, s) ∈ Result iff [Lemma 5 (c)]
(ψ1, s) ∈ Result or (ψ2, s) ∈ Result iff [induction hypothesis]
ξs |= ψ1 or ξs |= ψ2 iff [semantics of LTL]
ξs |= (ψ1 ∨ ψ2) iff
ξs |= ϕ′

for all s ∈ S.

• If ϕ′ = Xψ1, the algorithm enters the loop between lines 18–19. As
above, we see that

(ϕ′, s) ∈ Result iff [Lemma 5 (d)]
(

ψ1, ρ(s)
)

∈ Result iff [induction hypothesis]
ξρ(s) |= ψ1 iff [ξρ(s) = ξ1

s]
ξ1
s |= ψ1 iff [semantics of LTL]
ξs |= Xψ1 iff
ξs |= ϕ′

for all s ∈ S.

• If ϕ′ = (ψ1 Uψ2), the algorithm executes the case between lines 21–
33.

(ϕ′, s) ∈ Result iff [Lemma 5 (e)]
∃j ≥ 0 :

(

ψ2, ρ
j(s)

)

∈ Result

and for all 0 ≤ k < j,
(

ψ1, ρ
k(s)

)

∈ Result iff [ind. hypothesis]
∃j ≥ 0 : ξρj(s) |= ψ2

and for all 0 ≤ k < j, ξρk(s) |= ψ1 iff [LTL semantics]
ξs |= (ψ1 Uψ2) iff
ξs |= ϕ′

for all s ∈ S.

In all previous cases, Lemma 4 guarantees that the result will still hold at
the end of the algorithm. �

We can now prove the correctness of the algorithm.

Proposition 1 (Correctness of the algorithm) The algorithm of Fig. 5.6 re-
turns the value “YES” if and only if the LTL formulaϕ holds in the sequential
Kripke structure M .

APPENDIX B. CORRECTNESS OF LTL MODEL CHECKING ALGORITHM FOR SEQUENTIAL KRIPKE STRUCTURES viii

Proof: It is clear from the algorithm definition that ϕ ∈ ToEval holds after
line 3 has been executed.

By the proof of Lemma 3, the size of the set ToEval decreases in each
iteration of the main loop. From this follows that there must exist an iteration
in which the algorithm chooses the the formula ϕ from ToEval and then
removes it from this set. At this point, there can be no proper subformulae of
ϕ left in the set ToEval (otherwise ϕ could not be chosen), so the algorithm
terminates after this iteration.

By Lemma 6, the set Result will after this iteration contain the pair (ϕ, s)
for some s ∈ S if and only if ξs |= ϕ. Since the algorithm then terminates,
there are no subsequent iterations that could change the contents of Result .

From the algorithm definition we see that the algorithm returns the value
“YES” if and only if (ϕ, s0) ∈ Result at the end of the algorithm, i.e. if and
only if ξs0 |= ϕ (again by Lemma 6).

Because each state of M has exactly one successor, M has only one exe-
cution beginning in its initial state s0, and this execution corresponds to the
sequence ξs0 . Therefore, M |= ϕ if and only if ξs0 |= ϕ, if and only if the
algorithm returns ‘’YES”. �

APPENDIX B. CORRECTNESS OF LTL MODEL CHECKING ALGORITHM FOR SEQUENTIAL KRIPKE STRUCTURES ix

C ANALYSIS OF THE LTL FORMULA GENERATION ALGORITHM

This appendix contains an analysis of the random LTL formula generation
algorithm presented in Fig. 6.1 (page 46) used in the LTL-to-Büchi translator
testbench and describes how the parameters in the algorithm can be adjusted
so that each generated formula will have the same expected number of every
individual logical or temporal operator. The analysis relies on the standard
axioms of probability; for a reference, see any basic textbook on probability
or statistics.

C.1 FINDING THE EXPECTED NUMBER OF OPERATORS IN A FORMULA

We will begin with finding the probability with which a given formula of
parse tree size n generated by the algorithm of Fig. 6.1 contains exactly k
instances of a given operator op. For this purpose, let Aop,k,n denote the
random event

Aop,k,n : “A formula with a parse tree of size n contains k instances
of operator op”

Let U denote the set of available unary operators, and let B be the set
of all available binary operators (in the testbench implementation, U =
{¬,X,�,♦} and B = {∨,∧,→,↔,U,R}). Let OP denote the set of all
operators U ∪B.

As described in Chap. 6, the testbench implementation assigns to each
operator op ∈ OP an integer priority pri(op) that determines the probability
with which the algorithm will choose op whenever picking a random opera-
tor at lines 7 or 12. Let Pn(op) denote this probability for some fixed formula
parse tree size n ≥ 1. From the algorithm we can see that

Pn(op) =



















































0 if n = 1

pri(op)
∑

op′∈U

pri(op ′)
if n = 2 and op ∈ U

0 if n = 2 and op ∈ B

pri(op)
∑

op′∈OP

pri(op ′)
if n ≥ 3

(C.1)

We now proceed by looking at how the algorithm can generate a formula
with a parse tree of size n so that the formula contains exactly k instances
of operator op. For now, it is assumed that k ≥ 1; the case k = 0 will be
handled later. When the algorithm is called with the parameter n (before

APPENDIX C. ANALYSIS OF THE LTL FORMULA GENERATION ALGORITHM x

any recursive calls are executed), it can be seen that

P(Aop,k,n)

= Pn(“the algorithm chooses op”
∧ “the algorithm will later choose op k − 1 times”) (C.2)

+ Pn(“the algorithm chooses an operator op ′ 6= op”
∧ “the algorithm will later choose op k times”)

(It is clear that the two events in the probabilities are mutually exclusive, so
the probability of the occurrence of either event is simply the sum of the
probabilities of the individual events. “Later” refers to the recursive calls
made by the algorithm.)

The behaviour of the algorithm in the recursive calls depends on the arity
of the chosen operator and the formula parse tree size n. (Let arity(op)
denote the arity of op; it is always either 1 or 2.) Also the number of recursive
calls depends on the arity of the chosen operator. The event “the algorithm
chooses an operator op ′ 6= op” can be split into two mutually exclusive cases
according to the arity of the chosen operator:

P(Aop,k,n)

= Pn(“the algorithm chooses op”)
·Parity(op),n(“the algorithm will later choose op k − 1 times”)

+ Pn(“the algorithm chooses an operator op ′ 6= op”)
·Parity(op ′),n(“the algorithm will later choose op k times”)

= Pn(op) ·Parity(op),n(“the algorithm will later choose op k − 1 times”)
+ Pn(“the algorithm chooses a unary operator op ′ 6= op”)

·P1,n(“the algorithm will later choose op k times”) (C.3)
+ Pn(“the algorithm chooses a binary operator op ′ 6= op”)

·P2,n(“the algorithm will later choose op k times”)

We have used here the fact that Pn(“the algorithm chooses op”) is the
probability Pn(op) defined in (C.1). In (C.3) we also have

Pn(“the algorithm chooses a unary operator op ′ 6= op”)

=















































0 if n = 1

∑

op′∈U\{op}

pri(op′)

∑

op′∈U

pri(op ′)
if n = 2

∑

op′∈U\{op}

pri(op′)

∑

op′∈OP

pri(op′)
if n ≥ 3

(C.4)

and

Pn(“the algorithm chooses a binary operator op ′ 6= op”)

=











0 if 1 ≤ n ≤ 2
∑

op′∈B\{op}

pri(op′)

∑

op′∈OP

pri(op′)
if n ≥ 3

(C.5)

APPENDIX C. ANALYSIS OF THE LTL FORMULA GENERATION ALGORITHM xi

If the operator chosen by the algorithm is a unary operator, the algorithm
proceeds to recursively generate a subformula with a parse tree of size n− 1.
This can be considered an independent invocation of the algorithm with a
different value for the parameter n. Clearly, n must be greater or equal to 2
for any recursive call to be generated. Thus, for all x ≥ 2,

P1,n(“the algorithm will later choose op x times”)
= P(“a formula with a parse tree of size n− 1 contains x instances of

operator op”)
= P(Aop,x,n−1) (C.6)

Choosing a binary operator results in two recursive calls to generate two
subformulae with parse trees of sizem and n−m−1 for some 1 ≤ m ≤ n−2.
It is safe to assume that n ≥ 3 in this case, since otherwise the algorithm
cannot choose a binary operator. If each of the possible values form is equally
probable, the possible ways to split the formula gives rise to n − 2 equally
probable cases. (In addition, these cases are again mutually exclusive: one
might think of partitioning the formula into a “left-hand” and a “right-hand”
subformula.) Therefore,

P2,n(“the algorithm will later choose op x times”)

=
1

n− 2

n−2
∑

m=1

P(“there are a total of x instances of op in two formulae

with parse trees of size m and n−m− 1, (C.7)
respectively”),

for all x ≥ 3.
This case can be split further into subcases according to how many in-

stances of op appears in each subformula. There are x + 1 ways to partition
an integer x ≥ 0 into two nonnegative integers such that their sum equals
x. (These cases are again mutually exclusive if we think that there is a “left-
hand” and a “right-hand” subformula.)

P(“there are a total of x instances of op in two formulae with parse
trees of size m and n−m− 1, respectively”)

=
x

∑

i=0

[

P(“a formula with a parse tree of size m contains i instances of

op”)
·P(“a formula with a parse tree of size n−m− 1 contains

x− i instances of op”)
]

=
x

∑

i=0

[

P(Aop,i,m)P(Aop,x−i,n−m−1)
]

(C.8)

Applying (C.8) to (C.7), we get

P2,n(“the algorithm will later choose op x times”)

=
1

n− 2

n−2
∑

m=1

x
∑

i=0

[

P(Aop,i,m)P(Aop,x−i,n−m−1)
]

(C.9)

APPENDIX C. ANALYSIS OF THE LTL FORMULA GENERATION ALGORITHM xii

Equations (C.1), (C.4), (C.5), (C.6) and (C.9) can now be applied to
(C.3) to obtain the equation for P(Aop,k,n). We also make note of the follow-
ing:

• Since a formula cannot contain more operators than there are nodes
in the formula parse tree, and because the formula also contains at
least one atomic proposition (or a Boolean constant), it follows that
P(Aop,k,n) = 0 for all k ≥ n.

• The event that the formula does not contain an instance of some op-
erator op is complementary to the event that the formula contains one
or more instances of that operator. Taking also the previous note into
account, we see that P(Aop,0,n) = 1−

∑n−1
k=1 P(Aop,k,n).

The probability of the event Aop,k,n is then given by the equation

P(Aop,k,n)

=















































































































0 (a)

pri(op)
∑

op′∈U

pri(op′)
(b)

0 (c)

pri(op)
∑

op′∈OP

pri(op′)
P(Aop,k−1,n−1) + P (op, k, n) (d)

pri(op)
(n−2)

∑

op′∈OP

pri(op ′)

n−2
∑

m=1

k−1
∑

i=0

[

P(Aop,i,m)P(Aop,k−1−i,n−m−1)
]

(e)

+ P (op, k, n)

1−
n−1
∑

k=1

P(Aop,k,n) (f)

(C.10)

(a) if k ≥ n or n = 1
(b) if k = 1, n = 2 and op ∈ U
(c) if k = 1, n = 2 and op ∈ B
(d) if k ≥ 1, n ≥ 3 and op ∈ U
(e) if k ≥ 1, n ≥ 3 and op ∈ B
(f) if k = 0 and n ≥ 1

where

P (op, k, n)

=

∑

op′∈U\{op}

pri(op ′)

∑

op′∈OP

pri(op ′)
P(Aop,k,n−1)

+

∑

op′∈B\{op}

pri(op′)

(n− 2)
∑

op′∈OP

pri(op′)

n−2
∑

m=1

k
∑

i=0

[

P(Aop,i,m)P(Aop,k−i,n−m−1)
]

APPENDIX C. ANALYSIS OF THE LTL FORMULA GENERATION ALGORITHM xiii

Equation (C.10) expresses the probability P(Aop,k,n) using probabilities
P(Aop,k′,n′), where either k′ < k or n′ < n (or both). In addition, the proba-
bilities P(Aop,k,n) with k = 1 and n ≤ 2 are given. These probabilities can
be used as a basis for calculating probabilities P(Aop,k,n) for higher values of
k and n. This leads to a “bottom-up” algorithm that can be used for finding
the probability for any values of k and n. (This algorithm can run in poly-
nomial time e.g. if the computed values P(Aop,k,n) are stored into an array,
which is then used to retrieve values for probabilities that have already been
computed.)

Using the probability P(Aop,k,n), the expected number of instances of a
given operator op in a formula with a parse tree of size n is now given by

Eop,n =

n−1
∑

k=0

[

k ·P(Aop,k,n)
]

(C.11)

C.2 ADJUSTING OPERATOR PRIORITIES IN THE ALGORITHM

To adjust the priorities of the different operators so that each generated for-
mula (with a fixed parse tree size) will contain the same expected number
of each individual operator, we first note that it is sufficient to distinguish
the operators only by their arity. This is because all choices made by the
algorithm are never based on exact operator symbols. Therefore, we can
identify all unary operators and all binary operators with each other, respec-
tively, and proceed to find only two priorities pri u and prib shared by the
operators of different arity. Therefore, ∀op ∈ U : pri(op) = pri u, and
∀op ∈ B : pri(op) = prib. Substituting these into (C.10) results in the
slightly simplified equation

P(Aop,k,n)

=



































































































0 (a)

1
|U |

(b)

0 (c)

priu
|U |priu+|B|prib

P(Aop,k−1,n−1) + P (op, k, n) (d)

prib
(n−2)(|U |priu+|B|prib)

n−2
∑

m=1

k−1
∑

i=0

[

P(Aop,i,m)P(Aop,k−1−i,n−m−1)
]

(e)

+ P (op, k, n)

1−
n−1
∑

k=1

P(Aop,k,n) (f)

(C.12)

APPENDIX C. ANALYSIS OF THE LTL FORMULA GENERATION ALGORITHM xiv

where the conditions (a) to (f) are as before, |U | and |B| are the numbers of
available operators of different arities, respectively, and

P (op, k, n)

=

(

|U | −
(

2− arity(op)
)

)

priu

|U |priu + |B|prib

P(Aop ,k,n−1)

+

(

|B| −
(

arity(op)− 1
)

)

prib

(n− 2)(|U |pri u + |B|prib)

n−2
∑

m=1

k
∑

i=0

[

P(Aop ,i,m)P(Aop ,k−i,n−m−1)
]

The problem now reduces to solving the equation Eop1,n
− Eop2,n

= 0 for
any two operators op1 ∈ U, op2 ∈ B, where the expected values are com-
puted using (C.11). By treating another of the priorities priu and prib as a
constant in this equation, the equation could now in principle be solved for
the other priority to find the dependency between the two priorities. How-
ever, solving this equation exactly may be very tedious in practice. In addi-
tion, since (C.11) depends on the formula parse tree size n and the number
of available unary and binary operators |U | and |B|, it is clear that the rela-
tionship between priu and prib will be different for each value combination
for the three previous parameters. This means that a new equation would
have to be solved for each such combination. (Furthermore, it may also oc-
cur that the equation has no solutions at all for some values of n, |U | and
|B|.)

Instead, it is possible to try to find approximate values for the priorities by
simply guessing a value for another of the priorities and then trying to find a
suitable value for the other priority such that the difference |Eop1,n

− Eop2,n
|

is minimized. Here we can use the fact that since the algorithm can choose
a unary operator in two separate places, it should be that prib > priu.

The values for the priorities can be computed automatically for small val-
ues of n (as used in the experiments made in this work) by using even the
following brute-force approach:

1. Let priu = 1, and let prib = priu + 1.

2. Compute the difference δ = Eop1,n
− Eop2,n

, where op1 ∈ U and
op2 ∈ B.

3. If −ε/2 < δ < ε/2 for a given tolerance ε > 0, return the current
values of priu and prib and stop.

4. Otherwise, if δ < 0, increment priu; if δ > 0, increment prib. Go
then back to step 2 (or stop after some maximum iteration limit has
been exceeded).

Since only small values of n were used in the experiments of Chap. 6, this
simplistic approach was sufficient for finding the values for the parameters
priu and prib, using ε = 2 · 10−8 as the tolerance. The priorities could
be found for all n ∈ {5, 6, 7, 8, 9, 10, 11, 12} and for both sets of operators
OP1 = {¬,�,♦,∨,∧,→,U} and OP 2 = {¬,X,�,♦,∨,∧,→,↔,U,R}
used with the different LTL-to-Büchi translators. For OP 1, |U | = 3 and
|B| = 4; for the set OP 2, |U | = 4 and |B| = 6.

APPENDIX C. ANALYSIS OF THE LTL FORMULA GENERATION ALGORITHM xv

Table C.1: Operator priorities for different operator sets and different values
of n

n Operator set used

{¬,�,♦,∨,∧,→,U} {¬,X,�,♦,∨,∧,→,↔,U,R}
priu prib priu prib

5 3667 13443 1678 7357

6 2810 9909 1455 6679

7 2417 7462 2333 8757

8 1305 3736 2914 9959

9 3773 10229 1769 5646

10 1933 5031 2507 7607

11 6771 17072 4133 12061

12 3242 7969 2609 7381

The values used for the priorities in the experiments for different sets of
operators and formula parse tree sizes are shown in Table C.1.

APPENDIX C. ANALYSIS OF THE LTL FORMULA GENERATION ALGORITHM xvi

D SPIN V3.4.1 ERROR ANALYSIS

This appendix presents a short analysis on the test case that uncovered an
error in SPIN v3.4.1 in the experiments of Chap. 6.

In this test case, the randomly generated formula was

ϕ = ��

(

p4 ∧
(

p2 U (¬¬p3 ∧ ♦p4)
)

)

,

where p2, p3 and p4 are atomic propositions. This formula has 12 nodes in its
parse tree. A fragment of the Büchi automaton (including its initial state with
all outgoing transitions) generated by the implementation from this formula
is shown in Fig. D.1.1 It is important that the initial state of the automaton is
not an accepting state (the automaton has one acceptance condition).

The following sequence ξ provides a witness that proves the incorrectness
of the automaton:

ξ = 〈{p3, p4}, {p3, p4}, {p3, p4}, . . . 〉.

This witness was found automatically using the testbench.
It is easy to see that the automaton can never execute the transition corre-

sponding to the downward arrow when given ξ as input. Instead, the automa-
ton can only stay forever in its nonaccepting initial state, so the automaton
will reject the witness.

However, the formula ϕ is satisfied in the sequence ξ, so the automaton
should accept ξ:

First of all, ξ0 |= p4, so ξ0 |= >U p4 ≡ ♦p4. In addition, ξ0 |= p3, so
ξ0 6|= ¬p3, from which it follows that ξ0 |= ¬¬p3. Therefore, ξ0 |= ¬¬p3 ∧
♦p4. This in turn implies that ξ0 |= p2 U (¬¬p3 ∧ ♦p4), and since ξ0 |= p4,
ξ0 |= p4 ∧

(

p2 U (¬¬p3 ∧ ♦p4)
)

is true.
Since ξi = ξ for all i ≥ 0, it now follows that ξi |= p4 ∧

(

p2 U (¬¬p3 ∧

♦p4)
)

is true for all i ≥ 0. From this it follows directly that ξi |= ��

(

p4 ∧
(

p2 U (¬¬p3∧♦p4)
)

)

for all i ≥ 0, so especially ξ0 = ξ |= ϕ, and the formula
is satisfied in the witness. This proves that the Büchi automaton incorrectly
rejects the witness.

(In practice, the testbench did a similar analysis automatically by first con-
verting the witness into a sequential Kripke structure consisting of one state
with a self-loop and then model checking the formula in the structure using
the restricted LTL model checking algorithm of Sect. 5.2.)

1The same automaton was obtained also from the slightly simplified formula �

(

p4 ∧
(

p2 U (p3∧♦p4)
)

)

. Actually, the formula still contains some redundancy: it can be checked

that �

(

p4∧
(

p2 U (p3∧♦p4)
)

)

is equivalent to �
(

p4∧(p2 U p3)
)

; however, this formula does
not translate into the same automaton any longer. It could be argued that “real” formulae
to be model checked do not usually contain this kind of redundancy. However, any imple-
mentation errors should still be fixed in order to remove any possibility of ever obtaining
incorrect automata.

APPENDIX D. SPIN V3.4.1 ERROR ANALYSIS xvii

,{p , p3 4 {p , p , p2 3 4}}{ }
,{p , p4 {p , p , p2 3 4}}2{ }

(5 more states)

Fig. D.1: A fragment of the Büchi automaton generated by SPIN v3.4.1 from
the formula ��

(

p4 ∧
(

p2 U (¬¬p3 ∧ ♦p4)
)

)

HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY FOR THEORETICAL COMPUTER SCIENCE

RESEARCH REPORTS

HUT-TCS-A53 Stefan Rönn

Semantics of Semaphores. 1998.

HUT-TCS-A54 Antti Huima

Analysis of Cryptographic Protocols via Symbolic State Space Enumeration. August 1999.

HUT-TCS-A55 Tommi Syrjänen

A Rule-Based Formal Model For Software Configuration. December 1999.

HUT-TCS-A56 Keijo Heljanko

Deadlock and Reachability Checking with Finite Complete Prefixes. December 1999.

HUT-TCS-A57 Tommi Junttila

Detecting and Exploiting Data Type Symmetries of Algebraic System Nets during

Reachability Analysis. December 1999.

HUT-TCS-A58 Patrik Simons

Extending and Implementing the Stable Model Semantics. April 2000.

HUT-TCS-A59 Tommi Junttila

Computational Complexity of the Place/Transition-Net Symmetry Reduction Method.

April 2000.

HUT-TCS-A60 Javier Esparza, Keijo Heljanko

A New Unfolding Approach to LTL Model Checking. April 2000.

HUT-TCS-A61 Tuomas Aura, Carl Ellison

Privacy and accountability in certificate systems. April 2000.

HUT-TCS-A62 Kari J. Nurmela, Patric R. J. Östergård

Covering a Square with up to 30 Equal Circles. June 2000.

HUT-TCS-A63 Nisse Husberg, Tomi Janhunen, Ilkka Niemelä (Eds.)

Leksa Notes in Computer Science. October 2000.

HUT-TCS-A64 Tuomas Aura

Authorization and availability - aspects of open network security. November 2000.

HUT-TCS-A65 Harri Haanpää

Computational Methods for Ramsey Numbers. November 2000.

HUT-TCS-A66 Heikki Tauriainen

Automated Testing of Büchi Automata Translators for Linear Temporal Logic.

December 2000.

ISBN 951-22-5275-9

ISSN 1457-7615

