Helsinki University of Technology Laboratory for Theoretical Computer Science
Research Reports 66

Tekrillisenkorkeakouluntietojenkasittelyteorian laboratorion tutki musraportti 66

Espo02000 HUT-TCS-A66

AUTOMATED TESTING OF BECHI AUTOMATA TRANSLATORS
FORLINEAR TEMPORAL LOGIC

Heikki Tauriainen

‘ \ aILLINEN KORKEAKOULU

TEKNISKA HOGSKOLAN

HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITAT HELSINKI
UNIVERSITE DE TECHNOLOGIE D'HELSINKI

Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 66
Tekrillisenkorkeakouluntietojenkasittelyteorian laboratorion tutki musraportti 66
Espo02000 HUT-TCS-A66

AUTOMATED TESTING OF BECHI AUTOMATA TRANSLATORS
FORLINEAR TEMPORAL LOGIC

Heikki Tauriainen

Hédsinki University of Technoloy
Depatment of Compuer Sdenceand Engineeing
Laboratory for Theoretical Compuer Sdence

Teknllinenkorkeakoulu
Tietoteknikan osago
TietojenkBsittelyteorian laboratorio

Distribution:

Hédsinki University of Technoloy

Laboratory for Theoretical Compuer Sdence
P.O.Bax 5400

FIN-02015 HUT

Tel. +358-0-451 1

Fax. +358-0-451 3369

E-mail: lab@tcs.hu®

¢ Heikki Tauriainen

ISBN 951-22-5275-9
ISSN 1457-7615

Picaset Oy
Hédsinki 2000

ABSTRACT: The formal veri cation of n ite-shtereactiveand concurrent
systemsiqinsttemporallogical requirementscan be done by model chedk-
ing, which hasthe adwantage of being well suited for automation. How-
ever,reasomg aboutthe correctnessf systemsisingautomatededniques
placeshigh demanddor ensuringthe reliability of the model chedking tools
themselves.

This work describegestingmethodsfor detectingimplementation errors
in aspecc classof algorithmsrequired in the automat-theoreticmodel
chedking procedurefor propositionallinear temporallogic (LTL). Theseal-
gorithmstranslateemporalrequirementsinto Biichi automat thatareused
in the model cheding process.Most of the testmethodscan be easilyin-
tegratedinto an automatictestingtool for translationalgorithm implemen-
tations. Experimentl resultsusing a randomnized tool for testingthe cor-
rectnes®f severalmplementationsincluded in realmodelchedersarepre-
sented.This testinghasprovedto be an effectivemethodfor nd ing imple-
mentation errorsin the translatos.

This work alsopresentsa restrictedLTL model cheding algorithm de-
signedto work in a verysimple subclasf systemspn which the analysis
of testfailuresis based. This algorithm helpsto automaticallycon rm the
incorrectnes®f atranslationalgorithmimplementation.

KEYWORDS: Model cheding, lineartemporallogic, Blichi automat, algo-
rithm testing

CONTENTS

1 Introduction 1
2 State-Transition Models of Systems 3
3 Linear Temporal Logic 6
4 Automata-Theoretic LTL Model Checking 10
4.1 ThelLTL Model CheckingProblem 10
4.2 Automata-TheoreticApproad to LTL Model Checking . . . 11
421 BilchiAutomata 11
4.2.2 Kripke StructuresasBuchi Automata 14
4.2.3 SyndironousProduct 15
4.2.4 Solvingthe LTL Model Chedking Problem Using

Buchi Automata 19
4.2.5 Checkingthe Existenceof AcceptingExecutions. . . 21
4.2.6 ImplementationConsiderations. 23
5 Testing LTL Translation into Biichi Automata 25
5.1 TestMethodsfor LTL-to-Budi Translation 26
5.1.1 AnalysiofBuchi Automata 26
5.1.2 Usingthe LTL Model Checking Procedure. 32
5.2 TestFailureAnalysis 38
6 Experimental Results 44
6.1 AutomatedTestbenb for LTL-to-Budi Translatos 44
6.1.1 Testbenb Operation. 44
6.1.2 Generatinglnput fortheTests. 45
6.2 TestArrangements. 48
6.3 TestResults., 51
7 Conclusions 63
Bibliography 65
A Emptiness Checking in Global Synchronous Product i

B Correctness of LTL Model Checking Algorithm for Sequential
Kripke Structures il
C Analysis of the LTL Formula Generation Algorithm X
C.1 Finding the ExpectedNumber of Operatosin aFormula . . X
C.2 AdjustingOperatorPrioritiesin the Algorithm. Xiv

D SPIN v3.4.1 Error Analysis Xvii

1 INTRODUCTION

The goalof verification is to shawv that a givenhardware or softvare system
conformsto its speccations and cannot behavein waysthat might lead
into unexpectedundesirableor evencritical situations.Formal veri cation

methodstry to achievethis goalby proving thatunintendedbehaviourin the
systemstheoreticallyimpossible For example thesetechniquescanbe used
in hardwaresystendesignto chedk the correctnessf hardwarespec cations

beforeactuallybuilding the system.This may evenreducethe overallpro-
duction costsby removing(or decreasing}he possibilitythat designerrors
will needto be xed in the n ishedproduct.

Model checking [1, 21] is one of the techniques applied espeally in

the formal veri cation of reactiveand concurrent systemsand their spec-
cations, e.g.data communications protocols. This technique operateson
a model built from the original speccations of the systemto be veri ed.
Basically the modelis a (possiblyabstractedjepreseration of the original
systemand its behaviourre ects the systens behaviourin light of a given
propertyto be veri ed. Verication then proceedswith chedking whether
this formal model hasthe givenproperty

Alsothe propertiesto be veri ed needto be statedin a form that sup-
portsexpressingequirementson the systenmodel in termsof the chosen
modelling formalism. Model chedking makeswide useof varioustemporal
logics for expressingheserequirementsas formulae of a chosentemporal
logic. The requirementsconcernthe systens behaviourastime passe¢e.g.,
the relative order of eventsobservedn the system)and they may include
temporalconceptssud as“always”,“eventually”or “in n itely ofter?’. Three
commonlyusedtemporallogicsin modelchedking arethe computationtree
logic (CTL), the linear temporallogic (LTL), and the full brandiing time
logic (CTL*). (For adetailedreviewof all theselogics,seee.qg.[11].)

Different logicshavedifferent expressiv@ower, which affectsthe nature
of the propertieghat canbe expresseth the logic. The varietyin the expres
sivenessf differentlogicsresultsin alargenumber of model chedking tech-
nigues,someof which may be applicableonly to certain logics. This work
concentrateson model cheding propositional linear temporal logic [20]
with techniquesbasedn the generalautomata-theoretic approach to model
chedking dueto Vard and Wolper[31, 30].

Like anyother complextaskthat requireshigh predsenessmodel check-
ing spec cations of realsystemg madeeasietthroughthe useof automated
tools for performing the task. Model chedking techniques translatequite
readly into generalveri cation procedures thatcanin principle be easilyau-
tomated. Practicaltoolswith abilities for model cheding varioustemporal
logicsinclude the model chedker SPIN [10] designedor the veri cation of
protocolsthe PROD tool [33, 34] for the analysi®f systemaodelledasPred-
icate/Transitionnets[7], andthe SMV hardware systemmodel cheder [18]
basedn symbolicveri cation techniques(seee.g.[11]).

Clearly, the correctnes®f the resultsgiven by any softvare tool that is
usedto reasonaboutthe propertiesof somesystem(e.g., another piece of
softvare)is highly dependenton the correctnessf the tool implementation

1. INTRODUCTION

itself. Provingthe tool implementation correctusingautomatediechniques
would certainly be verydesirable. However,model cheding tools are of-
ten complexpiecesof softvarethemselvesand their full veri cation is still

out of read of current algorithmic veri cation tedhniquesin practice. In

orderto alleviatethe unavadablesstate explosion problem (seee.g.[29]) that
makesnodelcheding of complexsystemslif cult in practice,modelched-
ing toolshaveto usemanynontrivial techniquesfor perfornming their taskin

a memory-ef dent way Unfortunately thesetechniquesmay increasethe
complexityof the modelcheding toolsthemselvesyhich makeshem more
proneto implementation errors.

Testingandsimulation arecommonmethodsfor exanining the behaviour
andreliability of systemswhosedetailed analysisnay otherwisebe too com-
plicated. Even veryinformal testingtechniquescan be of valuable help in
uncoveringerrorsin software. Sinceit maybedif cult to proveimplementa-
tions of model chedking algorithmscorrectautomatically testingcan offera
simpleapproat applicableto improvingthe robustnessfimplementations
of the algorithmsusedin model cheding tools.

LTL modelcheding toolsbasedn the automag-theoretiapproat usu-
ally employ a translationof linear temporallogic propertiesinto n ite-sate
automat overin n ite words(Buchi automas). In comparisonto the other
phasesf LTL model cheding, the formula translationphasecan be rel-
atively hard to implement. Errorsin the implementation of a translation
algorithm may createa sourceof model cheding errors that may degrade
the reliability of the tool. This work describesmethodsthat can be used
for testingthis phaseof the model cheding procedurefor LTL (referredto
asLTL-to-Biichi translation). The testingmethodscan be automatednto a
softvarepadagefor testingrealimplementationsof translationalgorithms—
eventhoseusedin realmodel chedking tools. This workdescribesanimple-
mentation of someof thesemethodsinto arandomzedtestbenb for LTL-to-
Bichi translatos (an extendedversion of the one describedn [26, 27]), to-
getherwith experimenal resultsof testanadeon severalndependenttrans-
lation algorithm implementations. To improvethe capabilitiesof detecting
errorsin the translatos, the testbenb makesuseof an LTL modelcheding
algorithmfor arestrictedclassof systemmodels.

The following two chaptess introduce the formalismsusedto represent
the systemmodels and the propertiesto be veried. Chapter 4 reviews
the automan-theoretionodel cheding procedurefor linear temporallogic,
which formsthe core of severatestmethodsfor LTL-to-BUdi translation
algorithms. The testmethodsthemselvesare describedin Chap. 5. The
chapteralsoincludesadescriptionof an LTL model cheding algorithm for
the restrictedclassof modelsthat arisesn the analysisof testresults. The
algorithmenhanceghe powerof the testmethodsby providng awayto con-

rm the failure of a particular LTL-to-Biici translator Chapter6 presents
the resultsof applyingsomeof the testmethodsto severateal LTL-to-Blici
translationalgorithm implementations. The work endswith someconclu-
sionsin Chap. 7. The four appendcescontain detailson someissuesnen-
tioned only brie y in the text,sud asthe correctnesgroof of the restricted
LTL modelcheding algorithmdescribedn Chap 5.

1. INTRODUCTION

2 STATE-TRANSITION MODELS OF SYSTEMS

Model cheding techniquestradtionally assumethe systemdescriptionto
be givenasa nite state-transition graph. The systemis thought to have
a (unique) state at ead instant of its operation,and it operatesn discrete
stepsby making transitions from a stateto anotherstate. The model of the
systems built by exhaustivelynumeratingall the possiblestateshatthe sys-
tem canevervisitduring its operation(called the state space of the system).
Transitionsare then added betweenthe statesto representall the possible
waysin which the systemcan changeits state during operation! Because
the operationof the systenmay vary accordng to its inputs, it can behave
in manydifferentways.Ead of thesewaysis individually calleda behaviour
(or equivalently, an execution) of the system.The model built from the sys-
tem capturesil] thesepossibilitiesud thatanyactualoperationobservedn
the systencan be representedisan executionof the model? An execution
canbedescribedasa seqienceof stateshe systenvisitsduring its operation,
or, alternativelyasa seqienceof transitionsthe systemmakeswvhen moving
from one stateto another In this work, executionof the systenwill always
be treatedasseaiencesof states.The systems assumedo havea unique ini-
tial state whereit beginsits operation. In addition, the modelsareassumed
to havea n ite statespace.

Model cheding a givenpropertyin the systenrequiresthe ability to dis-
tinguish betweenthe executionsof the systemwith respecto the property
This is done by augmentingead individual systenstate with information
describingthe characteristic®f the state. The characteristicof any system
executionarethen determined by the characteristic®f the statesoccurring
in the execution.The informationasso@tedwith the statescanbe expressed
in temporallogic by usingasetof atomic propositions, ead of which isgiven
a xed truth valuein ead individual systenstate. The propositionsacquire
their semanticgrom the original systenspec cation andthe propertyto be
chedkedin the model.

An additional assumptiorconcerring the executionsof the systermis that
everyindividual executionof the systems alwaysin n ite. Thisis areason-
ableassumptiorabouta reactivesystenie.g.,a servemprotocol) that should
continue respondhg to its inputs inde n itely. We thereforedenythe possi-
bility of any n ite terminating behavious in the systemmodel to simplify
the discussion. If the systemhasany n ite behavious, they can be inter-
pretedasin n ite behaviousin which the systenwill stayforeverin the nal
state of the terminating behaviouroncereading it. A systenmodelcanbe
augmentedwith extratransitionsand statesin orderto makeit satisfythis re-
quirement. Additional atonic propositionsnight alsoneedto be introduced

lIn practice, the systemspeg¢cations are often givenin a more high-level notation,
usinge.g.Pr/T nets[7], processlgebrage.g.CCS [19]) or varioustool-spetc speccation
languagege.g.PROMELA [9]). The Kripke structuresiescribecherecanbe consideredow-
level semanticalinterpretationsof the systemdescriptions;if necessarythey can be built
evenautomaticallyfrom varioushigh-levelspe¢ cations.

ZIn the discussionthe systenis oftenidenti ed with its model. Therefore wewill often
spealof executionof the systenwhen actuallyreferringto executionsof the model.

2. STATE-TRANSITION MODELS OF SYSTEMS

if the goalis to chedk for the reatability of thesestates.

Formally, the systemmodelsarede ned asnode-labelleddirectedgraphs,
called Kripke structures in the model chedking context.In orderto exclude
from the graph any state segqiencesthat cannot be extendedinto in n ite
onesbhy repeatedlyappendng stateso the end of the seqience,everystateof
the structureis required to haveat leastone successorThis meansthat the
transitionrelationistotal.

Let AP denoteagivennonempty n ite setof atonic propositionslescrib-
ing the propertiesof the systenstates.

Definition 1 (Kripke structures) A Kripke structure is a quadruple M =
kS; ; s% i, where

S is a finite set of states

S S isa transitionrelation that satisfies the condition 8s 2 S :
92 S:(s;8) 2 ,

s? 2 S is the initial statg and

: S 7! 247 is a labelling function that associates each individual
state with a set of atomic propositions. Semantically, (S) represents
the set of propositions that hold in a state s 2 S.

An infinite path in the Kripke structure is an infinite sequence of states
hso; S1;Sp;:::1 2 S¥ % such that (S,;Sse1) 2 foralln 0. [|

In order to reasonabout the propertiesof the executionsof the system
model, it is usefulto consideronly thosepathsthat beginin the initial state
of the Kripke structure. Theseare the pathsthat correspondo the execu-
tions of the system. Given a Kripke structureM = hS; ; s% i, the set
fhsg;S1; S0 :ii 2 S¥jsp = sPand(s;;si+1) 2 foralli Og is called
the setof executions (or behaviours) of the structure.

The state-labellingfunction can be usedto project any path in the
Kripke structureonto an in n ite seqience of labelsof the statesin the se-
qguence. Theseseiencesof state labelscan be consideredin n ite words
whose'‘letters” aresubsetsf AP, andthe setof all letters(247) is calledthe
alphabet. Moreover,anysubset of (247)~ can be considereda language
of in n ite wordsoverthe alphabet24”. In particular,wewill denoteby L »,
the setof wordscorresponahg to the executionsof a givenKripke structure
M, and we saythat L 5, is generated by M . This languageanalogywill be
usedlaterin Chap.4 when discussingautomag-theoretianodel cheding of
lineartemporalpropertiesn Kripke structures.

The following example demonstrateghe different conceptsdescribed
above.

’For anynonemptysetX, X« denoteshe setof all in n ite seqiencesthat can be con-
structedfrom the elementsof X .

2. STATE-TRANSITION MODELS OF SYSTEMS

S,
{p} > @
S1
(#) 9
S3

Fig. 2.1: A simple Kripke structure

Example 1 Let AP = fpy;p.g and let M = IS; ; s i be the Kripke
structure defined as follows:
S = fs0;51;52; S35 S40;
f(S0; 1); (So; S2); (S1; S2); (S1; S3); (S1; Sa);
(S2;52); (S3; S0); (Sa: $4)G;

$? = s

(s0) = fmo;

(s1) = fpuog;

(82) = 1,

(s3) = fpu;p2g; and
(sa) = fp0

This Kripke structure can be depicted as the node-labelled directed graph
shown in Fig. 2.1. The states s 2 S correspond to the nodes of the graph, the
transitions (S;8") 2 correspond to the directed arcs between nodes, and the
function gives a label for each node of the graph.

Two executions of M are

X1 = 8;S1;S3,S0;S1;S3;:::1 and Xo = h8g;Sp;Sy;So; i
They correspond to the infinite sequences of state labels

h (So); (s1); (Sa); (So); (s1); (Sa)siiii
hfp.g; f p10; f p1; P20; f P1Q; f P10; F P1; P20; 20t

1

and

2

hfpug;;:555500;
respectively. These sequences of state labels also belong to the language L y;
generated by the structure.

The path bsg; S1; Szi is not an execution, because it is finite. The infinite
path hsy1; Sg; So; S1; Sa; Sa; Sa; 151 is not an execution either, since it does not
begin in the initial state So.

The infinite sequence = hfp,g; fp10; f p20; f P10; f P20; fPag; 201 does
not belong to the language L ys, since M has no execution corresponding to

h (so); (52); (S2); (S2);:::i

2. STATE-TRANSITION MODELS OF SYSTEMS

3 LINEAR TEMPORAL LOGIC

This work concentrateson testingmodel cheding algorithmsusedin the
veri cation of propositional linear temporal logic. This logic, introduced
by Prueli [20], is an extensionof ordinary propositionallogic with temporal
operators, and it can be usedto expressjualitative temporal propertiesof
individual executionsof a Kripke structure.This chapterpresentshe formal
de nition andsemanticof LTL. The semanticof LTL canalsobe givenan
interpretation on Kripke structureswhich providesawayto stateatemporal
requirementconcernng all executionsof the structure.This extensiorthen
leadsto the model cheding problem for LTL, which will be discussedn
Chap.4.

The setof lineartemporallogic formulaeis de ned inductivelyasfollows.
Asbefore, AP denotesa n ite nonemptysetof atomic propositions.

Definition 2 (Linear temporal logic) The set of linear temporal logic for-
mulae consists of the finite-length strings that can be obtained by the appli-
cation of the following rules:

All atomic propositions p 2 AP are LTL formulae.

If* isan LTL formula, then : ' isan LTL formula.

It' and are LTL formulae, then (' _) is an LTL formula.
If' isan LTL formula, then X' is an LTL formula.

It' and are LTL formulae, then (" U) is an LTL formula.
|

The semanticof linear temporallogic formulae arede ned overin n ite
seqiencesof subsetef AP asfollows.

Definition 3 (Semantics of LTL) Let = hyo;y1;Y;:::0 2 (247)% be an
infinite sequence of subsets of AP, and let ' be a linear temporal logic
formula. Let ' denote the infinite subsequence of beginning at the i™"
successor of Yo in the sequence. Thatis, © = = hygyyyz;:iiii, 1=
hy.;yo;:iii, 2= hyy;:::i, and so forth.

We use the notation | ' to say that the sequence satis es(or alter-
natively, is a model of) the formula "' , and the notation 6 ' is used to say
that does notsatisfy" . The relation | between the infinite sequences over
subsets of AP and LTL formulae is given by the following conditions:

Fp ift p2 Yo, the first element of the sequence .

F ' iff 6" .

FC_) it F'or F

F X' iff ‘g

F (U) iff thereexistsi Osuchthat ‘| ,and forall
0 j<i, 7F™"

If' has no models in (247), we say that' is an unsatis ableformula.
Conversely, if : * has no models in (24F)«," is called a valid LTL formula.
|

3. LINEARTEMPORAL LOGIC

¢ OO OO
OO
o OO OO

Fig. 3.1: lllustration of the semantics of the temporal operators X, U, , and R

Other logical connectivesand Booleanconstintscan be de ned asab-
.. . de . . .
breviationsin the usualway: > d (p_ : p) for an arbitraryatomic proposi-

. de
tionp 2 AP (Booleanconsant“true”), ? / > (Booleanconsant“false”),
¢~ def def

(" _:) (conjunction),(" ')
and(' $) ¢!)A(1 ') (equivalence).

De n ition 3impliesthatthe satis abilityofanLTL formulain anin n ite
segience 2 (247)« dependnlyonthe r stsubsebf AP in the segience,
if the formula doesnot contain any X or U operatos. However,the satis a-
bility of formulae containing thesetemporal operators maydependon some
otherpartof the seqenceor eventhe entire segience.

Intuitively, the subsegences ¢ of a seqience represent‘the siate of
the world” at discreteconsecutivaime stepsorresponahg to the increasing
valuesof theindexi. Therefore the seqience * canbethoughtof following

0 i stepslater” in the future. This analogycan help to understand the
temporalinterpretation of the X and U operatos. In the following, we shall
giveaninformal descriptionof the semantic®f theseoperatos,togethemwith
the de nitions of afewcommonlyusedothertemporaloperatosthatcanbe
de ned usingthesebasicoperatos. SeealsoFig. 3.1for anillustration.

The temporalformula X' issatis edin anin n ite seaqience if the for-
mula' holdsin thein n ite subsegence ! of ,i.e.,“atthe nexttime step
in the future”. The X operatoris calledthe “Next time” operator

Theformula(" U) holdsin anin n ite seaqience if andonlyif holds
“now or sometime in the future” (i.e., in somein n ite subsegence ¢ of

, Where i 0), and' holds*“until” becomestrue (i.e., in all in n ite
subsegencesof the original seqiencebeginnng atsomenonnegtiveindex
lessthani). Therefore,U is calledthe “Until” operator However,” needs
not hold in anysubsegenceof if alreadyholdsin © (i.e.,in the whole
seaqience).

New operatoscanagain be de ned in termsof the U operator:two com-

(:' _) (implication),

monly usedoperatosare ' ot (> U"), expressinghat' eventually holds

3. LINEARTEMPORAL LOGIC

in aseaqience,and ' ol : 01", which is usedto saythat' always holds

in aseagience. We will alsousethe dual of the U operatorR calledthe “Re-
leaseoperatorwhich isde ned by (" R) ol (: " U:). Intuitively, the

formula (" R)istruein anin n ite seqience if andonlyif etherholds
“forever”in the sequence(i.e.,in all in n ite subsegencesof), orif both'
and hold “at the sametime now or somevherein the future” (i.e.,in some
inn ite subsegence ‘ of withi 0), and holdsalsoin all “earlier”
subsegences(i.e., in all subsegences 7 with 0 j < i). In this case,
“releases” in the seqience,so neednot remaintrue anylongerafterthe
r sttrue occurrenceof ' .

Example 2 Let AP = fpg;p20, and let = hyo;y1;Y2;:::1 = hfpig; f pi0;
fp1; P20; f P10; f Pr0; f p1;P20; i1 be an infinite sequence over 247, We
show that this sequence satisfies the LTL formula JOp,, by the direct ap-
plication of the semantics of LTL. This formula corresponds to the property
“p2 is always eventually true in the sequence”, or, in other words, “p; is true
in the sequence in n itely often”.

The formula is first rewritten using the basic temporal operators:

F 0op; ift
= 0> Upy) iff
F:0:(>Upy) iff
F: >U:(>Up) iff
6>U: (>Up):

By the semantics of LTL, F > U: (> Upy) if there exists ani 0 such
that * F : (>Upy), and forall0 j < i, 7 >. Therefore, 8j
> U: (> Upy) holds only if this is not the case. This can occur in two ways:

(1) Thereisnoi Osuchthat " : (> Upy) is true, thatis, ‘F > Up,
holds foralli 0.

(2) Foralli ~ Osuch that * E : (> Upy) there exists a0 j < i for

which 7§ >.
In fact, the case (1) holds in the given sequence. First of all, we note that for
alli 0, " >:
Z:j: > iff
"Fpi_ip , iff
'F or ‘'Fuipy iff
‘Fp or "6 pu;

which is trivially true, since either p; 2 y; or py 62y; for all subsets y; 2 247
andi 0.
We then show that for alli 0, *jE > Up,. We note that forallk 0,
k3 = ¥ in the given sequence. By definition, *F > Up, if and only if
there exists an i’ i such that “ F ppand foralli j < i, i >. It
has already been shown that 7 | > forallj 0. We also know that 2 =
hfpy; p20; f p10; f Pu0; f pu; P20 f P10; fPug; i 10 Po. Because **3 = * for
allk 0, it follows that 2*3* = p, forallk 0, and therefore foralli 0
there must existani’ i such that “ F po, so F OOps. [

3. LINEARTEMPORAL LOGIC

LetM = 1S; ; s% i beaKripke structure.Sincethe labelling function

mapseverypathin M into anin n ite seqienceof subset®f AP, gives
the temporal interpretation of anypathin the structure.More predsely the
semanticof LTL areinterpretedon Kripke structuresasfollows:

Definition 4 (LTL semantics in Kripke structures) Let X = Isg;S1;Sy;
:1i 2 SY¥ be an infinite path in a Kripke structure M, and let' be an
LTL formula. We say that the path X satis es' , denoted X | ', if and only
if the infinite sequence , = h (So); (S1); (S2);:::i satisfies the formula

We say that the Kripke structure M satisfies the LTL formula" if and only
if all paths X 2 fhsg;sy;Sp;:::1 2 S¥jsg = s®and (s;;S41) 2 forall
i 0g(i.e., all executions of M) satisty" . We denote thisbyM F'. R

The latterpartof thisde nition considesonly the executions of the struc-
ture andthereforedoesnot require anythingof the pathsthatdo not beginin
theinitial stateof M . Therefore.evenif M E ' istrue,M maystill contain
pathsx forwhich x E ' doesnot hold. We neverthelesasephrasesike “the
formula’ holdsin M” to meanthat' holdsin all executions of M. This
shouldnot giveriseto any confusion,sincewe are usuallynot interestedn
pathsthat arenot executions.

The semanticof LTL imply that an executionx of a Kripke structureM
satis esan LTL formula ' if andonly if it doesnot satisfyits negation : ' .
However this“symmetry’doesnot applyto the satis abilityof the formulain
the whole structureM . SinceM E ' holdsif andonly if all behavious of
M satisfy , evenasingleexecutionsatisfying ' (i.e.,acounter-example for
")issuf cientto shavthatM 6j ' istrue. Howeverthis doesnot generally
imply thatM | : ' would then hold, sincethis is agin a statementoverall
execution®fthe structure.Therefore althoughit isnot possiblehatM
andM E : ' hold atthe sameime, it maybethatneither of theseproperties
holdsin the structure. This occursif M hasseverapathsbeginnng in its
initial state, someof which satisfythe property’ , while others satisfythe
necatedproperty: ' .

The following exampledemonstratesnterpreting the semanticsof LTL
on the executionof a Kripke structure.

Example 3 The sequence of the previous example corresponds to the ex-
ecution X1 = I8o;S1;Ss; So; S1;Ss; 111 of the Kripke structure M given in
Example 1 (see also Fig. 2.1). We showed in the previous example that the
LTL formula COQp, holds in this execution.
However, M 6] (I0p,, because M also has the execution X, = hsg; Sp; Sy;
Sp; 11, and the formula does not hold in the sequence ,, = h (So); (S2);
(S2); (s2);:::i = hfpyg;;;;;; oi:0. This is because P, is never true in this
execution, which can again be shown using the semantics of L'1L as in the
previous example.
(As a matter of fact, the executions Xy and X, together show that M
: OOp2 does not hold either, since X1 6§ : JOP,, but X F @ OOp,.) [

3. LINEARTEMPORAL LOGIC

4 AUTOMATA-THEORETIC LTL MODEL CHECKING

This chapterintroducesthe model cheding problem for linear temporal
logic and reviewsdts automat-theoreticsolution, which createghe needfor
translatingLTL formulae into Biichi automat. Since the model chedking
procedurefor LTL formsasign cant basidor thetestingtechniquesfor LTL-
to-Budi translationalgorithmimplementations(to bedescribedn Chap.5),
this chapterincludesafairly detailed descriptionof the generaimodel check-
ing procedure.

4.1 THE LTL MODEL CHECKING PROBLEM

In short,LTL modelcheding tellswhetherall behavious of a givensystem
model satisfyagivenLTL property For example,one might be interestedn
con rming that the systenwill alwaysreturn to some“safe”state after per-
forming someoperation,regardlessof the outcome of the operation. (For
example adatacommunicationsprotocolcould be chededfor the property
thatit will alwaysrecoverfrom lostmessagesssunng thatno messagean
belostin n itely manytimes.)If the systemsfound to haveanexecutionvio-
lating the desiredproperty the systermrhasan errorand needsto be mod ed
in orderto preventthe occurrenceof the undesiredoehaviour

De n ition 4 of the previouschaptergivesawayto interpretthe semantics
of LTL onthe executionsf Kripke structures.The modelcheding problem
for linear temporallogic canthen be statedasfollows.

Problem 1 (The LTL model checking problem) Given a Kripke structure
M and a linear temporal logic formula* , doesM F ' hold?

In the LTL model cheding problem, linear temporallogic formulae ex-
presgequirementsconcernng all executionf a Kripke structure.Alterna-
tively, sincea singlecounter-examples suf cient for provingan LTL prop-
ertyfalsein the setof executionsof the structure,the problemcanbe solved
by cheding whetherthe structurehasan executionsatisfyinghe negation of
the sameproperty By the semanticof LTL, the nonexistencef sud an ex-
ecutionimpliesthatthe propertyitselfistrue in all executionsHowever the
verynaiveapproat of cheding eat executionof the structurein turn for
the satis ability (or unsatis ability) of someproperty(e.g.,by the direct ap-
plication of the semantic®fLTL) isnot generallyfeasible sincethe number
of executionontainedin the structuremaybein n ite.

To nd more practicalmethodsfor solvingthe model cheding problem
for LTL, it isusefulto rephrasehe problemasa questionaboutthe relation-
ship betweenlanguage$31]. Asmentionedalreadyin Chap. 2, the Kripke
structureM can be seenasgeneratinga languageL ,, that consistsof the
in n ite wordsover state labels(chosenfrom the set24”) corresponihg to
the executionsof the model. Since alsothe modelsof an LTL formula

arein n ite seqiencesof subsetof AP, the setof all modelsof the for-
mula canactuallybe consideredanotherlanguagel ,, of in n ite wordsover
24P Therefore,the model chedking problem can be statedasthe question

4. AUTOMATA-THEORETICLTL MODEL CHECKING

whetherthe languagel ,; generateddy the executionsof the systemmodel
is containedin the language. ,, corresponihg to the modelsofthe LTL for-
mula, thatis,whetherL ,; L. Sinceasinglesystenexecutionsatis esan
LTL formula’ if andonly if it doesnot satisfyits negation : ' , the formula
' issatis edin all executionsof the systemf andonly if M hasno execution
satisfying ' . Therefore,the problem reducesto the questionwhether no
wordin L, belongsto the languagel ., corresponahg to the negation of
the LTL formula. Finding an answerto this questionamountsto cheding
whetherthe intersectionL ,; \ L -, of the languages ,; andL -, isempty

In general, however,the model cheding problem for linear temporal
logic is known to be PSFACE-completein the sizeof the formula [2], which
inevitably limits the practicalapplicability of model cheding asone of the
reasondehind the state explosionproblem. However,current computer
technologyhasmadeLTL model cheding possiblesvenin real-worldprob-
lems, and the bene ts of model cheding in uncoveringerrors in system
spec cations justify the needfor solvingthis complexproblem.

4.2 AUTOMATA-THEORETIC APPROACH TO LTL MODEL CHECKING

The studyof formal languagess closelyconnectedwith the theory of au-
tomata. Analogouslyo the viewof Kripke structuresasmodelsof systemsu-
tomata canbe consideredmodels”of languagesandtheir propertiescanbe
usedfor provingpropertiesof the languagesorresponahg to the automas.
Sincethe LTL model cheding problem can be statedasa questionabout
the relationshipbetweentwo languagesthe problemcanbe solvedby using
automat-theoretidechniques. This generalapproat to model cheding is
dueto Vard andWolper[31]; itsspec¢c applicationto lineartemporallogic
isdiscussedn [30].

4.2.1 B#thi Automata

The connectionbetweenLTL model chedking and automat theory arises
fromthefactthatthe languagd. ., consistingof the modelsof alinear tempo-
rallogicformula’ canberepresentedsanondetermnistic n ite automaton
overin n ite words—an ite state-transitiorsystemwhosebehaviousgener-
ateall the modelsof the formula. Thesestate-transitiorsystemsretradtion-
ally called Biichi automata. (More formally, anylanguagecorresponiahg to
the setof modelsof someLTL formula belongsto the classof ! -regular lan-
guagesandead sudt languagds recognzableby a nondetermnistic Blchi
automaton.Seee.g.[28].)

Insteadof thinking of a Blichi automatonasgeneratingall modelsof an
LTL formula, the automatoncanintuitively be seenasa “machine” with the
ability to tell from anyin n ite wordoverthe alphabe24? whetherit belongs
to the languagel , corresponihg to the modelsof the formula. Therefore,
Biichi automat canbe usedto testthe behavious of a systenfor the satis -
ability of linear temporallogic properties.

We usethe following de nition for Blchi automas.

4. AUTOMATA-THEORETICLTL MODEL CHECKING

Definition 5 (Biichi automata) A Biichi automaton is a 5S-tuple

A=h:Q; ;o;Fi,where
is a finite alphabet
Q is a finite set of states
Q 2 Qs the transitionrelation',

o® 2 Q is the initial statg and

F = fFy;Fy;::0; FL.Q is a finite set of accepancecondtions, where
F, Qforalll i n.
An executionof A over an infinite word = hyg;y1;Yo;:::1 2 “isan

infinite sequence of states htp; Gp; Gp; 111 2 Q¥ such that ¢p = ¢, and for all
i 0,(g; +0G+1)2 forsome ; such thaty; 2 ;.
Letr = hop; qu; ;i1 2 Q¥ be an execution of A over an infinite word
2 “.Letinf(r) Q be the set of states occurring infinitely many times in
r. We say that the execution ful Is the acceptance condition F; 2 F if and
only ifinf(r)\ F; 6 ;. If this holds for all acceptance conditionsF; 2 F , we
say thatr is an acceptingexecution of A over .
The automaton acceptsan infinite word 2 “ it and only if it has an
accepting execution over . If the automaton has no accepting executions
over , it rejects . |

Blchi automaf A = h ;Q; ;¢°;Fi withjFj8 1aresometimesalled
generalized Blchi automas to distinguishthem from automat with only
one accepance condtion. It can be shovn (seee.g.[11]) that all Biichi
automat with any nonzeronumber of accepance condtions are equally
expressivesosud adistinctionis not usedhere.

The languagel. 4, acceptedoy the Blchi automatonA consistf the set
of in n ite wordsover acceptedby the automatonA. If the automaton
represents linear temporallogic formula’ , we will referto the automaton
asA, and to the languageaccepted(or recognized) by the automatonas
La .

Bichi automat canbe seenasedge-labelledlirectedgraphs.The nodes
of the grapharethe elementsof the setQ, and the arcsbetweenthe graph
nodesaregivenby the transitionrelation sud that thereis an arcfrom state
g 2 Q toanotherstated 2 Q if andonlyif (g, ;g) 2 forsome
The arclabel is a set of alphabetsymbols,ead of which can causethe
automatonto movefrom the stateqto the stateq'.

De n ition 5 allowsa Blichi automatonto haveseverahrcsbeginnng in
a statesud thatthe labelsof thesearcsarenot disjant (i.e., they contain a
commonsymbola 2) . Therefore,the automatoncan havemany execu-
tionson agivenword. It issuf cient thatany of theseexecutionss accepting
for the automatonto acceptthe word. This nondetermnism is actuallyan

IThe “labels” assomtedwith the transitionsarede ned over2* insteadof for conve-
nience. This makesit possibleto combine all alphabetsymbolson which the automaton
can move from a stateto anotherstateinto the sametransition; seethe de nition of the
executionsf aBlichi automaton.

4. AUTOMATA-THEORETICLTL MODEL CHECKING

12

essentiatequirementfor Buchi automagto beableto expressil lineartem-
poral propertiesit canbe shavn that determnistic Blichi automat (with at
mostoneexecutionon anyinput word)arenot asexpressivasnondeternin-
istic Buichi automat (seee.g.[30]).

We will not discussherehow to actuallyobtain a Biichi automatonfrom a
lineartemporallogic formula. Thisphasen LTL modelcheding isasome-
what nontrivial taskin itself and may evenbe dif cult to handle correctly
and ef ciently in practice,which is suggestedby the experimentanadein
thisand earlierwork[26, 27] with practicalimplementations.Eventhe the-
oretical questionof LTL formula translationinto Biichi automat hasstill
gainedresearh interestwith newandimprovedtranslationalgorithmsaimed
at ef cient minimization of the number of statesand transitionsin the con-
structedautomat presenteqearafteryear The earlyalgorithmic techniques
for LTL-to-BUdi translation[31] wererelatedto tableau methods for LTL
(e.0.[35, 16, 12]). Most of the recentalgorithmsfocuson the direct con-
structionof automat. Thesealgorithmstry to usethe syntctic structureof
the LTL formula ef ciently to guide the automatonconstructionin orderto
minimize the sizeof the result. This basicapproat waspresentedn [8],
andfurtherimprovementshavebeenproposedater both insideandaround
the basicconvesionphas€5, 24, 6].

Not all languagesorresponahg to the modelsof LTL formulae havecon-
ciserepreserationsasBuchi automat. The translationof alinear temporal
logic formula ' into a Blichi automatonmay in the worst caserequire an
automatonwith 2°U¢D) siateswherej' j denoteghe lengthof' [32].

Example 4 As an example of a Biichi automaton representing a language
defined by an LTL formula, we give a Biichi automaton for the formula JOp;
from Example 2. Let AP = fpq;p0, and let Agg,, = h ;Q; % Fi be
the Biichi automaton, where

= 24 = fpug;fp0; fpu; P20
Q = [%i %Y,
= @ PO fpypg st s G PGP0 fppg ok ;
o FP20ifpiipg ;0 5 o 5 fPigfPegfppg s
G P20 fpp20 s b & 55 fP0fp20 fppg s
® = ,and
F = fomg .

The automaton is shown in Fig. 4.1. 'The states associated with the only
acceptance condition of the automaton are marked with a double circle.
Clearly, no execution of the automaton can visit the state ¢y infinitely
often, since the automaton has no transitions with Qy as the target state.
Therefore, all accepting executions of the automaton must visit the state ¢y
infinitely often. This can happen only if the automaton executes an infi-
nite number of transitions with the label fp,g;fps; P29 , so any word ac-
cepted by the automaton must contain an infinite number of symbols f p,g
or fpy;p2g. From this it follows that the word must have an infinite num-
ber of suthixes beginning with either of these symbols, and by the semantics
of LTL, p, holds in any such suffix. Therefore, the automaton accepts an

4. AUTOMATA-THEORETICLTL MODEL CHECKING

13

{{p2} . {P1. P} {@.{p}-{p} . {P1 P}

{{p2} . {p1. P}

{@,{p} {p2} {P1, P2} {7, {p} {P2} {P1, PI}

Fig. 4.1: A Biichi automaton for the LTL formula p>

infinite sequence over 2% only if p; holds infinitely often in the sequence,
which corresponds to the L'TL property JOP,.

Conversely, given any infinite sequence over 247 having the property
OOpy, the automaton can first move from the state @y to the state Qp, and
then loop between @ and ¢y indefinitely by moving from @ to Gy whenever
“reading” either of the symbols f p,g or f p1; p2g. The automaton can then re-
main in ¢ until it “reads” a symbol other than f p,g or f py; p2g, which forces
it to return to state Q. The fact that the input sequence satisfies the L'TL
property JOp, guarantees that the automaton will visit the state ¢y infinitely
often, so the input is accepted.

Therefore, the automaton accepts an infinite sequence over 24F if and
only if the sequence satisfies the L'T'L. property CJOP,. |

4.2.2 Kripke StructuresasBichi Automata

In the end of Chap. 2, the executionsof a Kripke structurewereidenti ed
with alanguagel ,; of in n ite wordsover24”. SincealsoBiichi automat
arerepresendtionsfor languagesany Kripke structurecan further be iden-
tied with a Blchi automatonthat acceptghe languagel ,;. Informally, a
givenKripke structurecanbe transformednto an equivalentBiichi automa-
ton overthe alphabet = 247 by simply copyingthe label of eat state
of the Kripke structureonto everyarc leavingthe state. In addition, all ex-
ecutionsof the automatonare trivially accepting,and thereforeno expliat
accepancecondtions arerequired. (Thisis equivalentto havingoneaccep-
tancecondtion including all statesof the automaton.)
More predsely we havethe following lemma.

Lemmal Let M = IS;; s°% i be a Kripke structure. Define the Biichi
automaton Ay, = h ;Q; ;o Fi, where

- 2AP’
Q = S7

= (s1:5)2Q 2 Qj(s;s)2 ; and =1 ()9,
® = s and
F — ..

Let = hyo;ya; Yo 100 2 (247)% be an infinite word over subsets of AP .

The automaton Ay accepts the word if and only if the Kripke structure
M has an execution X = hsp;S1;Sp;:::1 2 S¥ such thaty; = (s;) for all
i O

4. AUTOMATA-THEORETICLTL MODEL CHECKING

Kripke structure M Bichi automaton A,

Sl

Fig. 4.2: Converting a Kripke structure into a Biichi automaton

Proof: ()) Assumethat M hasan executionx = hsg;sy;Sy;:::i 2 S¥.
Thus,sp = s?, andforalli 0, (s;;si+1) 2 . Thisexecutioncorrespondso
theword = hyg;ya;Yo;:::i 2 (247)«, wherey; = (s;) foralli 0. Bythe
de nition of Ay, o° = s%, andforalli O, s;;fy,0;S41 2 . Therefore,
X is an executionof A, over . Because8F 2 F :inf(r)\ F 6 ; holds
trivially (sinceF isempty),x isanacceptingexecution,andA ,; acceptshe

word .
(() Conversely assumehatA ,; acceptdheword = hyg;y1;y2;:::i0 2
(247)«. Therefore,it hasan executionr = hop; ;G i 2 Q¥ on

whereqp = o, andforalli 0, (q; ;;0+1) 2 forsome ; sud
thaty; 2 ;. Byde nition of A,,, this canbethe caseonlyif foralli 0,
(9;0+1) 2 ,and ;=f (g)g. Becausg,; 2 ;,itfollowsthaty; = (q) =

(s;), andsinceqp = o° = <0, it followsthatr isanexecutionof M . O

Example 5 Using the construction in the above lemma, we can construct an
equivalent Biichi automaton Ay, for the Kripke structure M = KS; ; s%; i
defined in Example 1. Let AP = fpy; p2g as in the previous examples, and
letAy =h ;Q; :;d%Fi, where

24P = i py0; fpog; f o p2g

Q F%b; Ch; Op; O} GO,
= G; fPig ;th; G fPig ;% Gy fPig ;% ;
G TP %6 & TP %, G i ik ;
Gs; fpiipP2g i ; G fPgsan
o = @, and
F = ;.

By Lemma 1, this automaton accepts an infinite sequence over 247 if and
only if the sequence is the temporal interpretation of an execution of M.
Figure 4.2 illustrates the conversion. |

4.2.3 Synchronoudroduct
Any two Buchi automat A; and A, corresponthg to two languaged. 4,
andL 4, can be combinedtogetherinto anotherBuchi automatonthat ac-
ceptspredselythe languagel 4, \ L 4, (seee.g.[32]). This compositionis

4. AUTOMATA-THEORETICLTL MODEL CHECKING

15

Fig. 4.3: Thelanguages 4,, L 4, andL 4,54,

calledthe synchronous product of A; and A, (denotedin the following by
A; A)). Sincethe languageacceptedby the product automatoncorre-
spondgo the intersectionof the languagescceptedby the automat from
which it wasconstructed the productautomatoncan alsobe simply called
the intersection of two Blichi automat. SeeFig. 4.3for anillustration.

The constructionof the syndironousproduct,togethemwith the proofthat
it hasthe required propertiesaregivenin the following lemma.

Lemma 2 LetA; = h 1;Qq; 1,0 F4i and Ay = h 5;Qz; 2,00 Fai be
two Biichi automata, where Q1 and Q. are disjoint, and F1 = fF};F3; 101 ;
Flgand F, = fF2 F2;:::;F2g for some n;m 0. Define the Biichi

automaton A = h ;Q; ;d°;Fi, where

1[2
Q = 1 Q
= (®); (k) 2Q 2 Qj o
(h;)2 (% 25%)2 2 and = 1\ .6,
o = (), and
F = fF QxuF; Qu::iiFr Qu

Qi F%Q: FZ::1;Q1 F2g

Assume that (\ 6 ;,andlet = hyg;y1;y2;:::1 2 (1\ 2)¥ bean
infinite word over 1\ 5.
The automaton A accepts the word if and only if both Ay and A, accept
. Moreover, A will not acceptany wordin (1[2)“n(1\ 2)~“.

Proof: ()) Assumethat A; and A, both accept . Then, A; and A, have
executionsr; = hog; g ;i 2 Q¢ andry = hg; ;0,00 2 Qy,
respectivelysud that g = of, g3 = ¢, andforalli Oandj 2 f1;2g,
(of; 7;q,,)2 ,forsome ! ,sudthaty; 2 7. Bydenition of A,
P = () = (B, (d); 1\ (g, ;R,) 2 foralli 0
andy; 2 !\ 2. Therefore,A hasthe executionr = ho; qu; p;:::i 2

(Q: Q)“sudthatg = (¢ 2 Q: Q. foralli 0.
Sincer; is an acceptingexecutionof A1, there must for all acceptaince

condtionsF! 2 F; (1 i n)existasiteq; 2 F}! thatoccursin n itely
oftenin r,. Therefore,for ead acceptancecondtion Fil Q:2F (1

I n), therearein n itely manyindicesj 0sud that(in the executionr)
q 2 F} Qg sor intersectead of the accepancecondtionsF! Q; 2
F aninn ite number of times. BecauseQ, is n ite, there must for eath

4. AUTOMATA-THEORETICLTL MODEL CHECKING

16

accepancecondtion existasiate(q;;0Z) 2 F! Q. (1 i n)that
by itself occursin n itely manytimesin the executionr, and thereforethe
accepancecondtion FZ.1 Qyisfullled inr foralll i n.

A similar argumentshawvsthat alsoall accepaincecondtions of the form
Q1 F]? 2 F areful lled in the executionr. Therefore,r ful Is all accep-
tancecondtionsin F. It followsthatr is anacceptingexecutionof A, SOA
accepts .

(() Assumethen that A accepts . Therefore,it hasan executionr =
h(od; &B); (o cB); (@ B);:ti 2 (Qr Qp)¥, where(ag; &) = (cf;), and
foralli 0, (¢5%); (gh;%%,) 2 for some ; sud that
y; 2 ;. It followsdirectly from the de nition of that A; and A, have
executionsr; = hod; o o;::0i 2 QY andry, = hos;of;8;::0i 2 Q% on
input , respectively

Because isanacceptingexecutionof A, thereexistdor ead accepaince
condton F! Q.2 F (1 i n)astate(q;;qt) 2 F' Qthat
occursin n itely oftenin r. Therefore,the slateq,ﬁi occursin r{ aninn ite
number of times. Similarly, we can nd alsofor ead accepancecondtion
Q F?2F@ j m) asiateq,%j 2 F7 occurringin n itely oftenin ro.
Therefore,r, andr, areacceptingexecutionf A; and A,, respectivelyso
both automat accept .

Finally, it is easyto seefrom the de nition of A that A cannotevenhave
an executionoveraword 2 ([2)“n(1\ ¥, andthereforeit
can neither acceptanyword in this set. Any word in this setwould haveto
containasymbola 2 (1n) [(2n 1); however,for all transitions
(9, ;)2 ofA, 1\ ,,soa62 forall transitionsof A. O

Intuitively, the syndronousproduct of two Blichi automat capturesall
the “legal” synchronous behaviours that the original automat can haveon
any input word. Here, a “legal” syn&ronous behaviourcorrespondgo a
parallelexecutionof the original automat sud that at ead stepof the exe-
cution, the labelson the transitionschosenby the automat atthat stepshare
atleastonecommonelement.

Example 6 We compute the synchronous product of the Biichi automaton
Ay from Example 5 with the Biichi automaton Ay, from Example 4 (see
the definitions for these automata from pages 15 and 13, respectively).

Since Ay and Ay, both have the same alphabet 24| their synchronous
product A = Ay Apep, = h 5 Q; ;o Fi will have the same alphabet,
so =24 = fpgfp.g;fppg -

Since Ay contains 5 states and Apg,, contains 3 states, A has5 3= 15
states, so

Q = f(op;p); (ks o); (%: &) (6); (Gu; O);
(AR CHAF
(o);::0; (s)G

where the first element of each pair is a state of A y; and the second element
is a state of Ay, (for clarity, primes are added to the states of Ang,, to
distinguish them from the states of A ;).

The initial state @® of A is (Cp;).

4. AUTOMATA-THEORETICLTL MODEL CHECKING

17

The transition relation can be constructed as follows. Beginning in
state (Qp; @), we find the transitions starting from this state by checking
whether any transition (Qp; ;q) of Ay can be synchronized with any tran-
sition (¢, ;) of Ay, (here, qand ' can be any states of Ay and Ay,
respectively). The transitions of A s are

Q; fpg;n and o fPg ;@ ;

and the transitions of A, are

&, fp0fpupg i and o) ;;fpigfpe0;fp;p0 ;&b :

By definition of the synchronous product, two transitions (one of which is
always chosen from Ay, the other from Apg,,) can be synchronized if the
set intersection of the labels associated with the transitions is nonempty. Be-
cause fpig \ fp20;fpi;p2g = ;, the transition ¢; fp20;fpy; P20 ;
¢ of Agg,, cannot be synchronized with either of the transitions of A ;.
However, the other transition can be synchronized with either of A;’s tran-
sitions, so contains the two transitions

(;%); P9 () and (G p); TPig s (ki)

By repeating this test for the other 14 states of A, we can construct the full
transition relation , eventually obtaining the Biichi automaton depicted in
Fig. 4.4.

Finally, the acceptance conditions F are determined by the acceptance
conditions of Ay and Apy,,. Because Ay does not have any acceptance
conditions, but Apy,, has one acceptance condition f¢p; g, A will have
one acceptance condition, so

F o= (o) (o) (o) (6 %) (%),
(t; &); (s 0); (Oks o) (03 G (G)Y

As before, the states belonging to the only acceptance condition of A are
marked with a double circle in Fig. 4.4.

By Lemma 2, we know that the automaton A will accept an infinite word
over 247 if and only if the word is accepted by both Ay and Ay, As an
example of such an accepting execution, we can take the sequence

r= h(ch; p); (h;); (Gb;): (s ch); (ahi) (G) (s)
By Lemma 2, this sequence corresponds to the accepting executions
My = NOb; G Gs; O Oy G o2 ti and ra = 1o Ob; Op; Of; O G O 21

of Ay and Ay, respectively. (All executions of Ay are accepting.)

By Lemma 1, r 4,, corresponds to some execution in the Kripke structure
M from which Ay, was originally constructed (cf. Example 5, page 15). In
addition, by collecting the labels of the transitions in r we obtain the tempo-
ral interpretation hfp,g; f p10; f p1; P20; f P1Q; f P1Q; f P1; P20; i i1 of this sys-
tem execution. As seen in Example 2 (page 8), we know that the LTL for-
mula CJOP, holds in this execution. [|

4. AUTOMATA-THEORETICLTL MODEL CHECKING

18

{{p3}

{{p}

Fig. 4.4: Synchronous product of two Biichi automata

4.2.4 Solvingthe LTL Model CheckingProblem Using Biichi Automata

Usingthe syndironousproduct,we can (for anyKripke structureM andany
Bulchi automatonA ., corresponihg to the negationofagivenLTL formula)
now constructa Biichi automatonthat recognzesthe languagel ,,\ L,
Asmentionedpreviously cheding this languagefor emptinesscorresponds
to chedking whetherthe language. ,, is containedin L ,, andthereforethe
languagecan be usedto solvethe model cheding problem for LTL. This
resultfollowsdirectly from the previoustwo lemmata and can be statedas
the following theorem.

Theorem 1 LetM be a Kripke structure and let A, be a Biichi automaton
that accepts the exact set of infinite sequences over 24F satisfying the linear
temporal logic formula : ' . Let Aj; be the Biichi automaton obtained from
the Kripke structure M using the construction described in Lemma 1.

The Biichi automaton Ay A, accepts no input word over 247 if and

only iftM F '

Proof: By Lemmal, the automatonA ,; acceptsanin n ite word over24” if

andonly if the wordis the temporalinterpretation of someexecutionof M .
Lemma2 shawvsthatthe syndronousproductA,;, A, of Ay andA_, is

aBuchi automatonthathasan acceptingexecutionon anin n ite wordover

247 if andonly if the wordis acceptedby both A, andA_, i.e.,if andonly

4. AUTOMATA-THEORETICLTL MODEL CHECKING

LTL formula ¢
O
LTL-to-Biichi
translation

Asg
Synchronous
product
An® Ay

Ly MLy =D 2

Fig. 4.5: Automata-theoretianodel chedking procedurefor LTL

Kripke
structure M

if it is the temporalinterpretation of someexecutionof the Kripke structure
M, andit hasthe lineartemporalproperty: * . ThereforeA,;, A_, hasno
acceptingexecutiondgf and only if no executionof M satis esthe property
: ' . By the semanticf LTL, this holdsif and only if all executionsof M

satisfythe property' , i.e.,if andonlyif M F ' . O

By Theorem1, the model cheding problem can now be solvedby r st
convertingthe systermodelM into a corresponahg Blichi automatonA y,,
then intersectingthis automatorwith the Blichi automatonA -, constructed
fromthe negation of somelineartemporallogicformula’ , and nally check-
ing the resultingautomatonfor the existenceof acceptingexecutions. As
statedin the proof, any acceptingexecutionof the product automatoncor-
respondgo an executionof M that satis esthe property: ' . Therefore any
acceptingexecutionof the product automatonhasa corresponahg system
executionthat providesa counter-example for the propertyM ' .

In LTL model cheding, chedking the emptinessof the languagel ; \
L -, reauires constructingthe propertyautomatonfor the negated formula
: ' . This correspondso nd ing an answerto the questionwhetherall the
systenexecutionssatisfithe property’ . However,in somecasesve maybe
only interestedto know whether any systemexecutionsatis esthe property
" individually. From Theorem1 it followsthat this problemis equivalentto
model cheding the LTL property: ' in the system.n termsof languages,
thisproblemcorrespondso cheding the emptines®fthelanguage. ,/\ L,
and can be solvedusingthe syntironousproductof the systemmand a Blchi
automatonconstructedrom the property' itselfbyfollowing the samesteps
asabove Asamatterof fact, thisvariantof the LTL modelcheding problem
will be usedin the testdor LTL-to-Buchi translationalgorithmimplementa-
tionsin Sect.5.1.2.

The automag-theoreticmodel chedcing procedurefor linear temporal
logic issummarizedn Fig. 4.5.

4. AUTOMATA-THEORETICLTL MODEL CHECKING 20

4.2.5 Checkingthe Existenceof AcceptingExecutions

Solvingthe LTL modelcheding problemwith Biichi automag still requires
chedking whetherthe syndronousproductA,; A_,, ofthe systemautoma-
ton andthe propertyautomatonhasanyacceptingexecutions.This phases
oftencalledthe emptiness check, sincethe nonexistencef an acceptingex-
ecutionin the productautomatonimpliesthatthe languageacceptedy the
automatonis empty The emptinesched can be done by usingthe graph-
theoreticalconceptof maximal strongly connected components (MSCCs)
of agraph.We shall r stgivea brief descriptionof this concept.

Informally, asubsebfnodesofa(n ite) graph(acomponent ofthegraph)
is strongly connected if andonly if thereexistsa pathin the graphwith zero
or more arcsbetweenany two nodesin the subset. (It is usuallyassumed
that everynodeis readablefrom itselfby an emptypath.) The stronglycon-
nectedcomponentis maximal if anypropersupesetof graphnodescovering
the stronglyconnectedcomponentis not stronglyconnectedtself. A strongly
connectedcomponentis called nontrivial if there existsa path with atleast
onearcbetweenanytwo nodesof the component.

Clearly, the MSCCsofthe graphmustbedisjaint. Namely; if thereexisted
two unequal maximal stronglyconnectedcomponents whoseintersection
werenonempty the union of thesecomponentsvould form anotherstrongly
connectedcomponent. However,this would be in contradction with the
maximalityof the original stronglyconnectedcomponents.Sinceead node
ofthe graphbelonggo somemaximalstronglyconnectedcomponent(which
maybe atrivial MSCC), the union of all MSCCs covesthe entire graph.

The executionf a Buchi automatonarein a spedal relationto the non-
trivial MSCCs ofthe automaton(seee.g.[11]). Byde nition, ead execution
of aBlchi automatonA = h ;Q; ;q° Fi isaninn ite seqiencer 2 Q.
SinceQ is nite but r isin n ite, there must be at leastone state that oc-
cursin n itely manytimesin r, andthereforeinf(r) 6 ;. In addition, no
statein Q ninf(r) occursin r in n itely often. From this it followsthat the
executioncan be divided into a n ite pre x of statesof Q followed by an
in n ite subsegenceof statesin inf(r). By de nition of inf(r), ead statein
inf(r) still occursin n itely oftenin this subsegence. Then, anytwo states
in inf(r) mustbe reachable from ead otherin the Blichi automatonby a
pathwith atleastone arc,sinceotherwisehesestatescould not both belong
toinf(r). Becausefthispropertyinf(r) isactuallya nontrivial strongly con-
nected component of the automaton.Therefore thereexistsalsoa (unique)
nontrivial maximal stronglyconnectedcomponentthatincludesinf(r).

Accordng to De n ition 5, any acceptingexecutionr of A contains (for
all accepaancecondtionsF; 2 F,1 i n)astateqg 2 F; thatoccurs
in n itely often in the execution,and thereforethe statesq;, (1 | n)
alsobelongto inf(r). From the abovediscussionywe seethat the accepting
executionr will eventuallyremain within someunique nontrivial maximal
stronglyconnectedcomponentC Q of the automaton.Sincethis compo-
nentincludesinf(r), it alsoholdsthatfor all accepaincecondtionsF; 2 F
(1 i n),C\ F, 6 ;. Thereforethe MSCC intersectsall accepance
condtions of the automaton.

On the other hand, if the automatonhasa nontrivial maximal strongly

4. AUTOMATA-THEORETICLTL MODEL CHECKING

connectedcomponentC that is reahable from the initial state of the au-
tomaton,and C intersectsall accepaincecondtions of the automaton,the

automatonthen hasan acceptingexecution. Namely, we can in this case
constructsud anexecutionby r stfollowing somepathfrom the initial state
of the automatonto somestatein C andthen extendng the pathwith anin-

n itely repeatingstatecycle. The statesin the cycle mustbe chosensothat
the cycle contains a state from ead accepance condtion of the automa-
ton, andthereis an arc from the laststate of the cycle bad to its r ststate.
The constructionof thiscycleispossiblepecauseC intersectsll acceptaince
condtions, and all statesof C arereatablefrom ead otherby the strongly
connectednesgroperty The cycle may actually be constructedin many
ways sincethe particularorderin which the differentaccepaincecondtions

areencounteredn the cycleis not relevantto Blichi accepance.

The previousdiscussiorshavsthat a Blchi automatonhasan accepting
executionif andonly if it containsa nontrivial maximal stronglyconnected
componentthat intersectsall the accepance condtions of the automaton,
andthe componentisreadablefrom the initial stateof the automaton.

Example 7 We demonstrate the LTL model checking procedure by check-
ing whether the LTL formula : OOp, holds in the Kripke structure M of
Example 1 (page 4). That is, we wish to check whether p, holds only finitely
often in all executions of M . (We already argued in Example 2 that this is not
the case; we shall now show this using the systematic L'l model checking
procedure.)

Model checking the LTL formula : OOOp, requires first computing the
synchronous product of the Biichi automaton A (see Example 5) with the
Biichi automaton A__,, constructed for the negation of the property to be
checked. Since the negated property :: JOP; is logically equivalent to JOP,
by the semantics of LTL, we shall actually need to construct the automaton
Angp,. We have already done this in Example 4 (page 13). We have also
already computed the required product automaton A, Ay, in Example 6
(see Fig. 4.4). Thus, the only remaining task is to check whether the product
automaton has any accepting executions starting from the state (Gp; 0p)-

Using the product state notation from Example 6, the maximal strongly
connected components of the product automaton are

Ci = (%) Cz = ()
C = (%) Ce = (k)
Cs = (%) Co = (%;h); (% B); (ks B); (Gb: &)
Cs = (%) Cio = (%)
Cs = (G %) Cuu = (G h); (s)
Co = ()
(See Sect. 4.2.6 for a discussion on how the MSCCs can be computed in
practice.)
We see that the components Cy;::: ; Cg are trivial and can be discarded.

Of the remaining components, we check whether any of them intersects any
of the acceptance conditions of the product automaton. (As seen in Exam-
ple 6, the product automaton has only one acceptance condition, because

F = fFg = () (0 &) (% &); (G %): (G &) (s) (Chs)

4. AUTOMATA-THEORETICLTL MODEL CHECKING

22

(o d); (G d); (A)9). We see that Cg, Cyig and Cy; are all reachable
from the initial state (Qp; @), and

Co\F = () 6;;
Co\F = ;; and
Cu\F = (gq) 6;:

The existence of reachable nontrivial MSCCs that intersect the single
acceptance condition now confirms that the property does not hold in the
Kripke structure. We can construct an accepting execution for the automa-
ton e.g. with the component Cq1 by first taking the path Wop; o); (th; &);
(0;)i to reach the component, and then extending the path with the cy-
cle W(as; &B); (Gu;)5 (Gu; B); (Ch; Op); < i that visits the state (Gu; o) 2 F

infinitely often. We thus obtain the accepting execution
h(ch;) (s B); (G; CB); (G:) (Gs CB); (G)i

By Lemma 2, this execution corresponds to the execution hop; ¢h; Gy; Qs
Qu; i1 of the automaton Ays. 'This sequence in turn corresponds to the
execution PSp; S1; Sa; Sa; Sa; 1 & 11 of the Kripke structure M (by Lemma 1). It
is easy to see that p, holds infinitely often in this execution, so it is indeed a
counter-example for the LTL property : JOp,. |

4.2.6 Implementation Considerations

This sectiondescribesa straightfonard way to implement the nal stepsof
the LTL modelcheding procedureusingsimpleexplidt represenationsfor
the statespaceandthe Biichi automat. We assumehatwe alreadyhavethe
Blchi automatonA _, corresponihg to the negation of agivenLTL formula
' andthe automatonA ,; corresponahg to someKripke structureM .

The constructionof the syndironousproduct (asgivenin Lemma 2) re-
sultsin agraphwhosenumber of statesalwaysequalsthe productof the num-
bers of statesin the automat corresponahg to the Kripke structureandto
the LTL property respectivelyAlsothe number of transitionsn the product
is dependenton the numbers of statesin theseautomat, andit is addition-
ally boundedby the size of the alphabet24” common to both automas.
However,a direct implementation of this constructionmay producean au-
tomaton having statesthat are not readable from its initial state. Clearly,
sinceno executionof anyBuchi automatoncanvisitanyunreatable states,
thesestatescanberemovedrom the productwithout changingthe language
recognzed by the automaton? It is suf cient to computethe productasthe
minimal setof productstateghatincludestheinitial stateandisclosedunder
the transitionrelation. In practice,this can be done usinga straightforvard
algorithmthat constructghe productby performng e.g.a depth- rstseart
in the structure. The searb startsfrom the initial state of the structureand
then extendghe structurewith new statesasrecuired by the transitionrela-
tion. Furthermore,the seart algorithm can be implementedsothatit can
operatedirectly on the Kripke structureM insteadof the Blichi automaton

’Returring to the productautomatonof Example6, we could usethis factto removethe
states(q1, 45). (42, 40). (a3, 90), (94, 90). (41, ¢1), (g2, q1) and (g3, ¢1)-

4. AUTOMATA-THEORETICLTL MODEL CHECKING

A, corresponihg to the Kripke structure,soan expliat automatonconver-
sionis not required. This is easyto seefrom the similarity betweenKripke
structuresandthe correspondhg automatade ned in Lemmal.

Checking the syntironous product for emptinessrequires nd ing the
product automators maximal strongly connected componentsreadable
from its initial state. Thesecan be computedin linear worst-casdime in
the sizeof the product using e.g.the algorithm due to Tarjan [25]. From
thesecomponentsdt is easyto discardthe trivial onesby cheding that ead
componenteither containsat leasttwo statesor thatthe statein ead single-
statecomponentis connectedto itselfwith an edge.lIt is alsostraightfonard
to chedk whetheranynontrivial MSCC intersectsall accepancesetsof the
automatonby simply taking the union of the setsof accepaincecondtions
assomtedwith the statesn the MSCC. The componentcanbe discardedf
the union comprisenly anincompletesetof accepancecondtions, since
no acceptingexecutionof the automatoncan then stayin that component
forever

If the maximal stronglyconnectedcomponentsare computedby usinga
depth- rstsearb algorithm(sud asTarjarisalgorithm)startingfrom the ini-
tial stateof the product,the reatability of eadh componentfrom the initial
stateis guaranteedIf the automatonhasa nontrivial MSCC thatintersects
all accepaincecondtions, we canthen constructan actualexecutionof the
product automatonto obtain a counter-examplédor the propertyM F ' .
This executioncan be built by r st nd ing a path from the initial state of
the productto somestatein the MSCC andthen extendng the pathwith an
acceptingcyclein the MSCC. The pathfrom the initial stateto the MSCC
can be obtaineddirectly from the depth- rstseart stadk usedfor searbing
the MSCCs. The constructionof a cyclethat intersectsall accepancecon-
ditions requires an additional seart insidethe MSCC. This searb canbe
donein quadratictime in the sizeof the componentfor any number of ac-
ceptancecondtions, e.g.,by usingthe techniquespresentedn [13] or [15].

In practice,it is possibleéo combinethe computation of the syndronous
productwith the ched for acceptingexecutiongn the productspace.This
resultsin an on-the-fly model cheding algorithm,whoseadwantageoverthe
straightfonard method describedaboveis thatit maybe ableto nd an ac-
cepting execution(i.e., a counter-exampldor the propertyto be veri ed)
without exploringthe full product space. Since a single counter-example
is all that is neededfor provingan LTL propertyfalse,it may thereforebe
possibleto do veri cation in lessspacef the propertydoesnot hold in the
given Kripke structure. Tedchniquesfor on-the- y emptinesscheding and
counter-examplegenerationhave been presentedn [3], [4] and [15]. In
this work, however,we shall need only small Kripke structures soextreme
memory-ef dency in the seart for acceptingexecutionsis not of primary
importance. For simplicity, we shall thereforekeepthe product computa-
tion andthe searb for acceptingexecutionsseparate.

4. AUTOMATA-THEORETICLTL MODEL CHECKING

24

5 TESTING LTL TRANSLATION INTO BUCHI AUTOMATA

One of the mostdif cult phasesn the automat-theoretid TL modelchedk-
ing procedureis obtaining a Buchi automatonfrom an LTL formula. In

addition to the relativeconceptualcomplexityof the translationin compari-
sonto the other phaseof the LTL model cheding procedure,dif culties

are causedby the needfor an ef cient implementation that generatesas
small automat as possiblefrom the input formulae. The need for small
automan arisefrom the exponentialworst-casémpact(in the length of the
LTL formula) that the size of an automatonmay haveon the memoryre-
quirementsof the model cheding proces$32]. Thereis no known general
procedureto do the translationef ciently in a minimal way, and the best
known methodsrely on variousheuristicsin orderto minimize the sizeof
the automat [24, 6]. The optimizationsmadefor redudng the sizeof the
automat can thereforeincreasethe complexityof the translationalgorithm
implementation and makeit more proneto errors.

Asthe previousdiscussionshavs, Buichi automat can be consideredo
representianguagef in n ite wordscorresponahg to the modelsof LTL
formulae, and LTL-to-Blici translationalgorithmsprovidethe toolsfor sys-
tematically constructingthe automat from the formulae. However,errors
in the implementation of thesealgorithmsmayoccasionallycausethe trans-
lation of someformulae to fail. In thesecasesthe translatorproducesan
incorrect Buchi automatonthat may in fact recognze a completelydiffer-
ent languagefrom the one corresponahg to the property Using sud an
automatonin the following model cheding phaseswill then invalidateall
model chedking resultsregardng the intended property In somecaseshe
model chedking tool maynot evenprovideanyevidenceto the userthatone
of the model cheding phasesnay havefailed.

The following sectionsdescribemethodsfor testingthe LTL-to-Budi
translationphaseof LTL model cheding. Testingcould certainly help in
improving the reliability of other partsof model cheders. Of course,actual
toolsdiffer verymuch in their implementation details, soit may be dif cult
to nd generalmethodssuitable for automatedtestingof different model
cheders. However mostof the availableimplementationsinclude the LTL-
to-Budi translationalgorithmin aseparatéblack box” programmodule. In
addition, the input for this phase—thd_TL formula—is not usuallydepen-
denton any previouscomputation, sincethe formula is usuallysuppliedby
the user Therefore testingthis phaseof the model cheding procedurecan
bedoneusinggenerakechniquesandcanevenbeautomatedo someextent,
which allowsthe testmethodsto be appliedto realmodel chedking tools.

The testmethodsto be presentedarebasedn the direct analysiof Blchi
automat obtained using different LTL-to-Budi translationalgorithm im-
plementations,and a more indirect way for testingthe correctnesof the
different translationalgorithmsthrough usingthe entire LTL model chedk-
ing procedure. The testinginvolvesrunning the translationalgorithm im-
plementationson givenLTL formulae and chedking the obtainedautomaga
for consistencytogetherwith model chedking the formulaein givenKripke
structures.In practice,theseL TL formulae and Kripke structurescan even

5. TESTING LTL TRANSLATIONINTO BUCHI AUTOMATA

25

be generatechutomaticallyusing randonized techniques. An essentiapart
of testingis the cross-comparison of different translationalgorithm imple-
mentations. Basically this meansrunning severatranslationalgorithmim-
plementationson the sameinput andthen cheding whetherthe resultsob-
tained usingthe differentimplementationsare consistent.Further analysis
of contradctory resultsprovidesa wayto determine which of the implemen-
tationshadfailed.

5.1 TEST METHODS FOR LTL-T0-BUCHI TRANSLATION

The following subsectionslescribetests[26, 27] that can be madeon the

Blichi automat and the model cheding resultsobtained using the LTL-

to-Budi translationalgorithmsto be tested. In orderto automatethe tests
into a reliable implementation for testingthe correctnes®f LTL-to-Bludi

translatos, the implementation should be kept assimple aspossible. For

thisreasonthe dif culty of implementingead of the presentedestss also
considered Althoughthetestgequire input, LTL formulaeandKripke struc-
tures,to beusedfor running the LTL-to-BUudhi translationalgorithmsandthe

LTL model chedking procedure the testsareindependentof any particular
kind of formulae or Kripke structures.

5.1.1 Analysisof Bchi Automata

A naturalapproad for testingthe correctnessf LTL-to-Bidi translational-
gorithmimplementationsisto try to directly analyzethe automat generated
by the implementations. The analysignethodscan be basedon the seman-
ticsof linear temporallogic.

LetL, andL -, denotethe languagegorresponihg to the setsof models
of agivenLTL formula' andits negation, respectively By the semantics
of LTL, noin n ite seqienceover24” cansatisfyboth an LTL formula and
its negation, and thereforethe languaged. , and L -, mustbe disjoint. On
the other hand, any in n ite seaqience of subsetof AP satis eseither an
LTL formula or its negation, again by the semanticf LTL. Therefore,the
languages , andL ., arein factcomplementary to ead otherwith respect
to the set(247)~, soit mustbe thatfor anyLTL formula’ ,L,\ L., = ;,
andL,[L., = (247)~.

ThefactthatL , andL -, aredisjoint providesa partial correctnessestfor
two Bichi automat constructedfrom the formula' and from its negation
: ' usingan LTL-to-Budi translationalgorithm implementation (or even
two different implementations). The correcttranslationof theseformulae
shouldresultin two Biichi automaarecognzing the languages. , andL .
Let A, and A_, denotethe Blchi automat obtainedfrom' and: ', re-
spectively The syndironousproduct of theseautomat can be usedto test
the automat for their expectedproperties. By Lemma 2, the product au-
tomatonacceptsnin n ite wordover24” if andonly if the wordis accepted
bybothA,andA_, i.e.,if andonlyif the wordbelongdo the intersectionof
the languagesecognzed by the automat. Sincethe languageintersection
L,\ L, isknownto beempty the syntironouscompositionof A, andA_,

5. TESTING LTL TRANSLATIONINTO BUCHI AUTOMATA 26

LTL formula¢
0

LTL-to-Blichi translator 1

LTL-to-Buichi translator 2

Loz, =

Emptiness check
=g

(@) (b)

Fig. 5.1: (a) Emptiness check for the intersection of Biichi automata A, and A
(b) Universality check for the union of A, and A-,

shouldthereforehaveno acceptingexecutionswhich canbe con rmed by
chedking the productautomatonA, A_, for emptiness.However,if the
productautomatonis nonempty then at leastone of the automat A, and
A_, doesnot correctlyrecognze the expectedanguage and thereforethe
LTL-to-Budi translationof at leastone of theseformulae must havefailed.
In this casethe techniquesdescribedn Sect.4.2.5canbe usedto construct
anin n ite word over24” incorrectly acceptedby both A, and A_,, by ex-
tracting it from an acceptingexecutionof the product automaton. If both
automat A, andA_, wereconstructedusingthe samelL TL-to-Bldi trans-
lation algorithm implementation, the failed emptinesschedk immediately
con rms anerrorin the implementation.
The abovestepsarecollectedbelow into Testl. SeealsoFig. 5.1 (a).

Test 1 (Emptiness check for the intersection of A, and A_,)
Input: an L'TL formula ' .

1. Compute the Biichi automata A, and A, using some LTL-to-Biichi
translator implementation (or two ditferent implementations).

2. Compute the synchronous productA, A_,.

3. Check A, A, for emptiness. If the product automaton accepts any
input word, then either A, or A_, does not correctly recognize the
language L, or L, respectively. This suggests that the translation of
at least one of the formulae into a Biichi automaton has failed.

|

5. TESTING LTL TRANSLATIONINTO BUCHI AUTOMATA

27

We shall shortly addressthe questionwhy it can be usefulto apply two
different LTL-to-Budi translatosfor constructingthe automat A, andA
required in Testl. However,we r stintroduce anothersimilar consistency
ched applicableto the automat A, andA .

Test1 is not completefor shaving the correctnesf an LTL-to-Blici
translationalgorithm implementation evenon a singleLTL formula. For
examplejt is easyto seethatanimplementationthat“cheats"by alwaysgen-
eratingan empty automaton(i.e., an automatonthat rejectsall its inputs)
reqardlesf the input formula would trivially passhis test,sinceintersect-
ing any automatonwith an empty automatonresultsin an empty product
automaton.

In principle, the factthat the union of L, and L -, formsthe universal
language(247)« providesanothertestto be usedtogetherwith Test1 in or-
derto con rm thatthe languagesecognzed by the automat A, andA_,
arecomplementryto ead other. It can be shavn (seee.g.[30]) that any
two Buichi automat can be combinedinto anotherBuchi automatonthat
acceptspredselythe union of the languagesecognzed by the original au-
tomata. Therefore,it might be possibleto chedk whether the automaton
A, [A, acceptsthe universallanguage,.e., that the automatonaccepts
everyinput wordover24”. The existenceof aninput word not acceptedoy
this automatonwould again suggesthat one of the LTL-to-Blichi translation
algorithmimplementationshasan error.

Unfortunately the universalitytestfor a Blichi automatonis not aseasyto
performin practiceasthe emptinesshedk—asamatterof fact,this problem
isknown to be PSFACE-complete[30]. The languageuniversalitytestmight
r stbe reducedto a languageemptinesschedk, which can be solvedusing
Blchi automat: the fact that the languagelL ,, [L, is universalimplies
thatits complementL , [L, mustbe empty However this reduction dif-
fersfrom all previousoperationson Blchi automat in that it involvesthe
complementation of nondetermnistic Biichi automat. AlthoughBlichi au-
tomata are closedunder complemention, the complemengtion construc-
tion [23] is relativelyhard to implement in comparisonto the other oper-
ationsappliedto Blchi automat sofar. In addition, eventhe optimal con-
structionmaycausean exponential2°("'°9 ") worst-casblow-upin the size
of the automaton.The blow-upis a consegence of the nondetermnism of
Blichi automatand cannotin generalbe avaded[23].

Althoughthe languageunion universalitytestwasnot usedin the experi-
mentsmadein this work on real LTL-to-Budhi translationalgorithmimple-
mentations,the required stepsare collectedbelow in Test2. The stepsare
illustratedin Fig. 5.1 (b).

Test 2 (Universality check of the union of A, and A_,)
Input: an L'TL formula ' .

1. Compute the Biichi automata A, and A, using some LTL-to-Biichi
translator implementation (or two ditferent implementations).

2. Compute the union of A, and A, (see e.g. [30]).

3. Using a Biichi automata complementation procedure (see [23]), com-
pute the complement of A, [A_,.

5. TESTING LTL TRANSLATIONINTO BUCHI AUTOMATA

28

4. Check A, [A, for emptiness. If this automaton accepts any input
word, then either A, or A_, does not correctly recognize the language
L, or L, respectively. This suggests that the translation of at least

one of the formulae into a Biichi automaton has failed.
[]

Takentogether,Testsl and 2 areableto shaw that the languagesecog-
nized by two Blichi automat A, and A, constructedusingthe sameim-
plementationfrom someinput formula' , arecomplementaryto ead other.
Althoughthis is alreadya valuableresultin itself, the testsare not powerful
enoughto provethe correctnes®f an LTL-to-Bildi translationalgorithm
implementation on anyinput formula evenif both of the testssucceed.The
testsonly con rm that the relationshipbetweenthe languagesecognzed
by the two automas is asexpectedhowever this is not suf cient for telling
whetherthe languagesorrectlycorrespondo the modelsofthe LTL proper-
tiesinvolved. Therefore thesetestamayfail to detectsomesystemati@rrors
in the translation. For example,if an implementation erroneouslymixed
the namesof the atomic propositionsin the giveninput formula sud that
otherwiseindependentpropositionssharethe samename, the automaton
generatedy the implementation would not correctlyrecognze the models
of the original formula.

This problem can be helpedby usingtwo or more independentLTL-to-
Bichi translatos for the formula translationassuggeste@bove. Insteadof
performng the chedks only with automat obtained using a singleimple-
mentation i (chosenfrom a setof implementationsl), ead of the imple-
mentationscan be usedin turn to convert' and: ' into Buchi automas.
Testsl and2 canthenberepeatedn ead pairof automaaA@ andA£¢ con-
structedby anytwo implementationsi 2 | andj 2 |, respectively Since
the LTL formula' uniquely de nes its setof models(i.e., the languages. .,
andL), all Bichi automat constructedfrom ' (: ') usingthe different
implementationsshouldacceptthe samelanguagel , (L -,). Therefore,no
syndironouscompositionof anytwo automaaAfO andAiw forsomei; j 2 |
should have any acceptingexecutions,and the sameshould alsohold for

the automag A, [AZ,. A successfutun of all thesetestsprovesthat the
languagesacceptedby the automat A, (AL,) areecuivalent. This would
nally provethe correctnes®f the testedimplementationson the formulae

and: ', provided that at least one of the implementations participating in
the tests is already known to be correct.

The ladk of an implementation that is known to be correctstill leavesa
smallpossibilityfor afalse positive, i.e.,acasan which all eight possiblgests
betweenthe automat generatedy sometwoimplementationssucceedbut
the automat arestill incorrect. This will occurif the languagesecognzed
by all automat constructedfrom the sameformula are equivalent to eat
other but still not equivalent to the languagecorresponahg to the models
of the formula. (For example,considertwo otherwisecorrectLTL-to-Budhi
translatoimplementations,both of which necateeveryinput formula before

1 “w A7 7 —_ ” nﬁ_ . ” “]] —_ ” ” i i —_ ”
LUAN AL, = 22 AT A =0 230 AL\ AL = 24 AL [A= 2
5.“Afp\ Aiw =, 776."AL [A, = ?"7.“A$\ Aiw =,; ?"8.7AL [Al =37

5. TESTING LTL TRANSLATIONINTO BUCHI AUTOMATA

29

translation.) Intuitively, the probability of a falsepositiveshould decreasef
anotherindependentimplementationisincludedin the tests.

However,evenif none of the implementationsis known to be correct,
which is likely to be the casein practice,testingdifferentimplementations
aqinstead other still increaseghe intuitive con dence in the correctness
of the automas if no failuresare detected. This view is basedon the as-
sumptionthat two independentimplementationsarenot likely to fail in the
sameway on the sameinput formula (i.e., by generatingequivalent but in-
correctautomat from the formula). Thus, an inconsistencyis likely to be
detectedin at leastone of the eight possibleteststhat can be madeon the
Bichi automat generatedoy two different implementationsif one of the
testedranslatos hasan error.

None of the testcangivefalse negative answes,however Thisisbecause
a testfailure betweentwo automat alwaysimplies that at leastone of the
automasisincorrect:

A failure in Testl betweentwo implementationsi; j 2 | impliesthe
existenceof aninput 2 (247)“ recognzed by both of the automat
Afo and ALSO. (If necessarysud an input can be constructedby the
sametechniquesusedfor extractingcounter-example$or LTL prop-
ertiesfrom productautomat. SeeSect.4.2.6.) At leastone of these
automan must now be incorrect,sinceno in n ite seqienceover24”
canbeamodelof' and: ' atthesametime. Thereforeoneoftheau-
tomataincorrectlyaccepts . The otherautomatonalsoaccepts , but
this testdoesnot give usefulinformation aboutthe correctnessf that
automaton:for example,it may be that the automatonacceptsevery
input, althoughnether of the formulae is actuallyvalid. Distinguish-
ing the certainly incorrectautomatonfrom the two will be discussed
laterin Sect.5.2.

Similarly, a failure in Test2 betweentwo implementationsi;j 2 |
impliesthatthereexistaseqience 2 (247)“ rejected by bothofthe
automaaAfO and AJ;SD. (Sudch aseqgiencecould agin be constructed

during the emptinesschedk of A’ | A’,.) The techniquesusedfor
distinguishingthe incorrect automatonin Test1 can be appliedalso
to this caseto determine which oneof the automagaincorrectlyrejects

. (Asabove nothing can be saidaboutthe absolutecorrectnessf the
otherautomaton.)

The differenttypesof testsaandthe typesof errorstheyareableto detectare
summarizedn Fig. 5.2. However,becauseTlest? is dif cult to implement,
relyingonly on Testl islikely to reducethe overallef ciencyof nding errors
in the implementationswith the testingprocedure.The nextsubsectiordis-
cussesomealternativetestingmethodsbasecdn more easilyimplementable
techniquesthat canhelp to improvetestingef ciency.

The previougtestshavethe adwantageof being independentof the chosen
LTL formula' . Therefore,thesetestscan useevenrandomLTL formulae
that are quite easyto generateautomatically Previousexperimentd26, 27]
suggesthat evensimple randomlygeneratednput can be of usein nding

5. TESTING LTL TRANSLATIONINTO BUCHI AUTOMATA

30

(229

L] D Lol

ActualrelationshipbetweenL , andL -,

Relationship between Error Detectableby
languages recognzed
by two automat
AP The languagesrecog- Testl
") nized by the automaga
arenot disjaint
Zoo| A La
The union of the lan- Test2
(28P)® :
guagesrecognzed by
the automatisnot the
. universallanguage
AP The languagesrecog-| Running Tests1 and
(2% nized by the automat | 2 using severalinde-
L] are complemengry | pendent implementa-
but still incorrect tions (may still result
in a false positive un-
Laol less a correct imple-
mentationis awilable)

Fig. 5.2: Examples of incorrect relationships between languages accepted by two
Biichi automata constructed from ¢ and = by two LTL-to-Biichi implementations
and how to detect them

5. TESTING LTL TRANSLATIONINTO BUCHI AUTOMATA

errorsin LTL-to-Budi translatos. The randomtestingstrategyis alsothe
approat takenin thiswork;the detailswill be discussedaterin Chap.6.

Limited testingcould still be done on the implementationsusing spe-
cially chosenLTL formulae: for example,no Biichi automatonconstructed
from an unsatisfiable LTL formula should have any acceptingexecutions.
Anotherweakbut simple consistencyhed would be to testthat the Blichi
automatonconstructedfrom a valid LTL formula hasevenone accepting
execution. Checks basedon thesepropertiescould agin be implemented
by direct applicationof the emptinesschedk to the automat. Of course,a
cleverimplementation might be ableto detectthe validity or unsatis ability
of aformula directly (e.g.,from the syntctic structureof the formula), with-
out actually performing translationusing more generaltedhniques. There-
fore, relying only on sud spedal casesnay not be suf cient for testingall
partsof the implementation; assessintdpe coveragef this kind of testingwill
require takingthe implementation detailsinto account. Furthermore,these
testsrequire LTL formulae with known specal properties,which makesit
moredif cult to generatehe formulae automatically Of course,one could
simplyusea preselectedollection of valid or unsatis ableformulaeinstead
andtestonly afewselectectases.

This work, however,focuseon nd ing reasonablygeneraltestingmeth-
odsfor LTL-to-Buchi translatos. For that reasonno testingmethodsbased
on LTL formulae with spedal propertieswill be used,sincetheir effective-
nesson a particularimplementation dependsmore closelyon the details of
theimplementation. Instead thisworkcontinuesusingthe randominput ap-
proad, treatingthe testedmplementationssimply as“black boxes"without
looking at their internal details. (Certainly, choosinga setof testformulae
with detailed knowledgeaboutthe structureof an implementation may re-
sultin more effectivetestdor that particularimplementation, sothis kind of
testingis not a bad strategye.g.in the developmentof a new implementa-
tion.)

5.1.2 Usingthe LTL Model CheckingProcedure

The dedsion of implementing only Test1 into an automatedtestingtool
is likely to reducethe tool's effectivenesgn nding errorsin LTL-to-Bludi
translationalgorithm implementations, unlessalternativetesting methods
are usedto remedythis problem. This subsectiondiscusse$iow the LTL
model chedking procedure(describedn Chap. 4) canbe appliedto testing
the correctnessf LTL-to-Blchi translatos.

GivenaKripkestructureM , the semantic®f LTL guaranteghatthetruth
valueof anyLTL formulaisuniquely de ned in the structure.Therefore no
matter which methodsare usedto model chedk a givenLTL formula' in
M, the methodsshouldalwaysgivethe sameanswetto the questionwhether
" holdsin M, providedthat all the usedmethodsare soundand complete
andtheyareappliedcorrectly Sincethe abstractautomag-theoretionodel
chedking procedurefor LTL is soundand complete (by Theorem 1), the
correctnes®f the model cheding resultsgivenby an LTL model cheding
procedureimplementation dependson whetherall phase®f the procedure
arefreeof implementation errors.

5. TESTING LTL TRANSLATIONINTO BUCHI AUTOMATA

Therefore,if thereareseveral TL-to-Budi translationalgorithmimple-
mentationsawilable, eat of them can be usedin turn to converta given
LTL formula into a Buchi automaton,which is then usedto model check
the formulain agivenKripke structure.In effect,usingdifferentimplemen-
tationsfor the formula translationnow correspond$o havingseveratfmodel
cheding procedures”all of which should givethe sameanswelif none of
the LTL-to-Buchi implementationshaveerrors. Inconsistenesin the an-
swes then suggesthat someof the LTL-to-Budi translationalgorithmsare
in error,or thatanerroroccurredduring somelater phasean the LTL model
cheding procedure.

Admittedly, applyingthe full LTL model cheding procedureto testthe
correctnes®f only one of its phasesseemamore complicatedthan the di-
rectanalysi®f Buchi automat. Furthermore,inconsistenegesin the model
chedking resultamaynot necessarilpriginatefrom the LTL-to-Budi transla-
tion phaseput someotherphaseanstead.Therefore it might seemquestion-
able whetherthis method s effectiveand easilyimplementable enoughfor
uncoveringerrors particularlyin the LTL-to-Budi translationphase.How-
ever,thisapproat isjusti ed becausef the following main reasons:

All phasesof the LTL model chedking procedureafter the LTL-to-
Bichi translationcan be integratedinto a common implementation
framework. This helpsin trying to isolatethe sourceof model ched-
ing resultinconsistengsinto the formula translationphasehatis per-
formedwith the testedranslationalgorithmimplementations.In prin-
ciple, this resultsin “an LTL model cheder with areplaceable.TL-
to-Budi translationmodule”.

Extremememory-ef dency is not of primary importancefor the pur-

posef plain testing,sinceit is not necessaryo usereal-sizecexam-
plesof Kripke structuresastestcasesTherefore,it maybe accepable
to implement the LTL model chedking phaseswith very straightfor-
wardalgorithms sud asthosedescribedn Sect.4.2.6.In addition, all

of thesealgorithmsare alsoconceptuallymore simple than the algo-
rithms neededfor LTL-to-BUdi translation. Actually, the algorithms
for computing the syntironous product of two Biichi automat and
chedking it for emptinesdy exanining its nontrivial MSCCs can be
implementedasre nements of a basicgraphdepth- rstsearb.

For testingpurposesthe LTL model cheding procedurecan be simpli-
ed slightly To modelchedk anLTL formula' in agivenKripke structure
M, the formula would normally needto be negated r stto obtain the Blichi

automatonto be usedfor chedking the languagel ,, \ L 4. for emptiness.

However,when testingLTL-to-Budi translatos, the actual answerto the
guestionwhetherthe LTL formula’ holdsin the Kripke structureis not rel-
evant, sincethe formula might havebeengeneratedandomly(andtherefore
it maynot evenrepresentiny“useful” property).It is moreimportantto see
whetherthe LTL model cheding proceduregives the same model checking
results for the formula, whicheverof the testedLTL-to-Buchi translational-
gorithmimplementationsis usedin the model cheding processTherefore,
it is not necessaryo negatethe formula’ beforeconstructinga Blichi au-
tomaton. Instead,it is possibleto simply convert' itselfinto an automaton

5. TESTING LTL TRANSLATIONINTO BUCHI AUTOMATA

33

and then proceedwith syndironizing the automatonwith the Kripke struc-
ture asbefore. Asdiscussedt the end of Sect.4.2.4,the resultingproduct
automatoncan be usedto tell whetherany of the executionsof the Kripke
structuresatis esthe property' individually. It is clearthat the answerto
this questionshouldalsoremainthe sameregardlesf the methodsusedfor
solvingthis problem—providedhattheyaresoundand complete,of course.
This “modi ed” model cheding procedureis actually equivalent to chedk-
ing whetherthe LTL formula: ' holdsin the structure.

A simple additional re nement of this testingmethod allows easily“re-
using” a single Kripke structureto obtain more data for comparison. By
Lemmaz, everyexecutionof the syncronouscompositionof two Biichi au-
tomata correspondso two syndironousexecutionsof the original automat
(in this case,the systemautomatonA,,; and the propertyautomatonA.,).
Thesesyndironous executionsbegin in the respectivanitial statesof the
structures.However,changing the initial state of the Kripke structurealso
changesthe setof executionsin the structure. Repeatingthe LTL model
chedking procedurein the mod ed structurethen givesa different set of
model checking results, telling whetheranyin n ite path beginring in the
new initial state of the Kripke structurehasthe property’ . This allowsa
newcomparisorto be madeon the resultsobtainedusingthe differentLTL-
to-Budi translationalgorithm implementations: inconsistentresultsagin
suggesthat someof the implementationsmay havefailed. By considering
ead stateof the Kripke structurein turn asthe initial state,the chedk canbe
repeatecasmanytimesastherearestatesin the Kripke structure.

Although changingthe initial stateof the Kripke structureessentiallycre-
atesanewKripke structure,it is suf cient to syndironize the systenmautoma-
ton A, with the propertyautomatononly once. Severalsyndironizations
would berequired only if alsothe transitionrelationof M werechangedor if
the new productautomat contained states(i.e., pairs of stateschosenfrom
A, andA,,, respectivelyhotincluded in the resultof anyprevioussyndiro-
nization. However changingthe initial stateof the Kripke structuredoesnot
affectits transitionrelation, and the de nition in Lemma 2 guaranteeshat
the productalwayscontainsall possiblestate pairs, independentof the ini-
tial stateof A ;. Therefore the productasde ned in Lemma?2 canactually
be calledthe global synchronous product, sinceit includesall syndronous
executionf A, and A, no matterin whatstateA ; beginsits execution?

Performing all the emptinesschedks in the global syndronousproduct
requireschangesalsoin the emptineschedking phase.For example,if the
MSCCsofthe productarecomputedusingTarjarisalgorithm,the emptiness
chedk can be performed“globally” by simply restrting the MSCC seart
algorithmin everystate(q; o), whereqis astateof A ;, andd® is the initial
stateof A,. During ead run of Tarjaris algorithm, ead nontrivial MSCC
can then be cheded for acceptingexecutionsasdescribedin Sect.4.2.5.
Let (q; o°) be the state in which the MSCC algorithm was most recently
restarted. If the searb nds an acceptingexecution,the (mod ed) Kripke
structurethen hasan executionthat beginsin the statecorresponahg to the
stateq of A, andthis executionsatis esthe property' .

“However,seeAppendx A for noteson the practicalimplementation of the globalsyn-
chronousproductandthe following emptinesshed.

5. TESTING LTL TRANSLATIONINTO BUCHI AUTOMATA

34

LTL formulad

Global
synchronous
product

synchronous
product

Ay® A}

[YINNIYIYIV] - [N]

bgbib3b33bs by
vk: b= 3k: b= B

Fig. 5.3: Model checking result cross-comparison check for two LTL-to-Biichi trans-
lation algorithm implementations

The abovestepsarecollectedtogetherin Test3. SeealsoFig. 5.3.

Test 3 (Model checking result cross-comparison check)
Input: Kripke structure M, LTL formula* .

1. Convert the formula' into Biichi automata Afo using each of the avail-
able L'TL-to-Biichi translation algorithm implementationsi 2 | .

2. Compute the global synchronous products Ay, Al

3. Check each product automaton A y; Afp for emptiness, i.e., determine
for each product state (Q; o) (where @, is a state of Ay; and ¢ is the
initial state of Al,) whether the product automaton has any accepting
executions beginning at (Q; o). Denote the answers to this question
by b, 2 f “Y”;“N”g such thatbj, = “Y” if the product automaton A,
A can reach an accepting execution from the state (gj; o), and b, =
“N” otherwise. (These answers also tell whether the Kripke structure
M has an execution that satisfies the property' and begins at the state
corresponding to g.)

4. Test whether for all states q of Ay, 8i;j 21 11, = bL If this does not
hold, one of the LTL-to-Biichi translation algorithms must have failed
on the formula"' (under the assumption that all other model checking
phases are performed correctly).

5. TESTING LTL TRANSLATIONINTO BUCHI AUTOMATA

35

Aswith Testsl and 2, any inconsistentes detectedin Test3 do not di-
rectly revealthe implementation (or implementations) which had failed.
However,if the model cheding resultsobtained using two different LTL-
to-Budi translatos areinconsistentin somestateof the Kripke structure at
leastone of the automas is again certainly incorrect. This followsfrom the
factthat the truth valuesof the LTL formula' areuniquely de ned in any
Kripke structure,sotwo correctmodel cheding proceduregor LTL cannot
give a different answerto the existenceof an executionsatisfying in any
stateof the Kripke structure.However asin the previousteststhe only thing
that can be saidaboutthe correctnes®f the other automatonis that it gives
the correctresultin one particular state of the Kripke structureM (but not
necessarilin otherKripke structurespr evenin otherstatesof M). Thisisall
thatcanbe saidaboutthe absolutecorrectnessf the testedmplementations
alsoin the casewhen there are no inconsistenesin the model cheding
results,sothereis a possibilityfor falsepositives.Intuitively, this possibility
could again be made smallerby running the cross-comparisotestsusing
severalndependentLTL-to-Budi translationalgorithmimplementations.

Test3 may detectthe inequivalenceof languagescceptedoy Blchi au-
tomataconstructedoy differentLTL-to-Buchi translatosfrom the samelLTL
formula. However the testis inherently dependenton the Kripke structures
usedfor modelcheding, andit cannotbe practicallyappliedto proving the
equivalenceof the languagescceptediy the automat evenon asingleLTL
formula. This makesthe testlesspowerful asTestsl and 2 takentogether
However,sinceTest2 maybe dif cult to implementand maythereforenot
beawilable, Test3 mayimprovethe oddsof detectingerrorsin LTL-to-Budi
translationalgorithmimplementations.In addition, Test3 canbe automated
quite easily sincethe actualteststepsarenot dependenton the formulae or
the Kripke structuresusedasinput. Therefore,Test3 canbe simplyrun on
e.g.randomlygeneratedormulae and Kripke structures.

The restof this subsectiorfocuseson one additional testto be usedasa
simpleconsistencghed for asingleLTL-to-Budi translationalgorithmim-
plementation. This testis basedn the relationshipbetweenthe satis ability
of' and: "' in the sameKripke structure.

In the discussioratthe end of Chap. 3, it wasnotedthatit is not possible
for both' and: ' to hold in the sameKripke structure,although neither
of theseformulae might be satis edin the structure.Let’ andM denotea
givenLTL formula andagivenKripke structure respectivelyBy converting
theformula’ into aBuchi automatonusingan LTL-to-Budi translatorand
then cheding the productautomatonA ,;;, A, for emptinessye cantry to
seewhetheranyof the executionof M hasthe property . The emptinesof
the automatonA,, A, suggestthat no executionof M hasthis property
and thereforeM F :' should hold by the semanticsof LTL. Similarly,
we can alsoconvertthe formula : ' into anotherBichi automatonusing
the sametranslatorand chedk the emptinessof the automatonA,, A_.
If alsothis automatonis found to be empty, thereis a contradction, since
the emptinessof A, A, suggestthatalsoM F ' shouldhold in the
structure.However thisisimpossibleéf M E : ' isalreadyknown to betrue
in the structure? Therefore, we mustconcludethat either the formula' or

’ByDe nition 1, Kripke structureshaveatotal transitionrelation. Therefore theremust

5. TESTING LTL TRANSLATIONINTO BUCHI AUTOMATA

36

LTL formulad Kripke
structure M
O
0 "0 "

LTL-to—-Biichi translator @
Ag Asg

Global
synchronous
product

synchronous
product

AM®A¢

Emptiness check

AM®Aj¢

Emptiness check

INIYIVINIYINE- - [N [YINNINIYTY] - [Y]
bobibsbsbabs br-1 bp? b,® by by,
vk: (bf = “Y")V (0 = 1Y) 3k: b =bt= N

Fig. 5.4: Model checking result consistency check for a single LTL-to-Biichi trans-
lation algorithm implementation

wasincorrectlytranslatednto aBuichi automaton.andthe LTL-to-Buidi
implementation hasan error.

This ched doesnot givemuch usefulinformationaboutthe correctnessf
the Blichi automatif either of the productautomaa A, A, 0rA) A,
is nonempty To improve the effectivenessf this test,we can again take
adwantageof the globalsyntironousproductto obtain moretestdatafrom a
singleKripke structureby perforning the consistencghed in ead stateof
the structure.

Performing the consistencyhedk individually on all testedimplementa-
tions requires constructingtwo setsof automat A, andA_,. Ead of the
automab A, andA_, is syndironized with the systemautomatonA ;,, and
the product automat are cheded for emptiness.The emptinesschedk re-
sultscannow bedirectly analyzedusingalsothe modelcheding resultcross
comparisorchedk (Test3). Thisfactmakest possibléo combineTests3 and
4 togethersud that the required product automat needto be computed
only once.

A summaryof the stepsin the model cheding resultconsistencychedk
follows.SeealsoFig. 5.4.

Test 4 (Model checking result consistency check)
Input: LTL formula' , Kripke structure M .

existatleastonein n ite pathstartingin the initial state of the structure,andthis path must
satisfyeither of the formulae ¢ or: ¢. Therefore gither of the emptinesshedksmustreturn
with anegativeanswer

5. TESTING LTL TRANSLATIONINTO BUCHI AUTOMATA

37

1. Construct the automata A, and A_, from the formulae ' and :
using some LTL-to-Biichi translator.

2. Compute the synchronous products Ay, Ay and Ay A,

3. Check the product automaton Ay A, for emptiness, i.e. check for
all states (0,; o°) (where @, is a state of Ay and ° is the initial state
of A,) whether the automaton Ay; A, has an accepting execution
starting in the state (Q; @°). Denote the answers to this question by
by 2 f“Y";,“N"g, where b = “Y” if an accepting execution can be
reached, and “N” otherwise.

4. Repeat Step 3 for the product automaton Ay, A-,. Denote the ob-
tained answers in this case by b.*.

5. 'Test whether b = b.¥ = “N” for any state g, of Ays. If such a state
exists, the model checking results are inconsistent. This suggests that
either the translation of' or: ' into a Biichi automaton has failed.

An inconsistencydetectedin Test4 revealghe existenceof an input not
recognzed by either of the automat A, and A, constructedusingsome
LTL-to-Budi translatofrom anLTL formula' andits necatedversion: ',
respectively This meansthat the union of the languagesacceptedby the
two automas is not the universallanguage24”. Although Test4 depends
on the Kripke structuresusedfor running the test,it may help in detecting
someof the errors that would otherwisebe left undetectedin caseTest2 is
not aailable.

When Tests3 and 4 are combined together,it is suf cient to perform
Test4 on ead pair of automat A, and A, generateddy a singleimple-
mentation. This is becauseperfornming the teston automat generatedoy
differentimplementationscannot nd anyinconsistenesthat could not be
detectedby the othertests!

5.2 TEST FAILURE ANALYSIS

Running different LTL-to-Budi translatos againstead other doesnot still
giveanyinformationasto which one of the testedmplementationsmayhave
an error, in casesomeof the testsfail. This makesit dif cult to determine
which implementation should be xed. (Testsl, 2 and 4 can detectthe

*To seethis, assumehat two different LTL-to-Biichi translatosi and j passTest3 against
ead otheron both formulae ¢ and: ¢, and both of the translatos alsopassTest4 individ-
ually, but Test4 failson two automaaAjD and Aiw generatedythe implementations.(As-
sumethatthe indicesi andj arechosensud thatthis holds.) Then,b;? = b7, 7% = “N” for
somestateq;, of A,,. Because andj passTest4 individually, it followsthat b};:w = b{;’“’ =
“Y”.

Becausethe implementationsalsopassTest3, it mustbe thatb},¥ = b):¥ and by~ =
bl "7, Sinceby¥ = bl 7¢ = “N”, it now followsthatb]¥ = by ™% = “N”. Butthenit cannot
be thatthe implementationspassTest4 individually, which is a contradction.

Therefore,if the implementationspassTest3 againsteat otheron ¢ and: ¢, andeadh
of them alsopasse3est4 individually, they cannotfail Test4 acainstead other.

5. TESTING LTL TRANSLATIONINTO BUCHI AUTOMATA

incorrectnes®f evenasingleimplementation; however theydo not provide
any usefulinformation aboutwhich one of the automat usedin the failed
testis clearlyincorrect,which might be usefulfor debugging.)

A simple methodfor distinguishingthe incorrectimplementationsfrom
the correctonesis to increasethe number of independentLTL-to-Budi
translatos taking partin the testsand then to try to look for patternsin the
detectedinconsistenes. For example,if sometranslatorsometimedails a
testagninst all other testedtranslatos, which in turn passall testsagainst
ead other, there s likely to be an error in that one translator However,
this methodmight not be applicableif therearenot manyimplementations
awilable,or if the implementationsare not independent(e.g.,if the imple-
mentationsto be testedareonly different versionsof a particulartranslator).

A unifying fact betweenall testsis that it is possibleto constructa wit-
ness—anin n ite segqienceover24”—that givesa concreteproof of the test
failure. More importantly, however,the samewitnesscan be usedto distin-
guishthe incorrectautomatonin any pair of two automat for which one of
the testsfailed. This then revealsan errorin the implementation that gen-
eratedthe incorrect automaton. Intuitively, the role of the withessin eath
failed testis asfollows:

() In Testl, the witnessis a seqiencethat is acceptedby two automat
supposedo recognze two complementryLTL properties and: ',
respectively

(i) In Test2, the withessseaienceis acceptedoy neither of two automat
supposedo recogrnze the properties and: ' .

(i) In Test3, the witnesssaseqiencethatisacceptedyoneandrejected
by the otherof two automat, both of which shouldrepresenthe same

property' .

(iv) Analogouslyto Test2, the failure of Test4 canbe provedwith awitness
thatis rejectedby both automaa A, and A, (supposedlyjepresent-
ing two complementryLTL properties.

In the r stthree casesthe witnesscan be obtainedasa sideresultof the
emptinessched performedon someBuchi automatonin ead of the three
casesln Testsl and 2, the withesscan be extractedrom the nonemptysyn-
chronousproduct (or the union complement)automatonconstructedfrom
the automat generatedy the LTL-to-Budi translatos from the input for-
mulae. In Test3, the withesscanbetakenfrom anonemptyproductautoma-
ton that claimsthe existenceof a path satisfyinghe propertyin somesystem
statein which Test3 failed.

In case(iv), the witnesscan be extractedrom the systermautomatonA j,
insteadof the product automatonusedin Test4. (Of course,the product
automatonis still neededfor determining the resultof Test4; awitnessexists
only if the testfailed.)

Ead caseis thereforeassokatedwith somenonempty Blichi automaton
(in case(iv), A,, is nonemptyby de nition; seeLemma 1). The witness
is then constructedfrom an accepting execution of this automaton. This
acceptingexecutioncan alwaysbe constructedsothat it consistof a n ite

5. TESTING LTL TRANSLATIONINTO BUCHI AUTOMATA

39

pre x of statesfollowed by an in n itely repeatingcycle of states. In cases
()—(iii), sud an acceptingexecutioncan be found during the emptiness
chedk of a Buichi automaton,usingthe techniquesdiscussedn Sect.4.2.5.

In cas€(iv), anyexecutionof A 5, havingthe desiredstructuralpropertiesan

be takenasthe witness.(Sudh an executioncan be found e.g.by a simple

depth- rstor breadth- rstseart in the automaton stoppingassoonassome
stateof the automatonis visitedtwice. Thisis boundto happen,sinceA;, is

n ite andhasatotal transitionrelation.)

The labelson the automatontransitionsn the executioncannow be pro-
jectedonto anin n ite seqience over24” by selectingany of the symbols
in ead successivgansitionlabel into thissegience.lt is easyto seefrom
the de nition of Blchi automat that the automatonfrom which the execu-
tion wasextractedthen acceptgshis segience. Sincethe witnessexecution
alreadyhasa n ite represerdtion, the elementsof can be chosensothat

formsthe concatenatiorof two n ite-lengthsegqiencesoversubsetef AP
sud thatthe latter segienceis thoughtto repeatitselfin n itely often.

Let' and: ' betheLTL formulaethatresultedin the failure of Testsl, 2
or 4. (In caseTest3 failed, the only formula involvedin the testis simply
" .) The keyideais now to modelched the LTL formula' aginin ,using
an independentimplementation of an LTL model cheding procedurefor
this purpose. The result of this ched can now be usedasa “yardsti&” to
determine which one of the two Biichi automat is incorrectin ead of the
casegi), (i), (i) and(iv) above:

(i) If it isconrmed that F ' holds, then the automatonA_, con-
structedfortheformula: ' isincorrect. Thisisbecausehe automaton
A_, shouldacceptonly thoseinputs 2 (247)~ for which & ' is
true. Conversely conrming that 6 ' showsthatthe translationof
' into aBuchi automatonhasfailed.

(i) Conrmingthat F ' impliesthatthe automatonA,, mustbeincor-
rect, sinceit erroneouslyrejects’ (in this case, isawitnessrejected
byboth A, andA_,). Likewise,if & ' ,theautomatonA_, isincor-
rect.

@) If F ', thenthe automatonrejecting' isincorrect;if 6j ', the
automatonthat accepts doesnot correctly recognze the language
L.
(iv) Analogoudo cas«ii).

Insteadof using a generalLTL model cheding procedurefor testing
whether E ', it is possibleto model chedk the formula in the seaqience
directly using more simple techniques [14, 27], sudh asa restrictedLTL
model chedking algorithmthat operatesn in n ite seqiencesover24” hav-
ing asimilar n ite represemditionas above.Intuitively, a restrictedmodel
chedking algorithmiseasieto implementcorrectlythanageneraklgorithm.
Therefore,it shouldbe possibleto performthe analysido nd the incorrect
automatonin areliableway: This lifts the needfor usinge.g.anotherLTL-
to-Budi translatorfor testingwhether F ' istrue.

5. TESTING LTL TRANSLATIONINTO BUCHI AUTOMATA

40

OO0~ L0020

Fig. 5.5: A seaquential Kripke structurewithout statelabels

The restof this sectiondescribesan algorithm for model cheding the
LTL formula®' in . In the algorithm,the formula' is assumedo consist
solelyof atomc propositionsand the operatos: , , X and U. (Sinceall
otherLTL operatoscanbe expressedsingthesebasicoperatos,’ can r st
be convertednto this form if necessaryanotherstraightfornard option is to
extendthe algorithmto supporttheseoperatosdirectly.)

Actually, canbe consideredo bethe temporal interpretation of anexe-
cution of someunderlyingKripke structureM = hS;s% ; i. The simplest
sud structureis onein which the statesareconnectednto aseqence. That
is, eat stateof the structurehasa unique successofsinceS isalwaysn ite,
the successoof the “last” statein the segienceis one of its predecessaiin
the segience),andthe statesin the seqiencearelabelledwith the elements
of in the sameorderastheyappearin . (Thus, isthe only executionof
the structure.)In the following, thesestructuresarecalled sequential Kripke
structuresseeFig. 5.5for an example.

Definition 6 A seqiential Kripke structure hS;s% ; i is a Kripke structure
whose each state S 2 S has exactly one successor, and each state of the
structure is reachable from s° by zero or more arcs. |

Since ead state of the structurehasexactlyone successoithe transition
relation isactuallya function. In this casethe successoof astates 2 Sis
denotedby (s). For converience,wealsode ne °(s) = sand **1(s) =

(¥(s)) for anyintegerk > O.

The algorithm for model chedcking an LTL formula ' in a segential
Kripke structureM is shavn in Fig. 5.6. Intuitively, the algorithm works
in a“bottom-up” manneraccordng to the syntactic structureof the formula.
Startingfrom the atomric proposition®ccurringin ' , thealgorithmprocesses
eat subformula® ’ of ' in turn sud that eat subformula’ ’ is processed
only afterall of its subfornmulae havebeenprocessed(In practice thiscanbe
donee.g.byprocessinghe subfornulaein the postordeimposedby adepth-
r stsearb in the parsegraphof' .) For eat states of the structure,the
algorithmthen determneswhetherthe subfornula' ' holdson the (unique)
in n ite paththat beginsin s. This is repeatedor the other subfornulae of
", until ' itselfhasbeenprocessed.

The algorithm usesa setResult for storingthe model cheding results.
At the end of the algorithm, the setwill contain a pair ('; s) if andonly if
the formula' holdson the in n ite path beginning in the states. ToEval
denoteghe setof ' 'ssubfornulae that havenot yetbeenprocessedDuring
ead iteration of the main loop (lines 4-35), the algorithm picksa formula
from this setand then ewaluatesit on the pathsstarting from ead state of
the structure. The method of evaluatinga subfornmula is determned by the
synfcticstructureofthe formula, sothereare ve mutually exclusivecases$o
consider(lines 7-34).In ead of thesecasesthe model cheding resultsfor

5. TESTING LTL TRANSLATIONINTO BUCHI AUTOMATA

41

1 function eval(y : LtIFormula, M : SequentialKripkeStructure) : Boolean
2 Result := (;

3 ToEval := {¢°| 0 is a subformula of ©};

4 while ToEval # @ do begin

5 <p0 := a formula in ToEval such that for all proper subformulae 1) of <p0, Y &€ ToFwval;
6 ToEval := ToEwval \ {¢°;

7 case °

8 Wdc AP:

9 for all s € S do

10 if 0 € m(s) then Result := Result U (% s);

11 W= —p:

12 for all s € S do

13 if (1, s) € Result then Result := Result U (0% s);

14 @0= (Y1 Va):

15 for all s € S do

16 if (11, s) € Result or (12, s) € Result then Result := Result U (¢9, s);
17 0= Xap:

18 for all s € S do

19 if (w, p(s)) € Result then Result := Result U (¢9, s);
20 ©0= (Y1 Uno):

21 s:= 0 Marked = §;

22 for i := 1to |S| do begin

23 if (¢2, s) € Result then begin

24 Result := Result U (%, s);

25 for all s° € Marked do Result := Result U (% s9);
26 Marked = 0;

27 end

28 else if (¢1,) € Result then Marked := Marked U {s}
29 else Marked := (;

30 s = p(s);

31 end;

32 if (0, s) € Result then

33 for all s° € Marked do Result := Result U (¢% s9);

34 end;

35 end;

36 if (o, 5% € Result then return “YES” else return “NO”;

37 end;
Fig. 5.6: LTL modelchedking algorithmfor seaqiential Kripke structures

the formula' ' arecomputedusingpreviouslycomputedinformation about
its constituentformulae. (In the lastcase,the setMarked is usedto keep
information aboutstatesin which the formula may betrue.)

The following propositionestablisheghe correctnessf the algorithm.

Proposition 1 (Correctness of the algorithm) The algorithm of Fig. 5.6 re-
turns the value “YES” if and only if the LTL formula' holds in the sequential
Kripke structure M .

Proof: SeeAppendx B. O

Asamatterof fact,LTL formulaecanbeeasilytranslatednto CTL formu-
lae sudh thatthe LTL formula holdsin a sequential Kripke structureif and
only if the correspondhg CTL formula holdsin the samestructure[14, 27].
The abovel TL modelcheding algorithmfor seaiential Kripke structuress
verysimilar to aglobalCTL modelcheding algorithm(seee.g.[11]) thathas
beenrestrictedto work only in a certain subclas®f Kripke structures.The
complexityof the abovealgorithmcanbeshovntobe O(j' j |Sj), wherej' |
denoteghe number of symbolsn ' .

>The main loop of the algorithm is executedat mostonce for ea subfornula of ¢;

5. TESTING LTL TRANSLATIONINTO BUCHI AUTOMATA

42

In practice the setResult computedin the algorithmcanbe usedto gen-
eratea proof shaving whetherthe formula' holdsin the givenseaiential
Kripke structure. Basically this can be done by applyingLTL semanticdo
the formula and using the Result setto nd the truth valuesof ' 's subfor-
mulae in the statesof the structure. In the analysisof inconsistentBiichi
automas, the witnessand the proof togethershav that one of the Buchi
automatisincorrect.

The model cheding algorithm for seqiential Kripke structuresprovides
alsoan algorithm aginstwhich the LTL-to-Buchi translationalgorithmim-
plementationscan be testedin Test3. Obviously this restrictsthe Kripke
structuresusedin the teststo segiential Kripke structures.However,these
are very easyto generateautomaticallyand can be usedin the automatic
testingof LTL-to-Budi translatos.

sincejf ¢’ j ¢’ isasubformulaof pgj j¢j, the loop is thereforeexecutedO(jyj) times.
The selectionof a subformula from ToEval canbeimplementedin consenttime, e.g.,if
the subformulaeare r stinsertedin the correctorderinto alist on line 3 beforeenteringthe
main loop. The orderingcanbe donein linear time in the number of subfornulae.

It is clearthat the loopsbetweenlines 9-10,12-13,15-16and 18—19are of complexity
0O(jS)); alsothe lines 21-33can be showvn to take O(j.Sj) time. (This requiresnoting that
the loop betweenlines 22—-31insertsat mostone elementinto Marked in ead iteration,
andno elementis insertedinto the setmorethanonce.)

5. TESTING LTL TRANSLATIONINTO BUCHI AUTOMATA

43

6 EXPERIMENTAL RESULTS

This chapterbeginswith a descriptionof an automatedtestbenb for LTL-
to-Budi translationalgorithm implementations,basedon the methodsde-
scribedin Chap. 5. This descriptionis followed by an overviewof the ar-
rangementdor the testsmadewith the testbent on several TL-to-Bidi
translationalgorithmimplementations.The chapterendswith a sectionpre-
sentingthe obtainedtestresultswith somediscussion.

6.1 AUTOMATED TESTBENCH FOR LTL-T0-BUCHI TRANSLATORS

The testmethodspresentedn Chap. 5 were partially implementedinto a
testbenb for automaticallytestingLTL-to-Budi translationalgorithm im-
plementations. The testbenb includesTestsl, 3 and4, usingthe two latter
teststo try to compensatdor the missingTest2, which wasleft unimple-
mented. To gatherasmuch data aspossiblefor comparison the testbent
repeatslestsl and 3 for all valid combinationsof the Blichi automagtaking
partin the testspsingglobalsyntironousproducts!

Thetestbenb usessimplerandomzedalgorithmsfor generatinghe LTL
formulae (usedasinput for the LTL-to-Blidi translatosto betestedandthe
Kripke structuregdneededin Tests3 and4).

The testbenb alsoincludesanimplementation of the LTL modelcheck-
ing algorithmfor seaiential Kripke structureslt canoptionallybeusedasan-
otheralgorithmwith which the testedalgorithmscanbe comparedin Test3
by restrictingto the useof random seauential Kripke structures.The algo-
rithm can alsobe usedfor analyzingan inconsistencydetectedin Testsl
or 3 betweentwo implementations,in orderto deternine which one of the
implementationsisincorrect.

The testbent wasimplementedin the C+ programmng language.The
sourcecodefor the programis awilable through the authors homepageat
<URL: http://www.tcs.hut.fi/}7Ehtauriai/>.

6.1.1 TestbenchOperation

The automatictestingprocedurebeginswith generatinga formula' anda
Kripke structure. The testedLTL-to-Bludi translatos are then invokedto
obtain Biichi automat A, from the formula. This is repeatedalsofor the
negatedformula: ' to obtainthe automat A’ neededin Testsl and4.

Since the input syneaxfor LTL formulae and the output represeration
for Buchi automat are usuallytranslator-spec, the testbenb usesa sep-
arateinput/output convesion module for ead translatorwith a unique in-
put/output represeration. This allowsadding new translatos into the tests
by attaching an appropriateranslationmodule into the testbenab.

Having obtained the Blichi automas, the testbenb performsTestsl, 3

'The testbent usedhereis an extendedversion of the implementation whoseprevious
versionshavebeendescribedn [26] and[27]. The mostsigr cant extensiomotincluded
in previousworkisthe incorporationof Test1 into the automatedestingprocedure.

6. EXPERIMENTAL RESULTS

and4 on the generateciutomas, usinganinternalimplementationfor com-
puting syndironous productsand cheding them for emptiness. (Test3 is

actuallyperformedtwice, usingead setsof automat A, andA_,.) Thisim-

plementation is basedon the straightforvard techniques describedin

Sect.4.2.6.Afterall testshavebeenperformed the testprocedureisrepeated
usinganotherLTL formula or Kripke structure.

After eadh testround, the usercan examne the LTL formulae and the
Kripke structureusedin the testround, togetherwith the Biichi automaga
generatedby the different implementationsin that testround. If Testsl
or 3 detectedan inconsistencythe testbent can optionally give a sugges-
tion aboutwhich of the testedimplementationshad failed. This is done by
constructinga withnessthat provesa testfailure on someformula® between
sometwoimplementationsasdescribedn Sect.5.2,andthenusingthe LTL
model cheding algorithm for sequential Kripke structureson the witnesso
determine which one of the implementationsis incorrect. To justify the re-
sult, the testbenb alsogivesa proof whether the property’ holdsin the
witness.

Afterapredeternned number of testrounds,the testbenb nally reports
the number of different typesof failuresdetectedin the testsbetweenead
pair of implementations.Due to implementation errorsin an LTL-to-Budi
translatorjt maywell occurthatthe translatoffailsto produceany acceptble
output on someinput formulae; alsothesekinds of failuresare reportedfor
ead implementation takingpartin the tests.

6.1.2 Gererating Input for the Tests

The testbenb usessimple randormized algorithmsfor generatingLTL for-
mulae and Kripke structurego be usedasinput for the automatedtestpro-
cedure. The main goalin desiging the algorithmswasto obtain simple
procedureshatgenerateoutputthat satis essimplestructuralrequirements.
No formal analysisvasspeccally performedin the designof the algorithms
in orderto makethem satisfyanyexplidt requirementsregardng the output
distribution. Therefore,it is verylikely that the producedoutput is biased
accordng to anyformal criteria that might be considerede.g.,that the out-
put of the algorithmsshould be “uniformly distributed” accordng to some
notion of uniformity).

The behaviourof the algorithmscanbe adjustedwith severaparametes.
This enableshavingsome“intuitive” control overthe expectedpropertiesof
the generated.TL formulae andthe Kripke structuresgventhoughthe ex-
actdistributionsremain unknown. Actually, someof the parametes canbe
adjustedsud thatthe algorithmsindeedgeneraté‘uniform” output accord-
ing to someexpliat criteria. For example,seeAppendx C for the analysis
thatwasdonefor adjustingthe randomformula generatiorparametesin the
experimentglescribedaterin this chapter

LTL formulae. The testbenb generategandom LTL formulae using a
straightfonard recursivealgorithm [26, 27, 5]. The pseudocoddor this al-
gorithmis shavnin Fig. 6.1. The algorithm generate$ormulae with a parse
tree havinga givennumber of nodes. The algorithm r stchooses logical

6. EXPERIMENTAL RESULTS

1 function RandomFormula (n : Integer) : LtIFormula
2 if n = 1 then begin

3 p := random symbol in AP U {T,L};

4 return p;

5 end

6 else if n = 2 then begin

7 op := random operator in the set {—, X, [, 0};
8 ¢ = RandomFormula(1);

9 return op ¢;

10 end

11 else

12 op := random operator in the set {—, X, [, O, A, V, —, <, U,R};
13 if op € {—, X, 0, O} then begin

14 o = RandomFormula(n — 1);

15 return op ¢;

16 end

17 else begin

18 x := random integer in the interval [1,n — 2];
19 o = RandomFormula(z);

20 1 := RandomFormula(n —z — 1);

21 return (¢ op);

22 end;

23 end;

24 end;

Fig. 6.1: Pseudocodéor the formula generationalgorithm[27]

or a temporal operator,recursivelyconstructsone or two smallerformulae
accordng to the arity of the operator,and nally concatenatethe formulae
with the chosenoperatorinto asingleformula. At the leaveof the parsetree
(i.e.,when generatingasubfornula with a parsetreeof sizel), the algorithm
selectseither an atomc propositionfrom a given setof propositionsAP or
a Booleanconsent> or ? asthe formula. In the algorithm of Fig. 6.1, n
denoteghe sizeof the parsetree of the formula.

The full setof operatossupportedoy the testbent implementation con-
sistsof the unary operatosf: ;X;[J; g and the binary operatosf_ ; ;! ;
$;U;Rg. In the testbenti implementation, the probability of selecting
ead individual operatorinto the generatedformula can be controlled by
spedfying a “priority” for ead individual operatorasa nonnegtiveinteger
Thesepriorities can be adjustedto disablethe use of someoperatoror op-
eratos altogether,for example,if one of the testedLTL-to-Blichi transla-
torsdoesnot supportall the awailable operatos directly. Let OP be the set
of operatos from which the algorithm choosesa random operatorat some
point in the executionof the algorithm, and let op 2 OP. Denote by
pri (op) 0 the priority givenfor op. Then, the probability of selecting
the operq_i,orinto the formula atthat point in the executionis simplygivenby
pri(op)=",,0cop P (op). (Of course,pri (op’) mustbe positivefor atleast
oneoperatorop’ 2 OP for the probabilityto bede ned.) While thismethod
for choosingthe operatosis easyto implement, it caneasilybe seernto favour
unary operatos, sincethey are aailable for selectionin two separatglaces
of the algorithm (lines7 and 12). However it is still possibleto adjustthe op-
eratorprioritiessothat eat generatedormula will havethe sameexpected
number of ead operatorin it; this wasthe criterion usedin the experiments
presentedaterin this chapter (SeeAppendx C.)

6. EXPERIMENTAL RESULTS

46

Kripke structures. In thiswork,the transitionrelationfor Kripke structures
is alwaysassumedo be total (De nition 1, page4). This must be taken
into accountin the algorithmsfor generatingrandom Kripke structures so
they mustensurethat everystateof ead generatedstructurehasat leastone
successolin the following, thisis referredto asthe “successoconstraint”.
The simplegraphconstructionalgorithmsusedin the testbenb all gener-
ateKripke structureswith a givennumber of statesn. The valuationsfor the
atomc propositionsarede ned in ead state by choosingthe truth value of
ead propositionp 2 AP randomlyfrom the two possibilities Each proposi-
tion is giventhe value “true” with a givenprobabilityt. The algorithmsalso
make useof a parameterd (approimating the “density” of the graph,i.e.,
the probability of havingan arc betweenanytwo nodes;the parameterdoes
not, however affectthe arcsthat mustbe addedbetweenstateso enforcethe
successoconstraint). Threedifferent typesof graphscanbe used:

1. Randomgraphs.Thesearegeneratedy simplytakingead stateofthe
structurein turn andadding arandomtransitionbetweerthatstateand
anyotherstatewith the givenprobabilityd. If the resultinggraphdoes
not satisfythe successoconstraint,ead state violating the constraint
isthen connectedto somerandomlyselectedstate of the structure.

2. Randomconnectedgraphs. Theseare random graphssatisfyingthe
successoconstraintwith the additional requirementthat eat stateof
the structureshouldbe readable from somedesignatedinitial state”
of the structureby zero or more arcs. (The intuition behind suc a
requirementisthatthe structurecanthen bethoughtof as‘simulating”
the reathable part of the statespaceof somesystem.)

The pseudocodéor thisalgorithmis shavn in Fig. 6.2. The algorithm
uses sy as the initial state of the Kripke structure. The set
UnreachableNdes keepstradk of the stateswhich cannot yet be
readied from sq in the graph. The setNodesToProcesscontainsthe
statesthat are known to be readable from sy but havenot yet been
processedself. Initially, the only sudh stateis the initial statesg.

In ead iteration of the outermostioop of the algorithm, the algorithm
choosesomepreviouslyunvisitedstate s known to be reathablefrom
So (lines 7-8) and then de nes the valuation for the atomc propo-
sitionsin that state (lines 9-12). After this, s is connectedto some
yetunreadable state s’ (if sudh a state exists),making s’ now ready
to be eventuallyvisiteditself (lines 13—18). Then, the algorithm adds
random edgesfrom s to other statesof the structurewith the given
probability d (lines 19-26). (This may causesomeyet unreatable
statesto becomereadablefrom sy, sothe setdUnreachableNdesand
NodesToProcess must be updatedaccordngly.) Finally, if s still has
no successa;it is simplyconnectedto itselfto maintain the successor
constraint(lines 27-28). (The path from sy to s in the structurecan
in this casebe seenasa terminating executionof the “system”corre-
spondng to the structure.)

3. Randomseayential structures.Thesestructuressimply consistof the
statesof the structurearrangednto a segqiencewith abadk edgeadded

6. EXPERIMENTAL RESULTS

1 function RandomGraph(n : Integer, d : Real € [0.0,1.0],¢ : Real € [0.0,1.0])
: KripkeStructure

2 S = {s0,81,---,8n 1}

3 NodesToProcess := {so};

4 UnreachableNodes := {s1,82,...,sn 1};

5 p=0;

6 while NodesToProcess 7 § do begin

7 s = arandom node in NodesToProcess;

8 NodesToProcess := NodesToProcess \ {s};

9 m(s) == 0;

10 for all P € AP do

11 if RandomNumber(0.0, 1.0) < ¢ then

12 w(s) = w(s) U{P};

13 if UnreachableNodes 7 () then begin

14 s9:= arandom node in UnreachableNodes;

15 UnreachableNodes := UnreachableNodes \ {s%;
16 NodesToProcess = NodesToProcess U {s%;

17 pi= pU{(s,s9};

18 end;

19 for all s°€ S do

20 if RandomNumber(0.0, 1.0) < d then begin

21 pi= pU{(s,s9};

22 if s° € UnreachableNodes then begin

23 UnreachableNodes := UnreachableNodes \ {s%;
24 NodesToProcess := NodesToProcess U {s%;
25 end;

26 end;

27 if there is no edge (s, s9) in p for any s° € S then

28 p= pU(s,s);

29 end;

30 return (S, p, so, 7);

31 end;

Fig. 6.2: Pseudocodéor the Kripke structuregenerationalgorithm[27]

from the “last” statein the segqienceto somerandomlyselectedorevi-
ousstatein the seqience(seeFig. 5.5). The parameted isnot usedin
this case sinceead statealwayshasexactlyone successor

As mentioned previously using seaiential Kripke structuresasinput
for the testprocedureallows comparingthe model cheding results
obtained usingthe LTL-to-Buici translatosin Test3 with the results
given by the restrictedLTL model cheding algorithm of Sect.5.2.
This testingwill be enabledautomaticallyin the testbenb whenever
usingseqiential structures.

6.2 TEST ARRANGEMENTS

The experimentsin this work were made by running the automatedtest-
ing procedureon severalwilable LTL-to-Bludi translationalgorithm im-
plementations.The implementationstakingpartin the testswere:

ASA+ The ASA implementationis an LTL-to-Buici translatorderivedfrom
Mauno Ronkkds C+ classlibrary [22] implementing the translation
algorithm presentedn [8]. The clasdlibrary is alsoa part of the ASA
model cheding padkage[17]. The clasdibrary wasrewrittento make
useof the containers of the C+ StandardTemplateLibrary (STL), in-
cluding someof the other code optimizationsproposedn [22]. The

6. EXPERIMENTAL RESULTS

48

library alsohad to be extendedwith code for computing the accep-
tancecondtions of the generatecautomas. In addition, direct rules
wereimplementedfor the operatos! ;$;[0 and¢{ thatwerehandled
by rewriting rulesin the original implementation.

SPIN 3.x.x The modelcheder SpiN [10] by GerardJ.Holzmannincludesa
module for automatically converting LTL formulae into “never
claims”, which arebasicallyBuchi automat encodedin SPIN's mod-
elling languagePROMELA. Also this implementation is originally
basedon the algorithm in [8], but it includes severaloptimizations
(someof which aredescribedn [6]).

The automatedtestingprocedurehasbeenusedon this implementa-
tion sinceits version 3.3.3. The testinghasuncoveredsomeimple-

mentation errorsin variousversionsof the tool [26, 27]. In this work,
the behaviourof version 3.3.3 (duly 1999;the r stversionto be ever
testedwith someof the methodspresentedn this work) wascompared
with versions3.3.9 (Jaruary 2000;a version with somecorrectionsto

the LTL-to-Budi translationmodule,incorporatingfeedba& givenon

errorsfound usingthe testingprocedure)and 3.4.1(August2000;the

latestversion at the time of writing) to seehow the behaviourof the

implementation haschangedbetweenthe differentversions.

LTL2AUT LTL2AUT isthe LTL-to-Budhi translatomwritten by the authors
of [5]. It is basedon atranslationalgorithm presentedn the samepa-
per. The implementation actuallycontainsthree differentalgorithms:
the “GPVW"” algorithm [8] (the samealgorithm on which the previ-
oustwo implementationswerebased)the “GPVW-" algorithm based
on someimprovementgproposedalreadyin [8], andthe “LTL2AUT”
algorithmof [5] itself.

In thiswork,all algorithmsincludedin the LTL2AUT implementation
were tested. In the experiments, these are referred to as
LTL2AUT(GPVW), LTL2AUT(GPVW-+) andLTL2AUT(LTL2AUT),

respectively

PROD The Pr/T net reatability analyzerPROD [33, 34] includesan LTL-
to-Budi translatormodule basedon the algorithm presentedn [31].
Thisimplementation wasalsoincluded in the testamadein this work.
The versionusedwasfrom 27 duly 2000.

The testswere divided into severabatthesaccordng to the number of
nodesin the parsetree of the generated_TL formulae,in orderto (roughly)
seehow the sizeof the Buichi automat generatedy ead translatordepends
on the input formula sizein practice. Each batd consistedof 1,000LTL
formulae with a xed parsetree size. There were a total of eight batdes,
ead of which consistedf 1,000randomlygenerated_TL formulae with a
parsetreeof 5; 6; 7; 8; 9; 10, 11and 12 nodes respectively

The operatosin the formulaewerechosenfrom asetof operatosdirectly
supportedby all the testedtranslationalgorithm implementations. Even
thoughformulaeincluding unsupportedoperatoscould in somecasedave
beenrewrittenusingmore primitive operatosbeforegivingthe formulato a

6. EXPERIMENTAL RESULTS

translator this wasnot done, sinceapplyingrewriting rulesto a formula can
changethe sizeof the parsetree of the formula. This would haveresulted
in testbatcheswith formulae of varyingparsetreesize,which would in turn

havemadeit more complicatedto investi@te the relationshipbetweenthe
sizesof the formulae andthe generatediichi automat.? Unfortunately re-
strictingto operatosdirectly supportedoy all the testedmplementationsleft
someoperatosunusedeventhoughsomeimplementationswould havebeen
ableto acceptthem. Asa matter of fact, all the aboveimplementationsex-
ceptPROD supportecexactlythe sameoperatosasthe testbenb (the unary
operatosf: ;X;[J; 0gandthe binaryoperatosf_;”;! ;$;U;Rg) directly.

The PROD tool, however Jackeddirect supportfor the X; $ andR operatos,
leavingonly the operatos: ;[J;¢; ;”~;! andU to be usedfor all the im-

plementations.For this reasonthe testprocedurewasrepeatecbn the other
implementations,this time allowing the full setof awailable operatosto be
usedwhen generatinghe formulae.

A further requirementadoptedfor generatinghe input formulae wasthat
the formulae in ead batd should contain the same expected number of
ead awailable operator The details on how this wasacdievedin practice
canbefoundin Appendx C, which containsan analysiof the randomfor-
mula generationalgorithmshaowvn in Fig. 6.1.

The setAP wasin all testbatches xed to ve propositions,with eah
individual propositionhavingthe probability of 0.18 of being chosenby the
formula generationalgorithm of Fig. 6.1 ead time line 3 is executed.Each
of the Booleanconstintshadthe probabilityof 0.050f being selected.

The Kripke structuredor Tests3 and 4 weregeneratedisingthe random
connectedgraphalgorithm (Fig. 6.2). Each graphconsistedf 50 statesand
the value 0.1wasusedfor the approcimategraphdensityd. Each proposition
wasequally likely to getassignedither of the values‘true” and“false”in eah
state(i.e., the value 0:5 wasusedfor the parametert). A new Kripke struc-
ture wasgeneratedvhenevera new LTL formula wasgeneratedso 1,000
structuresvereusedin ead testbatd.

Ead of the testedimplementationslisted abovewasconnectedinto the
testbent with a separatenput/output convesion module. All of the tested
translationalgorithm implementations and the testbenb itself were com-

21t maywell be arguedthat an implementation might still in practice“change”the size
of the input formula usinge.g.somesimpli cation rulesbeforetranslatingthe formula into
a Bichi automaton. However,sincethe implementationsare treatedas“black boxes”in
thiswork,sud implementation-dependenissuesreirrelevantto the simpletestingstrategy
usedhere. It must,neverthelesdye recognzed that sud internal details of a translatorcan
haveasign cant effectonthe sizeofthe automat generatedytheimplementation, which
is likely to resultin much variation in the sizesof the automat, eventhough seeningly
“ xed-size” formulae areusedasinput.

>The only reasonfor selectingthis strategyin this work wasto have someknowledge
aboutthe distribution of the generatedormulae, insteadof e.g.simply assiging arbitrary
prioritiesto the different operatos. Clearly, the chosenstrategyis biasedin comparisonto
someother intuitively reasonableriteria that might be consideredg.g.that everyformula
of agivenparsetreesizeshouldbe “equally likely” to be generated.

(However, assunng that the implementations perform some operator-basectase
analysis—inthe manner of the model cheding algorithm of Fig. 5.6, for example—the
chosenformula generationstrategymight help in trying to exerise eat caseequally often
on the average.)

6. EXPERIMENTAL RESULTS

50

piled from C or C+ sourceswith version2.95.20f the GNU Compiler Col-
lection (gcc). The testswererun in Debian Linux 2.1 environmenton Pen-
tium 1I/1II PCswith 256MB of memory In the experimentsead translation
algorithmimplementationwasgiven128 MB of memoryspacethe formula
translationwasinterruptedin casethis memorylimit wasexceeded.(This
createsanothersourceof automatongenerationfailuresthat must be distin-
guishedfrom thosefailuresin which an implementation fails due to some
otherreason.)The testbent itselfwasgivenall available memoryspacefor
perforning the varioustestsunfortunately this wasnot alwaysenoughto per-
form all testson somelargeautomag; seethe discussiorin the nextsection.

Finally, a different setof testswererun on the implementationssupport-
ing the“full” setof operatos. The goalof thesetestsvasto try to seewhether
the observedestfailure ratesin Test3 (the model cheding result cross-
comparisorched) seento haveanydependencyn the appraximatedensity
d of the Kripke structuresusedin the testswhile keepingall other parame-
ters (Kripke structuresize,number of atonic propositions)xed. Such cor-
relation might give information on how to “best” choosethe value for the
parameted in orderto maximze the oddsof nd ing errorsin LTL-to-Bldi
translatos using Test3 (atleastin the usedvalue combinationfor the other
parametes).

The abovetestscorrespondo repeatingthe original experiment(with all
formula parsetreesizess—12)on all algorithmsexceptPROD usingdifferent
valuesfor the parameted. The value 0:1 wasalreadytestedabovethe values
usedfor d in the newtestswere0:0, 0:2, 0:3, 0:4, 0:5, 0:6, 0:7, 0:8, 0:9 and
1:.0. (If d = 0:0, the algorithm of Fig. 6.2 will generatetree-likestructures
whoseead “leaf node”isconnectedo itself;if d = 1:0, therewill beanedge
betweenead pair of states.) In addition, the experimentwasstill repeated
using sequential Kripke structures insteadof random connectedgraphsto
seewhetherthis causesnysign cant changein the observedailure rate.

6.3 TEST RESULTS

Tables5.3and6.4shawv the numbersoftimesead of the testedmplementa-
tionsfailed to generatea Biichi automatonfrom an LTL formula, including
the total numbers of failuresand generatecautomat. Here, a failure means
anyreasorthatpreventedatranslatofrom produadng valid outputfrom some
input formula. Basedn the testresultsthe failurescould be categorizednto
the following types:

(1) Thetranslatomprocessvasterminateddueto afatal internal error(e.g.,
asegmendtion fault).

(2) Aninternalassertiorviolation occurredin the translator

(3) The translatomproducedsyntcticallyincorrectoutput accordng to its
output formatsped cation.

(4) Thetranslatomprocesexceededhe memorylimit of 128 MB.

6. EXPERIMENTAL RESULTS

Table 6.3: Biichi

f:;0,0;_:™; ! ;Ug

automaton generation failures with operatos

Parse Number of automaton generation failures
tree size <numbe of failures>(<numbe of failures dueto memoly exhaugiorn>)
of random [2000 attempts]
formulae
Es SPIN | SPIN | SPIN |LTL2AUT|LTL2AUT|LTL2AUT
A 1v3.3.3v3.3.9|v3.4.1| ©wW | @Pw |wrzam | PROD
5...10 0 0 0 0 0 0 0 0
11 0 2@ | o 0 0 0 0 |22
12 0 |[3@ | 0 |2 o 0 0 | 4()
| totat | O [5(56)] 0 [2(@]| O 0 0 [6(6)
Number
of 16000 | 15995 | 16000 | 15998 | 16000 | 16000 | 16000 | 15994
automata

Table 6.4: Biichi

f: X 00, ;™! 1% ;U Rg

automaton generation failures with operatos

Parse Number of automaton generation failures
tree <numbe of failures>(<numbe of failures dueto memoly exhaugion>)
size of [2000 attempts]
random
formu- o SPIN SPIN SPIN | LTL2AUT | LTL2AUT | LTL2AUT
e | ASA | 333] y33.9 | vl | ©ew | ©ewn | e
5 0 [100(0)] o© 0 0 0 0
6 0 |[137(0)| o© 0 0 0 0
7 0 [172(0)| O 0 0 0 0
8 0 [185(0)| 1) | 1(0) 0 0 0
9 0 [21900)| 22 | 2(2 0 0 0
10 0 |235()] 4(4) | 5(5 0 0 0
11 0 |215(1)] 8(7) [10(10)| © 0 0
12 0 [302(0)[22(21)[18(8)| © 0 0
[ToaL || O [1565(2)|37(35)]36(36)] 0 | 0 | O
Number
of au- 16000 | 14435 | 15963 | 15964 | 16000 | 16000 | 16000
tomata

6. EXPERIMENTAL RESULTS

52

Since the fourth type of failure is not (necessarilyue to errorsin an
implementation itself, eat cell with a nonzerofailure rate in Tables6.3
and6.4includesalsothe number of failuresthatwereactuallydueto memory
exhaustion.

The failure ratesshavn in the tablesare overall formulae givento the
implementations,including both the randomlygeneratedormulae with the
shavn parsetreesizeandthe negated formulae (whoseparsetreeshaveone
additional node) that were neededto run Testsl and 4 on the implemen-
tations. Thus, eat cell in the tablescorrespondso the number of failures
amonga setof 2,000formulae.

In theseexperimentsPROD and the variousversionsof SPIN seemedo
require more memorythan the otherimplementations,which is seenasan
increasinghumber of failuresdueto memoryexhaustioron theseimplemen-
tationsasthe parsetreesizeof the formulaeincreasesThe otherimplemen-
tationswereableto operatein 128 MB of awailablememoryspace.

Table 6.3 (with testresultsobtainedusingarestrictedsetof formula oper-
ators) doesnot revealerrorsin anyof the implementations,sinceall failures
in this tablearedue to memoryexhaustion.However,allowing the useof a
largersetof operatosin the testscausedsomeversionsof SPIN (3.3.3and
3.3.9)to behavemore unreliably, resultingin errors of types(1) to (3) de-
scribedabove. SPIN v3.3.3sufferedfrom all thesetypesof errors; version
3.3.9failed only dueto internal assertiorviolations.

Test 1 and Test 3 Results
Theresultsof Testl and Test3 arereportedin Tables6.5and6.6for the two
formulasymbolsetd: ;J; O; _;~;! ;Ugandf: ;X;;0; ;™! ;% ;U;Rg,
respectively An important obseration was that the ASA, LTL2AUT
(GPVW), LTL2AUT (GPVW+), LTL2AUT (LTL2AUT) and PROD imple-
mentations never failed any of thesetestsaginstead other, recardlessof
the formula symbolset. For this reason the tablescombine the resultsfor
thesealgorithmstogetherandthesealgorithmsarecollectivelyreferredto as
“A/L/P” in the tables' The independenceof thesethree implementations,
togethemwith the obserationthatalsoSPIN seemgo “convergetowardsthe
sameresultsasthe tool version number increasesgivesa strongsuggestion
thattheseimplementationsarequite reliableandcorrect.

Ead cell in the top part of eat table containsatriple of integesa=b=c
representinghe following information:

aisthenumberoffailedBuichi automatintersectionemptinesshedks
betweentwo supposedlycomplemenary Bichi automat (Test 1).
Eadch nondagonalelementin the matrixasso@tedwith someformula
parsetree size correspondgo testingtwo different implementations
aqinstead other,sothe maximum number of testperformeds 2,000

*There wereslight differencesin the failure rateswhen testingtheseimplementations
aguinstvariousversionsof SPIN. This is a consegence of Blchi automatongeneration
failuresthat sometimesoccurredon someof thesetranslatos, preventingsomeof the tests
from being performed. The number reportedin the tablesis alwaysthe minimum failure
rate obtainedusingtheseimplementations(i.e., someof the “A/L/P” implementationsmay
actually have had a slightly higher failure rate against SPIN by themselveghan the rate
shavnin the table).

6. EXPERIMENTAL RESULTS

53

Table6.5: Failure ratedor Testsl and 3 with operatosf: ;[J; ¢; _;™;! ;Ug

Parse Imple- Number of test failures
tree menta- <Ted 1 failures> / <Teg 3 failures (local failures)> / <Total numbe of
size of tion inconsigent automata deteced>
random [Diagonal cells: max. 1000 tests; other cells: max. 2000 tests]
formu- R
lae AL/P [SPINV3.3.3[SPINV3.3.9|SPINV3.41
MLPo/ o /o
5 S3.3.3||21/ 4 [22|20/ - /20
S339(0/ o [o|21/ a3 /220 - [o
S3.41| 0/ o [o|21/ 43 /220 o [o|ol - 1o
MLPo/ o /o
6 S3.3.3|32/ 8 [33]31/ - [31
S3.39(0/ o [o|32/ 8w [33]0/ - [o
S3.41| 0/ o [o|32/ 86 [33|0/ o [lo|lol - [o
ALUPlo/l o /o
7 S3.3.3/(49/ 97y /50(48/ - /48
S3.39|0/ o /o4 97 /s0lo! - [o
S3410/ o [/o|49/ 97 /500 o [lo|lo/l - [o
NLPo/ o /o
8 S3.3.3|66 /140120 / 69|61/ - 61
S3.39| o/ 1) /1]6s5/13a1) /68 0/ - [o
S34.1 0/ o [olesl1sa2/69| 0/ 11y /1|0 - [o
NLPo/ o /o
9 S3.3.3||69/ 168) /70|69 - [69
S3.39(0/ o [o|e9l 16w /70|0/ - [o
S3.41| 0/ o [o|e9/16w /700! o [lo|ol - [o
HLPo/ o /o
S3.3.3||73/19a3)/ 75|66/ - |66
10
S339(o/ 1» /f1|71/18a)/ 74|01 - [o
S3.41| o0/ o [o|73/1903/75| 0/ 11y 1|0/ - [o
MLPo/ o /o
11 S3.3.3|[86/ 19(8) / 88|83/ - /83
S3.39| o/ 20y [2|87/ 17 /87 0/ - [o
S34140/ o [o|87/ 198 /8|0 200 /2]|0/ - [o
NLPo/ o /o
12 S3.3.3|101/31a7n /110(91/ - /9
S3.3.9(o/ 32 [3102/3209 /112 0 / - [o
S3.4.1) o/ 10 [/ 1)102/30a7n /11000 / 22> [2|0/ - [o
Total number of tests performed
<Tegq 1>/ <Ted 3>
[Diagonal cells: max. 8000 tests; other cells: max. 16000 tests]
o AoA, L—L:8000/—; P—P: 7767/ —;
AIL/P || AL 16000716000 {A,L}—P: 15907 / 15966
S3.3.3|| 15933715961 7995 /-
S3.3.9| 15950715966 | 15995/15995 8000/ —
S3.4.1|| 15949/15964 | 15993/15993 | 15998/15998 7998 /-

6. EXPERIMENTAL RESULTS

54

Table 6.6: Failure rates for Tests 1 and 3 with operatos
f: X080, ;M1 3% U;Rg
Parse Imple- Number of test failures
tree menta- <Teg 1 failures> / <Teg 3 failures (local failures)> / <Total numbe of
size of tion inconsisent automata deteced>
random [Diagonal cells: max. 1000 tests; other cells: max. 2000 tests]
formu- N
lae AL | SPINVv3.3.3| SPINV3.3.9| SPINV3.4.1
ML o/ o /o
5 S3.3.3|[215/270¢08)/299| 35/ - /35
S3.3.9||17 / 15(8) [17 |227/26302/311|15/ - /15
S3.4.1) 0o/ o [o|215/270008/299|17/ 158) /15| 0/ - [o
ML o/ o /o
6 S3.3.3|[244/294103)/331| 26 | - [26
S3.3.9(11/ 9 [11(253/290001/340{10/ - /10
S3.4.1 0/ o [o|244/294103/331|11/ 9) /11| o0/ - [o
ML o/ o /o
v S3.3.3|[297/33830)/400| 45/ - [45
S3.3.9(|17 / 149 [17|311/334a3/414[15/ - /15
S3.4.1 0/ o [o|297/338us0)/400{17 / 149 /17| 0/ - [o
ML o/ o /o
8 S3.3.3|[321/351134/434| 46 [- [46
S3.3.9(|24 / 2110y / 24 |329/33927) /441|181 - /18
S3.4.1) o/ o [o|320/350a33/434|24 [21000/ 24| 0/ - [o
ML o/ o /o
9 S3.3.3|[358/37401240/478/51 1 - [51
S3.3.9||30 / 2819) / 30 |376/366017)/493|23 | - |23
S3.4.1) o/ o [o |357/373a23/476|30 /2809 /30| 0/ - [o
ML o/ o /o
10 S3.3.3|[409/408(129)/527| 46 | - [46
S3.3.9||16 / 13(6) / 16 |419/406027)/536(15/ - [15
S3.4.1) o/ o [o |a07/407a29/524|16/ 136) /16| 0/ - [o
ML o/ o /o
11 S3.3.3|[470/452037/598| 64 [- [64
S3.3.9([31/ 2509 [31(477/435028/607| 221 - [22
S3.4.1 0/ o [ol|462/445133/592|30/ 248) /29| 0/ - [o
ML o/ o /o
12 S3.3.3|[506/466150)/622| 64 [- [64
S3.3.9(/35 / 27(12) / 35 |512/444039)/629|26 | - [26
S3.4.1 0/ o [/ o|496/458u4s/61535/2702)/35| 0/ - [o
Total number of tests performed
<Tegq 1>/ <Ted 3>
R [Diagonal cells: max. 8000 tests; other cells: max. 16000 tests]
ML || AcA LoL:8000/—; AsL: 16000/ 16000 |
S3.3.3|| 14435/14435 7139 /-
S3.3.9| 15963715963 | 14410/14411 7963 /-
S3.4.1|| 15964/15964 | 14411/14412 | 15928/15957 7965 /-

6. EXPERIMENTAL RESULTS

55

in this case. The diagonalcells correspondto testingan implemen-
tation aqainstitself; the maximnum number of testsfor thesecells is
1,000, sinceintersectingtwo Biichi automat generatedoy the same
implementation twice doesnot give any new information. (However,
althoughnot shovn in the table, the “combined” A/L/P implementa-
tionsweretested?,000timesagninstead other,andno inconsistenes
weredetected.)

b is the number of failed model chedking result cross-comparison
chedks betweentwo implementations (Test3). Ead cell agin cor-
respondgo at most2,000 performedtests;in addition, sinceno im-
plementation can fail this testaginstitself, the diagonalcells are not
relevant in this case. The zerosin the diagonalcells corresponihg
to the “combined” A/L/P (Table 6.5) or A/L (Table 6.6) implementa-
tion areonly intendedto emphasizeéhattherewereno inconsistenes
betweentheseimplementations.

The number in boldface givesthe failure rate when the resultswere
comparedin ead state of the Kripke structure(corresponahg to the
“global” emptinesschedk describedin Sect.5.1.2). The number in
parenthesegivesthe failure ratewhen the resultswerecomparedonly
locally with respecto asingle“initial” stateof a Kripke structure.

c givesthe total number of automat (out of at most2,000automag
involvedin the tests}that weredeternined to be incorrectby either of
the two abovetests. This number can be at mostthe sumof a and b
usually it is considerablysmaller,sincean incorrect automatonmay
well fail both of the abovetests.

The lowerpartsof Tables5.5and6.6reportthe total numbersof ead type
of testperformedbetweenanytwo implementations. The differencesn the
numbers of testsperformedis both due to the implementations'occasional
failuresto generateBichi automag and unsuccessful tests caused by the
testbench itself running out of memory. This sometimesccurredwith large
Bichi automat that could not be syndironized with the random Kripke
structuregor otherBuchi automatwhen perforning Testl) in the memory
spaceawailableto the testbenb (ca.300MB). (Thesecasesverenot counted
in the reportedfailure rates,sothe failure ratescorrespondcorrectlyto the
actualnumbers of detectednconsistenies.)

The growth in the number of observedtest failures can be seento
(roughly) follow the increasein formula parsetree size. Comparing the
two tableswith ead other, it can be seenthat a largervariety of operatos
in the randomlygenerated_TL formulaeincreasedhe number of observed
testfailures. The resultsrevealerrorsin SPIN versions3.3.3and 3.3.9,since
theseimplementationssometimedailed Test1 by themselveghowever ver-
sion 3.3.9failed only in the testsperformedusing all aailable operatos).
SPIN v3.4.1alwayspassedhis testalsoagainstthe ASA, LTL2AUT (all vari-
ants)and PROD implementations. However,Table 6.5 revealsone incon-
sistencyin the resultcross-comparisochedk betweenSrIN v3.4.1and the
otherimplementations(12 nodesin the formula parsetree). Analyzingthis
caseseparatelyvith the testbena (i.e., automaticallyconstructinga witness

6. EXPERIMENTAL RESULTS

Table6.7: Failureratedor Test4 on SPIN versions3.3.3and3.3.9(max.1000

tests)
Parse tree size of Operator set used
random formulae {_|, 7 ,\/,/\,—>,U} {_HX’ . VLA, —, e, U, R}
SPINV3.3.3 | SPINV3.3.9 | SPINV3.3.3 | SPINV3.3.9
5 0 0 1 0
6 0 0 6 0
7 0 0 2 0
8 0 1 5 0
9 0 0 5 0
10 0 1 4 0
11 0 1 6 0
12 0 2 3 0
‘ TOTAL H 0 ‘ 5 ‘ 32 ‘ 0 ‘
Total nuber of 7995 8000 7139 7963
performe

and then analyzingit with the LTL model cheding algorithm for seaqien-
tial Kripke structuresasdescribedn Sect.5.2) con rmed the incorrectness
of the Blichi automatongeneratediy SPIN v3.4.1,revealingan errorin the
implementation. This analysisanbe found in Appendx D.

Testsl and 3 oftenrevealedhe “same”errorsin the automat. This can
be seenin that the total number of automat that were determned to be
incorrectby thesetwo testss usuallyfar lessthan the sumof the failure rates
of the individual tests. Thesetestscan still be considereduseful together,
since Test3 is may detectinconsistenesthat areimpossibleto nd using
only Test1.

Test 4 Results

Test4 (the model cheding resultconsistencyched) failed occasionallyon

SPIN versions3.3.3and 3.3.9. All other implementationspassedhis test
wheneverit could be performed. The failure ratesfor thesetwo implemen-
tationson ead setof formula symbolsareshavn in Table6.7. (In this case,
ead cell of the tablecorrespondso the number of failuresin amaximum of

1,000tests.)

Ascan be seenin the table, the failure ratesarerelativelysmallin com-
parisonto the failure ratesin Testsl and 3. In addition, thesetestsdo not
revealany clear dependencebetweenthe formula sizeand the number of
consistencyhed failures.However the formula symbolausedin the differ-
ent testsseemto havea peculiar effecton the failure rates:when usingonly
the smalleroperatorset,only SPIN v3.3.9everfailed;the situationwasexactly
the oppositewhen usingthe largersetof operatos. This might suggesthat
the errorsin SPIN v3.3.3mayberelatedto the useof operatosmissingin the
smallersetof operatos,while the errorsin SPIN v3.3.9arerelatedonly to the
common operatosincluded in both sets.Intuitively, theseerrors shouldbe
lesslikely to surticewhen usinga largersetof operatos, which might offer
someexplanationto why no errors weredetectedin SPIN v3.3.9in the tests

6. EXPERIMENTAL RESULTS 57

with alargersetof operatos.

Comparingonly the magntudesof the failure ratesobservedn Test4 and
Testl (performedon a singleimplementation), Test4 seemgo be lessef -
cient. However sincethesetwo testan factapplyto different kindsof errors
(seeFig. 5.2andthe discussionn Sect.5.1.2),theyreallycomplementeat
other. For example,eventhough Test1 did not revealany inconsistenges
in SPIN v3.3.9in the testswith the smallersetof operatos, Test4 failed on
thisimplementation severatimes;the samephenomenonoccurredrevesed
with the sameimplementation using the larger operatorset. (Of course,
since Test4 is only an “appraximationri’ of the unimplemented Test2, the
number of detectederrorsis likely to remain quite smallin comparisonto
e.g.the failure rateobservedn Testl.)

Test 3 and the Approximate Density of Kripke Structures

Asmentionedin the endof the previoussection the experimentvasrepeated
with Kripke structureshaving a different approcimate densitythan 0.1, in
orderto seewhetherthe failure ratein Test3 seemgo dependon the value of
this testparametelin anysystematievay The experimentwasalsorepeated
using seaiential Kripke structures.(The densitycan haveno effecton the
failure rateobservedn Testl, becausehistestis basedn the direct analysis
of Buchi automat insteadof the LTL modelcheding procedure.)

Figure 6.8shavsthe observedailure ratesn Test3 betweerthe ASA and
SpPIN v3.3.3implementationsfor differentvaluesfor the approcimatedensity
d andfor the formula parsetreesizen. Figure 6.9 repeatgshe resultsfor the
SPIN v3.3.9implementation. (The gures useASA asa referencebecause
the previoustestsgavea strongsuggestioraboutits correctnessThe failure
ratesbetweenothercombinationsof implementationsbehavedsimilarly.) In
the diagrams,ead point correspondgo the observedailure rate on 2,000
randomlygenerated-TL formulaefor a xed valueof d; “seq.” corresponds
to the failure rateobtainedusingseaential Kripke structures.

Ascould be expectedthe failure ratesseento slightlyincreasealongwith
the formula size. The diagramsdo not, however,help in concludng much
aboutthe dependencybetweenthe appraximatedensityd and the observed
failure rates sincethereis somuch uctuation betweenthe failure rates(es-
pedally with SPIN v3.3.9 whosefailure ratesareextremelysmall,justaround
1 %).

However,in many diagramsthe failure rate can be seento drop asthe
graphdensityincreasesat leastaroundthe smalleswaluesof d. In addition,
in all diagramghe failure rateobtainedwith seaguential Kripke structuregthe
rightmostdata point of ead diagram)is quite large. Although not generally
shawn by the diagramsthere might be one intuitive argumentsupportinga
hypothesishatthe failure ratesshoulddecreasasd increasesi.e., asthereis
more branching in the generatedripke structures) Namely, the moretran-
sitionsthere are betweendifferent statesof the structure,the more paths(or
executionsjherearein the structure.Furthermore the morepathsthereare,
the more likely it isthat one of them is acceptedby a (nonempty)Biichi au-
tomaton,recardlesof whetherthe automatoncorrectlycorrespondso some
LTL formula or not (sincethe truth valuesfor the atomic propositionsvere
chosenatrandomin ead state). This would then imply that Test3 would

6. EXPERIMENTAL RESULTS

58

% of failures

% of failures

% of failures

% of failures

n=5 n=6 n=7
26 26 26
24 9 24 9 24
22 S 22 S 22
20 = 20 = 20
18 T I8 & 18f-, °
16 s 16 hall T ..
UL . S T4 *, e ‘e S 14 IR IR
120 e, ve, o 2] & 12 . . S 12
10 * . 10 10
OHNMYINONROO & OHNMYINON QOO g OHNMIWMONROO 5
OOOOOOOOOOH% OCO0OO0OO0OO0OO0OO0O0OC0OO-H® OOOOOOOOOOH%
d d d
n=8 n=9 n=10
26 26 26
24 9 240, 9 24
22 S 22 R S 22f- .
20 2 %2 ER T
i1 . Lol B o1sp e, .. T 18 e et e
Bl sl T S
12 s 12 s 12
10 10 10
OHNMYINON QOO g OHNMYINON QOO g OHNMYIWONROO 5
d d d
n=11 n=12
s B ¢ B
2 20 2 20 ¢ °
2 2 * ° = 20 M P .
R T R | R
S 14 S 14
s 12 s 12
10 10
OHNMYINON QOO g OHNMYIWMONROO 5
OOOOOOOOOOH% OCO0OO0OO0OO0CO0OO0OO0OCO-H
d d
Fig. 6.8: Test3 failure rates(ASA+$ SPIN v3.3.3)
n=5 n=6 n=7
2.0 w 20 w 20
[(0]
1.5 5 15 5 15¢,
= * =
© ©
1.0 e . & 10 SRR B wEo, e e
0.5 MR \g 05fss *» . * g 0.5 Lt .
0.0 < 00 <00
OHNOYNONRNO QHNOYNONRNO OHNMYLINONRNO 5
d d d
n=8 n=9 n=10
2.0 w 20 w 2.0
[} . (0] o
15[« 5 15} . 5 15f°
10F %, vl B 10 * .1 & 10 oo .
05 e S 05 Cert e 5 oos5f 7t el
RS 3
0.0 0.0 0.0
OHNOYNONRNO OHNOYNONRNO 5 OHNMYLNONRNO 5
d d d
n=11 n=12
w 20 w 20
[(0]
5 15 . o 5 15(°,.
= .o . = .
8 10 Ve ‘e, S 10 L .
S o5 ¢ S o5 .
IS S
0.0 0.0

OO0OO0OO0OO0OO0O0OO0OO-H WL
7]

d

coocococoo
d

oo+
(7}

Fig. 6.9: Test3 failure rates(ASA+$ SPIN v3.3.9)

6. EXPERIMENTAL RESULTS

59

Table6.10: Averagesizef successfullgeneratedichi automat (number
of states/ number of transitions)pperatosf: ;[J;Q; _;~;! ;UQ)

Parse ASA- | SPIN | SPIN | SPIN [iTL2auT|iTi2AauT|TL2AUT] PROD
tree V3 3 3 V3 3 9 V3 4 1 (GPVW) (GPVWH) (LTL2AUT)

size of e e Y

random

formu-
lae
5 5/8 2/4 2/3 2/3 5/8 517 4/6 10/62
6 6/11 3/5 3/4 3/4 6/11 5/9 5/8 |16/144
7 8/15 4/6 3/5 3/5 7/14 | 6/12 5/10 [25/302
8 9/19 417 3/6 3/6 8/17 7/14 6/11 |38/712
9 10/26 | 4/10 iVirg 3/6 10/25 | 8/18 | 6/13 | 551718
10 12/33 | 5/12 4/9 4/8 11/29 | 9/22 7/15 | s1/3101
11 15/54 | 6/17 | 5/10 419 | 14/48 | 11/31 | 8/20 |125/6292
12 17/67 | 6/18 | 5/13 | 4/11 | 15/59 | 12/37 | 8/22 |183/9414

succeedmore often. The high observedailure ratesfor seaiential Kripke
structureswvould be consistentwvith this hypothesissincethereis only trivial
branding in a seaiential Kripke structure.

It is clearthat there are verymany parametes, all of which might affect
the number of observedestfailures. Theseinclude the sizeof the Kripke
structuresandthe methodswith theyweregeneratedtogethemwith eventhe
internal behaviourof the testedmplementationsthemselve®n a particular
setof LTL formulae. In theseexperimentshowever the differencebetween
the minimum and maxinum failure rateswasrelativelysmall (at most, ap-
proximately 10 units of percenagechange),so nding an “optimal” value
for d maynot be extremelyessentiato the effectivenessf testing,and even
seqiential Kripke structurescould be used. (Seaqiential Kripke structures
in Test3 alsohavethe adwantagethat they allow the restrictedLTL model
cheding algorithm of Sect.5.2to be usedin the tests.In addition, the syn-
chronousproduct of a sequential Kripke structurewith a Bichi automaton
required in the testamaybe smallerthan the productobtainedusinga more
generalgraphof the samesize,thussavingnemory)

Sizes of the Generated Automata
Since the memory requirements of the automat-theoreticLTL model
cheding procedurearein practicehighly dependenbn the sizeofthe Biichi
automat usedfor model cheding, the sizesof the automat generatedoy
the testedmplementationsis alsoof interest.

Tables6.10and6.11collectthe averageizesf the Blchi automat (suc-
cessfully)generatedby ead implementation from a sampleof 1,000ran-
domly generated_TL formulae with a givenparsetreesize. Theseaverages
shouldbe seenonly asa veryrough comparisoron the relativeperformance
of the testedimplementations;estimatingthe averagdehaviourof anyim-
plementation accuratelyshouldbe done by takingalsoof the internal struc-
ture of the implementationinto account.

Ascould be expectedthe sizeof the generatecautomat grovswith the

6. EXPERIMENTAL RESULTS

60

Table6.11: Averagesizef successfullgeneratedichi automat (number
of states number of transitionspperatosf: ; X;0;0; _;N;! ;$;U;RQ)

Parse ASA SPIN SPIN SPIN | LTL2AUT | LTL2AUT | LTL2AUT
tree V3 3 3 V3 3 9 V3 4 1 (GPVW) (GPVWH) (LTL2AUT)

size of e = "

random

formu-
lae
5 6/9 3/5 3/4 3/4 6/9 5/8 5/7
6 7/13 4/6 4/6 3/5 7/12 6/11 6/10
7 8/16 417 417 3/6 8/16 7/14 6/12
8 11/24 5/10 5/10 4/9 10/23 9/19 8/16
9 13/32 5/12 6/14 5/12 12/30 | 10/24 9/19
10 16/47 6/16 6/16 5/14 16/45 | 13/32 | 10/25
11 19/64 7/18 7/19 6/17 19/60 | 15/41 | 12/31
12 23/84 7122 8/22 7/20 23/80 | 17/55 | 13/38

formula size,and increasingthe number of available formula operatos has
the sameeffect. The resultsshow the differencein the power of different
LTL-to-Budi translationalgorithms: PROD, which is basedon one of the
r sttranslationalgorithmspresentedn the literature [31], had worse per-
formancethan the other algorithmsbasedon the GPVW algorithm[8] and
its variants.The automat generatecdby ASA and LTL2AUT (GPVW) were
very closeto eat otherin size,and the other variantsof LTL2AUT per-
formedevenbetter The smallestautomat weregeneratedy SPIN v3.4.1;
the two older versionsof the tool were almostasef cient. The SPIN and
PROD tools havethe additional adwantage of alwaysgeneratingBichi au-
tomata with only one accepaince condtion. Sudh automat can be used
ef ciently with e.g.the nested-depth- st searb on-the- y model cheding
algorithm of [3]. This is not the casewith ASA and the LTL2AUT vari-
antsthat producegeneralizedBuchi automag, usuallywith more than one
accepancecondtion.

Summary
In conclusion,the main resultsof the testawvere:

ASA,LTL2AUT (all variants)and PROD behavedveryconsistentlyin

all testsNo errorsweredetectedn anytestdbetweernthesemplemen-
tations.PROD, however,generated/erylargeautomatin comparison
to thoseof the other implementations. This is due to the translation
algorithmthat PROD usegthe algorithmis quite different from those
usedin the otherimplementations).

SpPIN v3.3.3and v3.3.9sufferedfrom someinternal failuresand some-
timesalsogeneratedncorrectautomat. One model chedking cross-
comparisorfailure wasstill detectedalsowith SPIN v3.4.1whentesting
it agpinstthe threeaboveimplementations.

Although the automat generatedoy the various SPIN versionswere
verysmallin comparisono thoseproducedby the otherimplementa-

6. EXPERIMENTAL RESULTS

61

tions, this seemsto havebeen achieved using various optimizations
requiring much memory increasingalsothe complexity of the im-
plementation. This complexitymay be one reasonbehind the errors
foundin the implementation.

Somenoteson Test3 (the model cheding result cross-comparison
chedk) were:

— Performing the cross-comparisothed with respecto everystate
of the Kripke structureincreasedestingef ciency.

— Althoughbasedon alesssystemati@approat than Testl, Test3
hadnotsign cantly worseperformanceghanTestl, atleastwhen
allowing the “full” setof operatos to be usedin the randomly
generated_TL formulae (Table6.6). Therefore,it canbe useful
to performalsoTest3 in orderto try to optimize testingef ciency.

— Altering the appraximatedensityof the Kripke structuresdid not
havesign cant effecton the observedailure ratesusingseaen-
tial Kripke structuresasinput did not notablyimproveor degrade
testingef ciencyether.

SinceTest4 complementsboth Testl and Test3, usingall of the tests
togethercanincreaseestingef ciency.

In all, the LTL-to-Budi translatoitestbent basedn verystraightforvard
implementationtechniquesprovedto be quite effectivein practice,although
someof the testscould not be performeddue to the large sizeof someau-
tomata (sothetestbena itselfran out of memorywhen perforning the tests).
The situationcould be somevhatimprovedby usingmore sophisticatedm-
plementationtechniquesin the testingprocedure.

6. EXPERIMENTAL RESULTS

62

7 CONCLUSIONS

This work haspresentedechniquesfor testingthe correctnessfimplemen-
tationsof LTL-to-Buichi translationalgorithmsusedin LTL modelcheding
toolsbasedon the automag-theoreticapproat. The methodsarebasedon
direct analysisof Biichi automat and the automaa-theoreticLTL model
chedking procedure. Ultimately, however,the basisfor all presentedest
methodslies in the semanticsof linear temporallogic—more predsely in

the mutually exclusiverelationshipbetweenthe satis ability of an LTL for-
mulaanditsnegationonanin n ite pathof aKripke structure.Thiscommon
basiscan be seenin the similarity of the teststself: all testscan basicallybe
reducedto an emptinesshedk of Blichi automat (with possiblysomeaddi-

tional resultcomparison).

The similar natureof mostof the testsallowstheir easyintegrationinto an
automatictestingtool for LTL-to-Blchi translatos. The experimentsnade
in thisworkdid notinclude Test2 (the universalityched for the union of two
Bichi automat), which madeit impossibleto provethe absolutecorrect-
nessof anyimplementation on a singleLTL formula. However,the cross-
comparisonof severalimplementations acainst ead other, togetherwith
chedking the emptines®f the productof two Biichi automatthatshouldbe
complementryto eat other,provedto workwell togetheraserrordetection
techniques. Actually, eventhe plain result cross-comparisoapproat has
beensuccessfuin uncoveringimplementation errorsin actualLTL model
chedking tools[26, 27]: for example,this approatr hashelpedto improve
the robustnessf the LTL-to-Budhi translationalgorithmimplementation of
the SPIN model chedker. The usefulnesf the testingstrategywasagain
con rmed in this work: severabpreviouslyuntestedimplementationswere
found to behavequite consistentlywith ead other, and a previouslyundis-
coverederror wasrevealedin the SPIN model cheder. This wasadieved
usingrandomlygenerated-TL formulae and Kripke structuresof moderate
sizeasinput for the tests.

However,simple random“black box” testingis not adeaate for proving
the correctnes®f any LTL-to-Blcdi translator For example,the multitude
of awailable testparametes makesit veryhard to assesthe actual coverage
of the tests. The random Kripke structuresand their possiblein uence on
the effectivenessf testingcould be removedby including alsoTest2 into
the testingprocedure,in which casethe testswould dependonly on the
usedLTL formulae. However,integratingTest2 into the automatictesting
procedurewould require the implementation of a Blichi automaa comple-
mentation algorithm with exponentialworst-casespacerequirementsin the
sizeof the input.

Of course,alsothe implementation details could be takeninto account
when adjustingtestparametes. However,eventhough this may increase
testingef ciency, the testresultswould still remain at bestinconclusive,no
matterhow much testingwasperformed.Ascanbe seenin the experiments
with SPIN v3.4.1,random“black box” testingwill veryrarely nd anyerrors
in an“almostcorrect’implementation. Increasinghe number of testamight
improvethe oddsof nd ing errors, but the factthat no amount of testingis

7. CONCLUSIONS

suf cient to provethe absolutecorrectnessf animplementation makeshis
approat somevihatunappealing.

Therefore the testingtechniquesare probablybestsuitedfor assistingn
the developmenbf anewtranslatorto testits robustnesbeforereleasinghe
implementation, in the hope of detectingsomeof the remainng easy-to- x
bugsand omissionsin the implementation. The testmethodsmight also
be of someusein makingoptimizationsor otherimprovementgo atransla-
tion algorithmimplementation,in orderto testwhetherthe implementation
seemgdo preservats correctnesdetweendifferentreleases.

Section5.2 presentecdh restrictedmodel chedking algorithm for seqien-
tial Kripke structures. The algorithm wasusedin the analysisof testfail-
ures betweentwo LTL-to-Budi translationalgorithm implementationsin
orderto detectwhich one of the implementationshadfailed. Sincecounter-
examplesproducedby real LTL model cheding tools can usually be in-
tempretedassegiential Kripke structures this algorithm could validate the
counter-examplefound by the tool asan additional nal stepof the model
chedking procedure[27]. Thisway, the tool could by itselfensurethe validity
of the counter-examplewhich providesthe tool a meansfor automatically
detectingan internal failure that would otherwisehaveresultedin a false
negativeanswer This spedalized model cheding algorithm may alsohave
applicationselsevinere. For examplejt maybe possibleo further extendthe
validation of counter-examplesito additional propertiesnot directly sped-

ed in the original propertyto be veri ed, suth asassumptiongoncernng
the environmentof the systento be veri ed. The algorithm mayalsohave
someapplicationasa subroutinein moregeneralLTL modelcheding algo-
rithms.

7. CONCLUSIONS

64

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

BIBLIOGRAPHY

E. M. Clarke and E. Emerson. Designand synthesiof syntironiza-
tion skeletonsisingbranding-time temporallogic. In Proceedings of
the Workshop on Logic of Programs, volume 131 of Lecture Notes in
Computer Science, page$b2-71.Springer-¥érlag,1981.

E. M. Clarkeand A. P. Sistla. The complexityof propositionallinear
temporallogics. Journal of the Association for Computing Machinery,
32(3):733-7491985.

C. CourcoubetisM. Y. Vard, P. Wolper,andM. YannakakisMemory-
ef cient algorithmsfor the veri cation of temporalproperties. Formal
Methods in System Design, 1:275-2881992.

J.-M. Couvreur. On-the-y veri cation of linear temporallogic. In
Proceedings of the World Congress on Formal Methods in the Devel-
opment of Computing Systems (FM’99), volume I, volume 1708 of
Lecture Notes in Computer Science, page253-271.Springer-¥érlag,
1999.

M. Daniele, F. Giunchiglia, and M. Y. Vard. Improved automat
generationfor linear temporallogic. In Proceedings of the 11th In-
ternational Conference on Computer Aided Verification (CAV’99),
volume 1633 of Lecture Notes in Computer Science, pages249—
260. Springer-¥rlag, 1999. Seealso“Software pakages”at <URL.:
http://www.cs.rice.edu/CS/Verification/>.

K. Etessamand G. Holzmann. Optimizing Bichi automag. In Pro-
ceedings of the 11th International Conference on Concurrency Theory
(CONCUR’2000), volume 1877 of Lecture Notes in Computer Sci-
ence, pagesl53-167 Springer-¥érlag,2000.

H. J.Genrich. Predcate/transitiomets.In Petri Nets: Central Models
and Their Properties — Advances in Petri Nets, Part I, volume 254 of
Lecture Notes in Computer Science, page207—247 Springer-¥érlag,
1987.

R. Gerth, D. Peled, M. Y. Vard, and P. Wolper. Simple on-the-y
automaticveri cation of linear temporallogic. In Proceedings of 15th
Workshop Protocol Specification, Testing, and Verification, pages8—18,
1995.

G. Holzmann. Design and Validation of Computer Protocols. Prentice-
Hall, 1991.

G. Holzmann. The model chedker SPIN. IEEE Trans-
actions on Software Engineering, 23(5):279-295, May
1997. See also the WWW homepage of the tool at <URL:
http://netlib.bell-labs.com/netlib/spin/whatispin.html>.

65

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

BIBLIOGRAPHY

E. ClarkeJr, O. Grumberg,andD. Peled. Model Checking. The MIT
Press2000.

Y. KestenZ. Manna,H. McGuire, andA. Prueli. A dedsionalgorithm
for full propositionattemporallogic. In Proceedings of the 5th Interna-
tional Conference on Computer Aided Verification (CAV’93), volume
697 of Lecture Notes in Computer Science, pages97—-109.Springer-
Verlag,1993.

Y. Kesten,A. Prueli, and L. Raviv Algorithmic veri cation of linear
temporallogic spec¢cations. In Proceedings of the 25th International
Colloquium on Automata, Languages, and Programming (ICALP’9S),
volume 1443 of Lecture Notes in Computer Science, pagesl-16.
Springer-\¥érlag,1998.

O. KupfermanandM. Y. Vard. Model cheding of safetypropertiesin
Proceedings of the 11th International Conference on Computer Aided
Verification (CAV’99), volume1633of Lecture Notes in Computer Sci-
ence, pagesl72-183 Springer-¥rlag,1999. Seealsoan extendedver-
sionat<URL: http://www.cs.rice.edu/vardi/papers/>.

T. Latvalaand K. Heljanko. Coping with strongfairness.Fundamenta
Informaticae, 43(1-4):175-1932000.

O. Lichtenstéen and A. Prueli. Chedking that n ite-staite concur-
rent programssatisfytheir linear spe¢cation. In Proceedings of
the 12th ACM Symposium on Principles of Programming Languages
(POPL’85), page®97-107 Addison-Wesley 1985.

J. Lilius. ASA: The Abo System Analyser, 1999. Avail-
able only on the WWW. See the WWW page at <URL:
http://www.abo.fi/%7Ejolilius/mc/aasa.html>.

K. L. McMillan. Symbolic model checking — an approach to the state-
explosion problem. PhD thesisCarnegieMellon University; 1992.

R. Milner. A Calculus of Communicating Systems, volume 92 of Lec-
ture Notes in Computer Science. Springer-¥érlag,1980.

A.Prueli. Atemporallogic of concurrentprograms.Theoretical Com-
puter Science, 13:45-60,1981.

J.P. Quielle and J.Sifakis. Spec cation andveri cation of concurrent
system#& CESAR.In Proceedings of the 5th International Symposium
on Programming, volume 137 of Lecture Notes in Computer Science,

pages337-351.Springer-\érlag,1982.

Mauno Ronkkd. A distributed object oriented implementation of an
algorithmconvertingaLTL formula to ageneraliseduchi automaton,
1999. Availableonly on the WWW. SeeMauno Ronkkéshomepageat
<URL: http://www.abo.fi/}7Emauno.ronkko/>.

66

[23] S.Safra. Complexity of automata on infinite objects. PhD thesis,The
Weizmann Institute of Sdence, 1989.

[24] F. SomenziandR. Bloem. Ef ¢ ient Buchi automagafrom LTL formu-
lae.In Proceedings of the 12th International Conference on Computer
Aided Verification (CAV’00), volume 18550f Lecture Notes in Com-
puter Science, page47-263 Springer-¥rlag,2000.

[25] R. Tarjan. Depth- r stsearb andlinear graphalgorithms. SIAM Jour-
nal on Computing, 1(2):146-160une 1972.

[26] H. Tauriainen. A randormrized testbent for algorithmstranslatinglin-
ear temporal logic formulae into Buchi automag. In Proceedings
of the Workshop Concurrency, Specification and Programming 1999
(CS&P99), page51-262Warsav University, September1999.

[27] H. Tauriainen and K. Heljanko. Testing SPIN's LTL formula trans-
lation into Buchi automat using randomly generatednput. In Pro-
ceedings of the 7th International SPIN Workshop on Model Checking
of Software (SPIN’2000), volume 18850f Lecture Notes in Computer
Science, pageb4—72.Springer-¥érlag,2000.

[28] W. Thomas. Languagesautomat and logic. In G. Rozenbergand
A. Salomaagdtors, Handbook of Formal Languages, volumelll, pages
385-455Springer-¥rlag,New York, 1997.

[29] A. Valmari. The state explosionproblem. In Lectures on Petri Nets
I: Basic Models, volume 1491 0f Lecture Notes in Computer Science,
pagest29-528.Springer-\érlag,1998.

[30] M. Y. Vard. An automan-theoreticapproat to linear temporallogic.
In Logics for Concurrency: Structure versus Automata, volume 1043of
Lecture Notes in Computer Science, page238-265.Springer-¥érlag,
1996.

[31] M. Y. Vard and P. Wolper. An automat-theoreticapproat to auto-
matic programveri cation. In Proceedings of the Ist IEEE Sympo-
sium on Logic in Computer Science (LICS’86), pages332—-3441EEE
Computer Sodety Press1986.

[32] M. Y. Vard and P. Wolper. Reasomg aboutin n ite computations.
Information and Computation, 115(1):1-371994.

[33] K. Vampaanemi, J. Halme, K. Hiekkanen,and T. Pyssysalo.PROD
referencemarual. Tedhnical ReportB13, Helsinki University of Tech-
nology Digital System$.aboratory1995.

[34] K. Vampaanemi, K. Heljanko, and J.Lilius. PROD 3.2 - An adwanced
tool for ef cient readability analysisin Proceedings of the 9th Interna-
tional Conference on Computer Aided Verification (CAV’97), volume
12540f Lecture Notes in Computer Science, pages72—475Springer-
Verlag,dune 1997.

BIBLIOGRAPHY

67

[35] P. Wolper. Temporallogic can be more expressive.nformation and
Control, 56(1-2):72-991983.

BIBLIOGRAPHY

68

A EMP'I':"I(I:‘J_II::SS CHECKING IN GLOBAL SYNCHRONOUS PROD-

Asdiscussedn Sect.5.1.2,it is possiblego try to improvethe effectivenesef
Tests3 and4 by computingaglobal synchronous product of aBlichi automa-
ton A, corresponihg to someKripke structureM with a Blichi automaton
A, corresponihg to someLTL property' . In Sect.5.1.2,it wasstatedthat
the constructionpresentedn Lemma 2 (pagel6) resultsin a structurethat
satis esthe globalsyndronousproductrequirements.

However, a straightfonard implementation of this constructionalways
generateastructurewhosesizeequalsthe productofthe sizef A, andA,,
respectivelyFor emptinessheding purposespnly the stateshat areread-
able from the states(q; o°) (including thesestatesthemselvespre actually
needed(here,qisastteof A,,, and o istheinitial stateof A,). However,
the straightfonard constructionalwaysgenerateshe worst-cas@roductthat
may contain statesnot reacable from anyof the states(q; o°).

This sameproblemwasaddressedlreadyin Sect.4.2.6,whereonly one
state(q; o°) (the “initial state” of the product,q xed) wasconsideredThere,
the straightfonard product constructionwasreplacedby a graphsearb al-
gorithm that generate®nly the part of the product that containsthe states
reacablefrom (q; o). It is veryeasyto generalizethis approat to multiple
“initial states”of the form (q; q°) by simply restarting the seart from ead
sud state(if the statehasnot alreadybeenvisitedduring the construction).
Althoughthe worst-caseesultsizestill remainsthe same jt maybe avaded
in somecaseswhich will savememory

Assfatedin Sect.5.1.2,cheding the emptinesf the globalsyndironous
productalsorequiresminor changesn the implementation. It wasproposed
that the algorithm for computing the MSCCs of the product automaton
shouldberestrtedin everystate(q; o°) of the product(whereqis somestate
of A, and P theinitial stateof A,). However simplyresartingthe MSCC
algorithmin ead of thesestateshasthe disadwantagethat somestatesof the
productautomatonmay be visitedseveratimesin the different runs of the
MSCC algorithm. This problem can be avaded by applying Tarjaris algo-
rithm to the productautomatononly oncewith the following mod cations:

If the searb cannotat somepoint nd any new reathable states, it
mustbe chedkedwhetherthe productautomatonstill hasanyunvisited
states.If thisis the casethe searb mustbe continued (not resarted)
from any previouslyunvisitedstate, until all statesof the productau-
tomatonhavebeenvisited.

If the searb nds a nontrivial MSCC with an acceptingexecution,
it is not immediately clear from which statesof the form (q; ¢°) the
MSCC isactuallyreatable. This canbe determined by performng a
backward seart in the productgraphto nd all the states(q; °) that
canread the MSCC, starting the searb in any state of the MSCC.
The statesg then correspondo M 's stateswith an executionsatisfying
" . (In practice,this searb doesnot require extrastoragespacefor the
badkward product transitionrelation. Asa matter of fact, we can do

APPENDIXA. EMPTINESSCHECKINGIN GLOBALSYNCHRONOUS PRODUCT

without the forward transitionrelation for performng all the searbes
in the productautomaton.The only placewherethe forward relation
might at r st seemto be neededis the searb for the MSCCs, but
actuallythe MSCCs of agraphdo not dependon the direction of the
arcsand canthereforebe found usingthe revesedtransitionrelation.)

The aboveimprovementsvereusedin the implementation of the empti-
nesscheding algorithmof the testbent describedn Sect.6.1.

APPENDIXA. EMPTINESSCHECKINGIN GLOBALSYNCHRONOUS PRODUCT

B CORRECTNESS OF LTL MODEL CHECKING ALGORITHM FOR
SEQUENTIAL KRIPKE STRUCTURES

This appendx containsthe correctnesgroof of the LTL model cheding
algorithm for seqiential Kripke structures,shavn in Fig. 5.6 in Sect.5.2
(page4?).

To provethe correctnesf the algorithm, we r st shav that the algo-
rithm alwaysterminates. (In the following discussion, denotesthe given
LTL formula to be model chedked in the seaqiential Kripke structureM =
hs;s% ; i)

Lemma 3 The algorithm of Fig. 5.6 terminates.

Proof: It is easyto seethat the loopsbetweenlines 9-10,12-13,15-16and
18-19will alwaysterminate (if everentered),becausdhe setsAP andS are
alwaysassumedo be n ite.

Alsothe outerloop betweenlines 22 and 31 will alwaysterminate when-
everit is entered. The termination of this loop would be preventedif the
loop on line 25 neverterminated; however,this is not possible,since the
setMarked alwayscontainsonly n itely manyelements.(The setis initially
emptywhen enteringthe outerloop at line 21, and at mostone elementis
addedto it in ead iteration of the outerloop. The factthat the number of
iterationsof the outerloopisboundedby|Sj now estblisheghe termination
of the outerloop.) By the samereasonalsothe loop on line 33 terminates.

The termination of the main loop (lines 4—35)dependson the condtion
whetherthe setToEval is empty (line 4). Sincethe number of subfornu-
laeof ' isboundedby|' j (the number of symbolsan the formula), the set
ToEval (initialized on line 3) initially hasa n ite number of elements.We
arguethatthe algorithmremovesomesubfornula from this setduring ead
iteration of the main loop, decreasinghe number of elementsin the set.
Thisthen esablishegtogethemwith the n itenesf ToEval andthe factthat
all of the loopsinside the main loop terminate) that the setToEval will be
emptyafterexactlyj ToEvalj iterations,and the main loop terminates.

Assumethat the algorithm cannot selectand removean elementfrom
ToEval (lines5-6)during someiterationof the main loop. This canhappen
in two cases:

The setToEval is empty However this would havebeendetectedon
line 4, sothe loop would not havebeenenteredin this caseatall.

Forall' ' 2 ToEval, ToEval alsocontainssomepropersubfornula
of' /. Since 2 ToEval, the sameshouldhold for , and agnin for
somepropersubformula ' of . Continuing this way, we would ob-
tainanin n ite seqienceof differentformulae (all in ToEval), ead of
which (excludng the r stone)isapropersubfornula of the precedng
formula in the seqience. But this is clearlyimpossible since ToEval
initially containsonly a n ite number of formulae.

Therefore,jToEvalj mustdecreasen ead iteration of the main loop, and
the algorithmterminates. O

APPENDIX B. CORRECTNESS OF LTL MODEL CHECKING ALGORITHM FOR SEQUENTIAL KRIPKE STRUCTURES iii

Lemma 4 Let '’ be the formula chosen by the algorithm from the set
ToEval in some iteration of the main loop. Then, the set Result contains
no pairs of the form (' ’;S) for any S 2 S in the beginning of the itera-
tion. Furthermore, no subsequent iteration will manipulate pairs of the form
(;s), adding them to or removing them from the set Result, where s a
subformula of " ’.

Proof: By the proof of Lemma 3, the algorithm must choosesomeformula
from ToEval in ead iterationof the main loop. It is clearthateveryformula

chosenby the algorithmin any previousiteration must be different from
"/, sinceotherwise' ' would alreadyhavebeenremovedfrom ToEval and
could not be selectecagin.

The setResultisinitially empty It iseasyto seefrom the algorithmde ni-
tion (lines10,13,16,19,24,25and33) thatall pairsaddedto the setResult
during a singleiteration of the main loop are neverassoated with anyfor-
mula otherthan the one pickedfrom ToEval in thatiteration. The factthat
all formulaeprocessebtlefore’ ' aredifferentfrom’ ' now establisheghe r st
partof the lemma.

It isimmediatefrom the algorithmde nition thatthe setToEval cancon-
tain no subformulaeof' “when' ’ isselectedThe secondpartof the lemma
now followsfrom the factthat' ’ isremovedfrom ToEval in the iterationin
which it is selectedtogetherwith the notethatnothingis everremovedfrom
the setResult. O

The informal mearing of the previouslemma is that the algorithm
“builds” the contentsof the setResult incrementally, one subfornula at a
time.

The following lemma provesa resultaboutthe waythat the setResult is
updatedduring ead iteration of the main loop of the algorithm.

Lemma 5 Let"' ' be the subformula chosen by the algorithm from the set
ToEval in some iteration of its main loop. At the end of the iteration, for all
s2 S, (' ’;s) 2 Resultif and only if

(a) ["2 AP] 12 (s);

(b) ["=: 1 (;s) 6Result;

() ["=(C1_ 2)] (1;9 2 Resultor(»;s) 2 Result;
(d)["=X] : (s) 2 Result;

() '"=(1U 2] 9 0: 5 9(s) 2 Result
and80 k<j: 1; *() 2 Result

Proof: ByLemma4,weknowthat8s 2 S: (' ’;s) 62Resultatthe beginnng
oftheiteration,andthe algorithmwill notmanipulate pairsoftheform(;s)
for anysubformula of ' ’ afterthe iteration. Casegqa), (b), (c) and (d) are
now immediate from the de nition of the algorithm. We shaw that case(e)
alsoholds.

The variables is initialized to s° on line 21 of the algorithm. The loop
betweenlines 22 and 31 is repeatedSj times,and the value of s is updated

APPENDIX B. CORRECTNESS OF LTL MODEL CHECKING ALGORITHM FOR SEQUENTIAL KRIPKE STRUCTURES iv

O@* ©-0-0-0 ~O-G-@-0-O-®-

o'(t) 0'(t) ott) t 0")

(a) (b)
Fig. B.1: lllustration of the proofof Lemma5

toitssuccessan ead iterationof the loop (line 30). Thus,s cyclesthrough
all statesof the Kripke structureM in seaqiential order. Since the Kripke
structureis segiential, the “last” state of the seaqienceis known to be con-
nectedto somepreviousstatein the seqience. Now, becausehe variables
is still updatedto point to its successaalsoin the lastiteration of the loop, it
followsthats will point to somepreviously visited state of the structureatthe
end of the loop.

Lett beastatein Ssud that9)] 0: ,; 7(t) 2 Resultand80
k<j: 1; *t) 2 Result Withoutlossof generalitywe mayassumehat
j isthe smallest nonnegtiveintegerfor which ,; 7(t) 2 Resultistrue,
soforall0 k< j, 5 *(t) 62Result. Bythe previousnote,thereisan
iteration of the loop betweenlines 22 and 31 sud that the variables points
to the statet. Considernow thisiteration of the loop.

If j = 0,it holdsthat ,; °(t) 2 Result, thatis, (,;t) 2 Result.
The condtion on line 23is now true, andthe lines 24—26getexecuted.On
line 24,the pair (' ’;t) isinsertedinto Result. Sincethe algorithmneverre-
movesanythingfrom this setandthe algorithmvisitsead stateof the Kripke
structure,the resultwill hold forall t 2 S for which (,;t) 2 Resultatthe
end of the casestatement.

Ifj > O, therearetwo casegseeFig. B.1):

(a) The algorithmvisitst before 7(t). Since80 k< j : 1; ¥t) 2
Result, it followsthat the condtion on line 28 will hold for °(t) = t
and all subsegent states *(t) with 0 k < j. Therefore,after|
iterationsof the loop, the setMarked will contain all states °(t) =

Lt);:::; 77Y(t). The algorithm then proceeddo the state /(t).
Since ,; /(t) 2 Result, the condtion on line 23is true. The set
Result is now extendedwith all states(’ ’;s’), wheres’ 2 Marked.
Since we know thatt 2 Marked still holds at this point, (" /;t) 2
Result will hold at the end of this iteration. Becausenothing is ever
removedfrom the setResult, (" ’;t) 2 Resultwill still hold atthe end
of the casestatement.

(b) The algorithmyvisits 7/(t) beforet. This canhappenif botht and 7(t)
areinsidethe cyclecontainedin the Kripke structureM , and /(t) can
be reated fromt throughthe transitionconnectingthe “last” state of
the semiential structureto one of its predecessar It now followsthat
thereexistsanintegerl n | sud thatthe algorithm hasnot yet
visitedthe state "~(t) (oriscurrentlyin thatstate),but it hasalready
visitedthe state "(t).

Since 1; F(t) 2 Resultforall0 k < n, all states *(t) with
0 Kk < nwill beinsertedinto the setMarked during subsegent

APPENDIX B. CORRECTNESS OF LTL MODEL CHECKING ALGORITHM FOR SEQUENTIAL KRIPKE STRUCTURES

iterationsof the loop, afterwhich the loop terminates. At this point,
the variables paintsto the state "(t).

We shawv that ' ’; ™(t) 2 Result now holdsat this point of the al-
gorithm, and thereforethe condtion on line 32 is true. This will
causethe insertionof elements(' ’; s') into the setResult for all s’ 2
Marked. Sincet 2 Marked, it then followsthat Result will contain
the pair (' /;t) atthe end of the casestatement.

Toshavthat ' ’; ™(t) 2 Result holdswhen the loop betweenlines
22 and 31 terminates,we r st note that the claim holdsif "(t) =
J(t). This is becausethe pair (' /; 7(t)) hasalreadybeeninserted
into Result when processinghe state /(t).

If »(t) 6 J(t),thealgorithmmusthaveprocessed”(t) before /(t),
sinceotherwise 7(t) would not be readable from the statet. There-
fore, "(t) precedes ’(t) in the seqiential Kripke structure. Since
80 k<ij: 1 *t) 2 Resul,italsoholdsthat8n k< j :
1, *(t) 2 Result We alsoknowthat ,; 7(t) 2 Result. Since
"(t) and ‘(t) havealreadybeenvisited,we can applycase(a) above
to concludethat ' ’; ™(t) 2 Result holdswhenthe loop terminates.

For the otherdirection,assumeéhat (' ’;t) 2 Resultatthe endofthe case
statementfor somet 2 S. We show thattherenow existsaj 0 sud that

»; 7(t) 2 Resultandforall0 k< ij, 1; *(t) 2 Result

By Lemma4, Result containsno pairsof the form (" /;s') foranys' 2 S
in the beginning of the loop betweenlines 22—-31.Therefore the pair (' ’;t)
must havebeenaddedto this setsomevinere afterline 21. The only places
wherethis canhaveoccurredarelines 24,25 and 33.

In the following, we shallrely on the factthat eat stateof the structure
is visitedexactlyonce in the loop. This implies that eat stateis inserted
at mostonce into the setMarked, which is easyto seefrom the algorithm
de nition.

If (" ’;t) wasinsertedinto Result on line 24, the condtion (,;t) 2
Result mustalsohavebeentrue at this paint, sinceotherwiseline 24
would not havebeenexecuted. The resultnow followsimmediately
withj = 0.

If (" /;t) wasinsertedinto Resulton line 25,theremustexistans’ 2 S
for which the condtion (,;s’) 2 Resultwastrue in someiteration of
the loop betweenlines 22 and 31. In addition, t 2 Marked wastrue
atthispoint. SinceMarked wasinitially empty(andt wasnot inserted
into it in thatiteration), t wasinsertedinto Marked in someprevious
iteration of the loop. The only placethis mayhavehappenedsatline
28, which can havebeenexecutedfor t only if (1;t) 2 Result and
(2;t) 62Result. Sincet wasvisitedbefores’, it mustbe a predecessor
of s'. Thereforethereexistaaj Osud thats' = 7(t).

If = (t), theresultnow followswith j = 1.

If (t) 6 <, s’ isnot an immedate successoof t. Assumethen
that there existsa 0 k < j sud that 4; *(t) 62Result, or

APPENDIX B. CORRECTNESS OF LTL MODEL CHECKING ALGORITHM FOR SEQUENTIAL KRIPKE STRUCTURES

o, *(t) 2 Result. When processinghe siate *(t), the algorithm
musthaveexecuteckither lines24—-260r the line 29,in both caseset-
ting Marked to be empty(in effect,removingt from this set).It is now
impossiblethatt 2 Marked would anylongerhold when processing
the states’, which is a contradction. Therefore,it mustbe that for all
0 k< ij, 1 ®t) 2 Result, and ,; *(t) 62Result. This
estblisheghe resultin this case.

Assumethat the insertion of (' /;t) into Result occurredat line 33.

Asin the previouscase,t 2 Marked must haveheld at this paint,

which canbetrue only if fort andall of its r stn successai(of which

"(t) isthe laststate processetby the loop), 1; *(t) 2 Resultand
o, F(t) 62Resultforall0 k n.

At line 33, the variables points to somepreviouslyvisitedstatein the
seqiential Kripke structure. It is necessaryhat (' ’;s) 2 Result was
true alreadyat line 32, since otherwisethe loop on line 33 would
not havebeen executed. Since Result contained no pairs relatedto
the formula ' ' beforethe loop on lines 22—-31,the pair (' ’;s) must
have beeninsertedinto Result in that loop on line 24 or 25. We
have alreadyshavn that the result holds for sud states,and there-
fore we may conclude that 9m 0: 2 ™) 2 Resultand
80 k< m: 4 ¥s) 2 Result. The resultthen holds for t
withj = n+ m+ 1.

0

The following lemma connectsthe previousresultswith model cheding
LTL in the pathsof the givenseqential Kripke structureM .

Lemma 6 Let '’ be the subformula of ' that the algorithm of Fig. 5.6
chooses from the set TOEval in the beginning of some iteration of the main
loop. Then, at the end of the algorithm,

8s2S: (‘;s)2Result iff F "
where Is the (unique) infinite path of M Is;:::i starting in S.

Proof: If '’2 AP, the algorithm enters the loop between the
lines 9—10. At the end of the current iteration of the main loop, it now
followsby Lemmab (a) that (" /;s) 2 Resultif andonlyif '’ 2 (s), if
andonlyif , F '’ (bythe semanticof LTL). By Lemmad4, the algorithm
doesnot manipulate pairs(* ’; s) afterthisiteration,so(' ’;s) 2 Result still
holdsat the end of the algorithm. The resultthereforeholdsfor all atomc
propositionsoccurringin ' .
Assumethen that the resultholdsfor all subformulae' ’ for which j' /j

n. Let' ' beasubformula of ' sud thatall propersubfornulaeof' ' areat
mostof lengthn. Therefore,' "isether: 1, X 1, (1_ 2 or(1U),
wherej ;j nandj ,j n.Wehavethe following cases:

APPENDIX B. CORRECTNESS OF LTL MODEL CHECKING ALGORITHM FOR SEQUENTIAL KRIPKE STRUCTURES Vi

If* "= 1, theloopbetweenlines12and13isentered.We seethat
atthe end of the loop,

(" ;8) 2 Result iff [Lemmab (b)]
(' 1;s) 6ZResult iff [induction hypothesis]

s8 1 iff [semanticoof LTL]
£} F : 1 |ﬁ:
sF

foralls 2 S.

If'"=(1_ »),theloopbetweernlinesl5and16isexecutedln this

case,
(' ’;s) 2 Result iff [Lemma5 (c)]
(1;8) 2 Resultor (»;s) 2 Result iff [induction hypothesis]
sF 10r G F o iff [semanticsof LTL]
sj: (1_ 2) iff
sF

foralls 2 S.

If '/ = X 4, the algorithm enters the loop betweenlines 18-19. As
abovewe seethat

(" ’;s) 2 Result iff [Lemma5 (d)]
1; (s) 2 Result iff [induction hypothesis]

oo F o1 iff[o = ;]

o R iff [semanticof LTL]
JEX . iff

sF

foralls2 S.

If'"=(¢U ,), the algorithm executeghe casebetweenlines 21—
33.

(" /;s) 2 Result iff [Lemmab (e)]
9 0: 5 ’(s) 2 Result

andforall0 k< j;, 1; *(s) 2 Result iff [ind. hypothesis]
9 0: juwF 2

andforall0 k<j, xoF 1 iff [LTL semantics]
sj: (1U 2) iff
SF
foralls2 S.

In all previouscasesl.emma4 guaranteeshatthe resultwill still hold at
the end of the algorithm. O

We cannow provethe correctnessf the algorithm.

Proposition 1 (Correctness of the algorithm) The algorithm of Fig. 5.6 re-
turns the value “YES” if and only if the LTL formula' holds in the sequential
Kripke structure M .

APPENDIX B. CORRECTNESS OF LTL MODEL CHECKING ALGORITHM FOR SEQUENTIAL KRIPKE STRUCTURES

viii

Proof: It is clearfrom the algorithmde nition that' 2 ToEval holdsafter
line 3 hasbeenexecuted.

By the proof of Lemma 3, the sizeof the setToEval decreases eah
iterationof the main loop. From thisfollowsthattheremustexistaniteration
in which the algorithm chooseghe the formula® from ToEval and then
removest from this set. At this paint, therecanbe no propersubfornulae of
' leftin the setToEval (otherwise€ could not be chosen),sothe algorithm
terminatesafterthisiteration.

ByLemmas, the setResult will afterthisiterationcontain the pair ('; s)
forsomes 2 Sif andonlyif , F ' . Sincethe algorithmthen terminates,
thereareno subsegentiterationsthat could changethe contentsof Result.

From the algorithmde nition we seethatthe algorithmreturnsthe value
“YES”if andonlyif (*; s°) 2 Result atthe end of the algorithm,i.e. if and
onlyif o F ' (aginbyLemmas).

Becauseead stateof M hasexactlyone successom hasonly one exe-
cution beginring in itsinitial states®, andthis executioncorrespondso the
segqience , . ThereforeM F ' if andonlyif , F ', if andonlyif the
algorithmreturns™'YES”. O

APPENDIX B. CORRECTNESS OF LTL MODEL CHECKING ALGORITHM FOR SEQUENTIAL KRIPKE STRUCTURES ix

C ANALYSIS OF THE LTL FORMULA GENERATION ALGORITHM

This appendix containsan analysisof the randomLTL formula generation
algorithmpresentedn Fig. 6.1(page46)usedin the LTL-to-Budi translator
testbent anddescribeiow the parametesin the algorithmcanbe adjusted
sothatead generatedormula will havethe sameexpectechumber of every
individual logical or temporaloperator The analysigelieson the standard
axiomsof probability; for a reference seeany basictextbookon probability
or statistics.

C.1 FINDING THE EXPECTED NUMBER OF OPERATORS IN A FORMULA

We will beginwith nd ing the probability with which a given formula of
parsetree sizen generatedoy the algorithm of Fig. 6.1 contains exactlyk
instancesof a given operatorop. For this purpose,let A,, ;. denotethe
randomevent

Aok s “Aformulawith aparsetreeof sizen containsk instances
of operatorop’

Let U denotethe setof awailable unary operatos, and let B be the set
of all awilable binary operatos (in the testbenb implementation, U =
f. ;X;0;0gandB = f_;7;! ;$;U;Rg). Let OP denotethe setof all
operatosU [B.

Asdescribedin Chap. 6, the testbenti implementation assigngo ead
operatorop 2 OP anintegerpriority pri (op) that determnesthe probability
with which the algorithmwill chooseop wheneverpicking arandomopera-
toratlines7 or12. Let P,,(op) denotethis probabilityfor some xed formula
parsetreesizen 1. From the algorithmwe can seethat

8
0 ifn=1
pri(op) ; —
W ifn=2andop2 U
op2 U
P,(op) = (C.1)
§ 0 ifn=2andop2 B
pri(op) i
> pri(op9 ifn 3
opOZ OoP

We now proceedby looking at how the algorithm can generatea formula
with a parsetree of sizen sothat the formula contains exactlyk instances
of operatorop. For now, it isassumedhatk 1; the casek = O will be
handledlater. When the algorithm is called with the parametem (before

APPENDIX C. ANALYSISOF THE LTL FORMULA GENERATION ALGORITHM

anyrecursivecallsareexecuted)jt canbe seenthat

P(Aop,.n)
= P, (“the algorithmchooseop”
A “the algorithmwill laterchooseopk 1times?’) (C.2)
+ P, (“the algorithmchoosesn operatorop’ 6 op”
A “the algorithmwill laterchooseop k times”)

(It is clearthat the two eventdn the probabilitiesare mutually exclusive so
the probability of the occurrenceof either eventis simply the sum of the
probabilitiesof the individual events. “Later” refers to the recursive calls
madeby the algorithm.)

The behaviourof the algorithmin the recursivecallsdependn the arity
of the chosenoperatorand the formula parsetree sizen. (Let arity (op)
denotethe arity of op; it isalwayseither 1 or 2.) Alsothe number of recursive
callsdependson the arity of the chosenoperator The event“the algorithm
choosesnoperatorop’ 6 op” canbe splitinto two mutually exclusivecases
accordng to the arity of the chosenoperator:

P(Aopk.n)
= P,(“the algorithmchoosep”)
P ority(op) . (“the algorithmwill laterchooseopk 1times’)
+ P, (“the algorithmchoosesan operatorop’ 6 op”)
P ority(0p9) »(“the algorithmwill laterchooseop k times”)
= P,(0p) Prty(op)n(“the algorithmwill laterchooseopk 1times’)
+ P, (“the algorithmchooses unaryoperatorop’ 6 op”)
P, ,.(“the algorithmwill laterchooseop k times”) (C.3)
+ P, (“the algorithmchooses binaryoperatorop’ 6 op”)
P, . (“the algorithmwill laterchooseop k times”)

We haveusedhere the fact that P,,(“the algorithmchoose®p”) is the
probabilityP,,(op) de ned in (C.1). In (C.3) we alsohave

Pn(“t%e algorithm choosesa unaryoperatorop’ 6 op”)
0 ifn=1

o Zf pri(op?)

op2 Unf opg H —_

il B ——

- Z pri(op9 (C4)

- 01)02 U

% > pri(op?)
apOZ Unf opg
: > pri(op9

op02 OP

ifn 3

and

Pn(“trée algorithm chooses binaryoperatorop’ 6 op”)

20 ifl n 2
S —OP"ZBZ””WW(OPO) ifn 3 (C.5)
: >, pri(opY)
01)02 OP

APPENDIX C. ANALYSISOF THE LTL FORMULA GENERATION ALGORITHM Xi

If the operatorchosenby the algorithmis a unaryoperator the algorithm
proceedgo recursivelygeneratea subfornula with aparsetreeof sizen 1.
This can be consideredan independent invocationof the algorithm with a
different value for the parametem. Clearly, n mustbe greateror equal to 2
for anyrecursivecall to be generatedThus,forall x 2,

P ,.(“the algorithmwill later chooseop x times”)
= P(*aformulawith aparsetreeofsizen 1 containsx instancesof
operatorop”)
= P(Agpon1) (C.6)

Choosinga binary operatorresultsin two recursivecallsto generatewo
subformulaewith parsetreesof sizemandn m 1forsomel m n 2
It is safeto assumehatn 3 in this case,since otherwisethe algorithm
cannotchooseabinaryoperator If eat of the possiblevaluesfor m isequally
probable,the possiblewaysto split the formula givesriseto n 2 equally
probablecases.(In addition, thesecasesare again mutually exclusive:one
might think of partitioning the formula into a “left-hand” and a “right-hand”
subfornmula.) Therefore,

P, ,.(“the algorithmwill laterchooseop x times’)

1 X? . .
= - P(“there areatotal of x instancesof op in two formulae
m=1
with parsetreesof sizemandn m 1, (C.7)
respectivelyy;
forallx 3.

This casecan be split further into subcasesccordng to how many in-
stancesof op appeasin ead subfornula. Therearex + 1 waysto partition
anintegerx 0 into two nonnegtiveintegess sud that their sumequals
X. (Thesecasesreagin mutually exclusivef we think thatthereis a “left-
hand” anda“right-hand” subformula.)

P(“there areatotal of x instancesof op in two formulaewith parse

treesof sizem andn m 1, respectivelyy
Xz h
P(“a formula with a parsetreeof sizem containsi instancesof
=0

Op")
P(“a formula with aparseltreeofsizen m 1contains
X 1 instancesof op”)

X h i
P(Aop,i,m)P(Aop,x—i,n—m—l) (CS)
=0

Applying(C.8) to (C.7), weget

P, ,.(“the algorithmwill later chooseop x times”)
1 X2x h i
= P(Aop,i,m)P(Aop,mfi,nfmfl) (Cg)

m=1 =0

APPENDIX C. ANALYSISOF THE LTL FORMULA GENERATION ALGORITHM Xii

Equations(C.1), (C.4), (C.5), (C.6) and (C.9) can now be appliedto
(C.3) to obtain the equationfor P(A,, .). We alsomakenote of the follow-
ing:

Since a formula cannotcontain more operatos than there are nodes
in the formula parsetree, and becausethe formula alsocontains at

leastone atomic proposition(or a Booleanconsant), it follows that
P(A, k) = Oforallk n.

The eventthat the formula doesnot contain an instance of someop-
eratorop is complementryto the eventthat the formula containsone
or more instancesof that operator Talgng alsothe previousnote into
account,weseethat P(A,, 0.,) = 1 "I P(A L kn)-

The probabilityof the eventA ,, ;. ,, isthen givenby the equation

P@op,k,n)
0 (&)
pri(op)
> pri(opY (b)
opOZU
0 ()
_ S B P(Agpko1a-1) + P(OPiK;N) (d)
opOZ OoP
ri(op) P2 Plh I
(n—2) pz ppm‘(OPO) P(Aop,i,m)P(Aop,k—l—i,n—m—l) (e)
apOZ OP m=1 =0
+ P(op; k;n)
P-1
1 P(A op,k,n) (f)
k=1
(C.10)

(@ ifk norn=1
(b ifk=1,n=2andop2 U
(c) ifk=1,n=2andop?2 B
(d ifk 1,n 3andop2 U
() ifk 1,n 3andop2B
(f) ifk=0andn 1

where

P (op; k; 'B
pri (op)
opoelg\{op}
pri (op’)

op%e OP

P(A op,k,nfl)

op%eB\{o
& A ﬁ} P(Aop,i,m)P(Aop,kfi,nfmfl)

("2 pr(op), .,

opPc OP

APPENDIX C. ANALYSISOF THE LTL FORMULA GENERATION ALGORITHM

Xiii

Equation (C.10) expressethe probability P(A,, ».») using probabilities
P(A,, 10,0), Wwhereeither k' < k orn’ < n (or both). In addition, the proba-
bilities P(A,, x») Withk = 1andn 2 aregiven. Theseprobabilitiescan
be usedasa basidor calculatingprobabilitiesP (A, ,,) for highervaluesof
k andn. This leadsto a “bottom-up” algorithmthat can be usedfor nd ing
the probability for anyvaluesof k and n. (This algorithm canrun in poly-
nomial time e.g.if the computedvaluesP(A,, x,) arestoredinto an array
which is then usedto retrievevaluesfor probabilitiesthat havealreadybeen
computed.)

Using the probability P(A,,), the expectedhumber of instancesof a
givenoperatorop in aformula with a parsetree of sizen is now givenby

X-1
Eop,n = K P(Aop,k,n) (Cll)

k=0

C.2 ADJUSTING OPERATOR PRIORITIES IN THE ALGORITHM

To adjustthe priorities of the different operatos sothat ead generatedor-
mula (with a xed parsetree size)will contain the sameexpectednumber
of eadh individual operator,we r stnote that it is suf cient to distinguish
the operatos only by their arity. This is becauseall choices made by the
algorithm are never basedon exactoperatorsymbols. Therefore,we can
identify all unaryoperatosandall binary operatoswith ead other,respec
tively, and proceedto nd only two priorities pri , and pri, sharedby the
operatos of different arity. Therefore,8op 2 U : pri(op) = pri,, and
8op 2 B : pri(op) = pri,. Substitutingtheseinto (C.10) resultsin the
slightlysimpli ed equation

P(é\op,k,n)
0 (a)
7 (b)
0 (c)
_ WP(AW,MW—D + P(op; k;n) (d)
pri P2 Iplh I
(n—2)(|U|priE+ | B|priy) m=1 =0 P(AOp,i,m)P(AOP,kflfi,nfmfl) (e)
+ P(op;k;n)
P1
1 P(A op,k,n) (f)
k=1

(C.12)

APPENDIX C. ANALYSISOF THE LTL FORMULA GENERATION ALGORITHM Xiv

wherethe condtions (a) to (f) areasbefore,jUj andjBj arethe numbers of
awailableoperatosof differentarities,respectivelyand
P(op,k,n)
(]U\ - (2- am'ty(op)))pm’u
[Ulpriy + [Blpriy

<|B| — (am’ty(op) — 1))pm‘b n—2

k
+ ; - PAo z‘,mPAo —t,n—m—
(=2 (Do + Blprin) 2t 2o [P Aepir)Py i)

op 7k7n71)

The problemnow reducedo solvingthe equationE,, , E,, , = Ofor
any two operatosop, 2 U;op, 2 B, wherethe expectedvaluesare com-
puted using(C.11). By treatinganotherof the prioritiespri , and pri,, asa
consantin this equation, the equation could now in principle be solvedfor
the other priority to nd the dependencybetweenthe two priorities. How-
ever,solvingthis equation exactlymay be verytedousin practice. In addi-
tion, since(C.11) dependon the formula parsetreesizen andthe number
of awilable unaryand binary operatosjUj andjBj, it is clearthat the rela-
tionship betweenpri , and pri, will be differentfor ead value combination
for the three previousparametes. This meansthat a new equation would
haveto be solvedfor eat sud combination. (Furthermore,it mayalsooc-
cur that the equation hasno solutionsat all for somevaluesof n, jUj and
jBj.)

Instead,t is possiblgo tryto nd approimatevaluesfor the prioritiesby
simply guessing value for anotherof the prioritiesandthen tryingto nd a
suitablevalue for the other priority sudh thatthe differencejE,, . Egp, 0]
is minimized. Here we can usethe factthat sincethe algorithm can choose
aunaryoperatorin two separatglacesjt shouldbethatpri, > pri,.

The valuesfor the prioritiescan be computedautomaticallyfor smallval-
uesof n (asusedin the experimentamadein this work) by usingeventhe
following brute-forceapproad:

1. Letpri, = 1,andletpri, = pri, + 1.

2. Compute the difference = E,, , E,, ., whereop; 2 U and
op, 2 B.

3.1f =2< < =2foragiventolerance > 0, return the current
valuesof pri , andpri , andstop.

4. Otherwise,if < 0, incrementpri,; if > 0, incrementpri,. Go
then bad to step2 (or stopafter somemaximum iteration limit has
beenexceeded).

Sinceonly smallvaluesof n wereusedin the experimentof Chap. 6, this
simplistic approat wassuf cient for nd ing the valuesfor the parametes
pri, and pri,, using = 2 1078 asthe tolerance. The priorities could
be found for all n 2 £5;6;7;8;9;10; 11, 129 and for both setsof operatos
OP, = £ ;0;0; ;™! ;Ugand OP, = f [X;0;0; ;™! ;% ;U/Rg
usedwith the different LTL-to-Budi translatos. For OP,, jUj = 3 and
jBj = 4; forthesetOP,, jUj = 4andjBj = 6.

APPENDIX C. ANALYSISOF THE LTL FORMULA GENERATION ALGORITHM

XV

Table C.1: Operatorprioritiesfor different operatorsetsand different values

ofn
n Operator set used
{~, , ,V,A,—,U} {= X, , ,V,A,—, <, UR}
pry | Py priy | Prig
5 3667 13443 1678 7357
6 2810 9909 1455 6679
7 2417 7462 2333 8757
8 1305 3736 2914 9959
9 3773 10229 1769 5646
10 1933 5031 2507 7607
11 6771 17072 4133 12061
12 3242 7969 2609 7381

The valuesusedfor the prioritiesin the experimentdor different setsof
operatosandformula parsetreesizesareshavn in TableC.1.

APPENDIX C. ANALYSISOF THE LTL FORMULA GENERATION ALGORITHM

D SPIN V3.4.1 ERROR ANALYSIS

This appendx presentsa shortanalysison the testcasethat uncoveredan
errorin SPIN v3.4.1in the experimentof Chap. 6.
In this testcasethe randomlygeneratedormula was

=00 paN pUC ps” Opa)

wherep,, ps andp, areatomic propositionsThisformula has12 nodesn its
parsetree. A fragmentof the Blichi automaton(including itsinitial statewith
all outgdng transitions)generatedy the implementation from this formula
isshavnin Fig. D.1.! It isimportantthatthe initial stateof the automatonis
not anacceptingstate (the automatonhasone accepaincecondtion).

The following seqience providesawitnesghatproveghe incorrectness
of the automaton:

= hfps; pag; f P3; Pa0; f P3; Pag; i i

This witnessvasfound automaticallyusingthe testbenab.

It is easyto seethat the automatoncan neverexecutethe transitioncorre-
spondng to the downwardarrov whengiven asinput. Insteadthe automa-
ton can only stay foreverin its nonacceptinginitial state,sothe automaton
will rejectthe witness.

However,the formula’' is satisfied in the seqience , sothe automaton
shouldaccept

Firstofal,b ©F ps,50 °F >Ups Ops. In addition, ° F ps, so

° 8 : ps, fromwhich it followsthat © i :: ps. Therefore, ° F 1 ps
Ops. Thisin turn impliesthat ° E p,U(:: ps” Ops), andsince ° F pa,
OF pa” P2U(ps”™ Opa) istrue. |

Since * = foralli O, it now followsthat * F p,» p.U(:: ps”

Ops) istrueforalli 0. From thisit followsdirectly that * F OO ps »

P U psOps) foralli 0,soespeally °= [' ,andtheformula

is satis edin the witness.This proveshat the Biichi automatonincorrectly
rejectsthe witness.

(In practice the testbent did asimilar analysisutomaticallyby r stcon-
vertingthe witnessanto a seaiential Kripke structureconsistingof one state
with a self-loopand then model cheding the formula in the structureusing
the restrictedLTL modelcheding algorithmof Sect.5.2.)

I'The sameautomatonwasobtained alsofrom the slightly simpli ed formula — p4 *
p2U(ps™ py4) . Actually the formula still containssomeredundancyit canbe cheded

that ps™ p2U(ps™ pg) isequivalentto py” (p2 Ups) ; howeverthisformuladoes

not translateinto the sameautomatonanylonger. It could be arguedthat “real” formulae
to be model chedked do not usuallycontain this kind of redundancy However,anyimple-
mentation errors should still be xed in orderto removeany possibilityof everobtaining
incorrectautomas.

APPENDIX D. SPIN V3.4.1 ERROR ANALYSIS XVii

C(b{{logy P} {P2 P3. P4}}

{{P2, P4}, {P2: P3. P4} l

—'~

(5 more states)

Fig. D.1: Afragmentof the Buchi automatongeneratedy SPIN v3.4.1from
theformuladO ps ™ pa UG ps”™ Opa)

HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY FOR THEORETICAL COMPUTER SCIENCE
RESEARCH REPORTS

HUT-TCS-A53

HUT-TCS-A54

HUT-TCS-A55

HUT-TCS-A56

HUT-TCS-A57

HUT-TCS-A58

HUT-TCS-A59

HUT-TCS-AG0

HUT-TCS-A61

HUT-TCS-A62

HUT-TCS-AG3

HUT-TCS-A64

HUT-TCS-A65

HUT-TCS-AG6

Stefan Rénn

Semantics of Semaphores. 1998.

Antti Huima

Analysis of Cryptographic Protocols via Symbolic State Space Enumeration. August 1999.
Tommi Syrjanen

A Rule-Based Formal Model For Software Configuration. December 1999.

Keijo Heljanko

Deadlock and Reachability Checking with Finite Complete Prefixes. December 1999.
Tommi Junttila

Detecting and Exploiting Data Type Symmetries of Algebraic System Nets during
Reachability Analysis. December 1999.

Patrik Simons

Extending and Implementing the Stable Model Semantics. April 2000.

Tommi Junttila

Computational Complexity of the Place/Transition-Net Symmetry Reduction Method.
April 2000.

Javier Esparza, Keijo Heljanko

A New Unfolding Approach to LTL Model Checking. April 2000.

Tuomas Aura, Carl Ellison

Privacy and accountability in certificate systems. April 2000.

Kari J. Nurmela, Patric R. J. Ostergard

Covering a Square with up to 30 Equal Circles. June 2000.

Nisse Husberg, Tomi Janhunen, Ilkka Niemela (Eds.)

Leksa Notes in Computer Science. October 2000.

Tuomas Aura

Authorization and availability - aspects of open network security. November 2000.
Harri Haanpaa

Computational Methods for Ramsey Numbers. November 2000.

Heikki Tauriainen
Automated Testing of Biichi Automata Translators for Linear Temporal Logic.
December 2000.

ISBN 951-22-5275-9
ISSN 1457-7615

