HELSINKI UNIVERSITY OF TECHNOLOGY

DIGITAL SYSTEMS LABORATORY

Series A: Research Reports ISSN 0783-5396
No. 51; May 1998 ISBN 951-22-4064-5

ON THE STUBBORN SET METHOD IN
REDUCED STATE SPACE GENERATION

KiMMO VARPAANIEMI

Digital Systems Laboratory

Department of Computer Science and Engineering
Helsinki University of Technology

Otaniemi, FINLAND

Helsinki University of Technology

Department of Computer Science and Engineering
Digital Systems Laboratory

P.O. Box 1100

FIN-02015 HUT, FINLAND

HELSINKI UNIVERSITY OF TECHNOLOGY

DIGITAL SYSTEMS LABORATORY

Series A: Research Reports ISSN 0783-5396

No. 51; May 1998 ISBN 951-22-4064-5

On the Stubborn Set Method in
Reduced State Space Generation

KiMMO VARPAANIEMI

Abstract: Reachability analysis is a powerful formal method for analysis of concurrent and
distributed finite state systems. It suffers from the state space explosion problem, however,
i.e. the state space of a system can be far too large to be completely generated. This thesis
is concentrated on the application and theory of the stubborn set method which is one of
the methods that try to relieve the state space explosion problem. A central topic in the
thesis is the verification of nexttime-less LTL (linear time temporal logic) formulas. It is
shown how the structure of a formula can be utilized when there is no fairness assumption.
Another central topic is the basic problem how stubborn sets should be computed in order
to get the best possible result w.r.t. the total time and space consumed in the state search.
An algorithm for computing cardinality minimal or almost cardinality minimal (w.r.t. the
number of enabled transitions) stubborn sets is presented, together with experiments that
indicate that the algorithm is worth of consideration whenever one wants to get proper
advantage of the stubborn set method. The thesis also considers how to cut down on space
consumption in the stubborn set method and how well the method can be combined with
another reduction technique, the sleep set method.

Keywords: reachability analysis, reduced state space generation, stubborn sets,
verification of LTL formulas

Dissertation for the degree of Doctor of Technology to be presented with due permis-
sion for public examination and debate in Auditorium E at Helsinki University of
Technology (Espoo, Finland) on the 29th of May, 1998, at 12 o’clock noon.

Printing: Picaset Oy; Lauttasaari 1998

Helsinki University of Technology Phone: % 4511
Department of Computer Science and Engineering

Digital Systems Laboratory Telex: 125 161 htkk fi
P.O. Box 1100 Telefax: +358-9-451 3369

FIN-02015 HUT, FINLAND E-mail: lab@saturn.hut.fi

-1 -

Preface

This work has been carried out in the Digital Systems Laboratory of Helsinki Univer-
sity of Technology. I am grateful to Professor Leo Ojala for his continuous support
and to PhD Mikko Tiusanen, Dr.Tech. Johan Lilius and Dr.Tech. Nisse Husberg for
their helpful comments. In addition, I would like to thank Lic. Tech. Marko Rauhamaa
for discussions that partially affected the choice of the subject of this thesis.

I also greatly appreciate the financial support received from Helsinki Graduate School
in Computer Science and Engineering, The Academy of Finland, The Emil Aaltonen
Foundation, The Technology Development Centre of Finland, Nokia Telecommuni-
cations Oy, Telecom Finland Oy, and Commit Oy.

This document has been created by using the IXTEX Document Preparation System
as well as the “what you see is not what you get” editors GNU Emacs and MS-DOS
Editor and, in the X Window System, the drawing programs idraw and xfig.

The following advice applies to reading of any mathematically oriented publications:
if you have difficulties in understanding a proof, try to construct a more understand-
able proof e.g. by using a pencil and paper. Trying to construct a counterexample is
often helpful, too.

— il —

Contents

1 Introduction

1.1 Place/transition netso
1.2 An LTL and associated automata
1.3 Stubbornness and dynamic stubbornness
1.4 Verification of linear time temporal properties
1.5 On heuristics for stubborn set computation
1.6 Removing redundancy from a stubbornly determined state space

1.7 On combining the stubborn set method with the sleep set method

1.8 Other remarks on stubbornsets

2 Place/transition nets
2.1 Nets and reachability graphso,

2.2 Permutations and equivalenceso

3 An LTL and associated automata
3.1 A linear time temporal logic oL
3.2 Bichi automata L e

3.3 Testers e e e e

4 Stubbornness and dynamic stubbornness
4.1 Dynamic stubbornness o0 Lo
4.2 Stubbornness L
4.3 The incremental algorithm o000 0000
4.4 The deletion algorithm o 0000000

4.5 DISCUSSION . . .« v v o e e e e e e e

5 Verification of linear time temporal properties
5.1 A preservation theorem,
5.2 An algorithm for generating a reduced state space
5.3 Treating operation fairness

5.4 DISCUSSION v v o e e e e e e e e e e e e

12
12
14
18

21
21
34
35
38
42

—iv -

6 On heuristics for stubborn set computation 67
6.1 On choosing a scapegoat in the incremental algorithm 67
6.2 An incomplete minimization algorithm 70
6.3 Discussion e e 74

7 Removing redundancy from a stubbornly determined state space 76

7.1 Redefinitions L Lo 76
7.2 On the elimination of intermediate states 77
7.3 Examples 78
7.4 DISCuSSiOno e e e e e e 79

8 On combining the stubborn set method with the sleep set method 81

8.1 Labelled transition systems 81
8.2 Thesleepset method. 84
8.3 Discussion e e e e e 91
9 Other remarks on stubborn sets 92
9.1 Stubborn sets of high-level nets 92
9.2 Stubborn sets in symbolic state space generation 93
10 Conclusions 96
Acknowledgements 97
Publications resulted from the work 97

References 98

1 Introduction

Concurrent and distributed systems such as telecommunication protocols and process
control systems influence and affect the lives of millions of people daily all over the
world today. The design of these systems often involves so difficult problems related
to timing that the traditional testing and analysis methods are not adequate. One
possible solution to this problem is the discerning use of appropriate formal methods.

Reachability analysis, also known as exhaustive simulation or state space generation,
is a powerful formal method for detecting errors in concurrent and distributed finite
state systems. Strictly speaking, infinite state systems can be analyzed, too, but
reachability analysis methods are typically such that they cannot process more than
a finite set of states. Nevertheless, we can quite well try to find errors even in cases
where we do not know whether or not the complete state space of the system is finite.

Anyway, reachability analysis suffers from the so called state space explosion problem,
i.e. the complete state space of a system can be far too large w.r.t. the resources
needed to inspect all states in the state space. Fortunately, in a variety of cases we
do not have to inspect all reachable states of the system in order to get to know
whether or not errors of a specified kind exist.

If we have a system consisting of sequential processes that interact with each other,
we can imagine the system to be a global sequential system where an action is
either a synchronizing action, i.e. a tuple of actions (from distinct processes but not
necessarily from all processes) that must be executed simultaneously by the associated
processes, or a non-synchronizing action, i.e. an internal action of some process. (Note
that even in the case that there is no synchronizing action, a process can affect some
condition that is necessary for an execution of an action in another process.) Every
possible simultaneous execution of internal actions is simulated by executing the
actions in question in every possible order. Any execution of an action sequence in
the global sequential system can then be called an interleaving of local executions of
action sequences in the processes. If two or more interleavings are sufficiently similar
to each other, we can call all except one of them redundant interleavings.

The stubborn set method [68, 73, 74, 75, 76, 77, 78, 79, 80, 81] and the sleep set
method [25, 26, 27, 28, 30, 31, 38, 49, 55, 99, 100] are state search techniques that are
based on the idea that when two executions of action sequences are sufficiently similar
to each other, it is not necessary to investigate both of the executions. Persistent
sets [25, 26, 29, 31, 38, 98, 99, 100] and ample sets [51, 55, 56, 57] are strikingly
similar to stubborn sets, at least if we consider the actual construction algorithms
that have been suggested for stubborn, persistent and ample sets. This similarity
is made explicit in [48] where a set is said to be a stamper set whenever the set is
stubborn or ample or persistent in some way. Other closely related techniques have
been presented in e.g. [2, 4, 23, 39, 44, 54, 60, 62, 83, 96, 98, 101]. (The classification
of papers is much a matter of taste. For example, it is formally correct to say that
the method introduced in [23] is a special form of the persistent method, but it is also
formally correct to say that any method that simply generates the complete state
space is a special form of the persistent set method.) This thesis is concentrated on
the application and theory of the stubborn set method.

The rest of this chapter has been organized in such a way that each section is an

introduction to an equally named chapter.

1.1 Place/transition nets

Chapter 2 presents basic definitions related to place/transition nets, the primary
formalism to which the stubborn set method is applied in this thesis. Petri nets
[9, 10, 41, 59, 58, 64] are a widely used model for concurrent and distributed systems,
and place/transition nets form a class of Petri nets. The main reason for choosing
place/transition nets for the primary formalism is that there is hardly no simple and
well-known formalism where the whole theory of the stubborn set method could be
put into practice in a more fine-grained way. (For example, the difference between
(general) dynamic stubbornness and strong dynamic stubbornness is significant in
place/transition nets but does not seem to have any useful analogy in the theory of
stubborn sets for process algebras [80].)

In Figure 1, we have a place/transition net that models the behaviour of two pro-
cesses. Circles represent places while rectangles represent transitions. The positions
of tokens, i.e. black dots in places indicate the local states of the processes. Both of
the processes have exactly two possible local states. A combination of simultaneous
local states is a global state. Figure 2 illustrates the full reachability graph, i.e. the
complete state space, of the net. The vertices in the graph represent the possible
global states while the edges show how a transition is able to change a global state.
The number of tokens in a place s is denoted by M (s).

p a c r

|

Figure 1: A place/transition net that models the behaviour of two processes.

Though the state space explosion problem is not concretely present in this small
example, we can imagine a net where processes are similar to the above processes but
the number of processes is n instead of 2. (Such a net can be obtained by duplicating
a maximal connected subnet and by renaming the parts in the duplicates.) Then the
full reachability graph is an n-dimensional hypercube that has 2™ vertices.

A reduced reachability graph can be constructed by starting from the initial global
state and by taking into account some but not necessarily all possible transitions at
those global states that become encountered. Assuming that we want a mechanically
computed answer to the question if terminal vertices exist in the full reachability
graph, we can let some algorithm construct a reduced reachability graph where one
process changes its local state twice and the other processes do nothing. Such a

Figure 2: The full reachability graph of the net of Figure 1.

reduced reachability graph, constructible e.g. by using the stubborn set method,
has no more than two vertices, independently of n. The obtained graph suffices for
showing that the full reachability graph has no terminal vertex. The situation is more
complicated if we want to know something else about the full reachability graph, but
even then it is by no means likely that we should construct the full reachability graph
explicitly.

From a modeller’s point of view, place/transition nets may seem impractical because
place/transition net models of actual systems tend to be very large. On the other
hand, using high-level nets [9, 41] one can make compact models in a natural way.
Fortunately, a high-level net can often be unfolded into a behaviourally equivalent
finite place/transition net, and, using the inverse mapping of the unfolding mapping,
the place/transition net can be folded back into the high-level net [22, 40]. This also
provides a path of extending results on place/transition nets to high-level nets.

1.2 An LTL and associated automata

Linear time temporal logics [19] give us a straightforward though of course a limited
way to express what should or should not happen in a concurrent or distributed
system. Depending on the context, the abbreviation LTL refers either to a specific
linear time temporal logic or to “a linear time temporal logic in general”. In LTL, the
satisfaction of a formula is measured w.r.t. an infinite or deadlock-ended execution. A
formula is valid at a state iff the formula is satisfied by all those infinite and deadlock-
ended executions that start from the state. (In this thesis, the word “deadlock” means
“a state where no event is possible”. Depending on the case, a deadlock may or may

not be an error.) Verifying a formula typically means showing that the formula is
valid at the initial state of the system that is under analysis. Validity is sometimes
redefined in such a way that the requirement of satisfaction is restricted to paths
of a certain kind. Fairness assumptions [21] are one form of such a restriction. A
definition of fairness expresses some kind of progress that is expected in situations
of a certain kind.

On-the-fly verification of a property means that the property is verified during state
space generation, in contrary to the traditional approach where properties are verified
after state space generation. As soon as it is known whether the property holds, the
generation of the state space can be stopped. Since an erroneous system can have
much more states than the intended correct system, it is important to find errors
as soon as possible. On the other hand, even in the case that all states become
generated, the overhead caused by on-the-fly verification, compared to non-on-the-
fly verification, is often negligible.

An LTL formula can be verified on-the-fly by means of a Biichi automaton [12, 16,
20, 24, 33, 84]. A Biichi automaton that accepts sequences satisfying the negation of
the formula can be constructed automatically and intersected with the state space
of the modelled system during the construction of the latter. The state space of the
system can easily be thought of as a Biichi automaton. The formula is valid in the
state space of the system iff the intersection to be computed, also a Biichi automaton,
accepts no sequence. A tester [81] is an automaton that is used much in the same way
as a Biichi automaton. A remarkable difference is that testers have some additional
support for special cases but, to our knowledge, no published automatic construction
from arbitrary formulas. Moreover, unlike a typical tester, a Biichi automaton is
typically fully synchronized with the system being analyzed.

Chapter 3 presents one version of a linear time temporal logic and describes Biichi
automata and testers. The presentation assumes that the system to be analyzed has a
place/transition net model. This is sufficient for the later algorithmic considerations.

1.3 Stubbornness and dynamic stubbornness

Chapter 4 introduces stubborn sets and dynamically stubborn sets. For historical rea-
sons, “stubbornness” without any preceding attribute is defined in a way that directly
indicates how such sets can be computed. When one wants to show results concern-
ing the theoretical properties of the stubborn set method, dynamic stubbornness is
a more appropriate notion. When definitions are as they should be, stubbornness
implies dynamic stubbornness but not vice versa.

Chapter 4 shows that in place/transition nets, persistence (as defined in the per-
sistent set method) and conditional stubbornness [29] are special forms of dynamic
stubbornness. Ample sets [51, 55, 56, 57| are considered, too. The concepts of ample-
ness and dynamic stubbornness have much in common though ampleness is strongly
oriented towards verification with fairness assumptions.

—5—

1.4 Verification of linear time temporal properties

Chapter 5 is concentrated on the verification of nexttime-less LTL formulas with
the aid of the stubborn set method. The presentation also covers the verification of
basic termination properties, i.e. detecting of reachable deadlocks and deciding if an
infinite execution exists.

In the fundamental presentation of stubborn sets in the verification of nexttime-less
LTL-formulas [78], the computation of stubborn sets is directed by atomic formulas
only, and the reduced state space can be used for verifying any nexttime-less LTL-
formula that is constructible from those atomic formulas. Unfortunately, the state
space generation algorithm in [78] tends to generate the complete state space when
verification is done under some of the most typical fairness assumptions. (In [78],
all reduction is gained by utilizing transitions that are “sufficiently uninteresting”.
A typical fairness assumption makes all transitions “too interesting” in this sense.)
The approaches [55, 56] improve the approach of [78] by utilizing the structure of
the formula and by allowing a fairness assumption. A weakness in [55, 56] is that
the structure of the formula is utilized only in cases when fairness is assumed or the
formula expresses a safety property. Chapter 5 improves the method by utilizing the
structure of the formula when fairness is not assumed and the formula is arbitrary.
(The expression “fairness is not assumed” should be read to mean “no kind of fairness
is assumed” though the latter may sound like “unfairness is assumed”.) Though the
recently published alternative solution [48] can be considered more goal-oriented, it
does not cover our approach.

Chapter 5 also considers the verification of nexttime-less LTL-formulas when fairness
is assumed. For convenience, we concentrate on operation fairness [55], though we
could in principle handle some of the weaker fairness assumptions mentioned by [55]
in the same way.

The LTL verification approach in [78] can systematically be modified to handle fair-
ness assumptions efficiently, and our approach can be modified quite similarly. It is
by no means surprising that we essentially end up in an approach similar to those in
[55, 56].

1.5 On heuristics for stubborn set computation

Chapter 6 considers the basic problem how stubborn sets should be computed in
order to get the best possible result w.r.t. the total time and space consumed in
the state search. The problem is inherently complex. The generating of minimal
sized reduced reachability graphs is known to be an NP-hard problem [55] while e.g.
the detection of deadlocks is known to be a PSPACE-hard problem [75].T So, we
can hardly proceed in any other way than by designing heuristics for different kinds
of cases. Chapter 6 presents an algorithm for computing cardinality minimal or
almost cardinality minimal (w.r.t. the number of enabled transitions) stubborn sets.
The chapter also contains experiments that indicate that the algorithm is worth
of consideration whenever one wants to get proper advantage of the stubborn set
method.

—6—

1.6 Removing redundancy from a stubbornly determined state
space

In state space generation, the amount of available storage space is typically a more
critical factor than the amount of time we are ready to spend in the generation. We
thus need ways to cut down on space consumption, even with considerable additional
costs in time consumption. Though state space caching [26, 27] is often a sufficient
solution to this problem, it has the obvious disadvantage that it does not construct
an explicit state space with which a later analysis would be possible. Chapter 7
suggests a way to avoid wasting storage space and still construct a state space where
LTL-formulas can be verified later. The presented approach has much in common
with the approach of [53], but some differences can still be observed.

1.7 On combining the stubborn set method with the sleep set
method

Chapter 8 considers how the stubborn set method can be combined with the sleep
set method in order to get a combined attack on the state space explosion. The
basic idea of the combination can be found in [99], but there persistent sets are used
instead of stubborn sets, and it is not necessarily easy to see how the idea can be
extended to concern all stubborn sets. This extension is made explicit in Chapter 8.

Since the original combination was given for a more complicated formalism than
place/transition nets, the new combination is presented for a formalism that, to
our knowledge, covers all of the formalisms to which the stubborn set method, the
sleep set method and the persistent set method have been applied in the literature.
The compatibility result is shown by showing a more general result which gives a
sufficient condition for a method to be compatible with the sleep set method in the
verification of basic termination properties and simple safety properties. The question
of compatibility in more challenging verification tasks is more or less an open problem,
and before trying to solve it one could first try to solve the problem of what kind of
verification tasks are actually supported by the sleep set method. For example, hardly
nothing has been published about if or how the sleep set method could support the
verification of an arbitrary nexttime-less LTL-formula when fairness is not assumed.

1.8 Other remarks on stubborn sets

Chapter 9 makes some remarks concerning stubborn sets of high-level nets [11, 79]
and stubborn sets in symbolic state space generation [1, 35, 70, 71]. These two areas
of research are among the most important as far as the stubborn set research is con-
cerned since on one hand, models are often extremely large on a low level while on the
other hand, state spaces are often too large to be handled without abstraction. The
main motivation of the chapter is to clarify the limits of the considered approaches.

-7 -

2 Place/transition nets

This chapter presents basic definitions related to place/transition nets, the primary
formalism to which the stubborn set method is applied in this thesis. More precisely,
we define place/transition nets with infinite capacities [64, 65]. (Capacities do not
increase expression power and are typically eliminated anyway, so we do not include
them in the definitions.) We shall use N to denote the set of non-negative integer
numbers, 2% to denote the set of subsets of the set X, X* (respectively, X°) to
denote the set of finite (respectively, infinite) words over the alphabet X, ¢ to denote
the empty word and Xt to denote X*\ {e}. For any alphabet X and for any p € X*°,
p is thought of as a function from N to X in such a way that p = p(0)p(1)p(2)....

2.1 Nets and reachability graphs

Definition 2.1 A place/transition net is a quadruple (S, T, W, My) such that S is
the set of places, T is the set of transitions, SNT = (), W is a function from
(SxT)U(T x S) to N, and My is the initial marking (initial state), My € M where
M is the set of markings (states), i.e. functions from S to N. The net is finite iff SUT
is finite. If z € SUT, then the set of input elements of x is *z = {y | W(y,z) > 0},
the set of output elements of x is z* = {y | W(z,y) > 0}, and the set of adjacent
elements of = is z* U *z. A transition ¢ leads (can be fired) from a marking M to a
marking M' (M[t)M' for short) iff

Vs €S M(s) > W(s,t) AM'(s) = M(s) — W(s,t)+ W(t,s).

A transition t is enabled at a marking M iff t leads from M to some marking. A
marking M is terminal iff no transition is enabled at M. O

In our figures, places are circles, transitions are rectangles, and the initial marking
is shown by the distribution of tokens, black dots, onto places. A directed arc, i.e.
an arrow, is drawn from an element x to an element y iff z is an input element of y.
Then W(x,y) is called the weight of the arc. As usual, the weight is shown iff it is
not equal to 1.

Transition sequences and reachability are introduced in Definition 2.2.

Definition 2.2 Let (S, T, W, Mj) be a place/transition net. The set T™ (respectively,
T°°) is called the set of finite (respectively, infinite) transition sequences of the net.

Let f be a function from M to 2. A finite transition sequence o f-leads (can be
f-fired) from a marking M to a marking M' iff M[o)sM', where

VM € M M[e)s M, and

VM eMVYM e MYS €T*Vt €T
MIst) (M < (IM" € M MI[8) s M" At € F(M") A M"[t)M").

A finite transition sequence o is f-enabled at a marking M (M]o)s for short) iff o
f-leads from M to some marking. An infinite transition sequence o is f-enabled

—8—

at a marking M (M|[o)s for short) iff all finite prefixes of o are f-enabled at M.
A marking M’ is f-reachable from a marking M iff some finite transition sequence
f-leads from M to M’. A marking M’ is an f-reachable marking iff M’ is f-reachable
from My. The f-reachability graph of the net is the pair (V, A) such that the set of
vertices V is the set of f-reachable markings, and the set of edges A is {(M, ¢, M') |
MeVAM c¢VAte f(M)ANM[tyM'}. O

Let ¥ be the function from M to 27 such that for each marking M, ¥(M) = T.
From now on in this thesis, we use a plain “)” instead of “)y”, and as far as the
notions of Definition 2.2 are concerned, we replace “¥-xxx” by “xxx” (where xxx is
any word), with the exception that the U-reachability graph of the net is called the
full reachability graph of the net. (It is easy to see that this syntactic convention is
consistent with Definition 2.1. For example, if ¢ is a transition, the meaning of the
expression “[t)” is unique though the sub-expression “¢” can be understood to mean
either the transition ¢ or the transition sequence t.) When f is clear from the context
or is implicitly assumed to exist and be of a kind that is clear from the context, then

the f-reachability graph of the net is called the reduced reachability graph of the net.

Definition 2.3 Let (S, T, W, My) be a place/transition net. Let f be a function from
M to 2T and let G be the f-reachability graph of the net. For any edge (M,t, M’)
of G, t is called the label of the edge. (The labelling of the paths of G' then follows
by a natural extension.) A path of G is called a terminal path iff the path is finite
and no nonempty transition sequence is f-enabled at the last vertex of the path. A
finite path of GG is called a cycle iff the path has at least one edge and the last vertex
of the path is equal to the first vertex of the path. A finite path of G is called an
elementary cycle iff the path is a cycle and no proper subpath of the path is a cycle.
O

2.2 Permutations and equivalences

In the theory of place/transition nets, the concept of a redundant interleaving can
be approached by defining permutations of and equivalences between transition se-
quences.

Definition 2.4 Let (S, T, W, My) be a place/transition net. Let 75 C 7. A finite
transition sequence, 9, Ts-exhausts a finite transition sequence o iff for each t €
Ts, the number of #’s in § is greater than or equal to the number of t’s in ¢. The
function R from (T* UT>°) x 2T to T* U T is defined by requiring that for each
Y € 27, R(e,Y) = ¢, and for each t; € Y, for each t, € T\ 'Y, for each 6 € T*
and for each p € T, R(¢16,Y) = t1R(4,Y), R(t20,Y) = R(4,Y), and R(p,Y) =
R(p(0), Y)R(p(1),Y)R(p(2),Y).... For any Y € 27 and for any 0 € T* U T,
R(0,Y) is called the Y-restriction of 0. Let T C 27. A finite or an infinite transition
sequence 6 is Y-equivalent to a finite or an infinite transition sequence o iff for each
Y eT, R6,Y)=R(o,Y). Let T ={{t} | t € T}. A finite or an infinite transition
sequence d is a permutation of a finite or an infinite transition sequence o iff § is
T -equivalent to o. O

The above T can be considered as a set of views to the behaviour of the net. If
T = {a,b,c,d,e, f,g} and T = {{a,b}, {c,d},{d, f}} then gbdcefa is T-equivalent to
badf c since both of these sequences have the {a, b}-restriction ba, the {c, d}-restriction
dc, and the {d, f}-restriction df.

Note that in the case of infinite sequences, the above definition of a permutation does
not pay any attention to the possible repeated patterns in the sequences. So, for ex-
ample the sequence obtained by repeating bbba infinitely many times is a permutation
of the sequence obtained by repeating ab infinitely many times. At least our defini-
tion is mathematically sound since two finite or infinite transition sequences, g and
01, are permutations of each other iff the following holds: there exist bijections pg
and p; from N to N such that p; is the inverse function of py and for each 7 € {0,1},
n € N\ {0} and ¢t € T, if t occurs at least n times in o, then ¢ occurs at least n times
in 01_; and p; maps the position of the nth occurrence of ¢ in ¢; to the position of
the nmth occurrence of ¢ in o1_;.

In many formalisms, independence of transitions is the key to how redundant in-
terleavings can be eliminated in verification. Independence is a useful abstraction
in place/transition nets, too, though there it seems better to base the detection of
redundancy to the recognition of enabled permutations than just to the recognition
of independent transitions.

Definition 2.5 Let (S, T, W, My) be a place/transition net. Transitions ¢ and ¢’
commute at a marking M iff M[tt'y and M|[t't). Transitions ¢ and ¢’ are independent
at a marking M iff

(M[tt"y A M[t't)) V

(~M[ty A= M[t')) Vv

(M[t) AN=M[t"Y AN M[tt')) V

(M[t"y AN =M[t) A =M[t't)).

Transitions ¢ and ¢’ are globally independent iff they are independent at all reachable
markings. O

Our definition of plain independence corresponds to the definition in [29] for condi-
tional independence which in turn is based on the corresponding definition in [45].
Our definition of independence can be obtained from the definition of valid condi-
tional dependency relations, Definition 5 in [29], by taking the necessary conditions
for a triple of two transitions and one state to be in the complement of a valid de-
pendency relation, and substituting terms of place/transition nets for the terms of
the model of concurrency in [29] in an obvious way.

Clearly, different transitions are independent at a marking iff neither of them can be
fired at the marking making the other transition turn from enabled to disabled or
from disabled to enabled.

Lemma 2.6 Claims:

e A transition t commutes with itself at a marking iff tt is enabled at the marking.

e A transition t is independent of itself at a marking iff tt is enabled or t is
disabled at the marking.

-10 -

e Transitions commute at a marking iff they are enabled and independent at the
marking.

Proof. The results are obvious on the basis of Definition 2.5. O

We now give basic definitions for conditional traces and strict traces that in some form
or another occur in e.g. [29, 45, 55]. The theory of conditional traces is a natural
extension of the trace theory in [52].

Definition 2.7 Let (S, T, W, My) be a place/transition net. A transition sequence
0 is a neighbour of a finite transition sequence o iff there exist transitions ¢ and ¢,
and finite transition sequences ¢’ and ¢” such that o = ¢'tt'c"” and § = o't'te”. A
transition sequence 4 is a strict neighbour of a finite transition sequence o iff there
exist transitions ¢ and ', and finite transition sequences ¢’ and ¢” such that ¢ and ¢/
are globally independent, o = ¢’tt'c” and § = o't'to”. Let M be a marking and R
the binary relation on 7™ such that o R iff 0 and § are enabled at M and neighbours
of each other. Let R” be the reflexive-transitive closure of R. The conditional trace of
a finite transition sequence o at M is the set of finite transition sequences such that
a sequence ¢ is in the conditional trace of o at M iff o is enabled at M and oR"4.
Let R; be the binary relation on T* such that o R4 iff 0 and ¢ are enabled at M
and strict neighbours of each other. Let Ry be the reflexive-transitive closure of R;.
The strict trace of a finite transition sequence o at M is the set of finite transition
sequences such that a sequence ¢ is in the strict trace of o at M iff o is enabled at
M and o R56. A set is an ending conditional trace at M iff the set is the conditional
trace of some finite transition sequence at M. A set is an ending strict trace at M iff
the set is the strict trace of some finite transition sequence at M. O

In other words, an ending conditional (respectively, strict) trace is a set of enabled
finite transition sequences that can be obtained from each other by repeatedly inter-
changing adjacent independent (respectively, adjacent globally independent) transi-
tions. The conditional or strict trace of a non-enabled finite transition sequence is
empty. The reflexive-transitive closure of R (respectively, R;) in Definition 2.7 is
clearly an equivalence relation, and the conditional (respectively, strict) trace of an
enabled finite transition sequence is the equivalence class of the sequence w.r.t. the
equivalence relation. What we still need are conditional traces and strict traces for
infinite transition sequences. We base the extended definition on finite prefixes.

Definition 2.8 Let (S, T, W, My) be a place/transition net. A transition sequence
o1 is in the conditional (respectively, strict) trace of an infinite transition sequence
oo at a marking M iff o1 is an infinite transition sequence and the following holds:
for each i € {0,1}, A € T* and v € T, if 0; = Ay, then there exist y € T*, n € T*
and p € T® such that o1—; = pp, and Ay is in the conditional (respectively, strict)
trace of p at M. (Note that this condition does not contain any specific relationship
between v and 7.) A set is an endless conditional (respectively, strict) trace at M
iff the set is the conditional (respectively, strict) trace of some infinite transition
sequence at M. O

Definition 2.8 corresponds to Definition 2.3 in [55] and is needed in the theory of
ample sets [51, 55, 56, 57| that will be discussed in Chapter 4. An endless conditional

- 11 -

or strict trace can be seen to consist of enabled infinite transition sequences that
are permutations of each other. A strict trace of a sequence is always a (proper or
non-proper) subset of the conditional trace of the sequence. Also, the conditional or
strict trace of an enabled infinite transition sequence is an equivalence class whereas
the conditional or strict trace of a non-enabled infinite transition sequence is empty.

- 12 —

3 An LTL and associated automata

This chapter presents one version of a linear time temporal logic and describes Biichi
automata and testers that support the verification of formulas of the logic. (Though
no general automatic construction of a useful tester from a formula is known, a
manual construction, possibly after some “harmless” modifications to the formula,
often succeeds.) The presentation assumes that the system to be analyzed has a
place/transition net model. This is sufficient for the later algorithmic considerations.

3.1 A linear time temporal logic

Our LTL has effectively the same syntax as the Propositional Linear Temporal Logic
(PLTL) in [19]. The semantics are also effectively the same, with the exception that
we consider finite executions, too. We make this difference because deadlock-ended
executions are important to us whereas the semantic definitions for PLTL assume
that every state has a successor.

A formula in our LTL is either atomic or of the form 1, (A) = (B), O(A) or
(A)U(B) where A and B are formulas. The following are syntactic abbreviations:
—(A) means (A) = (L), T means —(L), (4) V (B) means (=(A)) = (B), (4) A (B)
means —((—(4))V (=(B))), ¢(A) means (T)U(A), and O(A) means =(<C(—(A4))). An
atomic formula is a subset of markings of the net, i.e. a subset of M. In our examples,
all atomic formulas are of the form “M(s) op k” where k € N, s is a place in the net,
op is a comparison operator and the actual meaning of the formula “M(s) op k” is

{M e M | M(s) op k}.

The operators L, =, =, T, A and V are called propositional. The other operators are
then called non-propositional or temporal. Non-propositional operators have the fol-
lowing names: (O is “nexttime”, U is “until”, < is “eventually” and O is “henceforth”.
A formula is nezttime-less iff the formula does not contain any (). By a Boolean com-
bination of formulas from a collection we mean a formula that can be constructed
from the formulas of the collection by using propositional operators only. (A single
formula can be used several times in the combination whereas it is not necessary to
use all formulas of the collection.)

The rules of satisfaction of a formula are given w.r.t. finite and infinite paths in a
(reduced or full) reachability graph of the net and are as follows. (We assume that
a path always contains at least one vertex and starts with a vertex. Moreover, each
finite path ends with a vertex. Also, paths z and y can be concatenated into a path
zy iff x is finite and the last vertex of x is the first vertex of y. The path zy is then
the path “z continued by y.”)

e A path satisfies an atomic formula p iff the first vertex of the path is in p.
e No path satisfies |.

e A path satisfies (A) = (B) iff the path satisfies B or does not satisfy A.

- 13 -

e A path z satisfies ()(A) iff there is at least one edge in the path and A is
satisfied by the path obtained from x by removing the first vertex and the first
edge.

e A path z satisfies (A)U(B) iff there is a path z and a finite path y such that
T = yz, z satisfies B, and for any finite paths v and u, y = uv # u implies that
vz satisfies A.

A formula is wvalid at a marking in the graph iff the formula is satisfied by all those
infinite and terminal paths of the graph that start from the marking. (So, a formula
(A) A (B) is valid at a marking iff both of A and B are valid at the marking. On the
other hand, (A) V (B) can be valid at a marking even in the case that neither A nor
B is valid at the marking.) Verifying a formula means showing that the formula is
valid at the initial marking in the full reachability graph of the net.

P r

a<—@_>b
q d ‘)x C
—_—

Figure 3: An example net used for LTL considerations.

Let us consider the net in Figure 3. The full reachability graph has exactly two
terminal paths that start from the initial marking. The labels of these two paths are
ac and ca. The labels of the infinite paths starting from the initial marking in the
full reachability graph are bddd ..., cbddd. .., beddd. .., bdcddd. .., bddcddd. . ., etc.
All these terminal and infinite paths satisfy the formula

(O(M(z) = 1)) V ((M(r) = 0)),

so the formula is valid at the initial marking in the full reachability graph, The
same does not hold for the subformula &(M(z) = 1), and not for the subformula
O(M(r) = 0) either. This is so because among the above mentioned paths, e.g. the
path labelled by ac does not satisfy O(M(xz) = 1), whereas the path labelled by
bddd . .. does not satisfy (M (r) = 0).

For convenience, validity is sometimes redefined in such a way that the requirement
of satisfaction is restricted to paths of a certain kind. The restriction may or may not
be expressible in LTL. Fairness assumptions [21] are one form of such a restriction.
Fairness is basically an informal concept, and the choice of a formal definition depends
much on the context. Anyway, a definition of fairness expresses some kind of progress
that is expected in situations of a certain kind. Also, some definitions of fairness
have turned out to be of general interest. To this thesis, we have chosen one of such
definitions, operation fairness [55] that is a certain type of strong fairness [21].

— 14 -

Definition 3.1 Let (S, T, W, My) be a place/transition net. A path in the full reach-
ability graph of the net is operation fair iff the following holds for each transition ¢ :
if ¢ is enabled infinitely many times on the path, then the path contains infinitely
many occurrences of ¢. (Note that all finite paths are thus operation fair.) O

Operation fairness cannot be expressed in our LTL because our version of LTL has
no general way to describe the occurrence of a transition in such a way that the
description would match only that transition. On the other hand, as can be seen
from [42, 55], operation fairness is easily expressible in action-oriented versions of
LTL, at least if the net does not have infinitely many transitions.

OO
N
o
yAtvacAone

Figure 4: In the full reachability graph of this net, (abfcdg)(abfcdg)(abfedg) ...
labels an operation fair path while (abcfdg)(abcfdg)(abcfdg) ... does not.

Operation fairness is not guaranteed to be preserved when the order of firing of tran-
sitions is changed in such a way that the resulting path has no suffix that would be
a suffix of the original path. In the net in Figure 4, transitions ¢ and f are globally
independent, and consequently, the infinite sequence (abcfdg)(abecfdg)(abefdg). ..
is in the strict trace of the infinite sequence (abfcdg)(abfcdg)(abfedg). .. at the
initial marking M,. However, the path starting from M, and being labelled by
(abcfdg)(abefdg)(abefdg) ... is not operation fair though the path starting from
My and being labelled by (abfcdg)(abfcedg)(abfedg) .. . is operation fair.

3.2 Biuchi automata

An LTL-formula can be verified on-the-fly by constructing a Biichi automaton [12, 16,
20, 24, 33, 84| that corresponds to the negation of the formula and by computing the
intersection of the automaton and a (full or appropriately reduced) reachability graph

15—

in such a way that the intersection is computed simultaneously with the construction
of the reduced graph, or even simultaneously with the construction of the automaton.

Definition 3.2 A Biichi automaton is a quintuple B = (Q, X, A, I, F) such that @
is the set of states, Y is the alphabet, A C @ x X x @ is the set of moves, I C Q is
the set of initial states and F C 29 is the set of acceptance sets. B accepts a word o
over the alphabet 3 iff 0 € ¥*° and there exist a function ¢ from N to @), a function
£ from N to X, and a function k from N x F to N such that ¢(0) € I and for each
i € N, £(i) is the (i 4+ 1)th letter in o, (q(i),£(2),q(i + 1)) € A, and for each F € F,
k(i, F) < k(i + 1, F) and q(k(7, F)) € F. The language of B, denoted by L(B), is the
set of all those words over ¥ that are accepted by the automaton. B is a finite Biichi
automaton iff () UX is finite. O

The states and moves in a Biichi automaton can be thought of as vertices and edges
of a graph. The above acceptance condition can be described by saying that the
word must be a label of an infinite path in the graph in such a way that the path
starts from some initial state and contains infinitely many occurrences of members
from each acceptance set. Definition 3.2 is a usual definition of a generalized Biichi
automaton [16, 33]. A classic Biichi automaton becomes defined by requiring that
there is exactly one initial state and exactly one acceptance set.

As shown in [16, 33], there is a simple way to map a generalized Biichi automaton
that has only finitely many acceptance sets into a classic Biichi automaton that has
the same language. (The requirement of a unique initial state in a classic automaton
is sometimes ignored in the literature, but a unique initial state is easy to obtain by
“duplicating” the moves from given initial states.)

Proposition 3.3, adapted from [33], gives us a clue to how Biichi automata can be
used in verification. If a system and a property can be described by two finite Biichi
automata in such a way that the language of the first automaton represents infinite
executions of the system while the language of the second automaton defines unde-
sirable formal sequences over the same alphabet, it then suffices to construct a Biichi
automaton that accepts exactly the words in the intersection of the languages. The
checking if that intersection is empty can be done efficiently during the construc-
tion [16]. If it turns out that the intersection is not empty, the construction can be
stopped, and obtaining a word of the intersection before that stop can be guaranteed
without essential loss in efficiency [16].

Proposition 3.3 has also a compositional aspect since if we can map a property into
a language, then a disjunction can be mapped into a union of languages while a
conjunction can be mapped into an intersection. The automaton Bs in Proposition
3.3 will informally be called the union of automata By and Bs while B4 will be called
the intersection of automata By and Bjy. (From a formal point of view, this kind
of naming is questionable since the union (respectively, intersection) of By and Bj
should in principle be the same as the union (respectively, intersection) of B; and
B,.) Complements are considerably harder to handle than unions and intersections.
To our knowledge, the best published universal algorithm for constructing a Biichi
automaton for the language ¥°° \ L(B) may construct an automaton where the 2-
base logarithm of the number of states is proportional to nlog, n when B is a Biichi
automaton consisting of n states and having ¥ as the alphabet [66]. However, the

—16 -

worst case complexities do not tell the whole truth. For example, if we construct
an automaton for an LTL formula in the way described in [84] and then another
automaton for the negation of the formula, these two automata are structurally very
close to each other.

Proposition 3.3 Let Bl == <Q1,21,A1,Il,.7:1>, and B2 == <Q2,22,A2,I2,.7:2> be
Biichi automata and Bs = (Q3, X3, Ag, I3, F3) and By = (Qa, X4, Ay, 14, F4) be quin-
tuples such that

Qs = (Qux{1})U(Q2x{2}),

Y3 = X1 UM,
Az = {{{g1,1),21,(r1, 1)) | (g1, z1,71) € Ar} U
{{(g2:2), 2, (r2,2)) | (g2, %2, 72) € As},
Is = (L x{1})U(l2x{2}),
Fs = {(Fix{1}H)U(Fsx{2})]| (F1 € F1) A (F2 € Fo},
Qs = Q1XQ2,
¥y = 1Ny,
Ay = {<<q1aq2>a$, (7“1,7‘2)) | (<Q1,.’E,7'1> € Al) A (<Q2,ZU,”'2> € A2)}a
I, = Iy x1y and
Fio = {FixQ2|Fi € F1}U{Q1 x Fa2 | F5 € F»}.

Claim: Bs and By are Bichi automata such that L(Bs) = L(By) U L(B3) and
L(B4) = L(By) N L(Bs).

Proof. The case of Bg is obvious since there can be no path between a state marked
by 1 and a state marked by 2. What comes to By, the definition of moves makes sure
that the finite prefixes in accepted words are as they should be while the definition of
acceptance sets makes sure that the acceptance sets of By and Bs are appropriately
represented. O

Compositional construction of a Biichi automaton for a formula is slightly confused by
the virtual inflexibility of alphabets. Typically, the set of atomic formulas determines
the alphabet, and only the necessary atomic formulas are taken into account. As a
result, two “formula automata” are likely not to have equal alphabets. A simple
solution to this problem is as follows. Classically, a member of an alphabet in a
formula automaton is a subset of atomic formulas. We change this by defining that
a member of such an alphabet is a pair of subsets of atomic formulas. In a move, the
leftmost subset, X, in the label is the set of those atomic formulas that are “both
important and true in the source state”. The rightmost subset, Y, in the label is the
set of those atomic formulas “the truth value of which is important”. (So, X is a
subset of Y by definition.) This kind of a move corresponds to a set of classic moves
where the source states are equal, the target states are equal as well while the label of
a move is Z such that X = Z NY. This correspondence is then respected in defining
unions and intersections between the new kind of automata. If £; = 2Kt x 201 and
Yo = 2K2 x 292 it is sufficient to modify Proposition 3.3 as follows:

¥y = 20UK) 9(01U02) - and

17 -

A4 = {<<q1aq2>a<X1UX2,Y1U}I2>,<T'1,’I'2>> | <q1,<X1’Y1>’7-1> c Al,
(q2, (X2,Y3),7m9) € Ag, and
(X1 NYs) = (X2NY1)}

L(B,) is no longer L(B;y) N L(By), but by transforming the alphabets and moves
into the classic form we see that the language of the transformation of B4 is the

intersection of the languages of the transformations of By and Bs. From this it
follows that L(B4) is empty iff L(B1) N L(B3) is empty.

We still need a Biichi automaton that represents the behaviour of a place/transition
net. Let G be the full or a reduced reachability graph that contains sufficiently many
executions w.r.t. the formula to be verified. We can think of G as a Biichi automaton
such that the initial marking of the net is the only initial state of the automaton, the
set of markings in G form a trivial acceptance set, no other acceptance set exists, a
member of the alphabet is a pair of subsets of atomic formulas whereas the set of
moves is the set of edges of GG relabelled as follows. The label of a move is a member
of the alphabet. The leftmost subset in the label is the set of those atomic formulas
that occur in the formula to be verified and contain the source marking. (These are
the atomic subformulas that are satisfied by the paths that start from that marking).
The rightmost subset in the label is the set of all atomic subformulas of the formula
to be verified. The obtained “net automaton” is thus of the same form as the above
described formula automaton.

Let us first assume that G has no terminal marking. We can then verify a formula
w.r.t. G by constructing an automaton for the negation of the formula and by inter-
secting the result with the net automaton. The formula is valid at the initial marking
in G iff the language of the intersection is empty.

Let us then consider the case that G has a terminal marking. In the verification
of LTL-formulas, it is usual to transform deadlock-ended executions into infinite
executions. After such a transformation, we have a reachability graph G’ that has no
terminal marking and can be handled accordingly. The transformation is something
like the following. Let us consider an arbitrary place/transition net. We define a
pseudo-transition that cannot lead from a marking to a different marking and is
enabled iff no actual transition is enabled. Note that the enabledness of the pseudo-
transition is defined by means of the enabledness of the actual transitions, so we do
not have to worry about whether or not the new system could be simulated by an
ordinary net. We do not let the pseudo-transition confuse any transition selecting
procedure. At any marking, we imagine as long as possible that the pseudo-transition
does not exist. If some actual transition is enabled, we proceed as if there really were
no pseudo-transition. If no actual transition is enabled, we fire the pseudo-transition
that leads from the marking to the marking itself.

The verification algorithm should of course somehow make a difference between true
infinite executions and transformed deadlock-ended executions. One way to guaran-
tee this in the Biichi automaton approach is to use a version of LTL that can describe
both states and actions. Deadlock-ended executions can then be characterized in the
formula to be verified by referring to the above pseudo-transition. If LTL is action-
oriented, the net automaton must be redefined in such a way that the original label
of an edge in the reachability graph affects the label of the corresponding move in

—18 —

the automaton.

A similar action-oriented version of LTL can of course be used for describing the
possible fairness assumptions. For example, the restriction of operation fairness to a
single transition can be represented by a small Biichi automaton. An automaton rep-
resenting operation fairness is then simply obtained by intersecting these automata
with each other. By intersecting the resulting “fairness automaton” with an au-
tomaton that corresponds to the negation of the formula to be verified, we get an
automaton that corresponds to the negation of “operation fairness implies the for-
mula to be verified”. The order in which the intersection operations are applied is
not important, and intersections do not have to be realized in a brute force way
since there are verification algorithms that only need to know the components of the
intersection [16, 56].

3.3 Testers

In the above considerations, we looked at Biichi automata as if their main purpose
were to assist us in the verification of LTL formulas. However, Biichi automata can
equally well be thought of as direct specifications to what should not happen in a
system. Such negative specifications can be designed without having to think in
terms of formulas. To keep things simple, the set of actions of the system under
analysis is typically chosen to be the alphabet of the automaton. Such a choice
means that things must be expressed by means of actions even if the original informal
specification would refer to the states of the system.

When the alphabet of a Biichi automaton is the same as the set of actions of the
system under analysis, the intersection of the system and the automaton is much like
a parallel composition of two systems. It is then natural to ask if the full synchro-
nization of actions is necessary for the success of the verification task, provided that
we are ready to modify the automaton when needed. The answer is negative, at least
if the definition of a Biichi automaton is extended in certain directions. A tester [81]
is one of such generalizations of a Biichi automaton.

When the system being analyzed is a place/transition net, without loss in analysis
power we can essentially let a tester to be a place/transition net. When both the
system and the tester are place/transition nets, they can be combined into a global
system that is in turn essentially a place/transition net.

Definition 3.4 A testeris a 9-tuple (S, T, W, My, Mg, Mp, M, My, T,) such that
e (S,T,W, M,) is a place/transition net,

e Mp C M is the set of reject states where M is the set of markings of the net,

e Mp C M is the set of deadlock monitor states,

M C M is the set of livelock monitor states,

M C M is the set of infinite progress monitor states, and

e T, C T is the set of visible transitions.

- 19 —

Let M € M. M is said to be a monitor state ift M € MpUMp U Mg UM;. M
is said to be an ordinary state iff M is not a monitor state. Let o be a finite or
an infinite transition sequence of the net. The pair (M, o) is a reject history iff o is
finite and leads from M to a reject state. The pair (M, o) is a monitored deadlock
history iff ¢ is finite and leads from M to a terminal deadlock monitor state. The
pair (M, o) is a monitored livelock history iff o is infinite and there exist § € T* and
p € (T'\T,)> such that o = dp and ¢ leads from M to a livelock monitor state. The
pair (M, o) is a monitored infinite progress iff o is infinite and the path starting from
M and being labelled by o in the full reachability graph of the net contains infinitely
many occurrences of infinite progress monitor states and infinitely many occurrences
of transitions from T,. The language of the tester is the set of transition sequences
o’ such that (My,o’) is a reject history, a monitored deadlock history, a monitored
livelock history or a monitored infinite progress. O

As described in [81], a Biichi automaton having a set of actions, i.e. transitions in
our case, as an alphabet can be simulated by a tester where the sets of livelock
monitor states and infinite progress monitor states coincide. We have replaced the
term “infinite trace” of [81] by the term “infinite progress” since the infinite traces
in question are more like plain transition sequences than traces of the form defined
in Section 2.2.

We do not define operations between testers. Instead, we define a global system that
combines a tester with the net under analysis. We start by defining how two plain
place/transition nets are combined into a single net.

Definition 3.5 The product of place/transition nets (S1, Ty, W1, M) and
(Sa, To, Wy, Ms) is defined iff S;NSy = . When defined, the product is a place/trans-
ition net <S3, T3, W3, M3> such that

e S3=5,US8-,
® T3 :T1UT2,
e VteT1Vs e S, Wg(s,t) = Wl(s,t) A Wg(t,s) = Wl(t, S),

Vt € ThoVs € Sy W3(S,t) = Wz(s,t) A Wg(t, S) = Wg(t, S),

Vie Ty \Te Vs € Sy Ws(s,t) = 0AWs(t,s) =0,

YVt € Ty \Tl Vs € Sy W3(S,t) = O/\W3(t,8) =0,

Vs € S1Ms5(s) = M;(s), and

Vs € 52M3(S) = Mz(s). O

Note that the input and output transitions of a place are the same in the product as in
the original net. Consequently, every reachable marking of the product is essentially
a pair of reachable markings of the component nets. The transitions in 77 N 7> are
synchronized in the sense that for any ¢ € T4 N T, M(t) in the product iff M'[t) and
M"[t) where M’ and M" are the restrictions of M to the component nets. The other
transitions behave as if there were no product at all.

—920 -

Definition 3.6 The global system of a place/transition net (Sy, T, W1, M) and a
tester (Sa, Ty, Wa, Mo, Mg, Mp, M, My, T,) is defined iff S; NSy = . When de-
fined, the global system is a tester (Ss,T5, W3, M3, Mgr, Mpp, Mrr, M1r1,Tyy)
such that

L] <S3,T3, W3,M3> is the product of <Sl,T1, Wl,M1> and <SQ,T2, WQ,MQ),

e Mrr={M eM|3IM" € Mr Vs e Sy M'(s) = M(s)} where M is the set of
markings of the product,

Mpp={M e M|3IM' € Mp Vs e Sy M'(s) =M(s)},
Mpr ={M e M|3IM' € My Vs € S, M'(s) = M(s)},
Mipp={M e M |IM" € M; Vs € Sy M'(s) = M(s)}, and

Tyy = To. (The set T, thus does not affect the global system. This is an
intentional trick.) O

In a tester-based verification task, the goal is to show that the language of the global
system is empty. If we find a word that is in the language of the global system, the
word is a counterexample to the goal and there is then no reason to continue. On-
the-fly verification is easier with testers than with Biichi automata since the global
system is nothing more than a place/transition net equipped with sets of monitor
states and a set of visible transitions. The algorithms in [81] can be mechanically
modified to apply to our formalism.

Biichi nets [20] have some similarity with the above global systems, but it is not clear
how beneficial the similarity is. In [20], the intersection of a Biichi automaton (cor-
responding to a formula) and a reachability graph of a net is represented by a Biichi
net which consists of an ordinary net and an acceptance condition. According to
Definition 4 in [20], each transition in the Biichi net has a component representing a
move of the automaton and another component representing a transition of the orig-
inal net. A single transition in the original net can contribute to several transitions
in the Biichi net. As explained in [20], an explosion in the number of transitions can
be avoided by an alternative definition of a Biichi net where some or all transitions
are connected to two fixed scheduling places. Unfortunately, as can be seen from the
following chapters, such connections are not fruitful from the point of view of the
stubborn set method. Moreover, Biichi nets do not have any obvious support for
the concept of visible transitions. Consequently, it is by no means obvious how the
theory in [81] could benefit from the application of Biichi nets.

—921 —

4 Stubbornness and dynamic stubbornness

In this chapter we introduce stubborn and dynamically stubborn sets. Section 4.1 is
devoted to dynamically stubborn sets. All the stubborn sets that have been defined
in the literature for place/transition nets are known to be dynamically stubborn. Dy-
namically stubborn sets seem to have all the nice properties of (statically) stubborn
sets except that the definition of dynamic stubbornness does not seem to imply a
practical algorithm for computing dynamically stubborn sets. We base the definitions
on the principles in [63]. We also present definitions, strongly corresponding to [29],
of persistent and conditionally stubborn sets in the context of place/transition nets
and show how persistence and conditional stubbornness can be rephrased in terms
of dynamic stubbornness. We end Section 4.1 by defining permutation-ampleness,
conditional-trace-ampleness and strict-trace-ampleness in the spirit of [55] and by
showing some connections between dynamic stubbornness and these forms of ample-
ness.

True (or static) stubbornness is defined in Section 4.2. Our definition is the definition
in [73] modified by taking advantage of the remarks in [73].

The incremental algorithm for computing stubborn sets [73, 75] is presented in Section
4.3, and the deletion algorithm [74, 75] in Section 4.4. The deletion algorithm is slower
than the incremental algorithm, but the incremental algorithm is not guaranteed to
produce minimal stubborn sets in any practical sense, unlike the deletion algorithm.

The question of what can be done with stubborn or dynamically stubborn sets will
at least partially be answered in the remaining chapters.

4.1 Dynamic stubbornness

We define dynamic stubbornness on the basis of the principles in [63].

Definition 4.1 Let (S, T, W, My) be a place/transition net. Let M be a marking
of the net. A set Ts C T fulfils the first principle of dynamic stubbornness (D1 for
short) at M iff

Vo € (T\Ts)* Vt € Ts M[ot) = M]to).

A transition ¢ is a dynamic key transition of a set Ts CT at M iff t € T and
Vo € (T\Ts)* M[o) = M]at).

A set Ts C T fulfils the second principle of dynamic stubbornness (D2 for short) at
M iff Ty has a dynamic key transition at M. A set Ty, C T fulfils the principle of
conventional dynamic stubbornness (CD for short) at M iff

Vo € (T\T,)* V6 € (T\Ty)* Vt € T, M[odt) = M|atd).

A set Ts C T fulfils the first principle of strong dynamic stubbornness (SD1 for short)
at M iff
Vo e (T'\Ts)* YVt € Ts M[ot) = M][t).

—929 _

A set Ts C T fulfils the second principle of strong dynamic stubbornness (SD2 for
short) at M iff

Vo € (T\Ts)* Vt € Ts (M[t) AN M[o)) = (M[ot) A M[to)).

A set Ts C T is dynamically stubborn at M iff T fulfils D1 and D2 at M. A set
Ts C T is conventionally dynamically stubborn at M iff T fulfils CD and D2 at M.
A set Ts C T is unconventionally dynamically stubborn at M iff Ts is dynamically
stubborn but not conventionally dynamically stubborn at M. A set Ty C T is strongly

dynamically stubborn at M iff T, fulfils SD1 and SD2 at M and 3t € Ts M][t). O
The principles D1, D2, CD, SD1, and SD2 are illustrated in Figure 5. The principles
D1, D2, SD1, and SD2 are the principles 1*, 2*, 1, and 2 of [63], respectively.

Dynamic stubbornness has been defined in [79], too, but the definitions there are more
limited than our definitions. We shall return to this subject later in this section.

Lemma 4.2 shows that the “complement criterion” in D1 could be modified to some
extent without changing the meaning of the principle.

Lemma 4.2 Assumptions:

o (S, T, W, My) is a place/transition net.
e M is a marking of the net.

e A setTs CT fulfils DI at M.

o A sequence oT™ is enabled at M.

e A set L CT is the set of those transitions that occur in o.
Claim: TsNL#Q iff {t e Ts N L | M[t)} # 0.

Proof. The “if” -part is obvious. We show the “only if”-part. Let Ts; N L # (). From
the definition of L it then follows that there exist ¢’ € Ts N L, § € (L \ Ts)* and
0" € L* in such a way that §t"6' = 0. By D1, t" is enabled at M. O

Lemma 4.3 shows how the dynamic key transitions of a dynamically stubborn set
are able to “postpone” enabled finite and infinite sequences of transitions of the
complement of the dynamically stubborn set. (Let us recall from the explanation
immediately below Definition 2.2 that an infinite transition sequence is enabled at a
marking iff all finite prefixes of the sequence are enabled at the marking.)

Lemma 4.3 Assumptions:
e (S, T, W, My) is a place/transition net.

e A marking M is a nonterminal marking of the net.

e A setTs C T is dynamically stubborn at M.

—923 -

M—% M1 M—2 —wmr
t D=1 t t
M2 M3 M2
o o
M M1 D2 M M1
=>
t (key)
M2
M M
o o
CD t
M1 => M1 —=MA4
0 0 o)
t t
M2 M3 M2 M3
M—% M1 M—2 M1
t SE>1 t t
M2 M3 M2
M—9 - M?2 M o M2
t D2 t
o
M1 M1 M3

Figure 5: The principles of dynamic (D1 and D2), conventional dynamic (CD) and
strong dynamic (SD1 and SD2) stubbornness.

—24 —

e A transition t € Ts is a dynamic key transition of Ts at M.
o A transition sequence o is in (T'\ Ts)* U (T \ Ts)*>.

e The sequence o is enabled at M.

Claim: The sequence to is enabled at M.

Proof. Let § € (T \Ts)* and p € (T'\ Ts)>® U{e} be any sequences such that dp = o.
(If o is a finite sequence, then § = o and p = €.) Since ¢ is a dynamic key transition of
Ts at M, the sequence 6t is enabled at M. From D1 it then follows that the sequence
td is enabled at M. O

We now start handling the different degrees of dynamic stubbornness.

Lemma 4.4 If o set is conventionally dynamically stubborn at a marking, the set
is dynamically stubborn at the marking. A set is strongly dynamically stubborn at a
marking iff the set is dynamically stubborn at the marking and each enabled transition
in the set is a dynamic key transition of the set at the marking.

Proof. The results follow trivially from Definition 4.1. O

As one might expect, unconventionally dynamically stubborn sets exist. In the net
in Figure 6, {a,b} is dynamically stubborn but not conventionally dynamically stub-
born at the initial marking since Mylcdeb) and —My[cdb). The set {c} is strongly
dynamically stubborn at the initial marking.

A set can be conventionally dynamically stubborn without being strongly dynami-
cally stubborn. In the net in Figure 7, the only dynamically stubborn sets at the
initial marking are {to,tl}, {tl,t2}, and {to,tl,tg}. The sets {to,tl} and {tl,t2} are
conventionally dynamically stubborn but not strongly dynamically stubborn at the
initial marking since ~Mg[t1t2) and —=My[t1to).

Lemma 4.5 Let (S, T, W, My) be a place/transition net. Let M be a marking of the
net. A set Ts CT fulfils SD2 at M iff

Vo € (T\Ts)" Vo € (T\Ts)* Vt € T, (M[t) N M[od)) = M|[otd).

Proof. The “if”-part is obvious since we can let ¢ = ¢ in one context and § = ¢ in
another context. Let us prove the “only if” -part. Let a set Ty C T fulfil SD2 at M.
Let o € (T\Ts)*, 6 € (T\Ts)*, t € Ts, M[t), and M[56). Using SD2 for both od
and o, we get M[tod) and M[ot). As ot and to lead to the same marking, we have
M(otd). O

Lemma 4.6 If a set is strongly dynamically stubborn at a marking, the set is con-
ventionally dynamically stubborn at the marking.

Proof. The result follows trivially from Definition 4.1 and Lemma 4.5. O

— 25—

P
a b
A

q g

e - .)r
X
y4
f

Y
C - d

y

Figure 6: The set {a,b} is unconventionally dynamically stubborn.

Dbo b1

to t1 ta

Figure 7: The set {to,¢1} is conventionally but not strongly dynamically stubborn.

— 926 —

Lemma 4.7 Let (S, T, W, My) be a place/transition net. Let M € M. A set T C T
18 strongly dynamically stubborn at M iff

Vo € (T\Ts)* YM' € M
Mo)YM' = (Ts is strongly dynamically stubborn at M').

Proof. The “if”-part is obvious since M[e)M. Let us prove the “only if” -part. Let a
set Ty C T be strongly dynamically stubborn at M. Let o € (T'\ Ts)*, § € (T'\ Ts)*,
t€Ts, M' € M, and M[o)M'. If M'[§t), we have M[odt), so by SD1 and SD2 for
M it follows that M[ot), which implies M'[t). The set T thus fulfils SD1 at M. If
M'[ty and M'[0), we have M[ot) and M[od), so by SD1 and SD2 for M and Lemma
4.5 it follows that M[odt) and M[otd), which implies M’[6t) and M'[td). The set T
thus fulfils SD2 at M'. If M[t), SD2 for M implies M[ot), so M'[t). Some transition
in T is thus enabled at M’ since some transition in 7Ty is enabled at M. O

Lemma 4.7 states that every sequence of such transitions that are not in a given
strongly dynamically stubborn set leaves the set strongly dynamically stubborn.
Lemma 4.8 states the similar result for conventionally dynamically stubborn sets.

Lemma 4.8 Let (S, T, W, My) be a place/transition net. Let M € M. A set Ts C T
18 conventionally dynamically stubborn at M iff

Vo € (T\Ts)* VM' e M
MoyM' = (Ts is conventionally dynamically stubborn at M').

Proof. The “if”-part is obvious since M[e)M. Let us prove the “only if” -part. Let
a set Ts C T be conventionally dynamically stubborn at M. Let o € (T \ Tj)*,
§ € (T\T,)* & € (T\Ty)*, t € Ty, M' € M, and M[o)M'. If M'[5't), we have
M]o6d't), so by CD for M it follows that M[odtd’), which implies M'[§td’). The set
Ts thus fulfils CD at M’. Let 7 be a dynamic key transition of Ts at M. If M'[§),
we have M([od), so by D2 for M it follows that M[od7). The transition 7 is thus a
dynamic key transition of T at M’. O

There is no lemma analogous to Lemmas 4.7 and 4.8 for all dynamically stubborn
sets. Let My[c)M' and M'[d)M" in the net in Figure 6. The set {a, b} is dynamically
stubborn at My and M’ but not at M" since M"[eb) and —~M"[b).

Lemma 4.9 states that a set is conventionally dynamically stubborn iff the set is
dynamically stubborn and every sequence of such transitions that are not in the set
leaves the set dynamically stubborn.

Lemma 4.9 Let (S, T, W, My) be a place/transition net. Let M € M. A set Ts C T
s conventionally dynamically stubborn at M iff

Vo € (T\T,)* YM' € M
MoYM' = (T is dynamically stubborn at M').

Proof. The “only if” -part follows directly from Lemmas 4.4 and 4.8. Let us prove
the “if”-part. Let Ts C T, and

Vo' € (T\Ts)* VM' € M M[o'YM' = (T is dynamically stubborn at M").

—927 -

Let 0 € (T\Ts)*, 0 € (T\Ts)*, t € Ts, and M’ € M be such that M[odt) and
Mo)M'. By D1 for M' we have M'[td), so M[otd). The set T thus fulfils CD at M.
Since M[e)M, Ts is dynamically stubborn at M. The set T thus fulfils D2 at M. O

Lemma 4.9 gives a useful alternative characterization of conventionally dynamically
stubborn sets. We shall use this alternative characterization in Section 4.2.

Lemma 4.10 Let (S,T,W, My) be a place/transition net. Let M be a marking of
the net, and Ts and T, subsets of T such that

{teTs | M[t)} CTe, and T, C Ts.

If T is dynamically stubborn at M, T, is dynamically stubborn at M. If T is con-
ventionally dynamically stubborn at M, T, is conventionally dynamically stubborn at
M. If Ty s strongly dynamically stubborn at M, T, is strongly dynamically stubborn
at M.

Proof. (i) Let Ts be dynamically stubborn at M. We show that
Vo € (T\T.)" Mo) =0 € (T\Ts)".

Let 0 € (T\T.)* and 6 € (T \ Ts)* be such that M[o) and § is the longest finite
prefix of o not containing any transition in 7. If § # o, the first transition after ¢ in
o is enabled at M by D1 for Ts. Since no transition in T \ T, is enabled at M, we
conclude that § = 0, so o € (T \ Ts)*.

(ii) Since conventionally dynamically stubborn sets and strongly dynamically stub-
born sets are dynamically stubborn by Lemma 4.4, the result of part (i) holds for
them, too. Then D1 for T implies D1 for T, D2 for Ts implies D2 for T,, CD for
Ts, implies CD for T, SD1 for T implies SD1 for T, and SD2 for T, implies SD2
for T,. O

Lemma 4.10 states that if we remove disabled transitions from a dynamically stub-
born (conventionally dynamically stubborn, strongly dynamically stubborn) set, the
remaining set is dynamically stubborn (conventionally dynamically stubborn, strongly
dynamically stubborn). For example, if a dynamically stubborn set is minimal w.r.t.
set inclusion, by Lemma 4.10 the set consists of enabled transitions only.

We define persistence and conditional stubbornness in such a way that the defini-
tions correspond to the definitions in [29]. Our definitions can be obtained from the
definitions 7 and 8 in [29] by substituting terms of place/transition nets for the terms
of the model of concurrency in [29] in an obvious way.

Definition 4.11 Let (S, T, W, My) be a place/transition net. Let M € M. A set
Ts C T fulfils the principle of persistence and conditional stubbornness (PE for short)
at M iff

Vo e (T\Ts)*Vte T, YVt e T\Ts VM' e M

(M[t) A M[o)M' A M'[t')) =

(t and ¢’ are independent at M").

A set Ts C T is persistent at M iff T fulfils PE at M and Vt € Ts M[t). Aset Ts C T
is conditionally stubborn at M iff T fulfils SD1 and PE at M and 3t € T, M[t). O

— 928 —

Clearly, the “M[t)A” in PE is redundant in the definition of persistence since all
transitions in persistent sets are enabled. Looking at PE and proceeding inductively
w.r.t. the length of o, one observes that “commute” could be substituted for “are
independent” in PE. Combining this observation with Lemma 4.5, one concludes that
PE is nothing but SD2. Consequently, we rid ourselves of the concepts of persistence
and conditional stubbornness:

Lemma 4.12 A set fulfils PE at a marking iff the set fulfils SD2 at the marking. A
set is conditionally stubborn at a marking iff the set is strongly dynamically stubborn
at the marking.

Proof. We show that PE is equivalent to SD2. The second statement then follows
directly from Definitions 4.1 and 4.11. Let (S, T, W, M) be a place/transition net.
Let M e Mand Ts CT.

(i) We prove that SD2 implies PE. Let Ty fulfil SD2 at M. Let o € (T'\ T,)*, t € T,
t' e T\Ts, M' € M, M[t), M[o)M', and M'[t'). By Lemma 4.5 we have both M'[t't)
and M'[tt'). The transitions ¢ and ¢’ are thus independent at M’.

(ii) We prove that PE implies SD2. Let T fulfil PE at M. We use induction on the
length of finite transition sequences to show that T fulfils SD2 at M. The principle
SD2 is fulfilled trivially when restricted to . Our induction hypothesis is that SD2 is
fulfilled when restricted to finite transition sequences of length n > 0. We show that
SD2 is then fulfilled when restricted to finite transition sequences of length n+ 1. Let
0 € (T'\Ts)*,t' € T\ Ts, and t € T, be such that M[t), M[ét'), and ¢ is of length
n. Let M’ € M be such that M[§)M’. The transition ¢’ is then enabled at M'. By
the induction hypothesis we have M[dt) and M[td). The transition ¢ is thus enabled
at M’'. The principle PE then implies that ¢ and ¢’ are independent at M’'. As we
recall from Lemma 2.6, transitions commute at a marking iff they are enabled and
independent at the marking. So ¢t and ¢’ commute at M’. Thus M'[tt') and M'[t't),
and consequently M[6tt') and M[6t't). As already mentioned, we have M|[td), so td
leads from M to the same marking as §t. We thus have M[tdt'). O

Lemma 4.13 A set is a nonempty persistent set at a marking iff the set is a con-
ditionally stubborn set at the marking and does not contain any transition that is
disabled at the marking. The set of enabled transitions of any conditionally stubborn
set 1s a nonempty persistent set.

Proof. The first statement follows from the fact that a persistent set fulfils SD1
trivially since all its transitions are enabled. The second statement follows trivially
from the first statement and lemmas 4.10 and 4.12. O

Lemma 4.14 A set is a nonempty persistent set at a marking iff the set is a strongly
dynamically stubborn set at the marking and does not contain any transition that is
disabled at the marking. The set of enabled transitions of any strongly dynamically
stubborn set is a nonempty persistent set.

Proof. The result follows trivially from Lemmas 4.12 and 4.13. O

— 929 —

We now turn to the dynamically stubborn sets in [79]. The prefix AV used in the
sequel comes from the name Antti Valmari.

Definition 4.15 Let (S, T, W, My) be a place/transition net. Let M be a marking
of the net. A set Ty C T fulfils the principle of AV-strong dynamic stubbornness
(AVSD for short) at M iff

Vie T, V' € T\ Ts VM' € M (M[t) A M'[ty A M'[t))) = (M'[tt") A M'[t't)).

A set Ts C T is AV-strongly dynamically stubborn at M iff T, fulfils SD1 and AVSD
at M and 3t € T; M|t). O

Our AV-strong dynamic stubbornness is equivalent to the strong dynamic stubborn-
ness defined in [79], because of the obvious equivalence between Definition 2.2 in [79]
and our Definition 4.15. The principle AVSD is illustrated in Figure 8.

s , t’
M M—Y M3 M— M3
t t AVSD t t
=>
t/
M1 M2 M2 — M4

Figure 8: The principle of AV-strong dynamic stubbornness.

Lemma 4.16 If a set is AV-strongly dynamically stubborn at a marking, the set is
strongly dynamically stubborn at the marking.

Proof. Theorem 2.5 in [79] shows that if a set is an AV-strongly dynamically stubborn
set at a marking, the set fulfils D1 at the marking. An AV-strongly dynamically
stubborn set contains an enabled transition by Definition 4.15. By Lemma 4.4 it
then suffices to show that each enabled transition of an AV-strongly dynamically
stubborn set at a marking is a dynamic key transition of the set at the marking. Let
(S, T, W, My) be a place/transition net. Let M be a marking of the net, and Ts a
subset of T" such that T is AV-strongly dynamically stubborn at M. Let a transition
t € Ts be enabled at M. We show that

Vo € (T\Ts)* M[o) = M]ot).

We use induction on the length of o. The claim holds trivially when restricted to
o = €. Our induction hypothesis is that the claim holds when restricted to any o of
length n > 0. Let 0 € (T'\Ts)*, t' € T\ Ts, and M’ € M be such that o is of length
n, M[o)M’ and M'[t'}. Using the induction hypothesis, we get M[ot) which implies
M'[t). We already have M[t) and M'[t'). Since T fulfils AVSD at M, M'[t't). Thus
M(ot't). O

The converse of Lemma 4.16 does not hold. In the net in Figure 9, {c} is strongly dy-
namically stubborn but not AV-strongly dynamically stubborn at the initial marking
since Mylcc), My[ced), and =My [ced).

— 30 -

@]

p

Figure 9: The set {c} is strongly but not AV-strongly dynamically stubborn.

Figure 10 illustrates the classes of dynamically, conventionally dynamically, strongly
dynamically, and AV-strongly dynamically stubborn sets at a marking M. The in-
clusions follow from Lemmas 4.4, 4.6 and 4.16. By the presented examples related
to Figures 6, 7, and 9 we know that each of the inclusions can be strict.

dynamically stubborn sets at M

conventionally dynamically
stubborn sets at M

strongly dynamically
stubborn sets at M

AV-strongly dynamically
stubborn sets at M

>

Figure 10: Four classes of dynamically stubborn sets at a marking.

To make the characterization of transition selection functions easier, Definition 4.17
extends the notion of dynamic stubbornness to concern functions.

Definition 4.17 Let (S, T, W, M) be a place/transition net. Let f be a function
from M to 27. Then we say that f is dynamically stubborn iff for each nontermi-
nal marking M, f(M) is dynamically stubborn. Correspondingly, f is conventionally
dynamically stubborn iff for each nonterminal marking M, f(M) is conventionally dy-
namically stubborn. Respectively, f is unconventionally dynamically stubborn iff f

~-31 -

is dynamically stubborn but not conventionally dynamically stubborn. Correspond-
ingly, f is strongly dynamically stubborn iff for each nonterminal marking M, f(M)
is strongly dynamically stubborn. Finally, f is AV-strongly dynamically stubborn iff
for each nonterminal marking M, f(M) is AV-strongly dynamically stubborn. O

The ample set method [51, 55, 56, 57] is often presented using principles that are close
to the principles of strong or at least conventional dynamic stubbornness. However,
ampleness itself, according to the only explicit definition found [55], is not defined
by means of such principles but instead by referring almost directly to what is to be
preserved. Definition 4.18 has been obtained from the definition of ampleness in [55]
by fixing the set of interesting paths to be the set of operation fair infinite or terminal
paths. This fixing reflects the limitation that only interesting counterexamples are
accepted in the verification of a formula.

Definition 4.18 Let (S,T, W, My) be a place/transition net and M a reachable
marking of the net. A set Ts C T is permutation-ample at M iff for each operation
fair infinite or terminal path starting from M in the full reachability graph, there
exist t € Ts, 0 € T* UT™ and § € T* UT such that is the label of the path,
to is a permutation of § and enabled at M, and moreover, the path starting from
M and being labelled by to is operation fair. Similarly, a set Ts C T is conditional-
trace-ample (respectively, strict-trace-ample) at M iff for each operation fair infinite
or terminal path starting from M in the full reachability graph of (S, T, W, M), there
exist t € Ts, 0 € T* UT® and § € T* U T such that § is the label of the path,
to is in the conditional (respectively, strict) trace of § at M, and moreover, the path
starting from M and being labelled by to is operation fair. O

Clearly, strict-trace-ampleness implies conditional-trace-ampleness, which in turn im-
plies permutation-ampleness. Note that even if the full reachability graph has infinite
operation fair paths and we generate a reduced reachability graph by always firing
the transitions in a chosen strict-trace-ample set, the reduced reachability graph does
not necessarily have any infinite operation fair path. For example, if a net has two
transitions but no place, any set consisting of a single transition is ample at the ini-
tial marking. If we fire only one transition at the initial marking, we get a reduced
reachability graph where no other transition than the fired transition occurs. The
reduced reachability graph has then no infinite operation fair path.

We now draw some connections between ampleness and dynamic stubbornness. Lem-
mas 4.19 and 4.20 should be interpreted with some care. More precisely, we should
think of how practical the concept of ampleness would be if fairness assumptions
were dropped. The three defined forms of ampleness can of course be redefined in
such a way that all infinite paths are treated equally. If we then have a net consist-
ing of nothing else but n transitions, all these transitions would have to be taken
into an ample set whereas a dynamically stubborn set would not need more than
one transition. A similar phenomenon would occur whenever a net would have some
“sufficiently independent” parts.

Lemma 4.19 If o set is dynamically stubborn at a reachable marking, the set is
permutation-ample at the marking.

~- 32—

Proof. Let § be the label of an operation fair infinite or terminal path x starting from
a marking M in the full reachability graph of a net. A terminal marking cannot have
any key transition and thus not any dynamically stubborn set either. We can thus
assume that M is not terminal. Let 75 be dynamically stubborn at M. Since z is
operation fair and T has a dynamic key transition, there exist ¢t € T, o € (T \ Ts)*
and p € T* UT® such that § = otp. Otherwise all dynamic key transitions of T
would be enabled at all markings of the path x which would be a contradiction with
the fact that = is either a terminal path or an operation fair infinite path. From
D1 it directly follows that top is enabled at M. Since to leads from M to the same
marking as ot, the path starting from M and being labelled by top is operation fair.
O

Lemma 4.20 If a set is conventionally dynamically stubborn at a reachable marking,
the set is conditional-trace-ample at the marking.

Proof. Let é be the label of an operation fair infinite or terminal path x starting
from a marking M in the full reachability graph of a net. A terminal marking cannot
have any key transition and thus not any conventionally dynamically stubborn set
either. Like in the previous proof, we can thus assume that M is not terminal. Let
Ts be conventionally dynamically stubborn at M. Since z is operation fair and T}
has a dynamic key transition, again, like in the previus proof, there exist ¢t € T5,
o € (T\Ts)* and p € T* UT™ such that § = otp. From CD it directly follows that
top is in the conditional trace of otp at M. For the same reason as above, the path
starting from M and being labelled by top is operation fair. O

A set can be dynamically stubborn without being conditional-trace-ample. For ex-
ample, the set {a,b} is such a set at the initial marking in the net in Figure 6. This
is so because the conditional trace of cdebdf at the initial marking does not contain
any other sequence than the sequence cdebdf itself.

On the other hand, a set can quite well be strict-trace-ample without being dy-
namically stubborn or having any dynamically stubborn subset. Let us consider
the net in Figure 11. The full reachability graph does not contain terminal paths,
whereas all infinite paths in the graph are operation fair. The nonempty endless strict
traces at the initial marking M, are {aceee...,caeee...}, {adeee.. ., dacee...} and
{bdeee.. .. dbeee ...} (because a is globally independent of ¢, d is globally independent,
of a whereas b is globally independent of d). Consequently, the set {a,d} is strict-
trace-ample at Mj. On the other hand, neither {a,d} nor any of its subsets can be
dynamically stubborn at My, because of the absence of a dynamic key transition.

Even if the condition of dynamic key transitions were relaxed, there would still be
strict-trace-ample sets that are not dynamically stubborn and have no dynamically
stubborn subset. Let us look at the net in Figure 12. Again, the full reachabil-
ity graph does not contain terminal paths, and all infinite paths in the graph are
operation fair. The nonempty endless strict traces at the initial marking M, are
{acdeee. .., cadeee. .. cdacee...}, {adeee..., dacee...} and

{badeee . .., bdaeee. .., dbaeee...} (because a is globally independent of ¢, d is glob-
ally independent of a whereas b is globally independent of d). Consequently, the set
{a,d} is strict-trace-ample at My. However, neither {a,d} nor any of its subsets can
be dynamically stubborn at My because either D1 would become violated or the set

— 33 —

a _>O<_> e <_>O<_ d

X y

Figure 11: The set {a,d} is strict-trace-ample but has no dynamic key transition.

. b <—®—> C R
a _>O<_> e <—»O<_ d
X

y

Figure 12: The set {a,d} is strict-trace-ample but does not fulfil D1.

—34 -

would be empty. To see this, consider the sequences ba and cd that are enabled at
M.

4.2 Stubbornness

We define true stubbornness in place/transition nets. Since we are more interested
in computing small stubborn sets in a moderate time than generating medium size
or large stubborn sets fast, we have chosen a very weak definition of stubbornness.

Definition 4.21 Let (S, T, W, Mj) be a finite place/transition net. The function E;
from M x S to 27, the functions Ey and F5 from M x T x S to 27, and the function
E4 from S to 27 are defined as follows: Let M € M, t € T, and s € S. Then

Ei(M,s) = {t'e°®s|M(s)>W(s,t')ANW(t, s)>W(s,t)},
Ey(M,t,s) = E4(s)U{t €s®| W(s,t) > W(t, s)A
W(s,t') > M(s) — W(s,t)+ W(t,s)},
E3(M,t,s) = Ei(M,s)U{t' €°s| M(s)>W(s, t') A\W(t',s) > W(t,s)}, and
Eu(s) = {t'es® | W(s,t)>W({,s)}.

A transition t is a key transition of a set Ts C T at a marking M iff t € T, t is
enabled at M, and Vs € *t Es(s) C Ts. A set Ts C T is stubborn at a marking M iff
some transition is a key transition of Ty at M and each transition ¢ in Ty satisfies

(s et M(s) < W(s,t) NE1(M,s) CTs)V

(M[t) A (Vs et W(s,t) <W(ts)V
Eg(M,t, 8) g TSV
Es3(M,t,5) CT,)). O

Intuitively, E1(M,s) is the set of transitions that could increase the contents of s
and are not disabled by s at M. Correspondingly, Fo(M,t, s) is the set of transitions
that could decrease the contents of s or get disabled because of the firing of ¢t at M.
Respectively, F3(M,t,s) is the set of transitions that are not disabled by s at M
and could increase the contents of s or have a greater output flow to s than ¢ has.
Finally, F4(s) is the set of transitions that could decrease the contents of s.

Theorem 4.22 If a transition is a key transition of a set at a marking, then the
transition is a dynamic key transition of the set at the marking. If a set is stubborn
ot a marking, then the set is dynamically stubborn at the marking.

Proof. The first claim follows easily from the definitions. Our stubborn sets thus
fulfil D2. The proof of Theorem 2.2 of [73] shows that our stubborn sets also fulfil
D1. (We are not the first who observe this. Namely, [73] expresses the same thing
below the proof in question.) O

If we remove “W(s,t) < W(t,s) V" from Definition 4.21, we get the definition for the
stubborn sets in [73]. Such a stubborn set is conventionally dynamically stubborn
since by Lemma, 2.5 in [73], every sequence of such transitions that are not in the set
leaves the set stubborn, and we can then use our Theorem 4.22 and Lemma, 4.9.

— 35 —

Let us return to some of the examples of Section 4.1. In the net in Figure 6, {a,b}
is stubborn but not conventionally dynamically stubborn, and {c} is stubborn and
strongly dynamically stubborn at the initial marking. In the net in Figure 7, {to,¢1}
and {t1,t2} are stubborn and conventionally dynamically stubborn but not strongly
dynamically stubborn at the initial marking. In the net in Figure 9, {c} is stub-
born and strongly dynamically stubborn but not AV-strongly stubborn at the initial
marking.

As one might expect, a dynamically stubborn set is not necessarily stubborn. In the
net in Figure 13, {a} and {b} are strongly dynamically stubborn but not stubborn
at the initial marking.

O[O0

Figure 13: The set {a} is strongly dynamically stubborn but not stubborn.

In [75], three basic algorithms for finding a suitable stubborn set are presented: the
candidate list algorithm, the incremental algorithm and the deletion algorithm. Let
us assume that T is the set of transitions and p is the maximum number of in-
put places of a transition. The candidate list algorithm selects the first stubborn
set in a given candidate list 7y, ..., T}, T. The time taken by an execution of the
candidate list algorithm is at most proportional to MZ?=1 |T;|. The candidate list
determines the size of the reduced reachability graph. We do not know good heuris-
tics for automatic candidate list construction, so we concentrate on the incremental
algorithm and the deletion algorithm that are automatic by nature. Both of these
two algorithms contain nondeterministic choices, and there are cases where manual
preliminary preparations can be useful.

4.3 The incremental algorithm

We now turn to the incremental algorithm [73, 75] for computing stubborn sets.

Definition 4.23 Let (S, T, W, My) be a place/transition net. A place s is a disabling
place of a transition t at a marking M iff M(s) < W(s,t). A partial function f from
M x T to S is a scapegoat generator of the net iff for each marking M and each
disabled transition ¢ at M, f(M,t) is a disabling place of ¢ at M. Let G be the set of
scapegoat generators of the net and B the set of functions from M x T x S to {2, 3}.

— 36 -

The function Eq4 from G x B x M x T to 27 is defined by

VfeGYbe BYM e MVteT
Bua(f,b, M,) = { Uscer(Evars.0p(M,,8) U Ea(s)) if MIt).

The function Ry4 from G x B x M to 27T is defined by

VfeGVbe BYM e M
R14(fabaM) :{<tatl> ETXT|tI €E14(fabaMat)}'

For each f € G, b € B, and M € M, the reflexive-transitive closure of Ry4(f,b, M)
is denoted by Ri,(f,b, M)). The function Ej, from G x B x M x T to 27 is defined
by
VfeGYoe BYM e MVteT
1a(f,0, M, 8) = {t" | (t,¥') € Ri4(f,b, M))}.

For each f € G, b € B, and M € M, the (f,b)-dependency graph at M is the pair
(V, A) such that the set of vertices V' is T, and the set of edges A is Ry4(f,b, M). O

Clearly, the set E14(f,b, M, t) is the set of transitions immediately succeeding ¢ in the
(f,b)-dependency graph at M. Respectively, Ef,(f,b, M,t) is the set of transitions
accessible from ¢ in the (f,b)-dependency graph at M. Note that Definition 4.21
implies Eo(M,t,s) U E4(s) = Eo(M,t,s).

Lemma 4.24 Let (S, T,W, M) be a place/transition net. Let G be the set of scape-
goat generators of the net and B the set of functions from M x T x S to {2,3}. Let
feEG beB MeM,teT, and M[t). Then Ef,(f,b, M,t) is both stubborn and
strongly dynamically stubborn at M.

Proof. Stubbornness is obvious. Theorem 4.22 then implies dynamic stubbornness.
Strong dynamic stubbornness follows from dynamic stubbornness, from the definition
of F/4 and from Lemma 4.4. O

The stubborn set in Lemma 4.24 is stubborn in the sense of the definition in [73],
since the “W(s,t) < W(t,s) V” in Definition 4.21 is not utilized in Definition 4.23.

The incremental algorithm in [73] modified for our definitions can be described as
follows. Let (S,T,W, My) be a finite place/transition net. Let G be the set of
scapegoat generators of the net and B the set of functions from M x T x S to {2, 3}.
Let f € G, b € B, and M € M be such that M is nonterminal. The algorithm
produces a set T such that for some enabled transition 7 at M, Ty = Ef,(f,b, M, 7),
and Vt € Ts M[t) = 7 € E},(f,b, M,t). The enabled transitions of T are in one
maximal strongly connected component of the (f,b)-dependency graph at M. The
enabled transitions of Ty are found by traversing the (f,b)-dependency graph in
depth-first order, starting from an enabled transition, applying Tarjan’s algorithm for
computing maximal strongly connected components [67, 69], and stopping when the
first maximal strongly connected component having an enabled transition is found.
If b has the value 2 everywhere, our algorithm behaves as the algorithm in [73].

The time taken by an execution of this algorithm is at most proportional to uv|T|,
where p is the maximum number of input places of a transition, and v is the maximum

—37-

number of adjacent transitions of a place. The number y can be |S|, the number v can
be |T|, and |S| can be far greater than |T|. We have made the practical assumption
that the time taken by the computation of f(M,t) is at most proportional to uv, and
the time taken by the computation of b(M, ¢, s) is at most proportional to v. Even if
we assumed that the computation of f and b takes no time, we would have the same
time complexity for the incremental algorithm.

Without change in complexity, the incremental algorithm can be optimized [80, 95]:
Ts is chosen to be such EF,(f,b, M, 7) that contains the least number of enabled
transitions. (As above, 7 has to be enabled at M.) All what is needed is to complete
the depth-first search and application of Tarjan’s algorithm in such a way that all
enabled and only enabled transitions are checked in the outermost loop of the search.
If the optimized incremental algorithm is used, the functions f and b are the only
nondeterministic factors that affect the number of enabled transitions in T5.

The reachability graph generation algorithm using the incremental algorithm pro-
duces a g-reachability graph of the net such that for each marking M in the graph,
g(M) is the T at M if there is an enabled transition at M. (If no transition is enabled
at M, then any subset of T is valid for g(M).)

Figure 14: A net used for demonstrating the construction of a stubborn set.

Let us consider the construction of a stubborn set at the initial marking, My, of the
net in Figure 14. We first observe that E1(My,p) = 0, E1(Mo, q) = {d}, E1(Moy,r) =
0, E1(Mo,z) = {a}, Es(p) = {a}, Ea(r) = {d}, E2(Mo, a,p) = {a,c}, E2(Mo,d,r) =
{d’e}a EB(MOaaap) = (Z) and E3(M0: da T) = 0

If b(My, a,p) = b(My,d,r) =2, f(My,c) = q and f(My,e) = x. then the set of edges
of the (f,b, My)-dependency graph is {(a,a), (a,c), (c,d),{d,d),(d,e),{e,a)}, so the
dependency graph is strongly connected, and the set of all transitions thus becomes
the computed stubborn set.

On the other hand, if b(My, a,p) = b(Mo,d,r) = 3, then for any scapegoat generator
fy Ef4(f,b, My,a) = {a} and E7,(f,b, My,d) = {d}, so either {a} or {d} becomes
the computed stubborn set.

We conclude the example by considering the case where b(My, a, p) = b(My,d,r) = 2,
f(My,c) = p and f(Mp,e) = r. In that case, the set of edges of the (f,b, My)-
dependency graph is {(a,a), (a,c),(d,d),(d,e)}, so either {a,c} or {d,e} becomes
the computed stubborn set. Since ¢ and d are disabled, this choice is thus equally
successful as the choice b(My, a,p) = b(My, d,r) = 3.

— 38 —

The incremental algorithm sometimes produces stubborn sets that are not AV-
strongly dynamically stubborn, even if the choice function b has the value 2 ev-
erywhere. Let us consider the net in Figure 9. If b(My,c,p) = 2, the computed
stubborn set at My is {c}, independently of the scapegoat generator. By the remark
immediately after Lemma 4.24 we know that {c} is stubborn also in the sense of the
definition in [73]. We saw after Lemma 4.16 that the set {c} is strongly dynamically
stubborn but not AV-strongly dynamically stubborn at My since Mylcc), My[cd),
and —Mpy|ced).

We end this section by describing what is meant by a pseudo-random scapegoat
generator. An explicit description of a pseudo-random scapegoat generator would be
far too complicated to be presented here. Therefore, only an informal description is
given. Let 7 be a function from (N \ {0}) x (N \ {0} to N \ {0} such that for each
n € N\ {0}, r(n,1),r(n,2),r(n,3),...1is a sequence of pseudo-random numbers [67]
in {1,...,n}. (The ideal would be that the numbers in the sequence were uniformly
distributed over {1,...,n}.) Let f be the scapegoat generator to be defined. For
each marking M and transition ¢, f(M,t) is not defined earlier than necessary. If it
is time for such definition, f(M,t) is defined to be the r(k,7)th disabling place of ¢
at M, where the list of disabling places of ¢t at M is of length k£ and determined by
some fixed list of the input places of ¢, whereas ¢ — 1 is the so far number of times
when 7 has been “called with the first argument k”.

4.4 The deletion algorithm

The stubborn sets computed by the incremental algorithm may contain unnecessarily
many enabled transitions. The deletion algorithm [74, 75] is better in this sense.

Definition 4.25 Let (S, T, W, M) be a finite place/transition net and M a marking
of the net. The and/or-graph at M is a triple (Vig, Vg, A) such that the set of and-
vertices Vg 1is

{s|FHeTsetANM(s) <W(s,t)}U{teT| M[t)}U

{{t,s,i) [t e TAMI[t) Ns €t AW(s,t) > W(t,s) Ni€{2,3}},

the set of or-vertices Vg is
{teT | -Mt}U{{t,s)|teT AM[t)ANs et ANW(s,t) > W(t,s)},
and the set of edges A is

{{t,s) |[teT AsetANM(s) < W(s,t)}U
{(s,t) | T €T st ANM(s) < W(s,t) ANt € E1(M,s)}U
{{(t,s),(t,s,0)) [t e TAMt)ANs €t AW(s,t) >W(t,s)Nie€{2,3}}U
{{t,(t,s)) |te TAM[t)Ns €t AW (s, t) > W(t,s)}U
{{{t,s,i),t"y| te T AM[t)As €t ANW(s,t) > W(t,s)A

i€ {2,3} At € E;(M,t,s)}.

A set Vs C Vg U Vg is legal iff

Ve e VsNVg Vy e Vg U Vg (x,y) € A=y e V),
(Ve e VoNVg Jy € Vs (z,y) € A), and

some transition is a key transition of Vs NT at M. O

-39 —

The idea in defining the and/or-graph and legality is nothing else but to rephrase
the definition of stubbornness. Consequently, the set of transitions of any legal set
is stubborn. Also, for each stubborn set, there exists a legal set such that the set of
transitions of the legal set is the stubborn set. Moreover, the set of vertices of the
and/or-graph is legal iff the marking is nonterminal.

<a,p, 2>
(and—vertex)

<a,p>
(or—vertex)

<a,p, 3>
(and—vertex)

X
(and-vertex)
p r
(and-vertex) (and—-vertex)
q e
(and-vertex) (and-vertex) (or-vertex)

<d,r> <d,r,23
(or-vertex) (and-vertex)

Figure 15: The and/or-graph of the net of Figure 14 at M,.

ISJJ I

<d,r,33
(and—-vertex)

I IQ-

Figure 15 displays the and/or-graph of the net of Figure 14 at the initial marking
Mj. We observe that e.g. the set {a, (a,p), (a,p,3)} is a legal set of vertices.

The pseudo-code language used in the algorithmic presentations in the sequel is a
mixture of mathematical expressions, English expressions and the C programming
language [46]. (Readers unfamiliar with the C language are strongly suggested to
read, at least superficially, any of the several books written about the language.)
Words belonging to the control structure of C are written in boldface. A construct
of the form

“for (each z in A such that ¢(z))”,

where A is a set and 9(z) a truth-valued expression on z, is apparently against the
syntax of the C language but corresponds to a valid “for-construct” where a cursor
moves through a data structure and skips “uninteresting” elements. (This kind of
moving and skipping can, regardless of the data structure, be implemented by means
of function calls.) In order to support unambigous references to the code, we use
comment-style line numbering throughout the presentations.

The basic deletion algorithm is presented in Figure 16. (We use the attribute “basic”
here because some more sophisticated versions of the deletion algorithm are pre-

— 40 -

sented later in this thesis. The type AO_vertex, implementing each vertex of the
and/or-graph, is assumed to have been defined appropriately.) The routine BasDe-
1Alg computes the stubborn set. The and/or-graph is initialized in such a way that
each vertex has links to the immediate predecessor vertices and each or-vertex has a
counter initialized to the number of the immediate successor vertices. (From Defini-
tion 4.25 it follows that the number is not 0.) Also, each vertex has an associated
colour that is initially white, and each transition has a root flag that is initially zero
as well as a protection flag that has an arbitrary initial value. (The protection flag
may seem useless but is needed because later algorithms in this thesis include calls
to some of the routines in Figure 16.)

/*1*/ void Speculate(AO_vertex z) {

/*¥2%/ mark z grey;

/*3%/ for (each white immediate predecessor vertex y of =)

/*4*/ if (y is an and-vertex) Speculate(y) ;

/*¥5%/ else {

/*6*/ subtract 1 from the counter of y;

/*¥7*/ if (the counter of y is at 0) Speculate(y); } }

/*8*/ void Darken(AO_vertex z) {

/*9%*/ mark z black;

/*10*/ for (each grey immediate predecessor vertex y of x)

/*¥11%/ Darken(y); }

/*12*/ void Rehabilitate(AO_vertex z) {

/*13%/ mark z white;

/*14%*/ for (each non-black immediate predecessor vertex y of z) {
/*15%/ if (y is an or-vertex) add 1 to the counter of y;

/*¥16*/ if (y is grey) Rehabilitate(y) ; } }

/*¥17*/ void Cnstr(void /* no argument */) {

/*18%/ for (each protected enabled transition ¢)

/*¥19%/ set the root flag of t equal to 13

/*20%*/ while (there are at least two enabled white transitions and
/*21*/ at least one enabled white transition has a zero root flag) {
/*22%/ let ¢ be some enabled white transition having a zero root flag;
/*23%/ set the root flag of t equal to 1; Speculate(t) ;

/*24%/ if (the set of white transitions contains all protected transitions
/*25%/ and has a key transition)) Darken(¢) ;

/*26*/ else Rehabilitate(t) ; } }

/*27*/ void BasDelAlg(void /* no argument */) {

/*28%/ initialize the and/or-graph ; make all transitions unprotected ;

/*29%/ Cnstr(); }
Figure 16: The basic deletion algorithm.

The algorithm in Figure 16 can be characterized as follows: we first have a stub-
born set that contains all enabled transitions. Then we try to remove each enabled
transition in turn in order to obtain a smaller stubborn set. Any of such removals
may force some other enabled transitions to be removed as well. A transition may
be so “important” that no stubborn set can be obtained from the set of remaining
transitions if the transition is removed. Therefore, we first speculate what would

—41 -

happen if a certain transition were removed, and “rehabilitate” the transition if it
cannot be removed successfully.

The computed stubborn set is the remaining set of white transitions and is inclusion
minimal w.r.t. enabled transitions. In other words, no proper subset of its enabled
transitions can be the set of enabled transitions of any stubborn set. This can be
shown by showing that the set of white vertices is legal each time when the “while-
condition” in Cnstr (lines /*20*/ and /*21*/) is checked.

The time taken by an execution of the basic deletion algorithm is at most proportional
to pvp|T|, where p is the maximum number of input places of a transition, v is
the maximum number of adjacent transitions of a place, and p is the maximum
number of enabled transitions at a marking. The amount of space required is at
most proportional to pv|T|.

Let us consider how the routine BasDelAlg constructs a stubborn set for the ini-
tial marking of the net in Figure 14. BasDelAlg first constructs the and/or-graph
displayed in Figure 15 and initializes the records associated with the vertices. The
routine Cnstr takes care of the rest. Since both of the enabled transitions, a and d,
are initially white, the routine Speculate becomes called. Let us assume that ¢ = a
when the line /*23*/ is entered for the first time. The routine Speculate then recur-
sively goes from the and-vertex a to the and-vertex that has literally the name x. The
counter of the or-vertex e is subtracted by one, but since the counter has the initial
value 2, Speculate does not go to e. Then the program control quickly returns back
to Cnstr, to the line /*24*/. The set of white transitions is {c,d, e} at that moment.
This set has the key transition d, so the grey vertices, a and z, become marked black.
The “while-condition” is no longer true, so Cnstr finishes. The constructed stubborn
set is thus {c,d, e} which is effectively as good as {d} since ¢ and e are not enabled
at the initial marking.

We now move onto a slightly higher abstraction level and consider how the basic
deletion algorithm constructs a stubborn set for the initial marking of the net in
Figure 7. All transitions are enabled, and the algorithm essentially just tries to
remove them in some order. Let us assume that this order is #g,%1,%2. Trying to
remove tq is successful, and the removal is realized by marking ¢y black. Trying to
remove t; is not succesful, i.e. £; must be rehabilated with the routine Rehabilitate.
This rehabilitation restores the colours of the transitions to what they were before
the removal speculation. Trying to remove t2 is not succesful either. Clearly, the
root flags are needed to make Cnstr stop. The constructed stubborn set is {t1,¢2}.
As we recall from the earlier considerations concerning this net, the set {t;,¢2} is
not strongly dynamically stubborn at the initial marking. From Lemma 4.24 it thus
follows that the incremental algorithm is unable to construct this set. Actually,
{to,t1,t2} is the only strongly dynamically stubborn set at the initial marking, so
the incremental algorithm is somewhat naive in this case.

Considering the net in Figure 6, let us look at the marking M’ such that Mj[c)M’.
At M’, {a,b} is the only inclusion minimal stubborn set and consists of enabled
transitions only. For M’, the basic deletion algorithm thus necessarily constructs a
stubborn set that contains a and b but no other enabled transitions. Such a stubborn
set is not even conventionally dynamically stubborn at M’.

— 49 —

4.5 Discussion

The most important result of this chapter is the rephrasing of persistence and con-
ditional stubbornness in terms of strong dynamic stubbornness in place/transition
nets. If a theorem is stated for persistent sets, we know that the theorem should not
be applied to stubborn sets that are not strongly dynamically stubborn, unless the
theorem is extended appropriately. On the other hand, any stubborn set computed
by the incremental algorithm is strongly dynamically stubborn, so the set of enabled
transitions in the computed set is persistent and any theorem concerning persistent
sets applies to a reduced reachability graph constructed by using the incremental
algorithm.

— 43 —

5 Verification of linear time temporal properties

This chapter considers the verification of nexttime-less LTL-formulas with the aid
of the stubborn set method. A new preservation theorem is presented in Section
5.1, indicating how the structure of a formula can be utilized in verification when
fairness is not assumed. The new algorithm for generating the reduced state space
is presented in Section 5.2. Section 5.3 extends the theory of Section 5.1 to concern
verification under the assumption of operation fairness.

5.1 A preservation theorem

Let us call a formula directly temporal iff the outermost operator of the formula is
a non-propositional operator. A nexttime-less LTL-formula can be transformed into
a nexttime-less LTL-formula where directly temporal subformulas are as short as
possible [55]. Then a suitable reduced reachability graph can be generated by using
the stubborn set method, provided that the conditions in Lemma 5.1 and Proposition
5.2 are satisfied. Note that any formula can be seen as a Boolean combination of
directly temporal subformulas. The O(QO(T)) formula occurring in Proposition 5.2
is satisfied by every infinite path whereas no terminal path satisfies it. Lemma 5.1 is
a variant of a very well known result [56].

Lemma 5.1 Assumptions:

(P1) (S,T,W, My) is a place/transition net. (The net and the full reachability
graph of the net can be finite or infinite.)

(P2) P is a (finite or an infinite) collection of atomic formulas, i.e. P C 2M. T
18 the collection of all nexttime-less LTL-formulas that are constructible from
the formulas of P.

(P3) 11 is a function from 2™ to 2° in such a way that whenever we have a
subset p of M and markings M and M’ for which M € p and M’ ¢ p, there
exists s € II(p) for which M(s) # M'(s).

(P4) E is a function from T to 2T in such a way that for each ¢ € T and for
each atomic subformula p of ¢, {t € T | s € I(p) W (s, t) # W(t,s)} C E(¢).

Claim: For each ¢ € ', for each reachable marking M, and for each two paths x and
y starting from M in the full reachability graph of the net, if R(z,Z(¢)) = R(y, E(¢))
and x satisfies ¢, then y satisfies ¢.

Proof.

Let ¢ € I' and M a reachable marking, and let paths x¢ and z; start from M in the
full reachability graph in such a way that zo and 1 have the same E(¢)-restriction
and z(satisfies ¢.

Let © be a function from M to 2% in such a way that for each marking M, (M)
contains exactly those atomic subformulas of ¢ that contain M. Let (finite or infinite)
nonempty words ag, a1, Bo and 31 over the alphabet 27 be defined as follows.

— 44 —

e For each i € {0,1} and for each n € N\ {0}, whenever z; has at least n vertices,
the word «; has at least n characters, and the nth character in «; is ©(M")
where M’ is the nth vertex (all occurrences counted) in z.

e For each i € {0,1}, §; is the word obtained by replacing each maximal (finite or
infinite) sequence of adjacent identical characters in a; with a single occurrence
of the character. (No other manipulation of «; is thus included. If the set of
distinct characters in some infinite suffix of @; is a singleton set, then 3; is a
finite word that has the member of that singleton set as the last character.)

From P3 and P4 it follows that Sy = B;. (Using the terminology in [48, 56], we
could thus say that ap and ay are propositional sequences that are equivalent up
to stuttering.) By looking at the satisfaction rules of our LTL, we conclude that y
satisfies ¢.

Proposition 5.2 Assumptions: P1, P2, P3 and P4 of Lemma 5.1, and

(P5) ® is a (proper or non-proper) subcollection of formulas from T'. (® can be
finite or infinite.)

(P6) Y is a (finite or an infinite) subset of 27 such that {Z(¢) | ¢ € @} C Y.

(P7) fis a function from M to 2T in such a way that every terminal path in the
f-reachability graph of the net is a terminal path of the full reachability graph
of the net. (The f-reachability graph of the net can be finite or infinite.)

(P8) For each terminal path starting from My in the full reachability graph, there
ezrists a terminal path starting from My in the f-reachability graph in such a
way that the labels of the paths are Y -equivalent.

(P9) For each infinite path starting from My in the full reachability graph, there
exists an infinite path starting from Mgy in the f-reachability graph in such a
way that the labels of the paths are Y -equivalent.

Claim: For any boolean combination ¢ of the formulas in ®U{O(O(T))}, ¢ is valid
at My in the full reachability graph of the net iff ¢ is valid at My in the f-reachability
graph of the net.

Proof. The “only if” -part of the claim is obvious. The “if” -part follows directly
from Lemma 5.1 and from the satisfaction rules. O

There is actually nothing new or amazing in Proposition 5.2, and its only purpose
is to serve as an interface to Theorem 5.10, i.e. instead of talking about formulas
we can talk about Y-equivalence. Claims of Theorem 5.10 occur as assumptions in
Proposition 5.2.

Theorem 5.10, the goal of this section, is a refinement of Theorem 2 of [78] and
gives us better chances for reduction. The refinement is strongly inspired by [55, 56].
The new aspect in Theorem 5.10 is that we do not preserve all orders of wvisible

— 45 —

transitions. A transition is visible iff at least one member of the above defined T
contains the transition. Roughly speaking, visible transitions are those transitions
that determine the satisfaction of the atomic subformulas of the interesting formulas.
In a verification task, if the original formula to be verified is ¢9 and an equivalent
formula obtained by transformation is ¢, then the collection of interesting formulas
consists of directly temporal formulas such that ¢; is a Boolean combination of the
formulas in the collection. (If ¢; itself is directly temporal, then the collection is

simply {¢1}.)

Figure 17: Both of a and b are visible w.r.t. the atomic formula “M(q) = 0”.

Let us look at the net in Figure 17. Clearly, the full reachability graph of the net
has no terminal path but has exactly two infinite paths that start from the initial
marking. Among these two paths, the path labelled by accc. .. satisfies the formula
O(M(g) = 0) while the path labelled by baccc. .. does not. However, M has no
markings M; and M, for which it would be that M;[b)M> and either My(q) = 0 #
My (q) or M2(q) = 0 # Mi(q). We still consider b as a visible transition w.r.t. the
atomic formula “M/(q) = 07, since in the sequel, transitions like this would anyway
be treated like the “pedantically visible” transitions.

Since we do not preserve all orders of visible transitions, we can lose some NDFD- or
CFFD-properties [42, 43, 80, 82]. Taking into account the title of [43], this may sound
dangerous since the weakest equivalence meant by the title is NDFD. However, the
title refers to preserving the validities/invalidities of all nexttime-less LTL-formulas
constructible from a given set of atomic formulas. In the above verification task, we
do not have to preserve that much. It suffices that the validities/invalidities of all
Boolean combinations of the interesting formulas are preserved (since the original
formula to be verified corresponds to one of such combinations).

The assumptions of Theorem 5.10 are the following.
(A1) (S, T, W, My) is a place/transition net, Y C 27, and J = T'\ UyerY. (The net,
T and the full reachability graph of the net can be finite or infinite.)

(A2) fis a dynamically stubborn function from M to 2T. (The f-reachability graph
of the net can be finite or infinite.)

(A3) Forany Y € Y and for any marking M, Y C f(M)or {t e YNf(M) | M[t)} =0
(or both).

— 46 —

(A4) For any marking M, if f(M) does not contain all those transitions that are
enabled at M, then some transition in J is a dynamic key transition of f(M)
at M.

(A5) For any t € T\ J, every infinite path (starting from a marking whatsoever) in
the f-reachability graph of the net contains at least one marking M such that
te f(M).

Coarsely speaking, A3 prevents us from changing the order of transitions that are
visible w.r.t. a single member of ® while A4 and A5 prevent us from ignoring any
member of ®. The transitions in J are invisible w.r.t. all members of ®. There is a
following correspondence between A3 — A5 and the assumptions 2 — 4 of Theorem 2
of [78]: if || = 1, n is between 3 and 5 and the f-reachability graph is finite, An
becomes assumption n — 1 of [78].

Let us consider an example where we try to verify the formula
(©(M(q) = 1)) V (&(M(r) =0))

about the net in Figure 3. We can let T = {{a}, {c}} (|T| = 2) since the satisfaction
of M(q) =1 can be affected by a only whereas the satisfaction of M(r) = 0 can be
affected by c only. Let us choose {a, b} for the dynamically stubborn set at the initial
marking. This choice respects all of A1 — A5. (Note that [78] would not accept such
a choice but would require us to take all enabled transitions into the set. We have
thus gained reduction w.r.t. [78].) At any other encountered nonterminal marking,
we let the dynamically stubborn set contain all enabled transitions since A1 — A5
would otherwise be violated. (The same would have to be done if the conditions in
[78] would have to be satisfied instead.) The reduced reachability graph has exactly
one terminal path that starts from the initial marking, and the label of that path is
ac. The labels of the infinite paths starting from the initial marking in the reduced
reachability graph are bddd ..., beddd ..., bdcddd . .., bddcddd . .., etc. From these
paths the path labelled by bddd . .. invalidates the formula.

Let us then verify the formula
(O(M(z) = 1)) vV (S(M(r) = 0)).

Using similar reasoning as above, we can let T = {{b}, {c}} (|T| = 2). (Though d is
connected to xz, d cannot affect the satisfaction of M(z) = 1.) Proceeding as above,
we actually get exactly the same reduced reachability graph, but that is merely a
coincidence. Since there is no counterexample to the formula, we conclude that the
formula is valid at the initial marking.

Let us also look what would be the consequences if some of A3 — A5 were dropped.
Dropping A3 could make us draw a wrong conclusion about

O(((M(r) =1) v (M(q) = 1)) v (B(M(q) = 0)))-

When T = {{a,c}} (]T] = 1), we could choose {a,b} for the dynamically stubborn
set at the initial marking. The only counterexample to the formula, i.e. the path
starting from the initial marking and being labelled by ca, would then be lost.

—47 -

Dropping A4 could make us draw a wrong conclusion about &(M(r) = 0). When
T = {{c}}, we could choose {c} for the dynamically stubborn set at the initial
marking. The only counterexample to the formula, i.e. the path starting from the
initial marking and being labelled by bddd ..., would then be lost.

Dropping A5 could make us draw a wrong conclusion about
O(((M(z) = 0) v (M(r) = 0)) v (B(M(r) = 1))).

When T = {{b,c}} (|]Y| = 1), we could let {a,b,c} be the dynamically stubborn
set at the initial marking and choose {d} to be the dynamically stubborn set at the
marking to which b leads from the initial marking. All the counterexamples to the
formula, i.e. the paths where ¢ occurs after b, would then be lost.

In the net in Figure 18, omitting the attribute “dynamic key” in A4 could make us
draw a wrong conclusion about

(OM(g) = 1)) v (S(M(y) = 1)).

When Y = {{a,d}} (|T| = 1), we could choose {a,b,d} for the dynamically stubborn
set at the initial marking. The only counterexample to the formula, i.e. the path
starting from the initial marking and being labelled by ceee. .., would then be lost.

P
a |- @ »| D

q d<_QX c

Figure 18: A net that motivates the assumption A4.

We now start working towards Theorem 5.10. Lemma 5.3 tells us that the used
transition selection function respects the important orderings of transitions.

Lemma 5.3 Assumptions: A1, A2 and AS3.

Claim: For each nonterminal marking M, for each t in f(M) and for each o in
(T \ f(M))*, if M[ot), then M[to), and to is Y-equivalent to ot.

— 48 —

Proof. Let M be a nonterminal marking, ¢ € f(M) and ¢ € (T \ f(M))* in such
a way that M[ot). From D1 (and, as goes without saying, from A2) it follows that
Mlto). Let Y € Y. IfY C f(M), then o € (T'\Y)* and thus R(to,Y) =t = R(ot,Y).
IfY ¢ f(M), then A3 has the effect that ¢t € Y, so R(to,Y) = R(0,Y) = R(at,Y).
a

Lemma 5.4 guarantees that the possible terminal paths of the full reachability graph
are sufficiently represented in the reduced reachability graph.

Lemma 5.4 Assumptions: A1, A2 and AS3.

Claim: For each finite transition sequence o and for each marking M", if o leads

from M" to a terminal marking Mgy, then there exists a permutation 6" of o” in such
a way that M"[6") ¢ My and 0" is Y-equivalent to o”.

Proof. We use induction on the length of ¢”. The claim holds trivially when restricted
to ¢” = €. Our induction hypothesis is that the claim holds when restricted to any
o” of length n > 0.

Let a finite transition sequence o of length n+1 lead from a marking M to a terminal
marking Mj. From D2 it follows that there exist ¢t € f(M), § € (T \ f(M))* and
0’ € T* in such a way that ¢ = §té’. From Lemma, 5.3 it follows that there exists a
marking M’ in such a way that M([t) ;M', M'[§6") My, and 166’ is T-equivalent to o.

By the induction hypothesis, there exists a permutation §” of §§’ in such a way that
M'[6") ¢ Mgy and ¢" is T-equivalent to §¢’. So, t6” is a permutation of ¢ in such a way
that M([té") s My and ¢6” is T-equivalent to o. O

Lemma 5.5 guarantees that the possible infinite invisible transition sequences are
sufficiently represented in the reduced reachability graph.

Lemma 5.5 Assumptions: A1, A2 and A4.

Claim: For each " € J* and for each M" € M, if M"[c") then there exists
0" € J*® in such a way that M"[6")y.

Proof. Let 0 € J* and M € M such that M[o). We show by induction on n € N
that we can define a function 7 from N to J, a function p from N to M and a function
6 from N to J* in such a way that pu(0) = M and for each n € N, u(n)[f(n)), and
either n > 0 and p(n —1)[7(n —1)) fp(n) or n = 0. Let us denote this claim by B. (If
B holds, the function 7 represents an infinite transition sequence that is f-enabled
at M.)

By letting p(0) = M and 6(0) = o, we make B hold when restricted to n = 0. Let
then k£ € N. Our induction hypothesis is that B holds when restricted to n = k.

e Let us first consider the case that 6(k) contains a transition from f(u(k)). By
the induction hypothesis, (k) € J*. Let t, € f(u(k)) NJ, v € (J\ f(u(k))*
and (i € J* be such that v;tx(x = 60(k). Since (because of the induction
hypothesis) u(k)[vetrCk), from D1 it follows that p(k)[txyiCk). With all this
information, we let 7(k) = ¢, 6(k + 1) = d(k)tx, 6(k + 1) = yx(x and require
that p(k)[te)p(k + 1).

— 49 —

e Let us then consider the case that (k) does not contain any transition from
f(u(k)). Since (because of the induction hypothesis) f(u(k)) does not contain
all those transitions that are enabled at f(u(k)), A4 has the effect that we can
choose t; € f(u(k)) NJ in such a way that tx is a dynamic key transition of
f(u(k)) at p(k). From Lemma 4.3 it then follows that u(k)[tx0(k)). With all
this information, we let 7(k) = tx, d(k + 1) = §(k)tx, 6(k + 1) = 6(k) and
require that p(k)[te)p(k + 1). O

Lemma 5.6 shows that for a given enabled (finite or infinite) transition sequence
op, on some infinite or terminal path in the reduced reachability graph, “the Y-
equivalence class of ogp is enabled either forever or until some transition from o
becomes chosen.” (The “forever” alternative may be the only alternative since A5
is not included in the assumptions of Lemma 5.6. To see this, look back to the
“Dropping A5” example.)

Lemma 5.6 Assumptions:

o A1, A2, A3 and Aj.
e MeM,ceT* peT*UT™ and L C T are such that M[op) and L is the

set of those transitions that occur in o.

Claim: We can define a function 3 from N to (T'\ L)*, functions & and n from N to
T*, a function p from N to M and a function 6 from N to T™ UT* in such a way
that for each n € N,

e {(n)f(n) = p,
MIB(n))sp(n),
p(n)[on(n)(n)),
B(n)on(n) is T-equivalent to o&(n), and

n=0V

(mn>0AN (YmeNVteL pu(m)t)y = m>n)A
(Ftn € T\ L B(n) =B(n—1)ta)) Vv

(n>0A(3t, € L p(n—1[te)f) AB(n) =B(n —1)).

Proof. We use induction on n. By letting 8(0) = €, £(0) = €, n(0) = ¢, u(0) = M
and 6(0) = p, we make the claim hold when restricted to n = 0. Let then k£ € N. Our
induction hypothesis is that the claim holds when restricted to n = k.

e If there exists 7 € L such that p(k)[7) s, we let S(k+1) = B(k), E(k+1) = &(k),
n(k + 1) = n(k), p(k +1) = p(k) and 6(k + 1) = 6(k). The induction step is
thus trivial in this case.

In the below considerations, no transition of L is f-enabled at u(k). Using the induc-
tion hypothesis, we then immediately conclude that for each m < k+1, no transition
of L is f-enabled at p(m). Since we also know (by the induction hypothesis) that o
is enabled at p(k), Lemma 4.2 has the effect that o € (T'\ f(u(k)))*.

— 50 -

e Let us consider the case where n(k) contains a transition from f(u(k)). Then
we can choose 7 € f(u(k)), vk € (T'\ f(u(k)))* and {x € T* in such a way
that vx7kC(x = n(k). From the induction hypothesis it follows that there exists
a marking M such that p(k)[oygmi)M. Since oy, € (T \ f(u(k)))*, Lemma
5.3 has the effect that p(k)[rroyk)M, and 7poyg is Y-equivalent to o7y,Tg.
So, B(k)Tkoyk(k is T-equivalent to B(k)oykmiCx = B(k)on(k) which by the
induction hypothesis is T-equivalent to c£(k). The induction step thus succeeds
by letting B(k+1) = B(k)7k, {(k+1) = £(k), n(k+1) = yxCk and 6(k+1) = 6(k),
and by requiring that u(k)[m%)u(k + 1).

e Let us then consider the case that (k) contains a transition from f(u(k)) but
n(k) does not. Then we can choose 7, € f(u(k)), vi € (T'\ f(u(k)))* and
Ck € T*UT® in such a way that y;7x(x = 0(k). From the induction hypothesis
it follows that there exists a marking M such that p(k)[on(k)yi7r)M. Since
on(k)yve € (T\ f(u(k)))*, Lemma 5.3 has the effect that u(k)[rxon(k)yx) M, and
Tron(k)yk is Y-equivalent to on(k)yi7k. So, B(k)meon(k)yx is T-equivalent to
B(k)on(k)vyim, which by the induction hypothesis is T-equivalent to o€ (k)i -
The induction step thus succeeds by letting B(k + 1) = B(k)x, £(k + 1) =
E(k)viTk, n(k + 1) = n(k)yx and 8(k + 1) = (, and by requiring that
p(k))k + 1)

e In the ultimate remaining case, on(k)0(k) € (T'\ f(u(k)))* U (T \ f(u(k)))>.
Since f(u(k)) does not contain all those transitions that are enabled at f(u(k)),
A4 has the effect that we can choose 7 € f(u(k)) NJ in such a way that 7y is
a dynamic key transition of f(u(k)) at p(k). From Lemma 4.3 it then follows
that u(k)[mkon(k)0(k)). Since 7, € J, B(k)1ron(k) is T-equivalent to B(k)on(k)
which by the induction hypothesis is T-equivalent to o€(k). The induction step
thus succeeds by letting B(k + 1) = B(k)mx, £(k + 1) = £(k), n(k + 1) = n(k)
and 6(k + 1) = 6(k), and by requiring that u(k)[m%)u(k + 1) O

Lemma 5.7 states that if we have an infinite or a finite sequence in the full reachability
graph, we can choose an arbitrary finite prefix of the sequence in such a way that
there is a sequence that is Y-equivalent to the original sequence and has a finite
prefix that is f-enabled and covers the prefix we chose. (To remember the meaning
of “exhausting”, see Definition 2.4.)

Lemma 5.7 Assumptions: A1, A2, A3, A} and AS5.

Claim: For each " € T*, for each p' € T* UT>™ and for each M' € M, if M'[c" p')
and M’ is f-reachable from My, then there exist 4" € T*, 61 € T*, § € T*, p" €
T UT*>® and M" € M in such a way that v"p" = p', M'[61)s M", M"[62p"), 61
(T'\ J)-ezhausts a”, and 6102 is Y-equivalent to o"~".

Proof. We use induction on the length of ¢”. The claim holds trivially when restricted
to ¢’ = e. Our induction hypothesis is that the claim holds when restricted to any
o" of length n > 0. The claim holds trivially when restricted to any ¢” € J* since
in that case, € is T-equivalent to ¢/ and (T'\ J)-exhausts ¢”, so 7" = §; = 62 = ¢,
p" = p' and M" = M' are suitable choices for that case. Let then o € T* \ J*,
p € T*UT™® and M € M be such that M[op), M is f-reachable from My and the
length of o is n + 1.

~-51 -

Let L be the set of those transitions that occur in ¢. Then we can define a function
B from N to (T'\ L)*, functions £ and n from N to T*, a function p from N to M
and a function 6 from N to 7% UT® in the way stated in the claim of Lemma 5.6.
We thus have that for each k € N, {(k)0(k) = p, M[B(k))sp(k), p(k)[on(k)0(k)),
and B(k)on(k) is T-equivalent to o&(k).

Let us first assume that there are no ¥’ € N and 7' € L that would satisfy p(k")[7')s.
Let us call this assumption B. Since o € T* \ J* and L is the set of those transitions
that occur in o, the set L\ J is not empty. Let ¢ be any transition in L\ J. From
B and A5 it follows that there exists k” € N such that ¢ € f(u(k"”)). Consequently,
there must be some k1 < k", ¢ € LN f(u(k1)), v € (L \ f(u(k1)))* and v € L*
such that o = «t'+'. Since pu(k1)[o), from D1 it follows that p(k1)[t') ;. We have thus
reached a contradiction with B.

So, we can choose ¥’ € N and 7' € L such that u(k")[7')s. Since u(k')[o), there
are some t1 € f(u(k')), 6 € (T \ f(u(k')))* and &' € T* such that o = dt10’.
Since u(k')[on(k")0(k')), from Lemma 5.3 it follows that there exists a marking
M, such that p(k')[t1) My, M1[06'n(k")0(K')), and ¢10¢" is YT-equivalent to o. So,
B(K')t166'n(k") is T-equivalent to o&(k’) since B(k')on(k’) is T-equivalent to o&(k').

By the induction hypothesis, there exists 4" € T*, §; € T*, 6, € T*, p"” € T* UT>
and M, € M in such a way that 4" p"” = n(k")0(k'), M1[61) f M2, M3[02p"), 61 (T'\ J)-
exhausts §¢’, and 195 is T-equivalent to 66’y". Then M[B(k')t1d1) s Mo and B(k')t161
(T'\ J)-exhausts 6t16’ = o.

Let us first consider the case that 4" is shorter than n(k’). Let d3 € T™* be such
that 7”63 = n(k’). Then 030(k') = p”’. We thus have that Ms[02030(k')). On the
other hand, £(k')0(k') = p. Moreover, B(k')t18102035 is T-equivalent to o&(k’) since
010203 is T-equivalent to §6'~"d3 = §d'n(k’) whereas B(k')t100'n(k’) is T-equivalent
to o&(k').

Let us then consider the case that +" is at least as long as n(k’). Let d4 € T
be such that n(k')ds = +". Then d4p" = 6(k’). We thus have that £(k')dsp"” =
E(K")0(K") = p. On the other hand, M5[0102p"). Moreover, 3(k')t101d2 is T-equivalent
to c&(k")d4 since §102 is Y-equivalent to §6’"” = 66'n(k’)ds whereas B(k')t166'n(k")
is T-equivalent to o&(k’). O

If we have a series of finite prefixes of an infinite sequence in the full reachability
graph, Lemma 5.7 gives us a series of finite sequences in the reduced reachability
graph, but the series is not necessarily a series of prefixes of any single infinite se-
quence. There is still one thing we can do: we can move along a path in the reduced
reachability graph and apply Lemma 5.7 to any of the markings on the path. Guaran-
teeing T-equivalence is then not difficult at all since for any infinite sequence, Lemma
5.7 just modifies some finite prefix of the sequence and leaves the rest of the infinite
sequence untouched. We then just have to make sure that we choose a prefix that
includes some of the so far untouched part of the original infinite sequence. This is
the idea of the proof of the below Lemma, 5.8.

Lemma 5.8 Assumptions:

o A1, A2, A3, A4 and Ad.

—- 52—

e M € M and o € T are such that M[o), M is f-reachable from My and o
contains infinitely many occurrences of transitions from T \ J.

Claim: We can define a function u from N to M, functions B8, A, ¢ and v, from N
to T* and a function 0 from N to T in such a way that for each n € N,

e ((n)y(n)d(n) = o,

o M[B(n))su(n),

e u(n)[A(n)8(n)),

o B(n) (T \ J)-ezhausts ((n),

o B(n)A\(n) is Y-equivalent to ¢(n)y(n), and

e n=0V
(n>0A (e (TH)\(JT) B(n) =P(n—1)nA
(F e TN\ ((n) =((n—1)§)).

Proof. We use induction on n. By letting u(0) = M, B(0) = ¢, A(0) = ¢, {(0) = ¢,
7(0) = ¢ and 6(0) = o, we make the claim hold when restricted to n = 0. Let then
k € N. Our induction hypothesis is that the claim holds when restricted to n = k.

From the induction hypothesis it follows that wu(k) is f-reachable from M, and
A(k)6(k) is enabled at (k). From the given assumption we know that o contains
infinitely many occurrences of transitions from 7'\ J. By Lemma 5.7 we can thus
choose & € (TH)\ (J1), & eT*, peT>®, m € T*, e € T* and M; € M in such a

way that {1€2p = 0(k), p(k)[m) s M1, Mi[nzp), n1 (T'\ J)-exhausts A(k)&1, and mims
is T-equivalent to A(k)&1&s.

Now ((k)v(k)¢1&20 = ((k)y(k)8(k) which by the induction hypothesis is equal to
o. Since p(k)[n1) My and (because of the induction hypothesis) M[3(k))ru(k), we
conclude that M[3(k)n1)¢M;. Since n1 (T'\ J)-exhausts A(k)§1 whereas (because of
the induction hypothesis) B(k)A(k) is T-equivalent to ((k)y(k), we conclude that
B(k)m (T \ J)-exhausts B(k)A(k)€&; which in turn (T'\ J)-exhausts ((k)y(k)&1. (The
“exhausting” included in the induction hypothesis is not utilized.) Since 7172 is
T-equivalent to A(k)1€2 whereas G(k)A(k) is YT-equivalent to ((k)y(k), we con-
clude that B(k)nine is T-equivalent to B(k)A(k)E1€2 which in turn is T-equivalent to
C(k)y(k)é1&2- Since & € (TT)\(J1) whereas 1y (T'\ J)-exhausts A(k)&1, we conclude
that my € (TT)\ (J71).

The induction step thus succeeds by letting u(k + 1) = My, Bk + 1) = B(k)m,
Ak +1) = m2, ((k+1) = ((k)v(k)&1, v(k +1) = & and 6(k + 1) = p. =

Lemma 5.9 Assumptions: A1, A2, A3, A and AS5.

Claim: For each o” € T and for each M" € M, if M"[c"), M" is f-reachable
from My and o” contains infinitely many occurrences of transitions from T'\ J, then
there exists 0" € T in such a way that M"[6"); and 6" is Y-equivalent to "

— 53 —

Proof. Let 0 € T and M € M be such that M[o), M is f-reachable from My, and
o contains infinitely many occurrences of transitions from 7'\ J. We can then define a
function p from N to M, functions 3, A, ¢ and v, from N to T™ and a function 6 from
N to T in the way stated in the claim of Lemma 5.8. The function 3 represents an
infinite transition sequence that is f-enabled at M. Let w be this infinite sequence.

e Let & be any finite prefix of o. Then there must be m € N in such a way that
¢ is a prefix of {(m). Now B(m) (T \ J)-exhausts {(m) whereas B(m)A(m) is
T-equivalent to ((m)y(m). Consequently, for any Y € T, the Y-restriction of
¢ is a prefix of or equal to the Y-restriction of 3(m). On the other hand, we
know that 3(m) is a finite prefix of w.

e Let 7 be any finite prefix of w. Then there must be n € N in such a way that
n is a prefix of B(n). Now S(n)A(n) is T-equivalent to {(n)y(n). Consequently,
for any Y € T, the Y-restriction of 7 is a prefix of or equal to the Y-restriction
of {(n)y(n). On the other hand, we know that {(n)y(n) is a finite prefix of o.

From the above considerations it follows that the infinite sequence w is T-equivalent
to the infinite sequence o. O

We are now ready to collect together the results we have obtained and prove the
desired theorem. The task is simple since all the hard work has been done in proving
the lemmas. Note that according to A1 — A5, “everything is possibly infinite”.

Theorem 5.10 Assumptions: A1, A2, A3, A4 and A5.

Claims:

(C1) Every terminal path in the f-reachability graph of the net is a terminal
path of the full reachability graph of the net.

(C2) For each terminal path starting from My in the full reachability graph, there
exists a terminal path starting from My in the f-reachability graph in such a
way that the labels of the paths are Y -equivalent.

(C3) For each finite path starting from My in the full reachability graph, there
exists a finite path starting from My in the f-reachability graph in such a way
that the labels of the paths are Y -equivalent.

(C4) For each infinite path starting from My in the full reachability graph, there
exists an infinite path starting from My in the f-reachability graph in such a
way that the labels of the paths are Y -equivalent.

Proof. C1 follows trivially from D2. C2 is an immediate consequence of Lemma, 5.4.
C3 follows directly from Lemma 5.7, by letting p' = €.

From Lemma 5.7, by letting p’ € J°°, and from Lemma 5.5 it directly follows that
C4 holds when restricted to a path where some suffix of the label of the path is in
J°. From Lemma 5.9 it immediately follows that C4 holds when restricted to a path
where no suffix of the label is in J°. O

— 54 —

As we see from Proposition 5.2, C3 is actually not needed in our LTL verification
problem. However, C3 is interesting by its own virtue, at least if Y-equivalence is
thought of as a behavioural equivalence.

5.2 An algorithm for generating a reduced state space

We are now ready to present a version of the deletion algorithm that produces stub-
born sets for the refined LTL-preserving reachability graph generation algorithm.
The advanced version of the deletion algorithm is presented in Figure 19.

The routine AdvDelAlg computes the stubborn set. As before, we assume that we are
in a nonterminal marking. The and/or-graph is still the same as in Definition 4.25 and
determines which vertices must be removed if a given vertex is removed. (Protection
flags and other things belonging to a single transition record are “declared” in the
discussion that precedes Figure 16.) The computed stubborn set is the remaining
set of white transitions. The set T C 27 is given to the algorithm as an input
and is assumed to be like in Proposition 5.2. A member of T is presented by a
structure consisting of a colour (with an arbitrary initial value) and a list of pointers
to transitions. Each transition has a possibly empty owner list, i.e. a list of pointers to
those members of T that contain the transition. As in the discussion after Proposition
5.2, we call a transition wvisible iff at least one member of T contains the transition.

If no invisible transition is enabled, the computed stubborn set contains all transi-
tions. Otherwise the computed stubborn set has at least one invisible key transition.
If the computed stubborn set contains an enabled transition from a member of T,
then the computed stubborn set contains all transitions of that member. The as-
sumptions of Theorem 5.10, except possibly A5, are thus satisfied.

Let us consider the case that at least one enabled invisible transition exists. Then the
first priority of AdvDelAlg is to construct a stubborn set that has no enabled visible
transition. (The first call to Prepare “removes all visible transitions” if possible, and
otherwise returns zero, indicating failure.) Such a set is constructed whenever it is
possible to do that. If visible transitions cannot be completely excluded, then some
of the members of T are included “as whole blocks”. If several members of T share
some enabled transition, these members of T are treated as a single block. (Note that
the set of enabled transitions depends on the current marking, so the forming of the
blocks depends on the current marking, too.) If it is possible to construct a stubborn
set that contains at most one of such blocks only, AdvDelAlg constructs such a
stubborn set. Otherwise all enabled visible transitions are included. (We could do
more work to find something between the “extreme” alternatives, but here we have
made a compromise in order to keep the worst-case running time “tolerable”.) A
typical run of AdvDelAlg ends with a call to Improve that “improves” a stubborn
set by constructing a stubborn set that includes the same “visible blocks” (if any)
but possibly less enabled invisible transitions.

Above we mentioned that Y is given as an input to the algorithm. As can be con-
cluded from Proposition 5.2, the only real problem in constructing such Y is how
we obtain for each atomic subformula a good upper bound to the set of transitions
that determine the satisfaction of that atomic subformula. One way to obtain upper

[¥1¥/

/*2%/

/*3%/

[*4%/

/*5%/

/*6%/

[T/

/*8%/

/*9%/

/*10%*/
[*11/
[¥12%/
/*13%/
[¥14%/
/*15%/
/*16%/
/*17*/
/*18%/
/*¥19%/
/*20%/
[*21%/
/*22*/
/*23%/
/*24*/
/*25%/
/*26%/
/*27*/
/*28%/
/*29%/
/*30%/
/*31%/
/*32%/
/*33*%/
/*34%/
/*35%/
/*36%/
/*37%/
/*38%/
/*39%/
/*40%/
[*ar¥/
[*42%/
/*43%/
[*44x/
/*45%/

— 55 —

int Prepare(void /* no argument */) {
while (there is at least one unprotected enabled visible white
transition) {
let ¢ be some unprotected enabled visible white transition ;
Speculate(t) /* see Figure 16 */;
if (the set of white transitions contains all protected transitions
and has an invisible key transition)
Darken(t) /* see Figure 16 */;
else return 0;
}
return 1; }
void Improve(void /* no argument */) {
while (there are at least two enabled invisible white transitions
and at least one enabled invisible white transition has
a zero root flag) {
let ¢ be some enabled invisible white transition having
a zero root flag;
set the root flag of ¢ equal to 1; Speculate(t)
if (the set of white transitions contains all protected transitions
and has an invisible key transition)
Darken(t) ;
else Rehabilitate(t) /* see Figure 16 */; } }
void AdvDelAlg(void /* no argument */) {
initialize the and/or-graph
if (no invisible transition is enabled) return;
make all transitions unprotected ;
if (Prepare() is equal to 1) { Improve() ; return; }
mark all members of T yellow ;
while (at least one member of Y is yellow and contains
at least one enabled transition) {
let Y be some yellow member of T that contains
at least one enabled transition ;
for (each enabled transition ¢ in Y) {
mark all owners of ¢ orange;
}

initialize the and/or-graph;
make all transitions unprotected ;
protect all transitions in orange members of T ;
if (Prepare() is equal to 1) { Improve() ; return; }
mark all orange members of T blue;
}
initialize the and/or-graph;
make all transitions unprotected ;
protect all transitions in blue members of T ;
Improve(); }

Figure 19: An advanced deletion algorithm.

— 56 —

bounds is as follows. Let p be an atomic formula, i.e. a set of markings. We first
compute a subset of places, B C S, such that whenever we have markings M and M’
for which M € p and M’ ¢ p, there exists s € B for which M(s) # M'(s). Of course,
we try to find an as small as possible B. Then we let

{teT|3se B W(s,t) #Wl(t,s)}
be the set of “transitions for p”.

Above, the term “upper bound” is used intentionally since a set of markings may
well have been defined implicitly, e.g. we may be able to evaluate quickly if a given
marking is in p but we do not necessarily have any good way to list the members of p.
Implicit definitions may occur e.g. when a transformation from a high-level modelling
formalism into a place/transition net is used.

The amount of space required by the advanced deletion algorithm is at most propor-
tional to (+)y ¢y |Y| where ¢ is the amount of space required by the basic deletion
algorithm. The time taken by an execution of the advanced deletion algorithm is at
most proportional to [Y[§ 4 >y ¢+ |Y]) where £ is the time taken by an execution
of the basic deletion algorithm. However, if a stubborn set with no enabled visible
transition exists, the advanced deletion algorithm consumes about as much time as
the basic deletion algorithm.

If the last line of AdvDelAlg is reached, then some proper subset of the set of enabled
transitions of the computed stubborn set may be the set of enabled transitions of some
equally acceptable stubborn set. We have not found any way that would eliminate
this phenomenon completely without making the worst-case time complexity of the
algorithm exponential in |Y|.

So far we have succeeded in satisfying the assumptions of Theorem 5.10, except A5.
Since we do not know any efficient way that would satisfy the condition in Theorem
5.10 as weakly as possible, we satisfy the following condition: every elementary cycle
in the reduced reachability graph contains at least one marking where the chosen
stubborn set contains all visible transitions. This condition can be satisfied by using
the same technique as in [78]. If this condition is satisfied and the reduced reachability
graph is finite, A5 is satisfied.

A refined LTL-preserving algorithm for generating a reduced reachability graph of
a net is presented in Figure 20. (The type Marking is assumed to be as the name
suggests and is assumed to have been defined appropriately.) The routine Generate
constructs the reduced reachability graph. The graph under construction is (V, A)
where V is the set of vertices and A is the set of edges. Each generated marking has
an associated expansion flag. The set K contains markings needed in the detection
of cycles that would become created and violate the cycle condition if there were no
recomputation of stubborn sets. On the outermost level the algorithm is very close
to the corresponding algorithm in [78], and the correctness proof in [78] is essentially
applicable as such to show that our algorithm really satisfies A5.

Let us return to the first example given after the definition of A1-A5. The reduced
reachability graph discussed in the example becomes unavoidably constructed if we
apply the algorithm in Figure 20, using the same Y as in the example. The pseudo-
code should not be too ambigous for readers to simulate the algorithm by themselves.

— 57 —

/*1*/ void Traverse(Marking M) {

/*2%/ mark M expanded;

/*3%/ if (no transition is enabled at M) return;

/*4*/ AdvDelAlg() /* see Figure 19 */;

/*5*/ if (some enabled transition is not white, some visible transition
/*¥6%*/ is not white, and some white transition leads from M
/*¥7%/ either to M itself or to some marking in K) {
/*8%/ initialize the and/or-graph

/*9%/ protect all visible transitions and make others unprotected ;
/*¥10%/ Improve() /* see Figure 19 */;

/411

/*12%/ for (each enabled white transition ¢) {

/*¥13%/ let M’ be the marking to which ¢ leads from M ;
/*¥14*/ if (M isnotin V') {

/*15%/ insert M’ into V and mark M’ unexpanded ;
/¥16%/ }

/*17*/ insert (M,t, M') into A;

s}

/*19%/ if (' all enabled transitions are white or

/*20%/ all visible transitions are white) return;

/*21%/ insert M into K ;

/*22%/ for (each edge of A starting from M and ending to
/*23%/ an unexpanded marking) {

/*24%*/ let M’ be the marking to which the edge ends;
/*¥25%/ Traverse(M') 3

26%/)

/*27*/ remove M from K ; }

/*28%/ void Generate(void /* no argument */) {

/*29%/ make V, A and K empty ;

/*30%/ insert the initial marking into V';

/*31%/ mark the initial marking unexpanded ;

/*32%/ while (V contains at least one unexpanded marking) {
/*33%/ let M be some unexpanded marking in V';

/*34%/ Traverse(M); } }

Figure 20: A refined LTL-preserving reachability graph generation algorithm.

— 58 —

5.3 Treating operation fairness

We now consider verification under the assumption of operation fairness. In order to
guarantee that operation fair paths are sufficiently retained in a reduction, we extend
the assumptions A1-A5 by the following assumption A6 and then drop assumption
A4 since A4 and A6 together would simply force us to generate the full reachability
graph.

(A6) Let @ be a function from T to 27 such that for each t € T,
{t' €T |3s et W(st)#WH,s)} C w(t). Then TUY C T where
T={{t}|teT}and Y ={w(t) |t € T}.

From A6 it follows that all transitions are visible. The set w(t) contains at least
all those transition that are “visible w.r.t. the enabledness of t”, where visibility is
understood in the same way as in the discussion after Proposition 5.2. The separation
of 7 and)Y reflects the fact that the definition of operation fairness does not say
anything about what should happen if a transition is enabled at most finitely many
times.

Lemma 5.11 has the effect that if two paths in the full reachability graph start from
the same marking and have (7 U))-equivalent labels, then both of the paths are
operation fair or neither of them is operation fair.

Lemma 5.11 Assumptions:

Al and A6.

e M is a reachable marking, and x and y are paths that start from M in the full
reachability graph of the net.

The label of y is Y -equivalent to the label of x.

The path x is not operation fair.
Claim: The path y is not operation fair either.

Proof. From A6 it follows that y is both 7T-equivalent and Y-equivalent to z. Since x
is not operation fair, we conclude that z is an infinite path, and we can choose t € T'
in such a way that ¢ is enabled infinitely many times on z but occurs at most finitely
many times in .

Since y is T-equivalent to z, we conclude that y is an infinite path and ¢ occurs at
most finitely many times in y. Since y is Y-equivalent to xz, the w(t)-restriction of
the label of y is equal to the w(t)-restriction of the label of . From the definition of
w it thus follows that ¢ is enabled infinitely times on y. O

Lemma 5.11 is apparently analogous to Lemma 5.1. If we had defined an action-
oriented version of LTL [42, 55], operation fairness could have been expressed as

— 59 —

an ordinary formula (except possibly in the case that the set of transitions is infi-
nite), and A6 would have been obtained as a side effect of the ordinary construction
principles of Y.

Note that Y-equivalence does not imply 7 -equivalence. If a net has transitions but
no place, we can let w(t) = @ for each transition ¢, with the consequence that any
two transition sequences are Y-equivalent. On the other hand, being in the same
strict trace does not imply Y-equivalence. If we return to the example concerning
the net in Figure 4, we see that the sequences (abcfdg)(abcfdg)(abcfdg) ... and
(abfedg)(abfedg)(abfedg) . .. are not Y-equivalent since both of ¢ and f must be in
w(e).

Lemma 5.12 is much like Lemma, 5.6. The effective difference is that the assumption
A4 has been replaced by the assumption A6, the sequence being handled is definitely
infinite and a label of an operation fair path.

Lemma 5.12 Assumptions:

o A1, A2, A3 and A6.

e MeM,ceT* peT*® and L CT are such that M is a reachable marking,
Mlop) and L is the set of those transitions that occur in o.

e The path starting from M and being labelled by op in the full reachability graph

s operation fair.

Claim: We can define a function 3 from N to (T \ L)*, functions & and n from N to
T*, a function p from N to M and a function 0 from N to T in such a way that
for each n € N,

o E(m)6(n) =,
M[B(n)) su(n),
u(m)lon(m)o(n)).

B(n)on(n) is T-equivalent to a&(n), and

e n=0V
(mn>0AN (YmeNVte L pu(m)t)f=m>n)A
(Ftn € T\ L B(n) = B(n —1)tn)) V
(n>0A Gty € L p(n—1in)s) AB(n) = B(n —1)).

Proof. [[The proofs in this section repeat much of the text in the proofs in Section
5.1. The alternative would have been either to list the differences only, with the risk
of fatal ambiguity, or to transform the lemmas in Section 5.1 into a more generic
form, with the risk of fatal obscurity.]]

We use induction on n. By letting 8(0) = €, £(0) = ¢, n(0) = ¢, p(0) = M and
6(0) = p, we make the claim hold when restricted to n = 0. Let then ¥ € N. Our
induction hypothesis is that the claim holds when restricted to n = k.

— 60 —

o If there exists 7 € L such that u(k)[7) s, we let B(k+1) = B(k), £(k+1) = &(k),
n(k + 1) = n(k), u(k + 1) = p(k) and 6(k + 1) = 6(k). The induction step is
thus trivial in this case.

In the below considerations, no transition of L is f-enabled at u(k). Using the induc-
tion hypothesis, we then immediately conclude that for each m < k-+1, no transition
of L is f-enabled at p(m). Since we also know (by the induction hypothesis) that o
is enabled at p(k), Lemma 4.2 has the effect that o € (T'\ f(u(k)))*.

e Let us consider the case where 7n(k) contains a transition from f(u(k)). Then
we can choose 1, € f(u(k)), vi € (T'\ f(u(k)))* and x € T in such a way
that vx7(x = n(k). From the induction hypothesis it follows that there exists
a marking M such that u(k)[oyx7i)M. Since oy, € (T \ f(u(k)))*, Lemma
5.3 has the effect that wu(k)[rroyk)M, and 7x07y; is T-equivalent to oygTy.
So, B(k)mkovilr is Y-equivalent to B(k)oyrmlx = B(k)on(k) which by the
induction hypothesis is T-equivalent to 0£(k). The induction step thus succeeds
by letting B(k+1) = B(k)7k, {(k+1) = &(k), n(k+1) = v, (x and 6(k+1) = 6(k),
and by requiring that u(k)[m%)u(k + 1).

e Let us then consider the case that (k) contains a transition from f(u(k)) but
n(k) does not. Then we can choose 7, € f(u(k)), v& € (T'\ f(u(k)))* and
¢k € T*UT® in such a way that y;7x(x = 6(k). From the induction hypothesis
it follows that there exists a marking M such that wp(k)[on(k)yi7k)M. Since
on(k)yk € (T\ f(n(k)))*, Lemma 5.3 has the effect that u(k)[rxon(k)yr) M, and
Tron(k)yg is Y-equivalent to on(k)ye7x. So, B(k)mkon(k)yx is T-equivalent to
B(k)on(k)vyi T, which by the induction hypothesis is T-equivalent to o€ (k) 7.
The induction step thus succeeds by letting B(k + 1) = B(k)7x, &(k + 1) =
E(k)viTk, n(k + 1) = n(k)yx and 8(k + 1) = (x, and by requiring that
n(Dmenlk + 1)

e In the ultimate remaining case, on(k)8(k) € (T \ f(u(k)))®°. Let = be a path
in the full reachability graph in such a way that z starts from p(k) and is
labelled by on(k)0(k). (The induction hypothesis lets us define such a path.)
Since (because of the induction hypothesis), 3(k)on(k)0(k) is T-equivalent to
0&(k)0(k) = op, Lemma 5.11 has the effect that the path starting from M
and being labelled by B(k)on(k)0(k) in the full reachability graph is operation
fair. On the other hand, M[B(k))u(k) (because of the induction hypothesis).
Consequently, the path x is operation fair.

By D2, f(u(k)) has at least one dynamic key transition at u(k). Let ¢ be any
dynamic key transition of f(u(k)) at (k). Since on(k)8(k) € (T'\ f(u(k)))*,
t is enabled at all markings on x, but x does not contain any occurrence of ¢.
So, z is not operation fair. We have thus reached a contradiction. This means
that there is no case where we would have on(k)0(k) € (T \ f(u(k)))*. O

Lemma 5.13 is a similar analogy to Lemma 5.7 ad Lemma 5.12 is to Lemma 5.6.
Again, the assumption A4 has been replaced by the assumption A6. The sequence to
be transformed is definitely infinite and a label of an operation fair path, the result of
the transformation is a permutation of the original sequence, and the prefix covering
condition has been fixed according to the fact that J = 0.

—61 —

Lemma 5.13 Assumptions: A1, A2, A3, A5 and A6.

Claim: For each " € T*, for each p' € T and for each M' € M, if M'[c"p'), M’ is
p p
f-reachable from My and the path starting from M’ and being labelled by o p' in the
full reachability graph is operation fair, then there exist 4" € T*, 6 € T*, §y € T*,
p" € T™ and M" € M in such a way that v"p" = p', M'[61) s M", M"[d2p"), 61

T-exhausts a”, and 6102 is T-equivalent to a”+".

Proof. [[It basically suffices to repeat the proof of Lemma 5.7 literally, with the
following modifications: the induction hypothesis must refer to the claim of the
lemma being proved, the reference to Lemma 5.6 is replaced by a reference to Lemma,
5.12, and an observation concerning operation fairness is needed in the induction

step.]]

Due to A6, the set J is empty. We use induction on the length of ¢”. The claim
holds trivially when restricted to ¢’ = e. Our induction hypothesis is that the claim
holds when restricted to any ¢” of length n > 0. Let 0 € T*, p € T and M € M be
such that M[op), M is f-reachable from My, the length of o is n + 1, and the path
starting from M and being labelled by op in the full reachability graph is operation
fair.

Let L be the set of those transitions that occur in ¢. Then we can define a function
B from N to (T \ L)*, functions & and 7 from N to T*, a function p from N to M
and a function € from N to T* UT in the way stated in the claim of Lemma 5.12.
We thus have that for each k € N, {(k)0(k) = p, M[B(k))sp(k), p(k)[on(k)0(k)),
and B(k)on(k) is T-equivalent to a&(k).

Let us first assume that there are no ¥’ € N and 7' € L that would satisfy pu(k")[7').
Let us call this assumption B. Let ¢ be any transition in L. From B and A5 and
from the emptiness of J it follows that there exists k” € N such that ¢ € f(u(k")).
Consequently, there must be some k; < k", t' € LN f(p(k1)), v € (L\ f(p(k1)))*
and 4/ € L* such that o = vt'y'. Since pu(k1)[o), from D1 it follows that p(k1)[t’)s.
We have thus reached a contradiction with B.

So, we can choose ¥’ € N and 7/ € L such that u(k")[7’')s. Since u(k')[o), there
are some t1 € f(u(k'), § € (T \ f(u(k')))* and &' € T* such that ¢ = §t14'.
Since p(k')[on(k")0(k')), from Lemma 5.3 it follows that there exists a marking
M; such that p(k')[t1) M1, M1[66'n(k")0(K'")), and t10d" is T-equivalent to o. So,
B(k")t166'n(k') is T-equivalent to a&(k’) since B(k')on(k’) is T-equivalent to o&(k’).

Let = be the path starting from M and being labelled by op in the full reachabil-
ity graph. Respectively, let y be the path starting from M and being labelled by
B(k")t168'n(k')0(K') in the full reachability graph. Finally, let z be the path starting
from M, and being labelled by 06'n(k")0(k") in the full reachability graph. Since z is
operation fair and o&(k')0(k’) = op is T-equivalent to B(k’)t166'n(k')0(k’), Lemma
5.11 has the effect that y is operation fair. Since M[B(k’)t1)M;, we conclude that z
is operation fair, too.

By the induction hypothesis, there exists 4" € T*, §; € T*, 6o € T*, p"" € T
and My € M in such a way that v"p" = n(k")0(k'), M1[61) s Ma, Ms[d2p"), 01 T-
exhausts §¢’, and 195 is T-equivalent to 66’y". Then M[B(k')t101) s M2 and B(k')t101
T-exhausts §t10’ = o.

—62 —

Let us first consider the case that 4" is shorter than n(k’). Let d3 € T* be such
that y”ds = n(k’). Then 030(k’) = p”’. We thus have that Ms[d2d56(k")). On the
other hand, {(k')0(k') = p. Moreover, B(k')t10102035 is T-equivalent to o§(k’) since
010203 is T-equivalent to §6’~"d3 = §d'n(k’) whereas B(k')t100'n(k’) is T-equivalent
to o&(k').

Let us then consider the case that +" is at least as long as n(k’). Let 64 € T
be such that n(k')ds = +". Then d4p" = 6(k’). We thus have that £(k')dsp"” =
E(K")O(K") = p. On the other hand, M5[d1d2p"). Moreover, B(k")t10102 is T-equivalent
to o&(k’)d4 since §102 is Y-equivalent to §6'y"” = 60'n(k’)ds whereas B(k')t166'n(k")
is T-equivalent to o&(k’). O

Lemmas 5.14 and 5.15 are similar continuations to Lemma 5.13 as lemmas 5.8 and
5.9 are to Lemma 5.7.

Lemma 5.14 Assumptions:

o A1, A2, A3, A5 and A6.
e M € M and o € T are such that M|[c), and M is f-reachable from M.
e The path starting from M and being labelled by o in the full reachability graph

18 operation fair.

Claim: We can define a function p from N to M, functions B8, A, ¢ and v, from N
to T* and a function 0 from N to T in such a way that for each n € N,

* ((n)y(n)b(n) = o,
o M[B(n))rp(n),
o p(n)[A(n)6(n)),

e the path starting from p(n) and being labelled by A(n)0(n) in the full reachability
graph is operation fair,

e 3(n) T-ezhausts ¢(n),
e B(n)\(n) is Y-equivalent to ((n)y(n), and

e n=0V
(n>0AEneT Bn)=Bn—m)AEEETH ¢(n)=C(n—1)e)).

Proof. [[It basically suffices to repeat the proof of Lemma 5.8 literally, with the
following modifications: an observation concerning operation fairness is needed before
applying any inductive argument, and the reference to Lemma 5.7 must be replaced
by a reference to Lemma 5.13.]]

We use induction on n. By letting p(0) = M, 3(0) =€, A(0) =¢, (0) =¢, y(0) =¢
and #(0) = o, we make the claim hold when restricted to n = 0. Let then k € N. Our
induction hypothesis is that the claim holds when restricted to n = k.

— 63 —

From the induction hypothesis it follows that u(k) is f-reachable from My, \(k)6(k)
is enabled at u(k), and the path starting from u(k) and being labelled by A(k)6(k)
in the full reachability graph is operation fair. By Lemma 5.13 we can thus choose
1 €T, &L eT*, pe T, n € T gy € T* and M; € M in such a way that
&1&2p = 0(k), p(k)[m) My, My[n2p), m T-exhausts A(k)&1, and n17; is T-equivalent
to)\(k)fléé

Now ((k)v(k)¢1&20 = ((k)y(k)8(k) which by the induction hypothesis is equal to
o. Since p(k)[m)sMy and (because of the induction hypothesis) M[3(k))su(k), we
conclude that M[B(k)n:)sM;. Since n; T-exhausts A\(k)&; whereas (because of the
induction hypothesis) S(k)A(k) is T-equivalent to {(k)y(k), we conclude that 8(k)n:
T-exhausts B(k)A(k)&1 which in turn T-exhausts ¢(k)y(k)€1. (The “exhausting” in-
cluded in the induction hypothesis is not utilized.) Since m172 is T-equivalent to
A(k)&1€2 whereas B(k)A(k) is T-equivalent to ((k)vy(k), we conclude that B(k)nine
is T-equivalent to B(k)A(k)&1&2 which in turn is T-equivalent to ((k)y(k)€1&2. Since
&1 € TT whereas 11 T-exhausts A(k)¢1, we conclude that n; € T.

Let = be the path starting from (k) and being labelled by A(k)6(k) in the full
reachability graph. Respectively, Let y be the path starting from p(k) and being
labelled by 71m2p in the full reachability graph. Finally, let z be the path starting
from M; and being labelled by 72p in the full reachability graph. Since the path x is
operation fair and A(k)&1&2p = A(k)6(k) is T-equivalent to 717m2p, Lemma 5.11 has
the effect that y is operation fair. Since u(k)[n1)M;, we conclude that z is operation
fair, too.

The induction step thus succeeds by letting u(k + 1) = M, Bk + 1) = B(k)mn,
Ak +1) =2, ((k + 1) = ((k)y(k)&1, v(k +1) = & and 6(k + 1) = p. O

Lemma 5.15 Assumptions: A1, A2, A8, A5 and A6.

Claim: For each o' € T and for each M" € M, if M"[¢"), M" is f-reachable from
My, and the path starting from M" and being labelled by o” in the full reachability
graph is operation fair, then there exists 6" € T in such a way that M"[6"); and
0" is Y-equivalent to o".

Proof. [[It basically suffices to repeat the proof of Lemma 5.9 literally, with the
following modifications: the reference to Lemma 5.8 must be replaced by a reference
to Lemma 5.14.]]

Let 0 € T and M € M be such that M[o), M is f-reachable from My, and the path
starting from M and being labelled by ¢ in the full reachability graph is operation
fair. We can then define a function p from N to M, functions 3, A, ¢ and =, from
N to T* and a function 0 from N to T in the way stated in the claim of Lemma
5.14. The function g represents an infinite transition sequence that is f-enabled at
M. Let w be this infinite sequence.

e Let & be any finite prefix of . Then there must be m € N in such a way
that £ is a prefix of {(m). Now ((m) T-exhausts ((m) whereas B(m)\(m) is
T-equivalent to {(m)y(m). Consequently, for any Y € T, the Y-restriction of
¢ is a prefix of or equal to the Y-restriction of 3(m). On the other hand, we
know that 3(m) is a finite prefix of w.

— 64 —

e Let 7 be any finite prefix of w. Then there must be n € N in such a way that
n is a prefix of B(n). Now S(n)A(n) is T-equivalent to {(n)y(n). Consequently,
for any Y € T, the Y-restriction of 7 is a prefix of or equal to the Y-restriction
of ((n)y(n). On the other hand, we know that {(n)y(n) is a finite prefix of o.

From the above considerations it follows that the infinite sequence w is T-equivalent
to the infinite sequence o. O

We are now ready to present a preservation theorem for operation fair paths.

Theorem 5.16 Assumptions: A1, A2, A3, A5 and A6.
Claims: C1 and C2 of Theorem 5.10 and

(C5) For each operation fair infinite path starting from My in the full reacha-
bility graph, there exists an operation fair infinite path starting from My in the
f-reachability graph in such a way that the labels of the paths are Y -equivalent.

Proof. Again, C1 follows trivially from D2 and C2 is an immediate consequence of
Lemma 5.4. C5 in turn follows directly from lemmas 5.11 and 5.15. O

Though (7 U))-equivalence preserves operation fairness and its negation, Theorem
5.16 does not promise anything that would concern the paths that are not operation
fair. Let Y’ be an arbitrary subset of 27, thus not required to satisfy A6. By
substituting Y’ for T in Theorem 5.10 and Y/ U7 UY for T in Theorem 5.16, one could
present a corollary to be applied when operation fair counterexamples are expected
but a total absence of operation fair counterexamples makes any counterexample
acceptable. However, nothing prevents us from simply verifying a formula first under
fairness assumptions and then without fairness assumptions. Such a simple approach
is even recommendable since retaining several less than strictly related things during
a single state space construction is one of the most typical ways to promote state
space explosion.

We could now proceed into algorithms, but the truth is that Theorem 5.16 is effec-
tively so close to the corresponding theorems in [55, 56] that it does not seem to imply
any algorithmic contribution. A6 clearly forces the used dynamically stubborn sets
to be strongly dynamically stubborn. This can in a sense be considered a justification
for the explicit treatment of strongly dynamically stubborn sets.

Some comments concerning the ignoring phenomenon [77] are perhaps appropriate
here. When used formally, the term “ignoring” means the negation of some fairness
assumption. The definition used in [77] is oriented towards the verification of certain
safety properties. However, since [77] is often referred to without explanations, it
should be made clear that the definition of ignoring in [77] is inappropriate in the
context of LTL. According to [77], a transition is ignored at a marking in a reduced
reachability graph iff the transition is enabled at the marking but the graph has no
path that would start from the marking and would contain an occurrence of the
transition. To see the incompatibility with LTL, let us again return to the net in
Figure 4. It is tempting to speculate that A1-A5, AV-strong dynamic stubborn-
ness and absence of ignoring (with the meaning given in [77] and repeated above),

—65 —

might together help us in verifying a formula under the assumption of operation
fairness. Let &(M(z) = 1) be the formula that we try to verify. We can then
choose T = {{6}} Let M(] be the initial marking, Mo[a>M1, Ml[b>M2, MQ[C>M3,
M3[d>M4, M3[€>M5, M3[f>M6, and M4[f>M7 In order to guarantee Al*A5, AV-
strong dynamic stubbornness of the chosen stubborn sets and absence of ignoring,
it suffices to choose the stubborn sets in such a way that the chosen set is {a} at
My, {b} at M1, {c} at My and the set of all transitions at all other encountered
nonterminal markings. Then the set of markings in the reduced reachability graph
is {My, My, My, M3, My, M5, Mg, M7}. The infinite paths starting from M in the
graph have labels where the sequences abcdfg and abcfdg are constantly repeated
or arbitrarily alternated. None of these paths is operation fair. However, the above
formula is not valid at Mj in the full reachability graph under the assumption of
operation fairness since the infinite path starting from M, and being labelled by
(abfcdg)(abfedg)(abfedg) . .. in the full reachability graph is operation fair.

5.4 Discussion

Our algorithms can be used in on-the-fly verification as such, by computing an in-
tersection of a Biichi automaton (that accepts exactly the sequences that satisfy the
negation of the formula to be verified) and the reduced reachability graph simulta-
neously with the construction of the latter.

Without strong practical evidence, it is difficult to say anything firm about how
efficient our approach is in practice when compared to some closely related tech-
niques. When a formula to be verified without fairness assumptions is presentable
as a Boolean combination of more than one usefully different formulas, our approach
can be expected to produce smaller reduced reachability graphs than the approach
in [78]. The time consumed in the computation of a single stubborn set depends
on the number of members in T (as can be seen from the complexity considerations
in Section 5.2) and on the basic way to compute stubborn sets (the deletion algo-
rithhm or the incremental algorithm). When fairness is not assumed and the formula
to be verified does not express a safety property, the algorithms in [56] are essen-
tially on-the-fly verification versions of the algorithms of [78], whereas [55] does not
recommend any special algorithm for such cases.

The tester technique in [81] can be considered more goal-oriented than our tech-
nique, but so far we have not found any automatic way to construct a useful tester
for an arbitrary formula. The visibility relaxation heuristic of [48] improves the tester
technique by utilizing the maximal strongly connected components of a tester state
space. (The treatment of visible transitions can to some extent be relaxed simply
by switching from the preferences in [81] to the preferences in [78, 80].) In [48], this
heuristic is shown to apply very well to automatically constructible Biichi automata,
too. However, this relaxation technique does not cover our approach. Let us con-
sider a verification task where we need a Biichi automaton that accepts exactly the
sequences that satisfy an nary conjunction of formulas. (The formula to be verified
then corresponds to an mary disjunction. If an nary conjunction were to be veri-
fied, we could verify it simply by verifying its conjuncts separately.) As can be seen
from the construction description [24, 48] and from Lemma 6 of [48], all conjuncts
become represented in every state of the automaton. Consequently, the visibility

— 66 —

relaxation heuristic in [48] does not take any obvious advantage of the fact that the
nary conjunction in question is a Boolean combination.

The idea to apply the stubborn set method to the verification of nexttime-less LTL-
formulas is quite natural because the satisfaction of a formula is measured w.r.t. an
execution that can be expected to contain some orders of actions that do not affect
the satisfaction. Some kinds of a stubborn set method have been presented for the
verification of branching time temporal properties, too, but the suggested solutions
[23, 62, 98] place extremely strict assumptions on the stubborn sets used.

—67 —

6 On heuristics for stubborn set computation

One critical factor in the incremental algorithm possibly producing unnecessarily
large stubborn sets is the choice of a scapegoat. A scapegoat is a disabling place
chosen during the execution of the incremental algorithm for a disabled transition.
In Section 6.1, the gravity of the problem together with some heuristics for choosing
a scapegoat are described in the context of a classical example.

From the basic deletion algorithm, it is easy to derive a non-brute-force algorithm that
finds a stubborn set that contains the least number of enabled transitions. The point
of Section 6.2 is that though the obtained minimization algorithm is not practical as
such, an incomplete version of the algorithm can be quite practical.

Many of the algorithms in this thesis have been implemented in a tool called PROD
[94, 95]. All of the experimental observations mentioned in this chapter and later in
this thesis have been obtained by using PROD.

6.1 On choosing a scapegoat in the incremental algorithm

The next example shows that it is by no means exaggerated to say that the stubborn
sets computed by the incremental algorithm may contain unnecessarily many enabled
transitions.

Figure 21 presents a data base system of n > 2 data base managers. The predi-
cate/transition net [22] in the figure is equivalent to the coloured Petri net in [40].
The contained resource allocation and a great amount of concurrency makes the sys-
tem inherently very suitable for the stubborn set method. Let us assume the most
obvious unfolding [22] into a place/transition net. The image of a transition instance
of the predicate/transition net is a transition of the place/transition net, the image
of a place-tuple pair of the predicate/transition net is a place of the place/transition
net, etc. The full reachability graph of the place/transition net has n - 3"~1 + 1
vertices and 2n(1+ (n—1)-3""2) edges [75, 77]. The stubborn set method is capable
of producing a reduced reachability graph having 2n2 —n + 1 vertices and 2n? edges
[75, 77]. In the reduced reachability graph in question (unique up to isomorphism),
the vertex corresponding to the initial marking has n immediate successors. Every
other vertex has one and only one immediate successor. From now on, this reduced
reachability graph will be called the A-graph.

We shall now investigate the behaviour of the incremental algorithm in the above
place/transition net. Definition 4.21 implies that for each marking M, if a transition
t is enabled at M and s is an input place of ¢, then Ey(M,t,s) = E4(s). The function
E5 is thus certainly preferable to the function F3 in the incremental algorithm as
far as this net is concerned. So we choose the corresponding choice function b (that
occurs in Definition 4.23) to be the function that has the value 2 everywhere.

We shall present four scapegoat generators, called «, 3, v, and 0. The scapegoat
generator a is a pathological scapegoat generator not leading to any reduction. The
scapegoat generators (3, 7y, and § look much like a but v and ¢ lead to the A-graph,
and [leads close to the size of the A-graph. In addition, pseudo-random scapegoat
generators are considered. They tend to be almost as bad as a.

receive
message

<y>

<X, y>

J(X)

update
and send
messages

<>

<X>

J(X)

— 68 —

received

<y>

performing

J(X)

<>

send
acknow-
ledgement

acknowledged

receive
acknow-
ledgements

<X>

(JX)=J3(x, 1) +...+J(X,n-1))

(I, 1) = <X, ((X’=1+i) mod n)+1>)

Figure 21: A data base system.

— 69 —

The scapegoat generator « is defined as follows: a(M’,t’) is defined iff the transition
t' is disabled at the marking M’. Let a transition ¢ be disabled at a marking M. Let
(M, t,p1,...,p;) denote the first element in a place list pq,...,p; that is a disabling
place of t at M. Then

(K(M; t, <~’L'I>ina.ctive: <>exclusion; (J(-'Ela 1))unused; ceey (J(wla n— 1))unused)
ift = <xl>update and send messages;
K(Ma t: (J(mla 1))acknowledged, ey (J(:I;I, n— 1))acknowledged: <-’I;I>waiting)
ift = <.’L'I>receive acknowledgements)
K(M, L, <y,>inactivea <x/’ yl>sent) ift = <-'l7la yl>receive message»
. E(M, t, <y,)performing, <$I, yl>received) ift = <$Ia yl>send acknowledgement -

a(M,t) = <

Note that (', y')receive message corresponds to the instance of the high-level transition
“receive message” with z = 2z’ and y = y’ whereas (2,9)sent corresponds to the
pair of the high-level place “sent” and tuple (z’,y’). The other indexed tuples are
analogous.

It can be shown that for each marking M that is reachable from the initial marking
and for each transition ¢ that is enabled at M, ET,(«, b, M,t) contains all transitions
that are enabled at M. (In the proof, an exhaustive investigation of Fy4 is carried out
manually. Formal parameters are used instead of concrete values.) This means that
the incremental algorithm (optimized or not) has no reductive effect. The rotation
from s to the next possible manager in the definition of (M, (') receive acknowledgements)
is the actual pathological property of a. Experiments with PROD have indicated that
this kind of stepping from a manager to another manager occurs very often when a
pseudo-random scapegoat generator is used. As a result, pseudo-random generators
tend to be almost as bad as a.

The pathological property of a can be eliminated by using a fixed manager when
possible. Let H(z',i) be (z',i) if ' > 4, and (z’,7 + 1) if 2’ < 4. The scapegoat
generator (is defined as a with the following exception:

ﬁ(M, t) - E(M, t, (H(mla 1))acknowledged, ey (H(xla n— 1))acknow1edgeda <-’B,>waiting)
ift = <xl>receive acknowledgements and ? is disabled at M.

We conjecture that when the incremental algorithm (optimized or not) and 3 are
used, the reduced reachability graph has 4(n — 2) vertices and 8(n — 2) edges more
than the A-graph. (This conjecture has been obtained by letting PROD generate
reduced reachability graphs for different values of n, and by inspecting the structure
in each of the generated graphs.)

In the scapegoat generator 7y, the places representing the phases of the managers have
the highest priority. The scapegoat generator v is defined as a with the following
exception:

7(M7 t) = K(1\4: t; <~7;I>waiting; (J(-'EI; 1))a,cknow1edged7 R (J(xla n— 1))acknowledged)
if ¢t = <$I>receive acknowledgements and ¢ is disabled at M.

The scapegoat generator § has been got by considering that if a transition has a
unique characteristic input place, then that place should have the highest priority.

— 70 -

The scapegoat generator ¢ is not pure in that sense but shows the sufficient inter-
change to transform « into an optimal scapegoat generator. The scapegoat generator
0 is defined as a with the following exception:

J(Ma t) = K(M, t, <$,1 yl>receiveda <yl>performing)
if t = (2, y")send acknowledgement and ¢t is disabled at M.

In the same way as in the case of , it can be shown that for each non-initial marking
M that is reachable from the initial marking and for each transition ¢ that is enabled
at M, the set of enabled transitions in E7,(y,b, M,t) is {t}, and the set of enabled
transitions in E7,(d,b, M,t) is {t}. As a consequence, the incremental algorithm (op-
timized or not) produces the A-graph.

The above example suggests some heuristics for choosing a scapegoat. The scapegoat
generator § suggests absolute ordering w.r.t. identity numbers, the scapegoat gener-
ator v suggests giving a process control place the highest priority, and the scapegoat
generator § suggests giving a unique characteristic input place the highest priority.
All these strategies are fixed order strategies in the sense that always the first possible
alternative in a fixed list is chosen.

Some strategies work without knowledge of the modelled system. One of such strate-
gies minimizes the number of enabled immediate successors of a vertex that are not in
any maximal strongly connected component already found in the dependency graph.
On the second priority level, it minimizes the number of all immediate successors of
the vertex that are not in any maximal strongly connected component already found.
On the third priority level, it minimizes the number of those immediate successors
of the vertex that have not been visited yet.

A pseudo-random scapegoat generator is probably far from optimal if the incremental
algorithm is as instable as in the above example. On the other hand, it is often
useful to compare a given strategy to a pseudo-random strategy to see how good the
strategy is. A pseudo-random strategy is a good measuring stick since it employs no
knowledge of the system. If a strategy gives better (worse) results than a pseudo-
random strategy, there must be something good (bad) in the strategy.

The deletion algorithm can also be used to estimate how good the incremental al-
gorithm could be even though the deletion algorithm may sometimes compute a
stubborn set containing more enabled transitions than a stubborn set computed by
the incremental algorithm. The choice of an enabled transition to be deleted is a
nondeterministic factor. In the case of the net in Figure 21, the nondeterminism as-
sociated with the deletion algorithm does not affect the number of enabled transitions
in the computed stubborn set.

6.2 An incomplete minimization algorithm

Let us consider the problem that we have some subset T, of enabled transitions and
we want to know if there exists a stubborn set that contains all transitions of T
but no other enabled transitions. We can solve this problem simply by running the
deletion algorithm with the constraint that members of T, are not allowed to be

71 -

removed. If a stubborn set of the desired kind exists, we get such. Otherwise we get
a stubborn set that contains all transitions of T, and at least one additional enabled
transition.

By solving the above T,-problem for each subset of enabled transitions in turn, we
find a stubborn set that has the least number of enabled transitions. Such a mini-
mization is somewhat impractical since we cannot assume that the number of enabled
transitions would always be sufficiently small. However, we can use an incomplete
form that can be considered practical.

The incomplete minimization algorithm is presented in Figure 22. The presented form
is not the most general possible but here we have decided not to introduce parameters
that do not vary in the applications presented later in this section. The set returned
by the function IncmplMin is the set of enabled transitions in the chosen stubborn
set. (The type of the return values, Set_of_transitions, is assumed to have been
defined appropriately.) Complete minimization is performed if at most 5 transitions
are enabled. Otherwise T, varies only over sets of size 1, and in the case of “failure”,
one of the so far found stubborn sets is chosen in such a way that none of the so far
found sets contains less enabled transitions.

/*1*/ Set_of_transitions IncmplMin(void /* no argument */) {

/*2*/ BasDelAlg() /* see Figure 16 */;

/*¥3%/ if (the set of enabled white transitions contains all enabled
[*4*/ transitions or does not contain more than one enabled

/*5%/ transition) return the set of enabled white transitions;
/*6*/ make a backup set from the set of enabled white transitions;
/*7*/ initialize a variable L to the size of the backup set ;

/*8*%/ if (more than 5 transitions are enabled) set L equal to 2;
/*9*/ initialize a variable 7 to 1;

/*10%/ while (i< L) {

/*¥11%/ for (each subset T, of enabled transitions of size ¢) {
/*¥12%/ initialize the and/or-graph;

/*13*/ protect the transitions in T, and make others unprotected ;
/*¥14%*/ Cunstr() /* see Figure 16 */;

/*15%/ if ('all enabled white transitions are protected)

/*16*/ { discard the existing backup set ; return T¢; }
/*17*/ if (L > the number of enabled white transitions) {
/*18%/ discard the existing backup set ;

/*19%/ make a backup set from the set of enabled white transitions;
/*20%/ set L equal to the size of the backup set ;

/*21%/ }}add1toij}

/*22%/ return the existing backup set; }
Figure 22: The incomplete minimization algorithm.

The incomplete minimization algorithm has the same worst-case space complexity
as the deletion algorithm. The time taken by an execution of the incomplete mini-
mization is at most proportional to the time taken by an execution of the deletion
algorithm multiplied by max(p, 32) where p is the maximum number of enabled
transitions at a marking.

72—

The incomplete minimization algorithm can be extended to support the refined LTL-
preserving stubborn set method of Chapter 5. However, we are more or less forced to
make a compromise in what we try to minimize because in the algorithm in Figure 20,
a preliminary stubborn set may have to be replaced by a stubborn set that contains
all visible transitions. One feasible compromise is just to modify the algorithm in
Figure 19 in such a way that we first try to minimize the number of enabled visible
transitions if possible and then the number of enabled invisible transitions. (The
algorithm in Figure 20 would not be modified in this compromise.)

We now consider three cases that have been studied with the aid of PROD. The
first case is MULOG, a distributed mutual exclusion algorithm [26]. The second
case is PFTP, a file transfer protocol [36]. The last case is YXA, a telephone proto-
col designed for educational purposes in Nokia Telecommunications Oy. The below
statistics were obtained by running PROD in Linux on a 100 MHz Pentium with 64
Megabytes of RAM. The reduced reachability graphs that were under construction
were kept in files.

n | algorithm | vertices edges | user time | system time | elapsed time
3 | IMA 1453 1476 14s 1s 15s
3 | DAA 1467 1490 15 s 1s 16 s
3 | TA1 4532 5534 12 s 2s 15 s
3 | TA2 4572 5590 12 s 2s 14s
4 | IMA 15193 15534 295 s 7s 317 s
4 | DAA 15061 15402 310 s 7s 338 s
4 | TA1 77142 95980 380 s 58 s 568 s
4 | TA2 77661 96721 383 s 56 s 525 s
5 | IMA 174649 | 178584 6158 s 154 s 7139 s
5 | DAA 172297 | 176232 6482 s 136 s 7140 s
5 | TA1 1380020 | 1723416 12201 s 3063 s 70916 s
5 | TA2 1388374 | 1734826 12426 s 3528 s 75648 s
Figure 23: Statistics of MULOG
algorithm | vertices | edges | user time | system time | elapsed time
IMA 5655 | 6418 962 s 8s 985 s
DAA o758 | 6615 964 s 9s 1000 s
TIA1 14148 | 19545 6895 s 33 s 7212 s
TA2 18928 | 27307 7770 s 14 s 7799 s

Figure 24: The statistics of PFTP.

The statistics include the number of vertices and edges in the reduced reachability
graph, as well as the so called user time, system time and elapsed time of the genera-
tion of the graph when generated with different stubborn set computation algorithms:
the incomplete minimization algorithm (IMA for short), the deletion algorithm alone
(DAA for short), and two versions of the incremental algorithm (IA1 and IA2 for
short). IMA, DAA, TA1 and TA2 are actually on-the-fly verification algorithms close
to the algorithms in [81]. Anyway, all these algorithms generate useful reduced reach-
ability graphs completely when the property to be verified holds. In cases where all
transitions are invisible and the property to be verified holds, IMA behaves exactly

- 73 —

k | algorithm | vertices edges | user time | system time | elapsed time
9 | IMA 27271 28961 282 s 11s 314 s
9 | DAA 125346 | 135735 1282 s 74s 1525 s
9 | IA1 638316 | 735463 1485 s 587 s 8000 s
9 | TA2 497877 | 629506 1022 s 399 s 3602 s
10 | IMA 35114 37085 379 s 15 s 424 s
10 | DAA 168547 | 181260 1778 s 114 s 2129 s
10 | TA1 897495 | 1015580 2294 s 1172 s 25661 s
10 | TA2 671636 | 833660 1427 s 708 s 11065 s
11 | IMA 44517 46798 5933 s 21s 600 s
11 | DAA 221935 | 237284 2510 s 170 s 3034 s
11 | TA1 1231401 | 1372943 2985 s 2383 s 67478 s
11 | TA2 884726 | 1081029 2078 s 1407 s 31243 s

Figure 25: The statistics of YXA.

like the algorithm in Figure 22 whereas DAA behaves exactly like the algorithm in
Figure 16.

As described in Section 4.3, the incremental algorithm performs a search in a non-
deterministically chosen transition dependency graph. IA1 performs a full search
in order to avoid unnecessarily many enabled transitions, whereas IA2 accepts the
first stubborn set found. The worst-case time complexity of both IA1 and TA2 is
the worst-case time complexity of DAA divided by the maximum number of enabled
transitions at a marking. The worst-case space complexity of both TA1 and TA2 is
the same as the worst-case space complexity of DAA.

Note that while the so called elapsed time measures the “real world” time, it is
then also affected by the other programs run in the Linux system. However, the
experiments considered in this section were arranged in such a way that the elapsed
times were not considerably affected by the other programs, except those performing
the associated hard disk operations. All of the listed values for the user time, system
time and elapsed time are raw numbers obtained from the computer in a single
run of a batch program. We must admit that this is not the best possible way to
report error-prone measurements. The batch program in question should be run tens
of times under the same circumstances so that mean values and mean divergences
could be reported. The author of this thesis has run that batch program a couple
of times only but has still the opinion, based on some knowledge about Linux and
other Unix-style operating systems, that the listed time values are reliable enough
up to the precision of one digit.

In MULOG, there are n processes which communicate by sending messages. A mes-
sage queue can have at most two messages at a time. There is exactly one visible
transition, testing if more than one process could be in the critical section simultane-
ously. Each of IMA, DAA, TA1 and TA2 produces a reduced reachability graph where
this transition does not occur. At most one process can thus be in the critical section
at a time. Figure 23 shows the statistics of the MULOG case with different values
of n. The relatively small but strange looking differences in user times between IMA
and DAA are at least partially caused by the fact that the produced graphs are not
equally easy to produce.

— 74 —

A detailed description of PFTP is given in Section 14.5 of [36]. Here we assume
that messages are neither lost nor duplicated. The window size is 2, and a message
queue can have at most two messages at a time. All transitions are invisible. Each of
IMA, DAA, IA1 and IA2 result in a reduced reachability graph that has no terminal
marking. From this it follows that under the above assumptions, the protocol is free
of deadlocks. Figure 24 shows the statistics of PFTP.

As far as the PFTP case is concerned, the algorithms in PROD may seem less efficient
than the algorithms in the SPIN tool [36, 37]. A partial explanation is that SPIN uses
a different modelling formalism and a different definition of stubbornness that can
utilize the special properties of some frequently needed operations [29, 56]. Another
partial explanation is that SPIN stores states more compactly than PROD.

YXA is a simple telephone protocol which nevertheless includes most of the relevant
aspects, such as charging, needed in any real world telephone protocol. In abstract
terms, we again have processes that communicate by sending messages. A message
queue can have at most k messages at a time. Because of the more or less inevitable
state space explosion, we keep the number of processes at its least possible value. All
transitions are invisible. Again, each of IMA, DAA, TA1 and TA2 result in a reduced
reachability graph that has no terminal marking. The protocol (actually a corrected
version of the original YXA) is thus free of deadlocks. Figure 25 shows the statistics
of the YXA case with different values of k.

Note that even the statistics of MULOG and PFTP can be seen to be positive for the
incomplete minimization algorithm since they indicate that the time taken by the
algorithm to compute a stubborn set is not necessarily such a bottleneck in practice
as could be feared on the basis of the worst case complexity. The number of enabled
transitions of course matters but can, with a little thinking, often be kept small
enough.

The design of the used models of MULOG, PFTP and YXA has supported rather
DAA than IMA since if the orders of transitions used in deletions would have been
mixed arbitrarily, there would most probably have been more branching in the re-
duced reachability graphs produced by DAA. No similar effort has been made to
support TA1 or TA2 because, as can be concluded from Section 6.1, it is extremely
difficult to support the incremental algorithm in nontrivial cases. Good ways for
transition ordering in the deletion algorithm have been presented in [74].

6.3 Discussion

The incomplete minimization algorithm seems to be worth of consideration whenever
one wants to get proper advantage of the stubborn set method. Unfortunately, trying
to minimize branching is no superior strategy for getting as small reduced reachability
graphs as possible. Though the example given in [75] would suffice, let us consider
a pathological case, the net in Figure 26. The only way to obtain a finite reduced
reachability graph is to choose a set containing b and c for the stubborn set at some
non-initial marking though {a} would have less enabled transitions.

Actually, there is hardly no superior strategy [55, 75]. On the other hand, it is
difficult to imagine a general heuristic that would try to minimize the size of the

— 75—

q p r

O—L—O—[—©
d<—© a O_,e

X y

Figure 26: Minimization of branching is by no means guaranteed to result in a
minimum-size reduced reachability graph.

reduced reachability graph without trying to minimize branching.

— 76 —

7 Removing redundancy from a stubbornly deter-
mined state space

Let us assume that we have a set of atomic propositions and we are to verify several
nexttime-less LTL-formulas constructible from the atomic propositions. We say that
a state of the system is intermediate iff exactly one transition is chosen to be executed
at the state and the transition is invisible. In this chapter we show how almost all
intermediate states can be eliminated during state space generation without affecting
the result of the verification.

The elimination of intermediate states typically slows down state space generation
since eliminated states can become generated many times. On the other hand, time is
saved in the model-checking since the state space is smaller than the one that would
have been obtained without the elimination. In the examples in this chapter, the
elimination causes significant reduction in the size of the state space. Actually, the
main motivation in the elimination of intermediate states is to save space resources.

7.1 Redefinitions

In order to proceed nicely, we rid ourselves from the requirement that the label of an
edge in a reachability graph should be a single transition.

Definition 7.1 Let (S, T, W, M) be a place/transition net. The set T™* (respectively,
T°) is called the set of finite (respectively, infinite) transition sequences of the net.

Let f be a function from M to 2(T) A finite transition sequence o f-leads (can be
f-fired) from a state M to a state M' iff M[o)sM’', where

VM € M M[e)sM, and

VM e MYM' € MYS € T+ M[§)M' <
(AIM” € M 3y, € T* Iy € f(M")
6 =y172 A M[y1) s M" N M"[ryo)M’).

A finite transition sequence o is f-enabled at a state M (M[o)¢ for short) iff o f-
leads from M to some state. An infinite transition sequence o is f-enabled at a state
M (M]o)¢ for short) iff all finite prefixes of o are f-enabled at M. A state M’ is
f-reachable from a state M iff some finite transition sequence f-leads from M to M’.
A state M’ is an f-reachable state iff M’ is f-reachable from My. The f-reachability
graph of the net is the pair (V, A) such that the set of vertices V is the set of f-
reachable states, and the set of edges A is {(M,o, M"Y | M e VAM' € VAo €
f(M)ANMo)gM'}. O

Again, when f is clear from the context or is implicitly assumed to exist and be of a
kind that is clear from the context, then the f-reachability graph of the net is called
the reduced reachability graph of the net. It is easy to see that when the target set
of f consists of sequences of the length 1, Definition 7.1 makes no difference w.r.t.
Definition 2.2.

— 77 —

Definition 2.3 suffices without modifications except that the function f should now
be from M to 2(T"). Note that the definition of a cycle does not pay any attention
to the labels of edges. We do not need further redefinitions since the remaining
definitions in Chapter 2 do not need to be changed for the purposes of this chapter.

7.2 On the elimination of intermediate states

Proposition 7.2 together with Theorem 5.10 guide us in how intermediate states can
be eliminated without affecting the result of a verification.

Proposition 7.2 Let (S, T, W, M) be a place/transition net. Let Y C 2T. Let f be

a function from M to 2T and g a function from M to 2T such that for any vertex
M in the g-reachability graph and for any finite or infinite transition sequence, the

sequence is g-enabled at M if (but not necessarily only if) the sequence is f-enabled
at M.

Claim: For each terminal path starting from My in the f-reachability graph, there
exists a terminal path starting from My in the g-reachability graph in such a way
that the labels of the paths are Y-equivalent. For each infinite path starting from
My in the f-reachability graph, there exists an infinite path starting from My in the
g-reachability graph in such a way that the labels of the paths are Y -equivalent.

Proof. The result follows trivially from the definitions. O

To guarantee that the g-reachability graph is totally reliable in verification, we thus
only have to guarantee that the f-reachability graph is totally reliable and that
no transition is enabled at those g-reachable states where no nonempty transition
sequence is g-enabled. (The latter requirement is needed in order to avoid misleading
terminal paths.)

Let us recall that a state encountered in the generation of a reachability graph is
intermediate iff exactly one transition is chosen to be executed at the state and the
transition is invisible. Note that being intermediate is a non-constant property since
if we revisit an eliminated intermediate state, we may and sometimes even have to
choose more than one transition to be executed. Moreover, even in the case that
the state remains intermediate, the transition chosen is not necessarily the transition
chosen during the previous visit.

We assume that intermediate states are eliminated on-the-fly in the context of an
appropriate stubborn set based reachability graph generation algorithm. The rules
of elimination are as follows.

e A finite acyclic path where all states except possibly the starting state and
the ending state are intermediate can be replaced by an edge from the starting
state to the ending state.

e An elementary cycle where at most one state is non-intermediate can be re-
placed by an edge from a state of the cycle to the state itself. If the cycle has
a non-intermediate state, then that state is chosen. Otherwise any state of the
cycle can be chosen.

— 78 —

In both of the above cases, the label of the replacing edge is defined to be the label
of the eliminated path.

To ensure the assumptions of Proposition 7.2 and Theorem 5.10, we define the func-
tions f (shared by the proposition and the theorem) and g as follows. (Note that the
below presentation is purely proof theoretical, so we do not have to worry about the
efficiency of the definition procedure.) For each encountered state M, if M has not
remained intermediate throughout the construction, then g(M) is the set of labels
of the edges starting from M and resulting from the application of the above elimi-
nation rules. In the remaining states of M the value of g can be chosen arbitrarily.
Let us then concentrate on the definition of f. For each ¢ € N, we define a function
F; from M to 22" and a dynamically stubborn function f; from M to 27. The
definition of the latter follows from the definition of the former in such a way that
Vie N VM € M fi(M) = Uyer,m)Y.

We can assume that the construction of the g-reachability graph has been completed
and that the graph is finite. For each nonterminal state M encountered during the
construction, Fy(M) is the collection of those stubborn sets that have been chosen
for M during the visits to M. For each M" € M where Fy(M") does not become
defined in this way, we let Fy(M") = {T}. Since the g-reachability graph is finite,
the fo-reachability graph is finite, too. For each ¢ € N, we step from ¢ to ¢ + 1 by
considering an arbitrarily chosen problematic elementary cycle in the f;-reachability
graph as described below. If there is no such cycle, we finish the definition procedure
by letting f = f; and for each j > 4, F; = Fj. Since the fy-reachability graph is finite,
there exists k£ such that the fi-reachability graph has no problematic elementary
cycle. The definition procedure thus takes a finite number of steps only.

The considered problematic cycle in the f;-reachability graph is some elementary
cycle that would make the ensuring of the assumptions of Proposition 7.2 impossible
in the hypothetical case that the cycle would occur in the f-reachability graph. We
choose a state M’ from this cycle in such a way that a nonempty F;11(M') C F;(M')
can be defined with the constraint that if the label of the edge starting from M’ in
the cycle is ¢, then t € T'\ f;4+1(M') and either M’ does not occur in the g-reachability
graph or Vo € T* —M'[to),. (This constraint can be satisfied because otherwise the
cycle would not be problematic in the above specified way.) For each nonterminal
state M # M’ in the f;-reachability graph, we define F;;1(M) = F;(M). For all
other states M" # M’ we let F;;(M")={T}.

7.3 Examples

We now look at three cases that have been analyzed with the aid of the PROD tool
under the same circumstances as in Section 6.2. The cases are again MULOG, PFTP
and YXA, and the used models are the same as the models used in Section 6.2.

Figure 27 shows the number of vertices and edges in the reduced reachability graph,
as well as the so called user time, system time and elapsed time of the generation
of the graph when generated in two ways: the stubborn set method alone (SA for
short) and combined with the elimination of intermediate states (ES for short). SA
is actually the DAA of Section 6.2 whereas ES can be derived from SA in the way

— 79—

described in Section 7.2.

The self-criticism presented in Section 6.2 and concerning the reporting of time values
is applicable here, too, for similar reasons.

case vertices edges user t. system t. elapsed t.
MULOG, n =4, SA 15061 15402 292 s 6 s 298 s
MULOG, n =4, ES 677 1018 385 s 4s 390 s
MULOG, n =5, SA 172297 176232 6058 s 105 s 6187 s
MULOG, n = 5, ES 7450 11385 8229 s 89 s 8553 s
PFTP, SA 5758 6615 949 s 9s 987 s
PFTP, ES 858 1715 1375 s 11s 1398 s
YXA, k=11, SA 221935 237284 2475 s 135 s 2725 s
YXA, k=11, ES 14212 29561 6752 s 142 s 6903 s
YXA, k=12, SA 286974 305290 3361 s 198 s 3785 s
YXA, k=12, ES 17021 35337 9446 s 214 s 9670 s
YXA, k=13, SA 365224 386857 4264 s 270 s 4889 s
YXA, k=13, ES 20170 41803 13430 s 282 s 13725 s
Figure 27: Statistics of case studies.
7.4 Discussion

It seems that intermediate states are quite usual when the stubborn set method is
used for constructing a reduced state space. Consequently, from the elimination of
intermediate states one can obtain substantial reduction in the size of the state space.

It should be emphasized that the elimination of intermediate states is not the same
thing as state space caching [26, 27]. When we want to generate a reduced state
space for a later use, state space caching does not help us since the caching technique
intentionally forgets states that are not “needed at the moment”.

Our approach differs from the approach in [53] in the following things:

We can remove a state from a depth-first search stack without having to wait
for the moment when the state would again be on the top of the stack. This is
good since the state space explosion problem concerns search stacks, too. It is
a common programming practice in depth-first search algorithms that a search
stack is kept quickly accessible, e.g. in RAM, while at least some part of the
rest of the data is allowed to be read from some more slowly accessible location,
e.g. from a hard disk.

We do not eliminate a state where the chosen stubborn set contains more than
one enabled transition. Such elimination would be likely to cumulate in an
explosion in the number of revisits to states.

We do not estimate the probability of a revisit to a state. Let us quote [53]:
“The preliminary DFS algorithm traverses the state space in a partial order
manner, which is the exact same order used in the later reduction algorithm.”

— 80 —

It seems that this sentence has really been meant to be taken literally. The
trick is that the preliminary algorithm is a state space caching algorithm.

Though we have not made experimental comparisons, it seems likely that the ap-
proach [53] is more efficient on average than our approach. There should still be
certain kinds of applications where our approach is better.

Virtual coarsening of atomic actions, introduced by [2] and reviewed in [60], pp.
565-571, is a fast though also a somewhat limited way to eliminate intermediate
states. As the name of the technique proposes, two or more actions are executed in a
sequence without stopping in the middle. The method has a set of rules that decide
what kind of actions can be combined in this sense.

In covering step graph construction [96, 97], redundant interleavings of actions are
eliminated by choosing a set of independent transitions and executing them as a
step, i.e. a virtually atomic sequence. This technique can thus be thought of as some
kind of a stubborn set method combined with dynamic virtual coarsening of atomic
actions.

Intermediate states sometimes reflect redundancy in a system description. Net re-
ductions [5, 6] try to replace a net by a smaller net that is behaviourally close enough
to the original net. Such reductions are still at most complementary to our approach,
since e.g. many of the common ways to optimize the modelling of FIFO-queues [47]
are disadvantageous for the stubborn set method. (The problem of modelling a
FIFO-queue optimally for the stubborn set method is discussed in [73].)

—81 -

8 On combining the stubborn set method with the
sleep set method

This chapter considers the sleep set method [26] and is concentrated on the transition
selection function when the method is applied to a labelled transition system to
verify a basic termination property or a simple safety property. When used alone,
i.e. with a transition selection function that always chooses all possible transitions,
the sleep set method generates all reachable states though even then it can reduce the
number of visits to the states. The conditions found in this chapter for the transition
selection function can be used for combining the sleep set method with other analysis
techniques and with the stubborn set method in particular. The reason for choosing
labelled transition systems to be the underlying formalism instead of place/transition
nets is that we want to generalize the compatibility results of [99] explicitly. The
formalism used in [99] is more complicated than place/transition nets but can easily
be thought of as a special kind of labelled transition systems.

8.1 Labelled transition systems

In this definition section we keep the notation as close as possible to the notation
used in place/transition nets. Though there seems to be a tradition in the literature
to associate labelled transition systems with some process algebraic framework, we
shall not do that. The algorithmic considerations in this chapter do not force us to
fix any specific framework.

Definition 8.1 A labelled transition system (an LTS for short) is a quadruple

(S,%, A, sg) such that S and ¥ are sets, A C S x ¥ x S, and s¢g € S. We call S the
set of states, ¥ the set of actions, A the set of transitions, and so the initial state.
The set ¥ U A is called the set of events of the LTS. The function a from A to ¥ is
defined by

Vs € SVs' € SVaeX ((s,a,s") € A= a((s,a,s')) = a).

For any transition z, the action a(x) is called the action of the transition x. An action
a is fireable from a state s to a state s’ (s[a)s’ for short) iff (s, a, s’y € A. A transition
x is fireable from a state s to a state s' (s[z)s’ for short) iff x = (s, a(z), s’). An event
x 1s enabled at a state s iff x is fireable from s to some state. A state s is terminal
iff no transition is enabled at s. o

We do not agree with the opinion expressed by [62] among others that labelled tran-
sition systems would not properly support the verification of state-based properties.
The fact that we do not associate meanings with the states in the definition does
not imply that the states could not be associated with meanings whatsoever. From
the mathematical point of view, states can be assumed to exist before transitions are
drawn between them.

Definition 8.2 Let (S, X, A, sg) be an LTS. The set A* is called the set of finite
transition sequences of the LTS, and the set (X U A)* is called the set of finite event

— 82—

sequences of the LTS. A finite event sequence w is fireable from a state s to a state
s iff s|w)s” where

Vs € S sle)s, and
VseSVs eSWwe (BUA)*VzeXUA
sjvz)s’ < (3s” € S sjv)s” A s"[z)s).

A finite event sequence w is enabled at a state s (s[w) for short) iff w is fireable from
s to some state. A state s’ is reachable from a state s by a finite event sequence
w iff w is fireable from s to s’. A state s’ is reachable from a state s iff some finite
transition sequence is fireable from s to s’. A state s’ is a reachable state iff s is
reachable from sq. Let f be a function from S to 2. A finite transition sequence w
is f-fireable from a state s to a state s’ iff s[w)s’, where

Vs € S sle)ss, and
VseSVs e SYveA* Ve € A
sjvz) s’ & (s € S slv) s’ ANz € f(s") N s"[z)s).

A finite transition sequence w is f-enabled at a state s (s{w)s for short) iff w is
f-fireable from s to some state. O

Definition 8.3 Let (S, 3, A, sg) be an LTS. The set A is called the set of infinite
transition sequences of the LTS, and the set (X U A)* is called the set of infinite
event sequences of the LTS. An infinite event sequence w is enabled at a state s (s[w)
for short) iff there exists a function & from N to S in such a way that £(0) = s
and for each i € N, £(3)[w(3))€(i + 1). The function Q from S to 2247 is defined by
requiring that for each state s, (s) is the set of those infinite transition sequences
that are enabled at s. Let f be a function from S to 22. An infinite event sequence
w is f-enabled at o state s (s[w)y for short) iff there exists a function £ from N to S
in such a way that £(0) = s and for each i € N, £(i)[w(7)) f&(i + 1). We say that f is
tough-lived iff for each reachable state s,

Qs) #0 = (Fw € Q(s) sfw)y). O

Since any transition by definition has a unique target state, the following holds: if
all finite prefixes of an infinite transition sequence w are enabled (respectively, f-
enabled) at a state s, then w itself is enabled (respectively, f-enabled) at s. The
same does not hold for an infinite event sequence, but that is no problem since in the
rest of this chapter, all considered infinite event sequences are explicitly required to
be transition sequences.

Definition 8.4 Let (S,X, A, so) be an LTS. A transition sequence v is an alternative
sequence of a finite transition sequence w from a state s to a state s’ iff v is a finite
transition sequence, s[w)s’, and s[v)s’. A transition sequence v is a length-secure
alternative sequence of a finite transition sequence w from a state s to a state s' iff v
is an alternative sequence of w from s to s’ and not longer than w. The function ¢ from
A* x 8 x S to 2(A") is defined by requiring that for each finite transition sequence w,
and for each state s and s', 9(w, s, s’) is the set of length-secure alternative sequences
of w from s to s'. Let 1) be a truth-valued function on S. A state s is a -state iff

— 83—

1(s) is true. Let f be a function from S to 2. We say that f represents all sets of
alternative sequences to 1-states iff for each reachable state s and for each 1-state s’,

Yw € A* sjw)s’' = (Fv € A* s[v)ss).

Correspondingly, f represents all sets of length-secure alternative sequences to -
states iff for each reachable state s and for each 1)-state s,

Vw € A* sjw)s’' = (Fv € Hw,s,s’) s[v)g). O

Clearly, a function representing all sets of length-secure alternative sequences to -
states represents all sets of alternative sequences to 1-states. We say that a function
f from S to 22 represents all sets of (length-secure) alternative sequences to terminal
states iff f represents all sets of (length-secure) alternative sequences to 1-states in
the case where 1) is the characteristic function of the set of terminal states.

Though it might be interesting to define dynamic stubbornness for labelled transition
systems, we instead present the following axioms. This set of axioms is intended to
be sound but not complete. In other words, any concrete definition of stubbornness
should be consistent with these axioms, but the axioms do not express any sufficient
condition for stubbornness.

(X1) Stubbornness is a property of a set of transitions and is defined w.r.t. a state.

(X2) A function f from S to 22 is stubborn iff for each nonterminal reachable state
s, f(s) is stubborn at s.

(X3) Every stubborn function represents all sets of length-secure alternative se-
quences to terminal states.

(X4) Every stubborn function is tough-lived.

The full reachability graph of a place/transition net can be thought of as an LTS
where transitions in the net sense are actions. More generally, the complete state
space of a system modelled in any formalism can be thought of as an LTS. We can
thus talk about the LTS of a system. We can extend a formalism-specific definition
of stubbornness to concern the LTS of a system by defining that for any state s in
the LTS, a subset I' of transitions of the LTS is stubborn at s iff there exists a set B
(a subset of an appropriate domain) in such a way that B is stubborn at s according
to the formalism-specific definition, and

I'={(s,c,s") | (s,c,s) is a transition that represents
some execution of some member of B}.

To our knowledge, each definition of stubbornness, persistence or dynamic stubborn-
ness found in the literature is such that if “persistent” or “dynamically stubborn” is
replaced by “stubborn” and the definition is then extended to concern the LTS of a
system in the above described way, the above axioms X1-X4 become satisfied.

— 84 —

8.2 The sleep set method

In this section we present the sleep set method. We concentrate on a generalized
version of the terminal state detection algorithm [99]. The generalized version is
in Figure 28. The intuitive idea of the algorithm is to eliminate such redundant
transition sequences that are not eliminated by the transition selection function f.
The LTS (S,X%, A, sq) is assumed to be such that S U X is finite. The algorithm
computes an LTS (S, X, V, s¢) such that V C A. (All states handled by the algorithm
are reachable w.r.t. the input LTS. Also, the states occurring in V are reachable w.r.t.
the output LTS. We can still define both of the LTS’s to have the same set of states
since the algorithm concretely constructs only the set V.) From the finiteness of SUX
and from the fact that the set Act constructed during one visit to a state does not
intersect with the sets Act constructed during the other visits to the state it follows
that the execution of the algorithm takes a finite time only.

The function v can be any truth-valued function on S. To be practical, we can assume
that t(s) is computed without inspecting any other state than s. The construction
of V can be omitted if only the detection of reachable -states is of interest.

The “code” of our algorithm is very close to the “code” of the algorithm in [99].
More precisely, the way in which we handle the sleep sets is effectively the same way
in which [99] handles them. The easiest way to approach our algorithm is first to
imagine that all actions are deterministic (i.e. no action can lead from a state to
more than one state), and then to proceed to the general case. Namely, the virtual
complexity of the presentation is almost solely caused by the fact that the actions
are not necessarily deterministic.

Lines /*5*/, /*10*/ and /*13*/ and /*18*/ need the following explanation:

H C S x (2%), but we say that a state s; is in H iff s; is the state component of
some (actual) element of H, i.e. 3%, C ¥ (s1,%;) € H. The expression “the set
associated with s; in H” assumes that only one element of H has s; as the state
component. “Substituting Y for the set associated with s; in H” corresponds to a
pseudo-statement “H = (H\ {(s1, X)})U{(s1,Y)}” where (s1, X) is the only element
of H that has s; as the state component. A naive induction suffices for showing that
in H, no state can be the state component of more than one element.

We use actions much in the same way as program transitions are used in the terminal
state detection algorithm in [99]. One might think that our approach is thus more
coarse than the approach used in [99]. However, if we have a global LTS of the form
defined in [99], we can relabel each global transition [99] by the program transition
of the global transition, and apply our algorithm to the resulting LTS. In practice, a
global transition can be relabelled when used for the first time, whereas the unused
global transitions need no relabelling.

Theorem 8.5 Let (S,3, A, so) be an LTS such that SUX is finite. Let v be a truth-
valued function on S. Let f be a function from S to 22 such that f represents all
sets of length-secure alternative sequences to v-states. Then the algorithm in Figure
28 finds all reachable 1-states.

Proof. Let sq be a reachable i-state.

— 85 —

/¥1*/ make Stack empty ; make H empty; V = 0;
/*¥2*/ push (sq,) onto Stack;
/*3*/ while (Stack is not empty) {

/*4*/ pop (s, Sleep) from Stack ;

/*5*/ if (sisnotin H) {

/*¥6%*/ Trans= {z € f(s) | s[z) A a(z) € X\ Sleep };

[¥T*/ Act= {a € ¥ | 3z € Trans a(z) = a};

/*8%/ Succ = {(a,8’) |a € Act AS" = {s' € S| (s,a,s’) € Trans } };
/*¥9%/ if (9(s) is true) printf(“y-state!”);

/*10%/ enter (s,a copy of Sleep) in H ;

e}

/¥12%/ else {

/*¥13%/ let hSleep be the set associated with s in H ;

/*¥15%/ Act =hSleep \ Sleep ;

/*¥16*/ Succ= {{(a,S’) |a € Act AS" = {s' € S| s[a)s'}};

/*17*/ Sleep = hSleep N Sleep ;

/*¥18%/ substitute a copy of Sleep for the set associated with s in H
f9e

/*¥20*/ newSleep = 0 ;

/*21%/ for (each a in Act) {

/*22%/ let S’ be the set for which (a, S’) € Succ;

/*23%/ for (each s’ in §") {

/*24%/ xSleep = {a’ € Sleep| s'[a’) A (Vs" € S s'[a’)s” = s[a’a)s”)}U
/*¥25%/ {a1 € newSleep | 351 (a1, S1) € Succ As'[ar)A
/*26*/ (Vs" € S §'la1)s" =

/*27*/ (3s1 € S1 s1]a)s”))}s
/*28%/ push (s, a copy of xSleep) onto Stack ;

/*29%/ V={(s,a,5")} UV;

/*30%/ }

/*¥31%/ newSleep = {a}UnewSleep ;

fae)

/*33%/ '}

Figure 28: An LTS reduction and a v-state detection algorithm.

— 86 —

(i) We first prove that if X C ¥, a finite transition sequence w is fireable from a state
s to s4, and for each v in ¥(w, s, s4), the first action of v is not in X, then, if (s, X) is
pushed onto the stack, some element having s; as the first component will be or has
already been popped from the stack. By ¥ we mean the ¢ of the LTS (S,X, A, sq).
By the first action of a transition sequence we mean the action of the first transition
of the sequence.

The proof proceeds by induction on the length of w. For w = ¢, the result is immedi-
ate. Now, assume the proposition holds for finite transition sequences of length less
than or equal to n, where n > 0, and let us prove that it holds for a finite transition
sequence w of length n 4+ 1. Let X be a subset of 3, w be fireable from a a state
s to s4, and (s, X) have been pushed onto the stack. Let it also be the case that
for each v in H(w, s, s4), the first action of v is not in X. Let us consider the steps
immediately following the popping of (s, X) from the stack. If s = s4, the element
(s4, X) has then been popped from the stack. From now on, we assume that s # sg4.

We first consider the case where s is not already in H. Since s[w)sq, s # sq4, and
f represents all sets of length-secure alternative sequences to 1-states, at least one
transition in f(s) is the first transition of some sequence in 9(w, s, s4). Moreover, the
action of such a transition is in X\ X, so all of such transitions are fired at s. (Firing
of transitions takes place on line /*29*/ only.) Let z; be the first of such transitions
in the firing order. Then there exists a finite transition sequence w’ such that z;w’ is
in 9(w, s, s4). From the definition of ¥ it follows that s[z;w’)sq and z1w’ is not longer
than w. The length of w’ is thus less than or equal to n. Let x; be fireable from s
to a state s’. Then s'[w')sq. Let (s’, X’) be pushed onto the stack in the algorithmic
step that immediately precedes the firing of z; from s to s’. We show that for each
vin ¥(w', s, sq4), the first action of v is not in X".

Indeed, assume the opposite, i.e., there exists some transition z’ such that a(z’) is
in X', and for some finite transition sequence v’, z'v’ is in ¥(w’, s’, s4). Clearly, then
z1z'v' is in H(w, s, sq). If a(z’) is in Sleep during the execution of the outermost
“for-loop” (lines /*21*/-/*32*/), then (due to line /*24*/) every state reachable
from s’ by a(z') is reachable from s by a(z')a(z1), so there exist transitions x5 and
z" such that a(z2) = a(z’), a(z”) = a(z1), and zaz"v' is in H(w, s, s4). From the
condition satisfied by X it then follows that a(z2) is not in X, a contradiction with
the assumption that a(z’) = a(z2) is in Sleep = X. The action a(z’) thus cannot be
in Sleep during the execution of the outermost “for-loop”. This means that a(z’) has
been inserted into newSleep in the outermost “for-loop” before firing z;. Moreover
(due to lines /*25* /—/*27* /), every state reachable from s’ by a(z') is reachable from
some s; € S; by a(z1) where S; is the set associated with a(z’) in Succ. (Due to
lines /*8*/ and /*16*/, S; is unique under circumstances whatsoever.) Consequently,
there exist transitions zo and z” such that a(z;) = a(z’), a(z”) = a(zy), zoz"v' is
in 9(w, s, sq), and x5 is either z; itself or fired after z;. The action a(z’) = a(z3)
is thus not in newSleep at the time when z; is fired. This is a contradiction. The
inductive hypothesis can thus be used to establish that some element having s; as

the first component will be or has already been popped from the stack.

We now consider the case where s already appears in H. Let Y C X be such that
(s,Y) is in H. All those transitions that are enabled at s and have their actions in
Y \ X are fired. There are two situations: either some action in Y is the first action
of some sequence in #(w, s, s4), or no such action exists. In the first situation, we

— &7 —

can choose a transition analogous to the above z; and proceed as above.

Let us now turn to the second situation in which no action in Y is the first action
of any sequence in ¥(w, s, s4). This can be the case either because no action in Yj is
the first action of any sequence in ¥(w, s, s4) where Yj is the sleep set entered in H
with s when s was inserted into H, or because there are some Y’ and Z such that
(s, Z) was popped from the stack before popping (s, X) from the stack, (s,Y’) was
in H at the time of the popping of (s, Z) from the stack, some action in Y’ is the
first action of some sequence in ¥(w, s, s4), and no action in Y’ N Z is the first action
of any sequence in ¥(w, s, sq). In the former case, we can proceed as above with Yy
in the place of X. In the latter case, we can proceed as above with Z in the place
of X, taking into account the fact that Sleep= Y’ N Z during the execution of the
outermost “for-loop”.

(ii) The algorithm in Figure 28 starts by pushing (sg,#) onto an empty stack. From
the result shown in part (i) it thus follows that some element having s as the first
component will be popped from the stack. O

The proof of Theorem 8.5 resembles much the proof of Theorem 6 in [99]. However,
the true difficulty in Theorem 8.5 is more in the formulation of the claim than in the
proof itself.

From axiom X3 it follows that any stubborn function satisfies the conditions required
from the transition selection function f when v is the characteristic function of
terminal states. The sleep set method can thus be combined with the stubborn set
method in the detection of reachable terminal states without any assumption on
the stubborn sets used. This is clearly more than has been shown in [99] because
the stubborn sets used in [99] are persistent, and by Lemma 4.14 we know that in
place/transition nets, persistent sets are strongly dynamically stubborn.

Theorem 8.5 has also the consequence that if for each encountered state, the transition
selection function f chooses all enabled transitions, then the algorithm in Figure 28
visits all reachable states. (To see this, one can define the value of 1) to be true at
every state.)

Perhaps the most interesting thing in Theorem 8.5 is that it gives us a way to ver-
ify simple safety properties on-the-fly. If neither livelock monitor states nor infinite
progress monitor states exist, the stubborn functions of [81] represent all sets of
length-secure alternative sequences to reject states. (Without loss in generality we
can assume that every reject state has a stubborn set that satisfies the same condi-
tions as the stubborn sets of the ordinary states.) We then get a correct on-the-fly
verification algorithm from the algorithm in Figure 28 simply by defining f to be
a stubborn function of the kind used in [81], by defining v to be the characteristic
function of reject states and terminal deadlock monitor states and by associating an
automatic exit with the printing function.

We now turn to the checking of the possible existence of an infinite enabled transition
sequence.

Theorem 8.6 Let (S, X, A, sg) be an LTS such that SUY is finite. Let f be a tough-
lived function from S to 2. If no infinite transition sequence is enabled at sq in the

— 88 —

LTS (S,%,V,so) at the end of the execution of the algorithm in Figure 28, then no
infinite transition sequence is enabled at so in the LTS (S, %, A, sg).

Proof. (i) We first prove that if X C 3, s € S, Q(s) # 0, for each v in Q(s), a(v(0))
is not in X, and (s, X) is pushed onto the stack, then there is a transition z, a set
X' C ¥ and a state s’ such that = will be or has already been fired from s to s’,
(s', X"y will be or has already been pushed onto the stack, (s’) # 0, and for each v
in Q(s"), a(v(0)) is not in X’. By © we mean the Q of the LTS (S, X, A, so). (Firing
of transitions takes place on line /*29*/ only.)

Let X be a subset of X, s be a state such that Q(s) # 0, and (s, X) have been pushed
onto the stack. Let it also be the case that for each v in (s), a(v(0)) is not in X.
Let us consider the steps immediately following the popping of (s, X) from the stack.

We first consider the case where s is not already in H. Since Q(s) # 0 and f is
tough-lived, at least one transition in f(s) is the first transition of some sequence in
Q(s). Moreover, the action of such transition is in ¥ \ X, so all of such transitions
are fired at s. Let x; be the first of such transitions in the firing order. Let x;1 be
fireable from s to a state s’. Clearly, then Q(s") # (). Let (s’, X') be pushed onto the
stack in the algorithmic step that immediately precedes the firing of z; from s to s’.
We show that for each v in Q(s’), a(v(0)) is not in X’.

Indeed, assume the opposite, i.e., there exists some v’ € Q(s’) such that a(v’'(0)) is
in X'. If a(v’(0)) is in Sleep during the execution of the outermost “for-loop” (lines
/*¥21%/—/*32%/), then (due to line /*24*/) every state reachable from s’ by a(v'(0))
is reachable from s by a(v’'(0))a(z1), so there exists an infinite transition sequence
w such that w is in Q(s), and a(w(0)) = a(v’(0)). From the condition satisfied by X
it then follows that a(w(0)) is not in X, a contradiction with the assumption that
a(v'(0)) = a(w(0)) is in Sleep= X. The action a(v’'(0)) thus cannot be in Sleep
during the execution of the outermost “for-loop”. This means that a(v'(0)) has been
inserted into newSleep in the outermost “for-loop” before firing z;. Moreover (due to
lines /*25% /—/*27* /), every state reachable from s’ by «(v’(0)) is reachable from some
s1 € S1 by a(z1) where Sy is the set associated with a(v’(0)) in Succ. (Due to lines
/*8*%/ and /*16*/, S; is unique under circumstances whatsoever.) Consequently,
there exists an infinite transition sequence w such that w is in Q(s), a(w(0)) =
a(v'(0)), and w(0) is either z; itself or fired after z;. The action a(v’(0)) = a(w(0))
is thus not in newSleep at the time when x; is fired. This is a contradiction.

The case where s already appears in H can be handled by repeating the corresponding
part of the proof of Theorem 8.5 with the exception that the expression “Q2(s)” is in
the place of the expression “¢(w, s, sq)”.

(ii) The algorithm in Figure 28 starts by pushing (s, @) onto an empty stack. If
Q(sg) # 0, using the result shown in part (i) we can construct an infinite transition
sequence which is enabled at sg in the LTS (S, X, V, so) at the end of the execution
of the algorithm. O

Even the proof of Theorem 8.6 resembles much the proof of Theorem 6 in [99], but
again, the true difficulty is more in the formulation of the claim than in the proof
itself.

— 89 —

From Theorem 8.6 it follows that we can detect the possible existence of enabled
infinite transition sequences from the reduced LTS. Alternatively, one can add on-
the-fly loop detection to the algorithm in Figure 28 in such a way that the first loop
of states found terminates the execution of the algorithm. Then there is no need to
construct V since the construction of V affects neither the set of visited states nor
the order of visiting.

From axiom X4 it follows that any stubborn function satisfies the conditions required
from the transition selection function f. The stubborn set method and the sleep
set method can thus be combined in the detection of non-termination without any
assumption on the stubborn sets used.

Let us consider the complexity of the algorithm in Figure 28. The cumulative time
per state spent in the outermost “for-loop” is at most proportional to u*p?, where p is
the maximum number of states reachable from a state by an action, p is the maximum
number of enabled actions of a state, and all visits to the state are counted. This is
based on the fact that each sleep set associated with a state contains only actions that
are enabled at the state. The time per visit to a state spent in the operations related
to H is the time of the search for the state plus a time that is at most proportional
to p. The searches in H are something that cannot be avoided easily whether or not
we use sleep sets at all. Clearly, the time taken by the computation of f(s) and 9(s)
can be anything depending on f and . If ¢ is the characteristic function of the set
of terminal states, then the expression “if 1(s) is true” in the algorithm in Figure
28 can be replaced by the expression “if Act and Sleep are both empty”. It depends
much on the LTS how many times a state is visited and how many simultaneous
occurrences of a state there are in the stack. One stack element requires space for
the state and at most p actions. It is not necessary to store copies of states and
actions since pointers suffice.

In order to avoid ambiguity in the sequel in this section, transitions in the place/trans-
ition net sense will be called net transitions. In the following examples, stubbornness
and dynamic stubbornness should be understood as defined in Chapter 4.

Let us consider an example which shows that the statement obtained from Theorem
8.5 by removing the word “length-secure” is not valid. Let My[a) M7, M1[d)Ma, and
M;[bc)M3 in the net in Figure 29. Let a function h from M to 27 be defined by
h(My) = {a} and h(M) =T when M # M. Let then

f(M) = {(M,t, M) | M[t),M'} at each state M. The state M3 is the only reach-
able terminal state. The function f thus represents all sets of alternative sequences
to terminal states. However, f does not represent all sets of length-secure alterna-
tive sequences to terminal states since My[ed) M3 while there is no sequence of net
transitions that would h-lead from M to M3 and be of length less than or equal to 2.

During the first visit to My, the algorithm in Figure 28 inserts (Mg,) into H and
pushes (Mj, () onto the stack. The algorithm then visits M;. The net transitions
b and d are the enabled net transitions in h(M7) = T at M;. Let b be fired before
d at M;. The algorithm pushes (M,) and (Ms, {b}) onto the stack since b and d
commute at M;. The algorithm then visits My but does not fire the sleeping b which
is the only enabled net transition at Ms. No net transition is fired during the second
visit to My since the sleep set associated with My in H is empty. The execution of
the algorithm is then over. No terminal state was found though M3 is a reachable

—90 -

o a - d
Yy X
b

—- C

g r

Figure 29: A deceptive f makes the algorithm in Figure 28 fail.

terminal state.

The combination of the sleep set method and the stubborn set method can really be
better than the plain stubborn set method as far as the number of inspected states
is concerned. The net in Figure 30 is a simple example showing this. The example
is essentially the same as can be found in [100].

pﬁ)__,Q_.
o

Figure 30: A net showing some of the power of the algorithm in Figure 28.

An exhaustive investigation shows that at each reachable nonterminal state of this
net, there is one and only one dynamically stubborn set that is minimal w.r.t. set
inclusion. By Lemma 4.10 we know that a dynamically stubborn set that is min-
imal w.r.t. set inclusion only contains enabled net transitions. Another exhaustive
investigation shows that at each reachable nonterminal state of this net, the set of
enabled net transitions of any stubborn set computed by the incremental algorithm
or the deletion algorithm, using any of the definitions of stubbornness in [75, 77, 79],
is a dynamically stubborn set that is minimal w.r.t. set inclusion. Let h be a dynam-
ically stubborn function such that at any nonterminal state M, h(M) is a stubborn
set computed by the incremental algorithm. Then the set of enabled net transitions

—91 —

in h(M) is the only dynamically stubborn set at M that is minimal w.r.t. set inclu-
sion. Thus, for each dynamically stubborn function g, the h-reachability graph is a
subgraph of the g-reachability graph.

Let then f(M) = {(M,t, M') | M[t),M'} at each state M. We have h(My) = {a,c}.
Let a be fired before ¢ at My in the algorithm in Figure 28. Let My[c)M’. Since a
and ¢ commute at My and a is fired before ¢, (M’, {a}) is pushed onto the stack.
Let us consider the visit to M’ where (M’, {a}) is popped from the stack. We have
h(M'") = {a,b}, but the sleeping a is not fired. Let M’'[a)M". By executing the
algorithm in Figure 28 completely, we see that M" is never encountered, and no
nonterminal state is visited more than once. The latter observation is important
since it guarantees that all net transitions that are fired at a state M are in h(M).
The set of inspected states is thus a proper subset of the states of the h-reachability
graph.

8.3 Discussion

A combination of the stubborn set method and the sleep set method in the verifica-
tion of nexttime-less LTL-formulas has essentially been presented in e.g. [55]. From
[26, 55] one can conclude that the persistent set method and the ample set method
are compatible with the sleep set method in the verification of nexttime-less LTL-
formulas, with the explicitly mentioned limitations. These limitations can basically
be described by saying that we must have a fairness assumption of a certain kind.
Nevertheless, what still remains to be studied is the compatibility of the stubborn set
method with the sleep set method in the verification of nexttime-less LTL-formulas
when fairness is not assumed. This does not seem an easy problem because to our
knowledge, the problem has not even been solved in the case where the stubborn set
always contains all enabled transitions. The limits of the applicability of the sleep
set method should anyway be known better.

We have not heard of any experience where the use of sleep sets would have sig-
nificantly reduced the number of visited states. (This has been tried with PROD,
too, without success.) Instead, the statistics in [26] clearly indicate that the number
of visits to the states can become reduced so much that the use of sleep sets pays
off. This is obvious in state space caching where every avoided revisit to a state is
important. The same holds for the elimination of intermediate states.

As pointed out in [49, 56, 80], some early publications about the sleep set method
(at least [25] and [38] as well as the early version of [27] in [8], pp. 178-191, and the
early version of [30] in [61], pp. 406-415) are flawed to some extent. However, as far
as we know, most if not all of the flaws have been eliminated in later publications by
the same authors [26, 27, 30, 31, 99].

—92 —

9 Other remarks on stubborn sets

9.1 Stubborn sets of high-level nets

Place/transition nets of actual systems tend to be very large. On the other hand,
using high-level nets [9, 41] one can make compact models in a natural way. Fortu-
nately, a high-level net can often be unfolded into a behaviourally equivalent finite
place/transition net, and, using the inverse mapping of the unfolding mapping, the
place/transition net can be folded back into the high-level net [22, 40]. If such an
unfolding exists, one can apply the stubborn set method to the result of the unfolding
and then fold the reduced reachability graph. However, even a high-level net, the set
of reachable markings of which is finite, may be difficult to unfold since the unfold-
ing procedure usually needs explicit bounds on the possible transition instances. If
suitable bounds are not known, they have to be estimated.

Unfolding can be implicit in the sense that no place/transition net is constructed
but the transition instances of the high-level net are used just like transitions of a
place/transition net. Implicit unfolding supports determining the enabled transition
instances by unifying the arc expressions with the current marking.

In [79], the stubborn set method is applied to coloured Petri nets [41], mostly by
means of implicit unfolding. The possibility to ignore the colour information is men-
tioned though not especially recommended [79]: “Some preliminary experiments have
demonstrated that ignoring the colour information usually leads to grossly unneces-
sarily large stubborn sets.” This kind of ignoring means that a high-level net is
treated as if it were a low-level net with the same structure.

More sophisticated manipulation of stubborn sets is presented in [11]. The nets in
question are well formed coloured Petri nets. General and well formed couloured
Petri nets do not have much effective difference in description power since in prac-
tical analysis problems, we often do not have to express more complicated integer
arithmetic operations than addition by one. The computation of stubborn sets in
[11] is based on symbolic matrix calculations. The technique still does not work
completely on the high level. Some of the transition instances, even some of those
that are disabled, may have to be accessed one at a time, and in extreme cases the
technique behaves in the same way as plain implicit unfolding.

What comes to the stubborn set method in high-level nets in general, it seems that
the best way to proceed without any explicit or implicit unfolding is to define stub-
bornness on sets where the elements are appropriately chosen sequences of transition
instances. Such sequences correspond to what is called operations in [29]. Stubborn-
ness must be defined separately for each net, and the definition process is likely to
require some thinking. However, the work done in the definition process may help the
modeller to understand better the behaviour of the modelled system and thus pay
off independently of how successful the actual state space generation is. An example
of this kind of approach can be found in [29].

Quite recently, some experiments about applying the stubborn set method to high-
level nets without unfolding have been reported [50]. We leave the evaluation of [50]
for future.

— 93 —

Unfolding is still not to be avoided categorically. Many errors are of the kind that
they occur with a little variation under all combinations of values of parameters of
the modelled system, independently of how “realistic” the values are. Such errors can
often be found by analyzing the system with a “minimal parameter configuration”
that supports unfolding. The possible errors not found in this way can be tried to
be found in other ways. On the other hand, it is often best to eliminate a found
error from the model of the system before searching for more errors. The design and
analysis of a model thus affect each other, and the designer may get feedback from
the analyzer more quickly when the analysis is automatic as in the case of unfolding
than when the analysis is semiautomatic as in [29].

9.2 Stubborn sets in symbolic state space generation

A symbolic state space is an indirect representation of a state space. A symbolic state
then represents a set of states.

A coverability graph [64] of a place/transition net is a primitive example of a symbolic
state space. A coverability graph is like a reachability graph, except that the vertices
in the graph are virtual markings, i.e. functions from the set of places to N U {w}
where w is a formal infinite number such that

VneENnNn<wAw+n=wAw—n=uw.

Whenever there exist a place s and a virtual marking M in the graph in such a way
that M(s) = w, M represents a set X of reachable ordinary markings in such a way
that the set {M'(s) | M' € X} is infinite.

A place s is said to be bounded iff there exists n € N in such a way that for each
reachable marking M, M(s) < n. A subset S’ of places is said to be a set of simul-
taneously unbounded places iff for each n € N, there exists a reachable marking M
such that for each s € S’, M(s) > n. A place is thus bounded iff the singleton set
containing the place is not a set of simultaneously unbounded places. An ordinary
or a virtual marking M’ covers an ordinary or a virtual marking M iff for each place
s in the net, M'(s) > M(s). There exists a simple algorithm [64] that for any finite
place/transition net constructs a finite coverability graph that satisfies the follow-
ing: an ordinary marking M is covered by no reachable ordinary marking iff the
constructed graph contains no virtual marking that covers M. From this it follows
e.g. that all sets of simultaneously unbounded places can be detected from the con-
structed graph. Namely, a subset S’ of places is a set of simultaneously unbounded
places iff the constructed graph contains a virtual marking M such that for each
se S, M(s)=w.

Unfortunately, coverability graphs often do not contain sufficient information for
solving a verification problem. For example, the coverability graph constructed for
a net with a reachable terminal marking may be the same (up to isomorphism) as
the coverability graph constructed for a net with no reachable terminal marking [58].
There are still some at least technically interesting classes of place/transition nets
where coverability graphs can be used for deciding e.g. whether or not a reachable
terminal marking exists. For such nets, the idea of constructing a reduced coverability

—94 —

graph with the stubborn set method is quite natural. Stubbornness just has to be
defined at a virtual marking. If we say that a subset T of transitions is stubborn
at a virtual marking M in a coverability graph, then T, should be such that for
any reachable marking M’ represented by M, Ts or some subset of Ty is stubborn
at M'. Heuristics for computing stubborn sets for sets of markings are presented in
[70, 71], and [35] suggests applying such heuristics to the construction of a reduced
coverability graph.

Figure 31: The place ¢ may “look bounded” in a stubbornly reduced coverability
graph.

The way suggested in [35] for constructing a reduced coverability graph cannot in
general be used for the checking of boundedness of places. The net in Figure 31
satisfies all the special constraints listed in [35] for ensuring that the reduced cov-
erability graph can be used for checking some basic things such as the existence or
non-existence of reachable terminal markings. The checking of boundedness is not
discussed in [35]. We immediately observe that the place ¢ is not bounded. Let M, be
the initial marking, Myla) My, M[c) My, and Ms[b)Mj3. Let stubbornness be defined
as in [35]. (It is hard to imagine any reasonable definition of stubbornness that would
make a difference w.r.t. this example.) Then {a} is stubborn at My, {c} is stubborn
at My, {b} is stubborn at Ms, and {d} is stubborn at M3. Consequently, the construc-
tion of a reduced coverability graph can result in a graph where all virtual markings
are ordinary markings, namely the markings My, M;, My and M3, while the only
infinite path starting from Mj in the graph is labelled by (acbd)(acbd)(acbd)

We do not know any general solution to the problem how the stubborn set method
could be revised to preserve boundedness information. In order to show that a place
s is not bounded, it suffices to find from the full reachability graph a path containing
markings M and M’ such that M occurs before M', M’ covers M and M'(s) > M(s).
The difficulty w.r.t. the stubborn set method is that all places are included in the
covering condition. We can of course write LTL formulas of the form O(M(s) < n).

Binary decision diagrams (BDDs for short) [13] and graph encoded tuple sets (GETSes
for short) [32] are data structures that have turned out to be successful in encoding
large state spaces or sets of states in a way that supports verification in a wide sense.

In the strictly BDD-based approach, a state space is described by a formula that is to
be encoded into a BDD. Verification then reduces into manipulation of the BDD. The
time consumed in such verification depends on the size of the BDD rather than on
the size of the represented state space. In successful cases, a small BDD represents a

— 95 —

huge state space. BDDs are sometimes used simply as plain search structures where
parts of the state space are kept. The benefit is that any algorithm working on the
state space level is then directly applicable. GETSes have the same benefit. Unlike
BDDs, GETSes are merely search structures, or at least we have not seen suggestions
of using them in any other way.

The kind of a reduction obtained by means of the stubborn set method and similar
techniques is to some extent orthogonal to the reduction obtained by a symbolic
representation of states. The stubborn set method is able to cut down on redundancy
caused by branching and can be “merged” with the strictly BDD-based verification
approach as demonstrated in [1, 70, 71]. The merging requires that a prospective
reduced state space to be represented can be expressed as a formula that can easily be
encoded into a BDD. A given definition of stubbornness may have to be compromised
in order to make the merging successful.

A drawback with BDDs is that the size of a BDD strongly depends on “uninteresting”
things such as the chosen order of variables for the BDD. Consequently, the use of
BDDs requires a lot of expertise. It somehow seems that BDDs are at best in cases
where we have a deep and detailed understanding of the behaviour of a system and
only need some formal way to show that the system is correct. We do not know how
much GETSes differ from BDDs in these respects.

— 96 —

10 Conclusions

This thesis has considered relieving of the state space explosion problem that occurs
in the analysis of concurrent and distributed systems. We have concentrated on one
method for that purpose: the stubborn set method. We are fully aware of the fact
that the stubborn set method has no special position among verification heuristics. It
is also clear that in industrial-size cases, one method alone is typically almost useless.
Our motivation is that whenever a method is used, it should be used reasonably.

The contributions of this thesis are as follows.

e In Chapter 4, we have rephrased persistence and conditional stubbornness in
terms of strong dynamic stubbornness in place/transition nets.

e In Chapter 5, we have improved the LTL-preserving stubborn set method in
such a way that it can utilize the structure of the formula when fairness is
not assumed. At least the presented theory should be of more than temporary
interest.

e In Chapter 6, we have designed an algorithm that computes stubborn sets
that are cardinality minimal or almost cardinality minimal w.r.t. the number
of enabled transitions. We have presented practical experiments that indicate
that the algorithm is worth of consideration whenever one wants to get proper
advantage of the stubborn set method.

e In Chapter 7, we have obtained practical evidence indicating that a stubborn
reduction often produces a significant amount of intermediate states that can
be eliminated without losing any important information. The way we have
suggested for elimination is able to do something concrete in order to prevent
an overflow in a depth-first search stack.

e In Chapter 8, we have shown that the stubborn set method can be combined
with the sleep set method in the verification of basic termination properties
and simple safety properties without having to place any assumptions on the
stubborn sets used. We have also obtained very weak conditions for the sleep
set method to be compatible with another method in such verification tasks.
As an example, we have described one possible combination of the stubborn set
method and the sleep set method to be used in on-the-fly verification of simple
safety properties.

Though we have used place/transition nets as the main formalism, many of the re-
sults presented for place/transition nets can be extended, often by simple syntactic
modification, to concern any other formalism where the stubborn set method is ap-
plicable.

The use of stubborn sets in various formalisms and logics is a fruitful area of future
research. On the other hand, we should, by means of large case studies, try to find
out what the central problems in the application of the method are and how these
problems could be alleviated.

—97 -

Acknowledgements

Discussions with Associate Professor Antti Valmari from Tampere University of Tech-
nology have affected the thesis in the following things: the definition of the and/or-
graph (Definition 4.25), the assumption A4 (in Section 5.1) and the idea of inter-
secting an automatically constructed Bichi automaton with a reduced state space
during the construction of the latter. The discussions in question took place in years
1992-1995.

The used model of YXA is based on a TNSDL description obtained from M.Sc.(Eng.)
Esa Kettunen from Nokia Telecommunications Oy in 1994. The used model of MU-
LOG is based on a PROMELA description obtained from Dr. Patrice Godefroid from
AT&T in 1995.

Publications resulted from the work

The problems in choosing a scapegoat (Section 6.1) were discussed in [85, 86]. The
connection between persistence and strong dynamic stubbornness was treated in
[86, 87, 89]. The compatibility of the stubborn set method with the sleep set method
was considered in [86, 87, 89, 91]. Preliminary comments concerning the verification
of LTL-formulas were published in [88, 90]. The contribution of the above Chapter
5 is repeated in [93]. The incomplete minimization algorithm (Section 6.2) was
introduced in [92]. For historical correctness concerning Chapter 7, we note that the
algorithms SA and ES have been in the public release version of PROD since the
end of the year 1995, and a paper similar to Chapter 7, written by the author of this
thesis, was submitted to Euro-Par '96 in February 1996.

— 08 —

References

1]

2]

[10]

[11]

[12]

[13]

Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., and Rajamani, S.K.:
Partial-Order Reduction in Symbolic State Space Ezploration. In [34], pp. 340—
351.

Ashcroft, E., and Manna, Z.: Formalization of Properties of Parallel Programs.
Meltzer, B., and Michie, D. (Eds.), Machine Intelligence 6. Edinburgh University
Press, Edinburgh, UK, 1971, pp. 17-42.

Azéma, P., and Balbo, G. (Eds.): Proceedings of the 18th International Con-
ference on Application and Theory of Petri Nets, Toulouse, France, June 1997.
Lecture Notes in Computer Science 1248, Springer-Verlag, Berlin 1997, 467 p.

Bause, F.: Analysis of Petri Nets with a Dynamic Priority Method. In [3], pp.
215-234.

Berthelot, G.: Transformations and Decompositions of Nets. In [9], pp. 359-376.

Berthelot, G., and Roucairol, G.: Reduction of Petri-Nets. Mathematical Foun-
dations of Computer Science 1976. Lecture Notes in Computer Science 45,
Springer-Verlag, Berlin 1976, pp. 202-209.

Billington, J., and Reisig, W. (Eds.): Proceedings of the 17th International
Conference on Application and Theory of Petri Nets, Osaka, Japan, June 1996.
Lecture Notes in Computer Science 1091, Springer-Verlag, Berlin 1996, 549 p.

von Bochmann, G., and Probst, D.K. (Eds.): Proceedings of the 4th Interna-
tional Workshop on Computer-Aided Verification, Montréal, Canada, June 1992.
Lecture Notes in Computer Science 663, Springer-Verlag, Berlin 1993, 422 p.

Brauer, W., Reisig, W., and Rozenberg, G. (Eds.): Petri Nets: Central Models
and Their Properties. Advances in Petri Nets 1986, Part I, Proceedings of an
Advanced Course, Bad Honnef, September 1986. Lecture Notes in Computer
Science 254, Springer-Verlag, Berlin 1987, 480 p.

Brauer, W., Reisig, W., and Rozenberg, G. (Eds.): Petri Nets: Applications and
Relationships to Other Models of Concurrency. Advances in Petri Nets 1986,
Part II, Proceedings of an Advanced Course, Bad Honnef, September 1986. Lec-
ture Notes in Computer Science 255, Springer-Verlag, Berlin 1987, 516 p.

Brgan, R., and Poitrenaud, D.: An Efficient Algorithm for the Computation of
Stubborn Sets of Well Formed Petri Nets. De Michelis, G., and Diaz, M. (Eds.),
Proceedings of the 16th International Conference on Application and Theory
of Petri Nets, Turin, Italy, June 1995. Lecture Notes in Computer Science 935,
Springer-Verlag, Berlin 1995, pp. 121-140.

Biichi, J.R.: On a Decision Method in Restricted Second Order Arithmetic. Pro-
ceedings of the International Congress on Logic, Methodology and Philosophy
of Science, 1960. Stanford University Press, Stanford CA, USA, 1962, pp. 1-12.

Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., and Hwang, L.J.: Sym-
bolic Model Checking: 10?° States and Beyond. Information and Computation
98 (1992) 2, pp. 142-170.

— 99 —

[14] Clarke, E.M., and Kurshan, R.P. (Eds.): Proceedings of the 2nd International
Workshop on Computer-Aided Verification, New Brunswick NJ, USA, June

1990. Lecture Notes in Computer Science 531, Springer-Verlag, Berlin 1991,
372 p.

[15] Courcoubetis, C. (Ed.): Proceedings of the 5th International Conference on
Computer-Aided Verification, Elounda, Greece, June/July 1993. Lecture Notes
in Computer Science 697, Springer-Verlag, Berlin 1993, 504 p.

[16] Courcoubetis, C., Vardi, M.Y., Wolper, P., and Yannakakis, M.: Memory Ef-
ficient Algorithms for the Verification of Temporal Properties. Formal Methods
in System Design 1 (1992) 2/3, pp. 275-288.

[17] Dembitiski, P., and Sredniawa, M. (Eds.): Proceedings of the 15th TFIP WG 6.1
Symposium on Protocol Specification, Testing and Verification, Warsaw, June
1995. Chapman & Hall, London 1996, 453 p.

[18] Desel, J., and Silva, M. (Eds.): Proceedings of the 19th International Conference
on Application and Theory of Petri Nets, Lisbon, Portugal, June 1998. Lecture
Notes in Computer Science, Springer-Verlag, Berlin 1998. (The contents of the
book were fixed before April 1998.)

[19] Emerson, E.A.: Temporal and Modal Logic. van Leeuwen, J. (Ed.), Handbook of
Theoretical Computer Science, Vol. B. Elsevier, Amsterdam 1990, pp. 995-1072.

[20] Esparza, J., and Melzer, S.: Model Checking LTL Using Constraint Program-
ming. In [3], pp. 1-20.

[21] Francez, N.: Fairness. Springer-Verlag, Berlin 1986, 295 p.
[22] Genrich, H.J.: Predicate/Transition Nets. In [9], pp. 207-247.

[23] Gerth, R., Kuiper, R., Peled, D., and Penczek, W.: A Partial Order Approach to
Branching Time Logic Model Checking. Proceedings of the 3rd Israel Symposium
on Theory of Computing and Systems, Tel Aviv, Israel, 1995. IEEE Computer
Society Press, Los Alamitos CA 1995, pp. 130-140.

[24] Gerth, R., Peled, D., Vardi, M.Y., and Wolper, P.: Simple On-the-Fly Automatic
Verification of Linear Temporal Logic. In [17], pp. 3-18.

[25] Godefroid, P.: Using Partial Orders to Improve Automatic Verification Methods.
In [14], pp. 176-185.

[26] Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems
— An Approach to the State-Ezplosion Problem. Lecture Notes in Computer
Science 1032, Springer-Verlag, Berlin 1996, 143 p.

[27] Godefroid, P., Holzmann, G.J., and Pirottin, D.: State-Space Caching Revisited.
Formal Methods in System Design 7 (1995) 3, pp. 227-241.

[28] Godefroid, P., and Kabanza, F.: An Efficient Reactive Planner for Synthesizing
Reactive Plans. Proceedings of AAAI-91, Anaheim CA, USA, July 1991, Vol. 2,
pp. 640-645.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

- 100 —

Godefroid, P., and Pirottin, D.: Refining Dependencies Improves Partial-Order
Verification Methods. In [15], pp. 438-449.

Godefroid, P., and Wolper, P.: A Partial Approach to Model Checking. Informa-
tion and Computation 110 (1994) 2, pp. 305-326.

Godefroid, P., and Wolper, P.: Using Partial Orders for the Efficient Verification
of Deadlock Freedom and Safety Properties. Formal Methods in System Design
2 (1993) 2, pp. 149-164.

Grégoire, J.-Ch.: State Space Compression in SPIN with GETSs. Proceedings
of the 2nd International SPIN Verification Workshop, New Brunswick NJ, USA,
August 1996, 19 p.

Gribomont, E.P.; and Wolper, P.: Temporal Logic. Thayse, A. (Ed.), From
Modal Logic to Deductive Databases — Introducing a Logic Based Approach
to Artificial Intelligence. John Wiley & Sons, New York NY, USA, 1989, pp.
165-233.

Grumberg, O. (Ed.): Proceedings of the 9th International Conference on
Computer-Aided Verification, Haifa, Israel, June 1997. Lecture Notes in Com-
puter Science 1254, Springer-Verlag, Berlin 1997, 486 p.

Hiraishi, K.: Reduced State Space Representation for Unbounded Vector State
Spaces. In [7], pp. 230-248.

Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice-Hall,
Englewood Cliffs NJ, USA, 1991, 500 p.

Holzmann, G.J., and Peled, D.: An Improvement in Formal Verification.
Hogrefe, D., and Leue, S. (Eds.), Proceedings of the 7th International IFIP WG
6.1 Conference on Formal Description Techniques, Bern, Switzerland, October
1994. Chapman & Hall, London 1995, pp. 177-191.

Holzmann, G.J., Godefroid, P., and Pirottin, D.: Coverage Preserving Reduction
Strategies for Reachability Analysis. Linn, R.J., Jr., and Uyar, M.U. (Eds.),
Proceedings of the 12th International IFIP WG 6.1 Symposium on Protocol
Specification, Testing and Verification, Lake Buena Vista FL, USA, June 1992.
IFIP Transactions C-8, North-Holland, Amsterdam 1992, pp. 349-363.

Janicki, R., and Koutny, M.: Using Optimal Simulations to Reduce Reachability
Graphs. In [14], pp. 166-175.

Jensen, K.: Coloured Petri Nets and the Invariant Method. Theoretical Com-
puter Science 14 (1981), pp. 317-336.

Jensen, K., and Rozenberg, G. (Eds.): High-level Petri Nets. Theory and Appli-
cation. Springer-Verlag, Berlin 1991, 724 p.

Kaivola, R.: Equivalence, Preorders and Compositional Verification for Linear
Time Temporal Logic and Concurrent Systems. Doctoral thesis, University of
Helsinki, Department of Computer Science, Report A-1996-1, Helsinki 1996,
185 p.

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

- 101 -

Kaivola, R., and Valmari, A.: The Weakest Compositional Semantic Equiva-
lence Preserving Nexttime-less Linear Temporal Logic. Cleaveland, W.R. (Ed.),
Proceedings of the 3rd International Conference on Concurrency Theory, Stony
Brook NY, USA, August 1992. Lecture Notes in Computer Science 630, Springer-
Verlag, Berlin 1992, pp. 207-221.

Katz, S., and Peled, D.: Verification of Distributed Programs Using Represen-
tative Interleaving Sequences. Distributed Computing 6 (1992) 2, pp. 107-120.

Katz, S., and Peled, D.: Defining Conditional Independence Using Collapses.
Theoretical Computer Science 101 (1992) 2, pp. 337-359.

Kernighan, B.W., and Ritchie, D.M.: The C Programming Language. 2nd edi-
tion. Prentice-Hall, Englewood Cliffs NJ, USA, 1988, 272 p.

Kettunen, E., Montonen, E., and Tuuliniemi, T.: A Comparison of Pr/T-Net
Based FIFO Channel Models. Helsinki University of Technology, Digital Systems
Laboratory Report B 33, Espoo 1986, 18 p.

Kokkarinen, I., Peled, D., and Valmari, A.: Relazed Visibility Enhances Partial
Order Reduction. In [34], pp. 328-339.

Koutny, M., and Pietkiewicz-Koutny, M.: On the Sleep Sets Method for Partial
Order Verification of Concurrent Systems. University of Newcastle upon Tyne,
Department of Computing Science, Technical Report 495, Newcastle upon Tyne,
UK, 1994.

Kristensen, L.M., and Valmari, A.: Finding Stubborn Sets of Coloured Petri
Nets Without Unfolding. In [18].

Kurshan, R.P., Levin, V., Minea, M., Peled, D., and Yenigin, H.: Static Partial
Order Reduction. Steffen, B. (Ed.), Proceedings of the 4th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems,
Lisbon, Portugal, March/April 1998. Lecture Notes in Computer Science 1384,
Springer-Verlag, Berlin 1998, pp. 345-357.

Mazurkiewicz, A.: Trace Theory. In [10], pp. 279-324.

Miller, H., and Katz, S.: Saving Space by Fully Fxploiting Invisible Transitions.
Alur, R., and Henzinger, T.A. (Eds.), Proceedings of the 8th International Con-
ference on Computer-Aided Verification, New Brunswick NJ, USA, July/August
1996. Lecture Notes in Computer Science 1102, Springer-Verlag, Berlin 1996, pp.
336-347.

Overman, W.T.: Verification of Concurrent Systems: Function and Timing.
PhD thesis, University of California at Los Angeles, Los Angeles CA, USA,
1981, 174 p.

Peled, D.: All from One, One for All: on Model Checking Using Representatives.
In [15], pp. 409-423.

Peled, D.: Combining Partial Order Reductions with On-the-Fly Model-Check-
ing. Formal Methods in System Design 8 (1996) 1, pp. 39-64.

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]
[66]

[67]
[68]

[69]

[70]

[71]

-102 -

Peled, D., and Penczek, W.: Using Asynchronous Bichi Automata for Efficient
Automatic Verification of Concurrent Systems. In [17], pp. 115-130.

Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice-Hall,
Englewood Cliffs NJ, USA, 1981, 290 p.

Petri, C.A.: Kommunikation mit Automaten. Schriften des IIM Nr. 2 (1962),
Institut fiir Instrumentelle Mathematik, Bonn, Germany. English translation:
Communication with Automata. Technical Report RADC-TR-65-377, Vol. 1,
Suppl. 1, Griffith Air Force Base, New York NY, USA, 1966.

Pnueli, A.: Applications of Temporal Logic to the Specification and Verification
of Reactive Systems: A Survey of Current Trends. de Bakker, J.W., de Roever,
W.-P., and Rozenberg, G. (Eds.), Current Trends in Concurrency, Overviews
and Tutorials. Lecture Notes In Computer Science 224, Springer-Verlag, Berlin
1986, pp. 510-584.

Proceedings of the 6th Annual IEEE Symposium on Logic in Computer Science,
Amsterdam, July 1991. IEEE Computer Society Press, Los Alamitos CA, USA,
1991.

Ramakrishna, Y.S., and Smolka, S.A.: Partial-Order Reduction in the Weak
Modal Mu-Calculus. Mazurkiewicz, A., and Winkowski, J. (Eds.), Proceedings
of the 8th International Conference on Concurrency Theory, Warsaw, July 1997.
Lecture Notes in Computer Science 1243, Springer-Verlag, Berlin 1997, pp. 5-24.

Rauhamaa, M.: A Comparative Study of Methods for Efficient Reachability
Analysis. Helsinki University of Technology, Digital Systems Laboratory Report
A 14, Espoo 1990, 61 p.

Reisig, W.: Petri Nets: An Introduction. EATCS Monographs on Theoretical
Computer Science 4, Springer-Verlag, Berlin 1985, 161 p.

Reisig, W.: Place/Transition Systems. In [9], pp. 117-141.

Safra, S.: On the Complezity of w-automata. Proceedings of the 29th Annual
Symposium on Foundations of Computer Science, White Plains NY, USA, Oc-
tober 1988. IEEE Computer Society Press, Washington DC, USA, 1988, pp.
319-327.

Sedgewick, R.: Algorithms. Addison-Wesley, Reading MA, USA, 1983, 551 p.

Sloan, R.H., and Buy, U.: Stubborn Sets for Real-Time Petri Nets. Formal
Methods in System Design 11 (1997) 1, pp. 23-40.

Tarjan, R.E.: Depth-First Search and Linear Graph Algorithms. SIAM Journal
of Computing 1 (1972) 2, pp. 146-160.

Tiusanen, M.: Static Analysis of Ada Tasking Programs: Models and Algorithms.
PhD thesis, University of Illinois at Chicago, Chicago IL, USA, 1993, 161 p.

Tiusanen, M.: Symbolic, Symmetry, and Stubborn Set Searches. In [72], pp.
511-530.

- 103 -

[72] Valette, R. (Ed.): Proceedings of the 15th International Conference on Appli-
cation and Theory of Petri Nets, Zaragoza, Spain, June 1994. Lecture Notes in
Computer Science 815, Springer-Verlag, Berlin 1994, 587 p.

[73] Valmari, A.: Error Detection by Reduced Reachability Graph Generation. Pro-
ceedings of the 9th European Workshop on Application and Theory of Petri
Nets, Venice, Italy, June 1988, pp. 95-112.

[74] Valmari, A.: Heuristics for Lazy State Space Generation Speeds up Analy-
sis of Concurrent Systems. Makela, M., Linnainmaa, S., and Ukkonen, E.
(Eds.), Proceedings of the Finnish Artificial Intelligence Symposium (Suomen
tekodlytutkimuksen paivat), Vol. 2, Helsinki 1988, pp. 640-650.

[75] Valmari, A.: State Space Generation: Efficiency and Practicality. Doctoral the-
sis, Tampere University of Technology Publications 55, Tampere 1988, 170 p.

[76] Valmari, A.: Eliminating Redundant Interleavings during Concurrent Program
Verification. Proceedings of Parallel Architectures and Languages Europe 89
Vol. 2. Lecture Notes in Computer Science 366, Springer-Verlag, Berlin 1989,
pp- 89-103.

[77] Valmari, A.: Stubborn Sets for Reduced State Space Generation. Rozenberg, G.
(Ed.), Advances in Petri Nets 1990. Lecture Notes in Computer Science 483,
Springer-Verlag, Berlin 1991, pp. 491-515.

[78] Valmari, A.: A Stubborn Attack on State Explosion. Formal Methods in System
Design 1 (1992) 4, pp. 297-322.

[79] Valmari, A.: Stubborn Sets of Coloured Petri Nets. Proceedings of the 12th Inter-
national Conference on Application and Theory of Petri Nets, Gjern, Denmark,
June 1991, pp. 102-121.

[80] Valmari, A.: Alleviating State Explosion during Verification of Behavioural
FEquivalence. University of Helsinki, Department of Computer Science, Report
A-1992-4, Helsinki 1992, 57 p.

[81] Valmari, A.: On-the-Fly Verification with Stubborn Sets. In [15], pp. 397-408.

[82] Valmari, A., and Tienari, M.: An Improved Failures Equivalence for Finite-State
Systems with a Reduction Algorithm. Jonsson, B., Parrow, J., and Pehrson,
B. (Eds.), Proceedings of the 11th International IFIP WG 6.1 Symposium on
Protocol Specification, Testing and Verification, Stockholm, June 1991. North-
Holland, Amsterdam 1991, pp. 3-18.

[83] Valmari, A., and Tiusanen, M.: A Graph Model for Efficient Reachability Anal-
ysis of Description Languages. Proceedings of the 8th European Workshop on
Application and Theory of Petri Nets, Zaragoza, Spain, June 1987, pp. 349-366.

[84] Vardi, M.Y., and Wolper, P.: An Automata-Theoretic Approach to Automatic
Program Verification. Proceedings of the 1st IEEE Symposium on Logic in Com-
puter Science, Cambridge, UK, June 1986. IEEE Computer Society Press, Wash-
ington DC, USA, 1986, pp. 322-344.

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

-104 -

Varpaaniemi, K.: On Choosing a Scapegoat in the Stubborn Set Method.
Burkhard, H.-D., Starke, P.H., and Czaja, L. (Eds.), Proceedings of the 1st In-
ternational Workshop on Concurrency, Specification and Programming, Berlin,
November 1992. Fachbereich Informatik der Humboldt-Universitat zu Berlin,
Informatik-Preprint 22, Berlin 1993, pp. 163-171.

Varpaaniemi, K.: Efficient Detection of Deadlocks in Petri Nets. Helsinki Uni-
versity of Technology, Digital Systems Laboratory Report A 26, Espoo 1993,
56 p.

Varpaaniemi, K.: Dynamically Stubborn Sets and the Sleep Set Method.
Burkhard, H.-D., Czaja, L., and Starke, P.H. (Eds.), Proceedings of the 2nd
International Workshop on Concurrency, Specification and Programming, Nie-
boréw, Poland, October 1993. Zaklad Graficzny UW, zam. 261/94, Warsaw
1994, pp. 230-246.

Varpaaniemi, K.: On Computing Symmetries and Stubborn Sets. Helsinki Uni-
versity of Technology, Digital Systems Laboratory Report B 12, Espoo 1994,
16 p.

Varpaaniemi, K.: On Combining the Stubborn Set Method with the Sleep Set
Method. In [72], pp. 548-567.

Varpaaniemi, K.: On-the-Fly Verification with PROD. Desel, J., Oberweis, A.,
and Reisig, W. (Eds.), Proceedings of the “Algorithmen und Werkzeuge fiir
Petrinetze” workshop, Berlin, October 1994. Universitat Karlsruhe (TH), Insti-
tut fur Angewandte Informatik und Formale Beschreibungsverfahren, Bericht
309, Karlsruhe, Germany, 1994, pp. 80-83.

Varpaaniemi, K.: The Sleep Set Method Revisited. Czaja, L., Burkhard, H.-
D., and Starke, P.H. (Eds.), Proceedings of the 3rd International Workshop on
Concurrency, Specification and Programming, Berlin, October 1994. Humboldt-
Universitat zu Berlin, Institut fiir Informatik, Informatik-Bericht 36, Berlin
1994, 10 p.

Varpaaniemi, K.: Finding Small Stubborn Sets Automatically. Atalay, V., Halici,
U., Inan, K., Yalabik, N., and Yazici, A. (Eds.), Proceedings of the 11th Inter-
national Symposium on Computer and Information Sciences, Antalya, Turkey,
November 1996, Vol. I. Middle East Technical University, Ankara, Turkey, 1996,
ISBN 975-429-103-9, pp. 133-142.

Varpaaniemi, K.: On Stubborn Sets in the Verification of Linear Time Temporal
Properties. In [18].

Varpaaniemi, K., Halme, J., Hiekkanen, K., and Pyssysalo, T.. PROD Reference
Manual. Helsinki University of Technology, Digital Systems Laboratory Report
B 13, Espoo 1995, 56 p.

Varpaaniemi, K., and Rauhamaa, M.: The Stubborn Set Method in Practice.
Jensen, K. (Ed.), Proceedings of the 13th International Conference on Applica-
tion and Theory of Petri Nets, Sheffield, June 1992. Lecture Notes in Computer
Science 616, Springer-Verlag, Berlin 1992, pp. 389-393.

- 105 -

[96] Vernadat, F., Azéma, P., and Michel, F.: Covering Step Graph. In [7], pp. 516—
535.

[97] Vernadat, F., and Michel, F.: Covering Step Graph Preserving Failure Seman-
tics. In [3], pp. 253-270.

[98] Willems, B., and Wolper, P.: Partial-Order Methods for Model-Checking: from
Linear Time to Branching Time. Proceedings of the 11th Annual IEEE Sympo-
sium on Logic in Computer Science, New Brunswick NJ, USA, July 1996. IEEE
Computer Society Press, Los Alamitos CA, USA, 1996, pp. 294-303.

[99] Wolper, P., and Godefroid, P.: Partial-Order Methods for Temporal Verification.
Best, E. (Ed.), Proceedings of the 4th International Conference on Concurrency
Theory, Hildesheim, Germany, August 1993. Lecture Notes in Computer Science
715, Springer-Verlag, Berlin 1993, pp. 233-246.

[100] Wolper, P., Godefroid, P., and Pirottin, D.: A Tutorial on Partial-Order
Methods for the Verification of Concurrent Systems. Tutorial material of the

5th International Conference on Computer-Aided Verification, Elounda, Greece,
June/July 1993, 85 p.

[101] Yoneda, T., Shibayama, A., Schlingloff, B.-H., and Clarke, E.M.: Efficient
Verification of Parallel Real-Time Systems. In [15], pp. 321-332.

