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ABSTRACT: Answer set programming (ASP) is a declarative rule-based con-
straint programming paradigm. In ASP the problem at hand is solved declar-
atively by writing down a logic program the answer sets of which correspond
to the solutions of the problem, and then computing the answer sets of the
program using a special purpose search engine. The growing interest towards
ASP is mostly due to efficient search engines available today. Consequently,
a variety of interesting applications of ASP has emerged, for example, in plan-
ning, product configuration, computer aided verification, and wire routing
in VLSI design.

Despite the declarative nature of ASP the development of programs re-
sembles that of programs in conventional programming: a programmer often
develops a series of gradually improving programs for a particular problem,
for example, when optimizing execution time and space. Currently ASP
programs are considered as integral entities. This becomes problematic as
programs become more complex, and the sizes of program instances grow.
In ASP there is a lack of mechanisms, available in other modern program-
ming languages, that ease program development by allowing re-use of code
or breaking programs into smaller pieces, modules. Even though modularity
has been studied extensively in conventional logic programming, there are
only few approaches how to incorporate modularity into ASP.

In this report we propose a simple and intuitive notion of a logic program
module that interacts through an input/output interface. The module sys-
tem is fully compatible with the stable model semantics. This is achieved by
restricting the composition of modules in a way that module-level stability
implies program-level stability, and vice versa. Furthermore, we introduce a
notion of modular equivalence that is a proper congruence relation for the
composition of modules and analyze the computational complexity of de-
ciding modular equivalence. We extend an earlier translation-based method
for verifying equivalence of ASP programs to cover the verification of modu-
lar equivalence of SMODELS program modules, and evaluate experimentally
the efficiency of the translation-based method in the verification of modular
equivalence. We also study questions related to finding a suitable module
structure for a program when there is no explicit a priori knowledge on the
underlying structure.

KEYWORDS: modular answer set programming, equivalence verification,
modular congruence, stable model semantics, nonmonotonic reasoning
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1 INTRODUCTION

Answer set programming [54, 50, 19] is an approach to declarative rule-based
constraint programming that has received increasing attention over the last
few years. In answer set programming (ASP) the problem at hand is solved
declaratively by writing down a logic program the answer sets of which cor-
respond to the solutions of the problem, and then computing the answer sets
of the program using a special purpose search engine. The growing interest
towards answer set programming is mostly due to efficient search engines,
such as SMODELS [65], DLV [33], GNT [29], ASSAT [41], CMODELS-2 [34],
PBMODELS [44], NOMORE++ [1], CLASP [18], and SAG [42] available to-
day. Consequently, a variety of interesting applications of ASP has emerged,
for example, in planning [35], product configuration [66], computer aided
verification [24], wire routing in VLSI design [13], logical cryptanalysis [25],
and a decision support system of NASA space shuttle [2].

Despite the declarative nature of ASP the development of programs re-
sembles that of programs in conventional programming, that is, a program-
mer often develops a series of gradually improving programs for a particular
problem, for example, when optimizing execution time and space. The de-
velopment and optimization of programs in ASP gives rise to a meta-level
problem of verifying whether subsequent programs are equivalent. There are
several notions of equivalence proposed for logic programs. For instance, if
logic programs P and Q have exactly the same answer sets, they are said to
be weakly/ordinarily equivalent, denoted by P ≡ Q. Looking this from the
answer set programming perspective, weakly equivalent programs produce
the same solutions for the problem they formalize. If P ∪ R ≡ Q ∪ R for
all programs R, then P and Q are said to be strongly equivalent, denoted by
P ≡s Q. Strongly equivalent programs preserve the solutions to the problem
in every possible context in which they can be placed in.

A translation-based approach has been proposed and extended further for
solving the equivalence verification problem, see for instance, [30, 69, 56,
71, 31]. The underlying idea is to combine logic programs P and Q un-
der consideration into logic programs EQT(P,Q) and EQT(Q,P ) which
have no answer sets if and only if P and Q are equivalent. This enables the
use of the same ASP solver, such as SMODELS or DLV, for the equivalence
verification task as for the search of answer sets in general. Note, however,
that programs are treated as integral entities in the translation-based method.
This might limit the usefulness of the translation-based method, for exam-
ple, in a situation where there is a small local change in a large program. It
seems likely that one could seek computational advantage by breaking pro-
grams into smaller pieces, that is, modules, and by verifying equivalence of
modules instead of complete programs.

The same line of thinking applies to current ASP methodology in general.
A program in answer set programming is considered as an integral entity,
and there is a lack of mechanisms available in modern programming lan-
guages that ease program development by allowing re-use of code or break-
ing programs into smaller pieces. This becomes problematic when programs
become more complex, and the sizes of program instances grow. Further-
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more, current ASP tools require users to have rather extensive knowledge
on ASP methodology. We want to make program development in answer
set programming easier and, more generally, make ASP methodology more
accessible for specialists in other fields than computer science. Modulariza-
tion of answer set programming is a way to structure and ease the program
development process, and this way answer set programming can become an
even more attractive approach for solving hard combinatorial problems, for
example, in the areas of semantic web, bioinformatics, and cryptology.

The aim of this report is to develop answer set programming into a more
module-oriented direction in which ASP programs consist of modules that in-
teract through suitable interfaces. Program optimization would thus involve
module-level optimization and, for example, a suitable equivalence relation
is needed to justify the replacement of a module with another, that is, to be
able to guarantee that changes made on the level of modules do not alter the
models of the program when seen as an entity.

The rest of this chapter is organized as follows. We start by related work
in Section 1.1, and list the design criteria and goals for the module system in
Section 1.2. The contributions of this report are presented in Section 1.3.

1.1 RELATED WORK

Modularity has been studied extensively in conventional logic programming,
see the survey by Bugliesi et al. [5], but there are only few approaches how to
incorporate modularity into answer set programming [11, 26, 15, 68]. In this
section we review some of the approaches proposed.

1.1.1 Modularity in Conventional Logic Programming

Our discussion of approaches to modularity in conventional logic program-
ming is mainly based on the extensive survey by Bugliesi et al. [5]. When
considering what is needed from a modular logic programming language,
several properties can be highlighted [5], for instance, modular language
should

• allow abstraction, parameterization, and information hiding,

• ease program development and maintenance of large programs,

• allow re-usability,

• have a non-trivial notion of program equivalence to justify replacement
of program components, and

• maintain the declarativity of logic programming.

Bugliesi et al. [5] identify two mainstream programming disciplines: pro-
gramming-in-the-large where programs are composed with algebraic opera-
tors (for instance [4, 17, 48, 59]) and programming-in-the-small with abstrac-
tion mechanisms (for instance [23, 52]).

The programming-in-the-large approaches have their roots in O’Keefe’s
work [59] where logic programs are seen as an elements of an algebra and
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the operators for composing programs are seen as operators in that algebra.
The fundamental idea is that a logic program should be understood as a
part of a system of programs. Program composition is a powerful tool for
structuring programs without any need to extend the underlying language of
Horn clauses. Several algebraic operations such as union, deletion, overrid-
ing union and closure have been considered. This approach supports nat-
urally the re-use of the pieces of programs in different composite programs,
and when combined with an adequate equivalence relation also the replace-
ment of equivalent components. This approach is highly flexible, as new
composition mechanisms can be obtained by introducing a corresponding
operator in the algebra or combining existing ones. Encapsulation and in-
formation hiding can be obtained by introducing suitable interfaces between
components. For example, Mancarella and Pedreschi [48], Brogi et al. [4],
and Gaifman and Shapiro [17] present compositional frameworks that can
be seen as different formulations of O’Keefe’s ideas.

The programming-in-the-small approaches originate from Miller’s work
[52]. In his approach the composition of modules is modelled in terms of
logical connectives of a language that is defined as an extension of Horn
clause logic. Giordano and Martelli’s approach [23] employs the same struc-
tural properties, but suggests a more refined way of modelling visibility rules
than the one given in [52]. We focus in the programming-in-the-large ap-
proaches in more detail, since the syntax of logic programs in answer set
programming is already more general than that of Horn logic programs used
in conventional logic programming. In addition, for example, aggregates can
be used as abstraction mechanisms in ASP.

1.1.2 Compositionality and Full Abstraction

Maher [47] states that the very least to be expected from a semantical char-
acterization of a modular language is that the meaning of composite pro-
grams can be defined in terms of the meaning of its components. To be
able to identify when it is safe to substitute two modules with one another
without effecting the global behaviour it is crucial to have a notion of seman-
tical equivalence. More formally [17, 51] these desired properties can be
described under the terms of compositionality and full abstraction. Two pro-
grams are observationally congruent, if and only if they exhibit the same ob-
servational behaviour in every context they can be placed in. A semantics is
compositional if semantical equality implies observational congruence. Full
abstraction means then that semantical equivalence coincides with observa-
tional congruence.

Maher [46] studies compositionality and full abstraction properties for dif-
ferent notions of semantical equivalence (subsumption equivalence, logical
equivalence, and minimal Herbrand model equivalence) and different oper-
ators in an algebra (union, closure, overriding union). It is worth noting that
minimal Herbrand model equivalence coincides with the weak equivalence
relation≡ for positive logic programs. Maher [46] shows that the equivalence
based on minimal Herbrand model semantics is not compositional with re-
spect to union. Therefore it is clear that for our purposes union is not suit-
able composition operator as such, and some restrictions are needed. Also,
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we see that closure and deletion do not necessarily have a suitable meaning
in answer set programming, as we are interested in models, not queries. For
instance, the closure property is already inbuilt in answer set programming.

1.1.3 Approach by Gaifman and Shapiro

As an example of a programming-in-the-large approach that is compositional
and fully abstract we look at more detail the framework proposed by Gaifman
and Shapiro [17]. They consider the language of definite logic programs,
that is, clauses of the form A← B1, . . . , Bn, where A, B1,. . . , Bn are atoms.
Atoms are predicates instantiated with terms, and can thus contain function
symbols and variables in addition to constants. The semantics considered is
based on atomic consequences1, that is, an atom A is a logical consequence
of a program P if and only if A is derivable from P via SLD resolutions.

A logic module L is a set of clauses with partitioning of predicates into
imported, exported and internal ones, that is, L is a quadruple

L = (P, Im, Ex, Int).

An imported predicate is supplied to the module by the environment, for
example, another module, and it cannot appear in the head of a clause.
Other predicates can appear anywhere. External predicates can be supplied
to other modules, while internal predicates cannot. Communication be-
tween modules is achieved through predicate sharing. Two modules L1 =
(P1, Im1, Ex1, Int1) and L2 = (P2, Im2, Ex2, Int2) are composable, if Int1
and Int2 are local to L1 and L2 and Ex1∩Ex2 = ∅. Composition of modules
is defined as

L1 + L2 = (P1 ∪ P2, (Im1 ∪ Im2) \ (Ex1 ∪Ex2), Ex1 ∪Ex2, Int1 ∪ Int2).

Semantics for modules is defined by taking into account the interface re-
strictions. A clause A ← B1, . . . , Bn is an Import/Export clause (I/E-clause)
of L, if A ∈ Ex and {B1, . . . , Bn} ⊆ Im. An I/E consequence of L is a
logical consequence of L which is an I/E clause, and an atomic I/E conse-
quence is an atomic consequence whose predicate is exported. Observational
congruence with respect to composition + is defined in terms of atomic I/E
consequences, that is,

ObGS(L) = {a | A is an atomic I/E consequence of L}.
Semantical equivalence is defined as follows:

Modules L1 and L2 are semantically equivalent if and only if L1

and L2 have the same minimal 2 I/E consequences.

The system is now compositional and fully abstract as atomic I/E conse-
quences are exactly the minimal I/E consequences [17, Theorem 11].

1This is different from answer set programming where the semantics is based on mod-
els. Note, however, that least models considered in answer set programming coincide with
atomic consequences if one considers propositional (variable-free) positive logic programs.

2A clause C is minimal in V if it is not tautological, there is no proper subclause of C
in V and C is not an instance of another C ′ ∈ V with the same number of literals. An I/E
consequence is minimal if it is minimal in the set of I/E consequences.
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1.1.4 Modularity in Answer Set Programming

There are a number of approaches within answer set programming involving
modularity in some sense, but only few of them really describe a flexible
module architecture with a clearly defined interface for module interaction.

The approach of Eiter, Gottlob, and Veith [11] addresses modularity in
answer set programming in the programming-in-the-small sense. They view
program modules as generalized quantifiers [43, 53] the definitions of which
are allowed to nest, that is, program P can refer to another module Q by using
it as a generalized quantifier. The main program is clearly distinguished
from subprograms, and it is possible to nest calls to submodules if the so-
called call graph is hierarchical, that is, acyclic. Nesting, however, raises
the computational complexity depending on the depth of nesting. Ianni et
al. [26] have another programming-in-the-small approach for modularity in
ASP based on templates.

Tari, Baral, and Anwar [68] extend the language of normal logic programs
by introducing the concept of import rules for their ASP program modules.
There are three types of import rules:

(a) q(X)←M(b).p(X, a),

(b) ∗q(X)←M(b).p(X, a), and

(c) q(#, X)←M(b).p(X, a),

where p and q are predicate names, M is a module name, X a tuple of
variables and a and b tuples of constants. Import rules are used to import
set of tuples X for q from module M(b). Rule (a) imports tuples X such
that p(X, a) is true in all answer sets of M(b). Rule (b) is similar except
the condition is that p(X, a) needs to be true in some answer set of M(b).
Rule (c) numbers the answer sets of M(b) and tuple (i,X) is imported if
p(X, a) is true in the ith answer set of M(b). An ASP module is defined as
a quadruple of a module name, a set of parameters, a collection of normal
rules and a collection of import rules. Semantics is only defined for modular
programs with acyclic dependency graph, and answer sets of a module are
defined with respect to the modular ASP program containing it. Also, it is
required that import rules importing from the same module always have the
same form. There is a prototype implementation3 of the module system [68]
and it has been used to solve a scheduling problem.

Programming-in-the-large approaches to modularity in ASP are mostly
based on Lifschitz and Turner’s splitting set theorem [39] or are variants of it.
The splitting set theorem is covered in detail in Section 2.2.1, and we only
discuss a module system based on splitting sets on a general level. The class
of logic programs considered in [39] is that of extended disjunctive logic pro-
grams, that is, disjunctive logic programs with two kinds of negation. A com-
ponent structure induced by a splitting sequence, that is, iterated splittings of
a program, allows a bottom-up computation of answer sets. The restriction
induced is that the dependency graph of the component chain needs to be
acyclic.

3See http://www.public.asu.edu/~tng01/modules_asp.html.
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Eiter, Gottlob, and Mannila [10] consider disjunctive logic programs as
a query language for relational databases. A query program π is instantiated
with respect to an input database D confined by an input schema R. The
semantics of π determines, for example, the answer sets of π[D] which are
projected with respect to an output schema S. Module architecture is based
on both positive and negative dependencies and no recursion between mod-
ules is tolerated. These constraints enable a straightforward generalization of
the splitting set theorem for the architecture.

Faber et al. [15] apply the magic set method in the evaluation of Data-
log programs with negation, that is, effectively normal logic programs. This
involves the concept of an independent set S of a program P which is a spe-
cialization of a splitting set. Due to close relationship to splitting sets, the
flexibility of independent sets for parceling programs is limited in the same
way.

1.2 OUR DESIGN CRITERIA AND GOALS

Following the ideas of compositionality and full abstraction originating from
O’Keefe’s ideas [59] we adopt the following design criteria for modularity
within answer set programming.

• Communication between modules is managed through an input/out-
put interface.

• Module composition operator ⊕ is suitably restricted to ensure that
answer sets for individual modules can be combined into an answer set
for the composition of modules.

• To go beyond the splitting set theorem [39] (some) recursion between
modules is tolerated.

• Equivalence relation for modules (≡m) is defined in such a way that
it reduces to weak equivalence for programs with completely specified
input.

• Relation ≡m is a congruence for ⊕, that is, P ≡m Q implies

P ⊕R ≡m Q⊕R

for all modules R for which P ⊕R and Q⊕R are defined.

Our design superficially resembles that of Gaifman and Shapiro [17] but to
guarantee compositionality and full abstraction properties for ASP programs,
that is, for logic programs under the stable model semantics [20] special mod-
ule conditions for module composition need to be incorporated. Note, that
in answer set programming the semantics is based on answer sets, or more
specifically on so-called stable models whereas in conventional logic pro-
gramming, queries and logical consequences are of interest.
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1.3 CONTRIBUTIONS

• We propose a simple and intuitive notion for a logic program module
that interacts through an input/output interface. We define so-called
normal logic program modules first and then extend the concepts to a
more general class of SMODELS program modules.

• We show that the module system is fully compatible with the stable
model semantics. This is achieved by restricting the composition of
modules so that module-level stability implies program-level stability,
and vice versa. In fact, our module theorem is a proper strengthening
of the splitting set theorem [39] for the classes of logic programs con-
sidered in this report as our result allows negative recursion between
modules.

• We introduce a notion of modular equivalence that is a proper con-
gruence relation for composition of modules and analyze the compu-
tational complexity of deciding modular equivalence.

• We extend the translation-based method for verifying visible equiva-
lence proposed in [31] to cover verification of modular equivalence of
SMODELS program modules.

• We propose a method for modularizing the verification of visible equiv-
alence and consider questions involved in finding a suitable module
structure for a program in case in which there is no explicit a priori
knowledge on the underlying structure.

• We present an experimental evaluation of the efficiency of the transla-
tion-based method in the verification of modular equivalence.

The results for normal logic program modules presented in Chapters 3 and 4
are published in [57, 58].

1.4 STRUCTURE OF THE REPORT

The rest of this report is organized as follows. In Chapter 2 the stable model
semantics of normal logic programs and a variety of equivalence relations
are presented as preliminaries for further elaboration. In Chapter 3 a notion
of a logic program module is established and it is shown that full compati-
bility with the stable model semantics is achieved. An equivalence relation
for modules called modular equivalence is introduced in Chapter 4. The
results from Chapters 3 and 4 are extended to cover a more general class of
SMODELS programs [65] in Chapter 5. In Chapter 6 the translation-based
method for verifying equivalence proposed in [31] is extended to cover the
verification of modular equivalence. Furthermore, a strategy for modular-
izing the verification of equivalence is proposed. Experimental evaluation
of the efficiency of the translation-based method for verification of modular
equivalence is presented in Chapter 7. The work is concluded in Chapter 8
with a discussion of further work.
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2 PRELIMINARIES

We start this chapter by introducing the stable model semantics for normal
logic programs in Section 2.1. Further properties of logic programs are dis-
cussed in Section 2.2. In Section 2.3 we review a variety of equivalence
relations suggested for logic programs.

2.1 STABLE MODEL SEMANTICS

In this section we briefly go through the stable model semantics for normal
logic programs.

Definition 2.1 A normal logic program (NLP) is a (finite) set of rules of the
form

h← a1, . . . ,an,∼b1, . . . ,∼bm, (2.1)

where n ≥ 0, m ≥ 0, and h, each ai, and each bj are propositional atoms.

Since the order of the atoms in a rule is not significant, we use a shorthand

h← B+,∼B−,

where B+ = {a1, . . . ,an} and B− = {b1, . . . ,bm} and ∼B = {∼b | b ∈ B}
for any set of propositional atoms B. The symbol “∼” denotes default nega-
tion or negation as failure to prove which differs from classical negation [21].
Atoms a and their default negations∼a are called default literals. A rule con-
sists of two parts: h is the head of the rule, and the rest is called the body
of the rule. Furthermore set B+ is called the positive body and set B− the
negative body. We define Body+(r) = B+ and Body−(r) = B− for a rule r
of the form (2.1). The set of head atoms for a set of rules P is defined as

Head(P ) = {h | h← B+,∼B− ∈ P}.
If the sets P and Head(P ) are singletons, we omit the braces for the sake
of clarity, that is, for a rule r = h ← B+,∼B−, we write Head(r) = h
instead of Head({r}) = {h}. The semantics of rules is defined formally in
Definition 2.3, but informally speaking, a head atom h can be inferred if
all the atoms in the positive body B+ are inferable and all the atoms in the
negative body B− are non-inferable. If the body of a rule is empty, the rule
is called a fact and the symbol “←” can be dropped. If B− = ∅, the rule is
positive. A program consisting only of positive rules is called a positive logic
program.

Usually the Herbrand base Hb(P ) of a normal logic program P is defined
to be the set of atoms appearing in the rules of P . We, however, use a re-
vised definition: Hb(P ) is any finite fixed set of atoms containing all atoms
appearing in the rules of P . Under this definition the Herbrand base of a
program P can be extended by atoms having no occurrences in P . This as-
pect is useful, for example, when P is obtained as a result of optimization
and there is a need to keep track of the original Herbrand base. For instance,
see Example 2.4 in the following.
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We follow the ideas from [28], and partition Hb(P ) into two parts Hbv(P )
and Hbh(P ) which determine the visible and the hidden parts of Hb(P ), re-
spectively. Visible atoms can be seen as an interface for interaction between
programs, and hidden atoms are local to each program. Visibility aspects will
be taken into account later when the notion of so-called visible equivalence
(Definition 2.14) is introduced.

Given a logic program P , an interpretation M is a subset of Hb(P ) defin-
ing which of the atoms in Hb(P ) are true (a ∈ M ) and which are false
(a 6∈M ).

Definition 2.2 Given a logic program P and an interpretation M ⊆ Hb(P ),
M is a (classical) model of P , denoted by M |= P if and only if B+ ⊆ M
and B− ∩M = ∅ imply h ∈M for each rule h← B+,∼B− ∈ P .

The semantics of positive programs is usually defined in terms of least mod-
els [45]. A model M of P is minimal if there is no interpretation M ′ |=
P such that M ′ ⊂ M . Every positive program P has a unique minimal
model [45], called the least model of P , and denoted by LM(P ).

Stable models as proposed by Gelfond and Lifschitz [20] generalize least
models for normal logic programs.

Definition 2.3 Given a normal logic program P and a model candidate
M ⊆ Hb(P ) the Gelfond-Lifschitz reduct PM is

PM = {h← B+ | h← B+,∼B−∈ P and M ∩B− = ∅}

and M is a stable model of P , if and only if M = LM(PM).

Stable models are not necessarily unique; a normal logic program may in
general have several stable models or no stable models at all. The set of
stable models of a normal logic program P is denoted by SM(P ).

Example 2.4 Consider a normal logic program P = {a ← ∼b} with
Hb(P ) = Hbv(P ) = {a, b}. For M1 = ∅ we get PM1 = {a.}. Now, M1

is not a stable model of P , since M1 6= {a} = LM(PM1). For M2 = {a} we
get PM2 = {a.}. Now, M2 = LM(PM2), and M2 ∈ SM(P ). Furthermore it
is easy to see that M2 is the only stable model of P and thus SM(P ) = {M2}.
Since there are no rules for b, one may consider a simplification Q = {a.}
for P . The interpretation M2 is also the only stable model of Q. To keep
track of atom b, we may then define Hb(Q) = Hbv(Q) = {a, b}. ¥

2.2 PROPERTIES OF LOGIC PROGRAMS

In this section we go through some properties of logic programs that will be
useful later on.

2.2.1 Splitting Sets

We formulate the splitting set theorem [39] for normal programs under the
stable model semantics. The splitting set theorem can be used to simplify
the computation of stable models by splitting a program into parts, and it is
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also a useful tool for structuring mathematical proofs for properties of logic
programs.

Definition 2.5 A splitting set for a normal logic program P is any set U ⊆
Hb(P ) such that for every rule h ← B+,∼B− ∈ P it holds, that if h ∈ U
then B+ ∪B− ⊆ U .

The set of rules h ← B+,∼B− ∈ P such that {h} ∪ B+ ∪ B− ⊆ U is the
bottom of P relative to U , denoted by bU(P ). The set tU(P ) = P \ bU(P ) is
the top of P relative to U which can be partially evaluated with respect to an
interpretation X ⊆ U . The result is a program e(tU(P ), X) defined as

{h← (B+\ U),∼(B−\ U) | h← B+,∼B− ∈ tU(P ),

B+∩ U ⊆ X and (B−∩ U) ∩X = ∅}.

A solution to a program with respect to a splitting set is a pair consisting of
a stable model X for the bottom and a stable model Y for the top partially
evaluated with respect to X .

Definition 2.6 Given a splitting set U for a normal logic program P , a solu-
tion to P with respect to U is a pair 〈X, Y 〉 such that

(i) X ⊆ U is a stable model of bU(P ), and

(ii) Y ⊆ Hb(P ) \ U is a stable model of e(tU(P ), X).

Solutions and stable models relate as follows.

Theorem 2.7 (The splitting set theorem [39]). Let U be a splitting set for a
normal logic program P and consider an interpretation M ⊆ Hb(P ). Then
M ∈ SM(P ) if and only if the pair 〈M ∩ U,M \ U〉 is a solution to P with
respect to U .

The splitting set theorem can also be used in an iterative manner, if there is
a monotone sequence of splitting sets {U1, . . . , Ui, . . .}, that is, Ui ⊂ Uj if
i < j, for program P . This is called a splitting sequence and it induces a
component structure for P . The splitting set theorem generalizes to a split-
ting sequence theorem [39], and given a splitting sequence, stable models of
program P can be computed iteratively bottom-up.

2.2.2 Dependency Relations

Given a normal logic program P and a, b ∈ Hb(P ), we say that b depends
directly on a, denoted a ≤1 b, if and only if there is a rule b← B+,∼B− ∈ P
such that a ∈ B+. The positive dependency relation≤⊆ Hb(P )×Hb(P ) of
P is then defined as the reflexive and transitive closure of relation ≤1. The
positive dependency graph of P , denoted by Dep+(P ), is a graph with Hb(P )
and {〈b, a〉 | a ≤1 b} as the sets of vertices and edges, respectively.

A strongly connected component (SCC) of Dep+(P ) is a maximal subset
C ⊆ Hb(P ) such that a ≤ b holds for all a, b ∈ C. The strongly connected
components of Dep+(P ) partition Hb(P ) into equivalence classes, that is,
for an arbitrary strongly connected component of Dep+(P ), atoms a, b ∈ C
if and only if a ≤ b and b ≤ a.
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The dependency relation ≤ generalizes for strongly connected compo-
nents: Ci ≤ Cj , that is, Cj depends positively on Ci, if and only if ci ≤ cj for
any ci ∈ Ci and cj ∈ Cj . We define a strict partial order <p for the strongly
connected components based on ≤: Ci <p Cj , if Ci ≤ Cj and Cj 6≤ Ci. We
extend <p into a strict total order by defining relation < as follows:

• Ci < Cj if Ci <p Cj ;

• if Ci 6<p Cj and Cj 6<p Ci, then we choose either Ci < Cj or Cj < Ci

(but not both).

The strongly connected components of Dep+(P ) can also be used in order
to partition normal logic program P . We say that a rule defining an atom
a ∈ Hb(P ) is a rule in P in which a appears as the head. Because of the
minimality of stable models, if an atom a belongs to a stable model M of
program P , then there has to be a rule a ← B+,∼B− ∈ P such that the
body of the rule is satisfied by M . Thus, the rules in which the atom appears
in the head are the ones that can give a justification for the atom belonging
to a stable model. Let DefP (a) = {r ∈ P | Head(r) = a} denote the set
of rules defining an atom a ∈ Hb(P ). Furthermore, P [C] denotes the set of
rules in P defining a set of atoms C ⊆ Hb(P ), that is,

P [C] = ∪
a∈C

DefP (a).

Now, given the strongly connected components C1, . . . , Cn of Dep+(P ), the
sets P [Ci] partition P , that is,

P [Ci] ∩ P [Cj] = ∅ for all i 6= j, and
n∪

i=1
P [Ci] = P.

2.3 EQUIVALENCE RELATIONS FOR LOGIC PROGRAMS

A number of equivalence relations have been suggested for logic programs.
We review some of these, restricting ourselves to the case of normal logic
programs under the stable model semantics. Motivated by our design cri-
teria for a module system, we are interested in congruence properties. We
also consider the computational complexity involved in the problem of de-
ciding equivalence of programs for the equivalence relations reviewed in this
section.

2.3.1 Weak, Strong and Uniform Equivalence

Lifschitz, Pearce, and Valverde [37] address the notions of weak/ordinary
equivalence and strong equivalence.

Definition 2.8 Normal logic programs P and Q are weakly equivalent, de-
noted by P ≡ Q, if and only if SM(P ) = SM(Q); and strongly equivalent,
denoted by P ≡s Q, if and only if P ∪ R ≡ Q ∪ R for any normal logic
program R.

The program R in the above definition can be understood as an arbitrary
context in which the two programs being compared could be placed. There-
fore strongly equivalent logic programs are semantics preserving substitutes
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of each other and relation ≡s is a congruence relation for ∪ among normal
logic programs, that is, if P ≡s Q, then P ∪R ≡s Q ∪R for all normal logic
programs R. Using R = ∅ as context, one sees that P ≡s Q implies P ≡ Q.
The converse does not hold in general, as the following example shows.

Example 2.9 Consider programs P = {a ← ∼c.} and Q = {a ← ∼b.}.
Since SM(P ) = {{a}} = SM(Q), we have P ≡ Q. Choosing program
R = {b ← ∼a.} as the context to place P and Q in, shows that P 6≡s Q, as
SM(P ∪R) = {{a}} 6= {{a}, {b}} = SM(Q ∪R). ¥

Example 2.9 also shows that weak equivalence fails to be a congruence rela-
tion for ∪, that is, P ≡ Q does not imply P ∪R ≡ Q ∪R in general.

Strong equivalence seems inappropriate for fully modularizing the verifi-
cation task of weak equivalence because programs P and Q may be weakly
equivalent even if they build on respective modules Pi ⊆ P and Qi ⊆ Q that
are not strongly equivalent. For the same reason, program transformations
that are known to preserve strong equivalence [8] do not provide an inclusive
basis for reasoning about weak equivalence. Nevertheless, there are cases
where one can utilize the fact that strong equivalence implies weak equiva-
lence. For instance, if P and Q are composed of strongly equivalent pairs
of modules Pi and Qi for all i, then P and Q can be directly inferred to be
strongly and weakly equivalent.

A way to weaken the strong equivalence is to restrict possible contexts to
sets of facts. The notion of uniform equivalence has its roots in the database
community [64], see [7] for case of the stable model semantics.

Definition 2.10 Normal logic programs P and Q are uniformly equivalent,
denoted by P ≡u Q, if and only if P ∪ F ≡ Q ∪ F for any set of facts F .

Strong equivalence implies uniform equivalence, and uniform equivalence
implies weak equivalence, but not vice versa (in both cases) as the following
examples show. Example 2.11 also shows that uniform equivalence is not a
congruence for ∪.

Example 2.11 [8, Example 1] Consider normal logic programs P = {a.}
and Q = {a ← ∼b. a ← b.}. It holds P ≡u Q, but P ∪ R 6≡ Q ∪ R for
R = {b← a.}. This implies P 6≡s Q and P ∪R 6≡u Q ∪R. ¥

Example 2.12 Consider P = {a.} and Q = {a ← ∼b.}. It holds P ≡ Q,
since SM(P ) = {{a}} = SM(Q). They are not uniformly equivalent, that
is, P 6≡u Q, since SM(P ∪ {b.}) = {{a, b}} 6= {{b}} = SM(Q ∪ {b.}). ¥

The verification of weak equivalence forms a coNP-complete decision prob-
lem4 for normal logic programs [49]. The same can be stated about the
verification of uniform and strong equivalence (for ≡u, see [7] and for ≡s,
[61, 40, 69]). For a survey on the computational complexity of equivalence
verification for other classes of logic programs, see [9]. It is worth noticing
that the computational complexity of deciding ≡, ≡u and ≡s varies depend-
ing on the program class considered. For example, for the class of disjunctive
logic programs, verifying ≡s is still a coNP-complete decision problem, but

4We assume that the reader is familiar with the basic concepts computational complexity,
see, for example, [60] for an introduction.
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verifying ≡ as well as ≡u is on the second level of the polynomial hierarchy,
that is, they are ΠP

2 -complete decision problems.
There are also relativized variants of strong and uniform equivalence [71],

where the context is allowed to be constrained using a set of atoms A.

Definition 2.13 Normal logic programs P and Q are strongly equivalent
relative to A, denoted by P ≡A

s Q, if and only if P ∪ R ≡ Q ∪ R for all
normal logic programs R over the set of atoms A; and uniformly equivalent
relative to A, denoted by P ≡A

u Q, if and only if P ∪ F ≡ Q ∪ F for any set
of facts F ⊆ A.

Setting A = ∅ reduces both relativized notions to weak equivalence, and thus
neither of them is a congruence for ∪ in general. Verification of ≡A

u /≡A
s is a

coNP-complete decision problem for normal logic programs [71].

2.3.2 Visible Equivalence

For P ≡ Q to hold, the stable models in SM(P ) and SM(Q) have to be iden-
tical subsets of Hb(P ) and Hb(Q), respectively. The same effect can be seen
with P ≡s Q and P ≡u Q. This makes these notions of equivalence less use-
ful if Hb(P ) and Hb(Q) differ by some (local) atoms which are not trivially
false in all stable models. Such atoms may be needed when some auxiliary
concepts are formalized using rules. For this reason, Janhunen introduces
a slightly more general notion of equivalence [28] which tries to take the
interfaces of logic programs properly into account. The key idea is that the
Herbrand base of a program is divided into visible and hidden parts, and the
hidden atoms in Hbh(P ) and Hbh(Q) are considered to be local to P and Q
and thus negligible as far as the equivalence of the programs is concerned.

Definition 2.14 Normal logic programs P and Q are visibly equivalent,
denoted by P ≡v Q, if and only if Hbv(P ) = Hbv(Q) and there is a bijection
f : SM(P )→ SM(Q) such that for all interpretations M ∈ SM(P ),

M ∩ Hbv(P ) = f(M) ∩ Hbv(Q).

Note that the number of stable models is preserved under ≡v. Such a strict
correspondence of models is much dictated by the answer set programming
methodology: the stable models of a program usually correspond to the solu-
tions of the problem being solved and thus the exact preservation of models
is highly significant.

Example 2.15 Consider normal logic programs

P = {a← b. a← c. b← ∼c. c← ∼b.}, and
Q = {d← ∼b. b← ∼d. a← c. c.}

with Hbv(P ) = Hbv(Q) = {a, b} and Hbh(P ) = Hbh(Q) = {c, d}. The
stable models of P are M1 = {a, b} and M2 = {a, c} whereas for Q they are
N1 = {a, b, c} and N2 = {a, c, d}. Thus P 6≡ Q is clearly the case, but we
have a bijection f : SM(P )→ SM(Q), which maps Mi to Ni for i ∈ {1, 2},
such that M ∩ Hbv(P ) = f(M) ∩ Hbv(Q). Thus P ≡v Q holds. ¥
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In the fully visible case, that is, for Hbh(P ) = Hbh(Q) = ∅, the rela-
tion ≡v becomes very close to ≡. The only difference is the requirement
Hb(P ) = Hb(Q) insisted by ≡v. This is of little importance as Herbrand
bases can always be extended to meet Hb(P ) = Hb(Q). Since weak equiva-
lence is not a congruence for ∪, visible equivalence cannot be either a con-
gruence for ∪.

The computational complexity of deciding ≡v is analyzed in [31]. If the
use of hidden atoms is not limited in any way, the problem of verifying visible
equivalence becomes at least as hard as the counting problem #SAT which
is #P-complete [70]. It is possible, however, to govern the computational
complexity by limiting the use of hidden atoms by the property of having
enough visible atoms (the EVA property for short) [31]. Consider a normal
logic program P and a set of atoms A ⊆ Hb(P ). Let Av = A ∩ Hbv(P )
and Ah = A ∩Hbh(P ) denote the visible and the hidden parts of A, respec-
tively. In Definition 2.16 the hidden part of a logic program P is extracted
by partially evaluating P with respect to an interpretation for its visible part.

Definition 2.16 Consider a normal logic program P and an interpretation
Mv ⊆ Hbv(P ) for the visible part of P . The hidden part of P relative to Mv,
denoted by Ph/Mv, is

Ph/Mv = {h← B+
h ,∼B−

h | h← B+,∼B−∈ P, h ∈ Hbh(P ),

B+
v ⊆Mv and B−

v ∩Mv = ∅}.

This construction can be seen as the simplification operation simp(P, T, F )
proposed by Cholewinski and Truszczyński [6], restricted in the sense that T
and F are subsets of Hbv(P ) rather than Hb(P ). More precisely,

Ph/Mv = simp(P, Mv, Hbv(P )−Mv)

for a normal logic program P . Now, the property of having enough visible
atoms, that is, the EVA property, is defined as follows.

Definition 2.17 A normal logic program P has enough visible atoms if and
only if Ph/Mv has a unique stable model for every Mv ⊆ Hbv(P ).

Here the intuition is that the interpretation of Hbh(P ) is uniquely deter-
mined for each interpretation of Hbv(P ) if P has the EVA property. Con-
sequently, the stable models of P can be distinguished on the basis of their
visible parts.

Example 2.18 [31, Example 4.15] Consider normal logic programs

P = {a← b.},
Q = {a← c. c← b.}, and
R = {a← ∼c. c← ∼d. d← b.}

with Hbv(P ) = Hbv(Q) = Hbv(R) = {a, b}. Given Iv = ∅, the hidden
parts are Ph/Iv = ∅, Qh/Iv = ∅, and Rh/Iv = {c← ∼d.} for which unique
stable models MP = MQ = ∅ and MR = {c} are obtained. On the other
hand, we obtain Ph/Jv = ∅, Qh/Jv = {c.}, and Rh/Jv = {c ← ∼d. d.} for
Jv = {a, b}. Thus the respective unique stable models of the hidden parts
are NP = ∅ and NQ = {c}, and NR = {d}. ¥
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Although verifying the EVA property can be hard in general [31, Proposition
4.14], there are syntactic subclasses of normal programs (for example those
for which Ph/Mv is always stratified) with the EVA property. The use of
visible atoms remains unlimited and thus the full expressiveness of normal
logic programs remains basically available. Also note that the EVA property
can always be achieved by declaring sufficiently many atoms visible. For
SMODELS logic programs5 with the EVA property, the verification of visible
equivalence is a coNP-complete decision problem [31].

2.3.3 General Equivalence Frameworks

Eiter, Tompits, and Woltran [12] have introduced a very general framework
based on equivalence frames to capture various kinds of equivalence rela-
tions. All the equivalence relations defined in Section 2.3.1 can be defined
using the framework. Visible equivalence, however, is exceptional in the
sense that it does not fit into equivalence frames based on projected answer
sets. A projective variant of Definition 2.14 defines a weaker notion of equiv-
alence called weak visible equivalence [28].

Definition 2.19 Normal logic programs P and Q are weakly visibly equiva-
lent, denoted by P ≡w Q, if and only if Hbv(P ) = Hbv(Q) and

{M ∩ Hbv(P ) |M ∈ SM(P )} = {N ∩ Hbv(Q) | N ∈ SM(Q)}.
As a consequence, the number of answer sets may not be preserved which
is somewhat unsatisfactory because of the general nature of answer set pro-
gramming as discussed in the previous section.

Example 2.20 [31, page 14] Consider programs P = {a ← ∼b. b ← ∼a. }
and Qn = P ∪ {ci ← ∼di. di ← ∼ci. | 0 < i ≤ n} with Hbv(P ) =
Hbv(Qn) = {a, b}. Whenever n > 0 these programs are not visibly equiva-
lent but they are weakly visibly equivalent. With sufficiently large values of
n it is no longer feasible to count the number of different stable models, that
is, solutions, if Qn is used. ¥

Note that Qn in Example 2.20 for n > 0 does not have the EVA prop-
erty. However, under the EVA assumption weak visible equivalence coin-
cides with visible equivalence.

5Normal logic programs are a subclass of SMODELS programs. We will introduce the
class of SMODELS programs later in Chapter 5.
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3 MODULAR LOGIC PROGRAMS

We introduce a module system for normal logic programs in Section 3.1.
The conditions for the composition of modules introduced in Section 3.2
guarantee full compatibility with the stable model semantics as shown in
Section 3.3. The main result in Section 3.3 is a module theorem showing
that local stability implies global stability, and vice versa, as long as the stable
models of the submodules are compatible. Finally, we compare our module
system to previous approaches to modularity in Section 3.4.

3.1 SYNTAX OF MODULAR LOGIC PROGRAMS

We define a logic program module similarly to Gaifman and Shapiro [17],
but consider the case of normal logic programs instead of positive (disjunc-
tive) logic programs.6

Definition 3.1 A triple P = (P, I, O) is a (propositional logic program)
module, if

• P is a finite set of rules of the form (2.1);

• I and O are sets of propositional atoms and I ∩O = ∅; and

• Head(P ) ∩ I = ∅.

The Herbrand base of module P, denoted by Hb(P), is the set of atoms ap-
pearing in P combined with I ∪ O. Intuitively the set I defines the input
of the module and the set O is the output. The input and output atoms are
considered to be visible, that is, the visible Herbrand base of module P is

Hbv(P) = I ∪O.

Notice that I and O can also contain atoms not appearing in the rules sim-
ilarly to the possibility of having additional atoms in the Herbrand bases of
normal logic programs. All other atoms are hidden, that is,

Hbh(P) = Hb(P) \ Hbv(P).

The restrictions I ∩O = ∅ and Head(P ) ∩ I = ∅ in Definition 3.1 are quite
intuitive. It is natural to assume the input and the output of a module to
be distinct. To make sure that the semantics of input atoms is not redefined
inside the module, it is required that input atoms do not appear in the heads
of the rules in a module.

Intuitively, if a module has an empty input set I = ∅, its semantics is
fully determined as there is no dependency on input. Thus a logic program
module P = (P, ∅, O) is effectively a normal logic program P , with Hb(P ) =
Hb(P) and Hbv(P ) = O.

6Module architecture introduced in this chapter is extended to the class of SMODELS
programs in Chapter 5.
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3.2 COMBINING MODULES

When designing a logic program consisting of several modules, it is necessary
to define the conditions under which the modules can be combined together.
We adopt an approach that resembles that of Gaifman and Shapiro [17].
However, to guarantee compatibility with the stable model semantics, we
need to incorporate a further restriction denying positive recursion between
modules.

Basically the join operation takes the union of the disjoint sets of rules in
the modules involved, if the following restrictions are met. First, the output
sets of the modules to be composed need to be disjoint. This way all the rules
defining an atom, that is, the rules in which the particular atom appears as
the head, are collected into one module. Second, the hidden part of each
module needs to remain local. Third, any positive recursion needs to be
inside the modules, that is, we forbid positive recursion between modules.

We start by defining formally what is meant by positive recursion between
two modules.
Definition 3.2 Consider modules P1 = (P1, I1, O1) and P2 = (P2, I2, O2),
and let C1, . . . , Cn be the strongly connected components of Dep+(P1 ∪P2).
There is a positive recursion between modules P1 and P2, if Ci∩O1 6= ∅ and
Ci ∩O2 6= ∅ for some Ci.

The idea is that all inter-module dependencies go through the input/output
interface of the modules, that is, the output of one module can serve as the
input for another, and hidden atoms are local to each module. If there is a
strongly connected component Ci in Dep+(P1 ∪ P2) containing atoms from
both O1 and O2, we know that, if programs P1 and P2 are combined, some
output atom a of P1 depends positively on some output atom b of P2 which
again depends positively on a. This yields a positive recursion.

The module composition operation join and the conditions under which
it is defined are as follows.
Definition 3.3 Let P1 = (P1, I1, O1) and P2 = (P2, I2, O2) be modules such
that

(i) O1 ∩O2 = ∅;
(ii) Hbh(P1) ∩ Hb(P2) = ∅ and Hbh(P2) ∩ Hb(P1) = ∅; and

(iii) there is no positive recursion between P1 and P2.

If conditions in items (i)–(iii) hold, the join of P1 and P2, denoted by P1tP2,
is defined, and

P1 t P2 = (P1 ∪ P2, (I1 \O2) ∪ (I2 \O1), O1 ∪O2).

Conditions (i) and (ii) in Definition 3.3 are the same as in the module system
of Gaifman and Shapiro [17]. Note also that condition (i) is actually redun-
dant as it is implied by condition (iii). In practice it is possible to circumvent
condition (ii) using a suitable scheme, for example, based on module names,
to rename the hidden atoms uniquely for each module. In the following we
generally assume that each module has a uniquely named hidden Herbrand
base.
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It is straightforward to show that t has the following properties:

• Identity: P t (∅, ∅, ∅) = (∅, ∅, ∅) t P = P for all modules P.

• Commutativity: P1tP2 = P2tP1 for all modules P1 and P2 such that
P1 t P2 is defined.

• Associativity: (P1 t P2) t P3 = P1 t (P2 t P3) for all modules P1,P2

and P3 such that all pairwise joins are defined.

Note that equality “=” used here denotes syntactical equality. The semantics
of modules is discussed in the next section and semantical equivalence for
modules is defined in Chapter 4. Also notice that PtP is usually undefined,
which is a difference to ∪ for which it holds P ∪ P = P for all programs P .

The following hold for P1tP2. Since each atom is defined in one module,
the sets of rules in P1 and P2 are distinct, that is, P1 ∩ P2 = ∅. Also,

Hb(P1 t P2) = Hb(P1) ∪ Hb(P2),

Hbv(P1 t P2) = Hbv(P1) ∪ Hbv(P2), and
Hbh(P1 t P2) = Hbh(P1) ∪ Hbh(P2).

For the intersections of Herbrand bases, the following hold under conditions
(i) and (ii) in Definition 3.3:

Hbv(P1) ∩ Hbv(P2) = Hb(P1) ∩ Hb(P2)

= (I1 ∩ I2) ∪ (I1 ∩O2) ∪ (I2 ∩O1) (3.1)
Hbh(P1) ∩ Hbh(P2) = ∅.

Notice that the conditions in Definition 3.3 impose no restrictions on positive
dependencies inside modules or on negative dependencies in general. The
input of P1tP2 can be smaller than the union of inputs of individual modules
because P1 may provide input for P2, and conversely, as demonstrated below.

Example 3.4 Consider modules

P = ({a← ∼b.}, {b}, {a}), and
Q = ({b← ∼a.}, {a}, {b}).

The join P tQ is defined, and P tQ = ({a← ∼b. b← ∼a.}, ∅, {a, b}). ¥

3.3 STABLE MODEL SEMANTICS FOR MODULES

The stable model semantics of a module is defined with respect to a given
input, that is, a subset of the input atoms of the module. An input is seen as
a set of facts (or a database) to be combined with the module.

Definition 3.5 Given a module P = (P, I, O) and a set of atoms A ⊆ I , the
instantiation of P with an actual input A is

P(A) = P t FA,

where FA = ({a. | a ∈ A}, ∅, I).
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Note that P(A) = (P ∪ {a. | a ∈ A}, ∅, I ∪ O) is essentially a normal
logic program with I ∪ O as the visible Herbrand base. Thus the stable
model semantics generalizes naturally for modules. We identify P(A) with
the respective set of rules P ∪ FA, where FA = {a. | a ∈ A}. In the
following M ∩ I acts as a particular input with respect to which the module
is instantiated.

Definition 3.6 An interpretation M ⊆ Hb(P) is a (classical) model of mod-
ule P = (P, I, O), denoted by M |= P, if and only if M |= P ∪ FM∩I .

Definition 3.7 An interpretation M ⊆ Hb(P) is a stable model of module
P = (P, I, O), denoted by M ∈ SM(P), if and only if

M = LM(PM ∪ FM∩I).

We define a concept of compatibility to describe when an interpretation
M1 ⊆ Hb(P1) can be combined with an interpretation M2 ⊆ Hb(P2). This
is exactly when M1 and M2 share the common (visible) part.

Definition 3.8 Let P1 and P2 be modules, and consider M1 ⊆ Hb(P1) and
M2 ⊆ Hb(P2). Now, M1 and M2 are compatible, if and only if

M1 ∩ Hbv(P2) = M2 ∩ Hbv(P1).

If one considers P1 = (P1, I1, O1) and P2 = (P2, I2, O2) such that P1 t P2

is defined, the condition for compatibility can be reformulated by recalling
(3.1):

M1 ∩ (I1 ∩ I2) = M2 ∩ (I1 ∩ I2),

M1 ∩ (I1 ∩O2) = M2 ∩ (I1 ∩O2), and
M1 ∩ (O1 ∩ I2) = M2 ∩ (O1 ∩ I2).

Theorem 3.9 relates program-level stability with module-level stability, that
is, if a program (module) consists of several submodules, its stable models are
locally stable for the respective submodules; and on the other hand, local sta-
bility implies global stability as long as the stable models of the submodules
are compatible.

Theorem 3.9 (Module theorem). Let P1 and P2 be modules such that P1tP2

is defined. Now, M ∈ SM(P1 t P2) if and only if M1 = M ∩ Hb(P1) ∈
SM(P1), M2 = M ∩ Hb(P2) ∈ SM(P2), and M1 and M2 are compatible.

Proof of Theorem 3.9 is given in Appendix A. It is worth noticing that condi-
tion (iii) in Definition 3.3 is not needed to show that global stability implies
local stability. On the other hand, Example 3.10 shows that conditions (i)
and (ii) in Definition 3.3 are not enough to guarantee that local stability
implies global stability.
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Example 3.10 Consider modules P1 = ({a ← b.}, {b}, {a}) and P2 =
({b ← a.}, {a}, {b}) with SM(P1) = SM(P2) = {∅, {a, b}}. The join of P1

and P2 is not defined because there is a positive recursion between P1 and P2.
Notice, however, that conditions (i) and (ii) in Definition 3.3 are satisfied. If
we consider the stable models of P = ({a ← b. b ← a.}, ∅, {a, b}), we
get SM(P) = {∅}. Thus, even though M1 = {a, b} ∈ SM(P1) and M2 =
{a, b} ∈ SM(P2) are compatible, the positive dependency between a and b
excludes {a, b} from SM(P). ¥

Theorem 3.9 straightforwardly generalizes for modules consisting of several
submodules. Consider a collection of modules P1, . . . ,Pn such that the join
P1t· · ·tPn is defined (recall that t is associative). We say that a collection of
interpretations {M1, . . . , Mn} for modules P1, . . . ,Pn, respectively, is com-
patible, if and only if Mi and Mj are pairwise compatible for all 1 ≤ i, j ≤ n.

Corollary 3.11 Let P1, . . . ,Pn be a collection of modules such that the join
P1 t · · · t Pn is defined. Now, M ∈ SM(P1 t · · · t Pn) if and only if Mi =
M ∩ Hb(Pi) ∈ SM(Pi) for all 1 ≤ i ≤ n, and the collection {M1, . . . , Mn}
is compatible.

Although Corollary 3.11 enables the computation of stable models on a
module-by-module basis, it leaves us the task of excluding mutually incom-
patible combinations of stable models.

Example 3.12 Consider modules

P1 = ({a← ∼b.}, {b}, {a}),
P2 = ({b← ∼c.}, {c}, {b}), and
P3 = ({c← ∼a.}, {a}, {c}).

The join P = P1 t P2 t P3 is defined, and

P = ({a← ∼b. b← ∼c. c← ∼a.}, ∅, {a, b, c}).

We have SM(P1) = {{a}, {b}}, SM(P2) = {{b}, {c}}, and SM(P3) =
{{a}, {c}}. To apply Corollary 3.11 for finding SM(P), one has to find a
compatible triple of stable models M1, M2, and M3 for P1, P2, and P3, re-
spectively.

• Now {a} ∈ SM(P1) and {c} ∈ SM(P2) are compatible, since {a} ∩
Hbv(P2) = ∅ = {c} ∩ Hbv(P1). However, {a} ∈ SM(P3) is not
compatible with {c} ∈ SM(P2), since {c} ∩ Hbv(P3) = {c} 6= ∅ =
{a} ∩ Hbv(P2). On the other hand, {c} ∈ SM(P3) is not compatible
with {a} ∈ SM(P1), since {a}∩Hbv(P3) = {a} 6= ∅ = {c}∩Hbv(P1).

• Also {b} ∈ SM(P1) and {b} ∈ SM(P2) are compatible, but {b} ∈
SM(P1) is incompatible with {a} ∈ SM(P3). Nor is {b} ∈ SM(P2)
compatible with {c} ∈ SM(P3).

Therefore it is impossible to select M1 ∈ SM(P1), M2 ∈ SM(P2), and M3 ∈
SM(P3) such that {M1, M2,M3} is compatible, which is understandable as
SM(P) = ∅. ¥

20 3. MODULAR LOGIC PROGRAMS



3.4 COMPARISON WITH EARLIER APPROACHES

Our module system resembles Gaifman and Shapiro’s module system [17].
However, to make our system compatible with the stable model semantics
we need to introduce a further restriction of denying positive recursion be-
tween modules. Also other propositions involve similar type of conditions for
module composition. For example, Brogi et al. [4] employ visibility condi-
tions that correspond to the condition (ii) in Definition 3.3. However, their
approach covers only positive programs under the least model semantics.
Maher [47] forbids all recursion between modules and considers Przymusin-
ski’s perfect models [63] rather than stable models. Etalle and Gabbrielli
[14] restrict the composition of constraint logic program [27] modules with
a condition that is close to ours: Hb(P ) ∩ Hb(Q) ⊆ Hbv(P ) ∩ Hbv(Q) but
no distinction between input and output is made, for example, OP ∩OQ 6= ∅
is allowed according to their definitions.

Approaches to modularity within answer set programming typically do not
allow any recursion (negative or positive) between modules [10, 68, 39]. The-
orem 3.9 (module theorem) is strictly stronger than the splitting set theo-
rem [39] for normal logic programs. On one hand, a splitting of a program
can be used as a basis for a module structure. If U is a splitting set for a
normal logic program P , then define

P = B t T = (bU(P ), ∅, U) t (tU(P ), U, Hb(P ) \ U).

It follows directly from Theorems 2.7 and 3.9 that M1 ∈ SM(B) and M2 ∈
SM(T) are compatible if and only if 〈M1,M2 \ U〉 is a solution for P with
respect to U . On the other hand, the splitting set theorem cannot be applied
in a non-trivial way to P tQ from Example 3.4, since neither {a} nor {b} is
a splitting set for P tQ.

It should be noted that applying our module theorem by computing sta-
ble models for each submodule and finding then the compatible pairs, might
not be preferable, especially in a situation in which the splitting set theorem
is applicable. However, the module theorem can be used in a similar man-
ner as the splitting set theorem. Then the bottom module acts as an input
generator for the top module, and one can simply find the stable models for
the top module instantiated with the stable models of the bottom module.

Example 3.13 Consider a normal logic program

P = {a← ∼b. b← ∼a. c← a.}.
The set U = {a, b} is a splitting set for P , and therefore the splitting set
theorem can be applied: bU(P ) = {a← ∼b. b← ∼a.} and tU(P ) = {c←
a.}. Now M1 = {a} and M2 = {b} are the stable models of bU(P ), and
we can evaluate the top with respect to M1 and M2, resulting in solutions
〈M1, {c}〉 and 〈M2, ∅〉, respectively.

On the other hand, P can be seen as join of modules P1 = (bU(P ), ∅, U)
and P2 = (tU(P ), U, {c}). Note that P1 can be viewed as a composite mod-
ule, that is,

P1 = ({a← ∼b.}, {b}, {a}) t ({b← ∼a.}, {a}, {b}).
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This is a partitioning not allowed by the splitting set theorem. We have
SM(P1) = {M1,M2} and SM(P2) = {∅, {b}, {a, c}, {a, b, c}}. Out of eight
possible pairs only 〈M1, {a, c}〉 and 〈M2, {b}〉 are compatible.

It is possible to apply Theorem 3.9 similarly to the splitting set theorem.
Once we have stable models for module P1, we can instantiate P2 with re-
spect to the stable models of P1:

P2(M1 ∩ U) = (tU(P ) ∪ FM1∩U , ∅, {a, b, c})

has a single stable model {a, c}, and {b} is the unique stable model of
P2(M2 ∩ U) = (tU(P ) ∪ FM2∩U , ∅, {a, b, c}). ¥

The latter strategy used in Example 3.13 works even if there is negative re-
cursion between the modules.

Example 3.14 Consider modules P1, P2, and P3 from Example 3.12. We
want to find stable models of P = P1 t P2 t P3 through instantiations of the
submodules. Now, SM(P1) = {{a}, {b}}, where M1 = {a} is obtained with
empty input, and M2 = {b} is obtained with input {b}.
• We instantiate P3 with respect to input M1 ∩ {a} = M1, and get

SM(P3(M1)) = {{a}}. We continue by instantiating P2 with respect to
M1 ∩ {c} = ∅, and get SM(P2(∅)) = {{b}}. Now, we notice that {b} is
not compatible with M1, and thus it is not possible to find a compatible
triple of stable models starting from M1.

• Thus we have to choose M2. By instantiating P3 with respect to M2 ∩
{a} = ∅ we get SM(P3(∅)) = {{c}}. We continue by instantiating P2

with respect to {c}, and get SM(P2({c})) = {{c}}. Now, {c} is not
compatible with M2, and thus it is not possible to find a compatible
triple of stable models starting from M2 either.

Therefore, there is no compatible collection {M1,M2,M3} such that M1 ∈
SM(P1), M2 ∈ SM(P2) and M3 ∈ SM(P3), and SM(P) = ∅. ¥

Our theorem also strengthens a module theorem given in [28, Theorem
6.22] to cover normal programs that involve positive body literals, too. The
independent sets of Faber et al. [15] push negative recursion inside modules
which is unnecessary in view of our results. The module theorem presented
in [15] is also weaker than Theorem 3.9.
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4 MODULAR CONGRUENCE

We introduce a notion of modular equivalence that is a proper congruence
relation for composition of modules and relate the notion of modular equiva-
lence with previously suggested equivalence relations in Section 4.1. We ad-
dress aspects of computational complexity of verifying modular equivalence
in Section 4.2.

4.1 MODULAR EQUIVALENCE

The definition of modular equivalence combines features from relativized
uniform equivalence [71] and visible equivalence [28].

Definition 4.1 Modules P = (P, IP , OP ) and Q = (Q, IQ, OQ) are modu-
larly equivalent, denoted by P ≡m Q, if and only if

(i) IP = IQ = I and OP = OQ = O, and

(ii) P(A) ≡v Q(A) for all A ⊆ I .

Modular equivalence is very close to visible equivalence defined for modules.
As a matter a fact, if Definition 2.14 is generalized for logic program modules,
condition (ii) in Definition 4.1 can be revised to P ≡v Q. However, P ≡v Q
is not enough to cover condition (i) in Definition 4.1, as visible equivalence
only enforces Hbv(P) = Hbv(Q). In a restricted case I = ∅ modular equiv-
alence coincides with visible equivalence. To the other extreme, if O = ∅,
equivalence P ≡m Q means that P and Q have the same number of stable
models on each input.

Furthermore, if one considers the fully visible case, that is, the restric-
tion Hbh(P) = Hbh(Q) = ∅, modular equivalence can be seen as a special
case of A-uniform equivalence for A = I . Recall, however, the restrictions
Head(P )∩ I = Head(Q)∩ I = ∅ imposed by module structure. With a fur-
ther restriction I = ∅, modular equivalence coincides with weak equivalence
because Hb(P) = Hb(Q) can always be satisfied by extending Herbrand
bases. Basically, setting I = Hb(P) would give us uniform equivalence, but
the additional condition Head(P )∩I = ∅ leaves room for the empty module
only.

Since ≡v is not a congruence relation for ∪, neither is modular equiva-
lence. The situation changes, however, if one considers the join operator t
which suitably restricts possible contexts. Consider, for instance, programs
P = {a.} and Q = {a ← ∼b. a ← b.} from Example 2.11. We can define
modules based on them: P = (P, {b}, {a}) and Q = (Q, {b}, {a}). Now it
is not possible to define a module R based on R = {b ← a.} in a way that
Q t R is defined, and P ≡m Q.

Theorem 4.2 (Congruence) Let P,Q and R be logic program modules. If
P ≡m Q and both P t R and Q t R are defined, then P t R ≡m Q t R.

In short, proof of Theorem 4.2 employs Theorem 3.9 and the definition of
visible equivalence. A detailed proof of Theorem 4.2 is given in Appendix A.
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Corollary 4.3 Let P,Q,R and S be logic program modules. If P ≡m Q,
R ≡m S, and P t R, Q t R, and Q t S are defined, then P t R ≡m Q t S.

Proof of Corollary 4.3 P t R ≡m Q t R ≡m R t Q ≡m S t Q ≡m Q t S,
since syntactical equivalence Q t R = R tQ (respectively S tQ = Q t S)
implies modular equivalence. ¤
It is instructive to consider a strong variant of modular equivalence defined
in analogy to strong equivalence [37].

Definition 4.4 Modules P andQ are modularly strongly equivalent, denoted
by P ≡s

m Q, if and only if P t R ≡m Q t R, for all R such that P t R and
Q t R are defined.

However, Theorem 4.2 implies that ≡s
m removes nothing from ≡m since

P ≡s
m Q if and only if P ≡m Q.

4.2 ON COMPUTATIONAL COMPLEXITY

In this section we will make some observations about the computational com-
plexity of verifying modular equivalence of normal logic program modules.
In general, deciding ≡m is coNP-hard, since deciding the weak equivalence
P ≡ Q reduces to deciding (P, ∅, Hb(P )) ≡m (Q, ∅, Hb(Q)). In the fully
visible case, that is, for Hbh(P) = Hbh(Q) = ∅, deciding P ≡m Q for mod-
ules P = (P, I, O) and Q = (Q, I,O) can be reduced to deciding relativized
uniform equivalence P ≡I

u Q [71] and thus deciding ≡m is coNP-complete
in this restricted case.

In the other extreme, if Hbv(P) = Hbv(Q) = ∅, then P ≡m Q if and
only if P and Q have the same number of stable models. This suggests a
much higher computational complexity of verifying ≡m in general because
classical models can be captured with stable models [54] and counting stable
models cannot be easier than #SAT which is #P-complete [70].

A way to govern the computational complexity of verifying ≡m is to limit
the use of hidden atoms as done in the case of ≡v in [31]. By the EVA
assumption [31], the verification of≡v becomes coNP-complete for SMOD-
ELS programs7 involving hidden atoms. We say that module P = (P, I, O)
has enough visible atoms, if and only if P has enough visible atoms with re-
spect to Hbv(P ) = I ∪ O. We show in Theorem 4.5 that the problem of
verifying ≡m can be reduced to that of ≡v by introducing a special module
GI that acts as a context generator in analogy to [71]. In the following,

{a | a ∈ I} ∩ Hb(P) = {a | a ∈ I} ∩ Hb(Q) = ∅,
that is, atoms a are new atoms not appearing in P or Q.

Theorem 4.5 Consider modules P = (P, I, O) and Q = (Q, I, O). Now
P ≡m Q if and only if P tGI ≡v Q tGI where

GI = ({a← ∼a. a← ∼a | a ∈ I}, ∅, I)

generates all possible inputs for P and Q.
7The class of SMODELS programs includes normal logic programs as a subset.
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Proof of Theorem 4.5 Module GI has 2|I| stable models of the form

A ∪ {a | a ∈ I \ A}

where A ⊆ I . Thus P ≡v PtGI andQ ≡v QtGI follow by Definitions 2.3
and 2.14 and Theorem 3.9. It follows that P ≡m Q if and only if P(A) ≡v

Q(A) for all A ⊆ I if and only if P tGI ≡v Q tGI . ¤

Generator module GI has the EVA property. Consider arbitrary interpreta-
tion Mv ⊆ I for the visible part of Hb(GI) = I ∪ I . The hidden part of GI =
{a ← ∼a. a ← ∼a | a ∈ I} relative to Mv is (GI)h/Mv = {a. | a 6∈ Mv},
and it has a unique stable model.

Based on these observations we can conclude that verifying the modular
equivalence of modules with the EVA property is a coNP-complete decision
problem. We define language EQM as follows: for any (normal logic pro-
gram) modules P and Q, 〈P,Q〉 ∈ EQM if and only if P ≡m Q. Similarly,
for any normal logic programs P and Q, we say 〈P, Q〉 ∈ EQ if and only if
P ≡ Q; and 〈P,Q〉 ∈ EQV if and only if P ≡v Q. Recall that EQ and
EQV (the latter when restricted to programs having enough visible atoms)
are coNP-complete decision problems [49, 31].

Corollary 4.6 EQM is a coNP-complete decision problem for modules
having enough visible atoms.

Proof of Corollary 4.6 Since Theorem 4.5 shows that EQM can be reduced
to EQV and GI has the EVA property, EQM ∈ coNP for modules having
enough visible atoms. The coNP-hardness follows by reduction from weak
equivalence. For any normal logic programs P and Q, 〈P,Q〉 ∈ EQ if and
only if 〈(P, ∅, Hb(P )), (Q, ∅, Hb(Q))〉 ∈ EQM. ¤
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5 MODULARITY FOR SMODELS PROGRAMS

In this chapter we extend the results obtained for normal logic program mod-
ules in Chapters 3 and 4 to cover a module system based on the class of
SMODELS programs [65]. We start by briefly introducing the syntax and
semantics of SMODELS programs in Section 5.1 and continue by defining
SMODELS program modules and their properties, ending with a brief reca-
pitulation on computational complexity in Section 5.2.

Instead of proving from scratch that the module theorem and the con-
gruence property of modular equivalence also hold for SMODELS program
modules we translate SMODELS program modules into normal logic pro-
gram modules. We then show in Theorem 5.15 that the translation is ho-
momorphic under modular equivalence, and it does not limit the possible
compositions of modules. Furthermore, Theorem 5.16 shows that the trans-
lation preserves modular equivalence. Now, based on Theorems 5.15 and
5.16 we can directly generalize the results for normal logic program modules
to the case of SMODELS program modules.

5.1 INTRODUCTION TO SMODELS PROGRAMS

The forms of rules used in SMODELS programs [65] are listed in Definition
5.1. Besides basic rules (5.1) used in normal logic programs, there are also
constraint rules (5.2), choice rules (5.3), weight rules (5.4), and compute
statements (5.5).
Definition 5.1 An SMODELS program is a finite set of rules of the forms

h ← B+,∼B− (5.1)
h ← c {B+,∼B−} (5.2)

{H} ← B+,∼B− (5.3)
h ← w ≤ {B+ = WB+ ,∼B− = WB−} (5.4)

compute {B+,∼B−} (5.5)

where h is a propositional atom, B+, B−, and H are sets of propositional
atoms, H 6= ∅; and WB+ and WB− are sets of natural numbers; and w and c
are natural numbers.
We define Body+(r) = B+ and Body−(r) = B− for rules r of the forms (5.1)
– (5.4). In a weight rule (5.4) each atom a ∈ B+ (respectively each b ∈ B−)
is associated with a weight wa ∈ WB+ (respectively wb ∈ WB−). Note that
a constraint rule (5.2) is equivalent to a basic rule (5.1) if c = |B+| + |B−|.
Also, a weight rule (5.4) reduces to a constraint rule (5.2) when all weights
are equal to 1 and w = c. The satisfaction relation M |= r generalizes for the
rule types (5.2)–(5.5) as follows.

Definition 5.2 Given an interpretation M ⊆ Hb(P ) for an SMODELS pro-
gram P ,

• a constraint rule (5.2) is satisfied in M if and only if
c ≤ |B+ ∩M |+ |B− \M | implies h ∈M .
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• a choice rule (5.3) is always satisfied in M ,

• a weight rule (5.4) is satisfied in M if and only if

w ≤
∑

a∈B+∩M

wa +
∑

b∈B−\M
wb

= WSM(B+= WB+ ,∼B−= WB−) (5.6)

implies h ∈M , and

• a compute statement (5.5) is satisfied in M if and only if B+ ⊆M and
M ∩B− = ∅.

The generalization of Gelfond-Lifschitz reduct for SMODELS programs is
defined as follows.

Definition 5.3 For an SMODELS program P and an interpretation M ⊆
Hb(P ), the reduct PM contains

1. a basic rule h ← B+ if and only if there is a basic rule (5.1) in P
such that M ∩ B− = ∅ or there is a choice rule (5.3) in P such that
h ∈ H ∩M , and M ∩B− = ∅;

2. a constraint rule h ← c′ {B+} if and only if there is a constraint rule
(5.2) in P and c′ = max(0, c− |B− \M |); and

3. a weight rule h ← w′ ≤ {B+= WB+} if and only if there is a weight
rule (5.4) in P and w′ = max(0, w −WSM(∼B−= WB−)).

An SMODELS program P is positive if each rule in P is of the forms (5.1),
(5.2) and (5.4) restricted to the case B−= ∅. Given the least model semantics
for positive programs the stable model semantics [20] straightforwardly gen-
eralizes for SMODELS programs. Similarly to the case of normal programs
the reduction from Definition 5.3 is used, but the effect of compute state-
ments must also be taken into account. Let CompS(P ) denote the union of
literals appearing in the compute statements (5.5) of P .

Definition 5.4 An interpretation M ⊆ Hb(P ) is a stable model of an SMOD-
ELS program P if and only if M = LM(PM) and M |= CompS(P ).

Example 5.5 Consider an SMODELS program

P = { {a, b} ← ∼d.

d← ∼a, b.

c← 2 ≤ {a = 2, b = 1, d = 1}.
compute {c}. }.

Since M |= CompS(P ) has to hold for a stable model, we only need consider
interpretations such that c ∈ M . The reduct of P with respect to M1 = {c}
is PM1 = {d← b. c← 2 ≤ {a = 2, b = 1, d = 1}.}. Now LM(PM1) = ∅ 6=
M1 and thus M1 6∈ SM(P ). The reduct of P with respect to M2 = {a, b, c}
is PM2 = {a. b. c ← 2 ≤ {a = 2, b = 1, d = 1}.}. Since LM(PM2) = M2

and M2 |= compute {c}, we have M2 ∈ SM(P ). Program P has two stable
models in total, that is, M3 = {a, c} ∈ SM(P ) in addition to M2. ¥
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Definition 5.6 generalizes Definition 2.16 for SMODELS programs.

Definition 5.6 For an SMODELS program P and an interpretation Mv ⊆
Hbv(P ), the hidden part of P relative to Mv, denoted by Ph/Mv, contains

1. h ← B+
h ,∼B−

h if and only if there is a basic rule (5.1) in P such that
h ∈ Hbh(P ), B+

v ⊆Mv and B−
v ∩Mv = ∅;

2. {Hh} ← B+
h ,∼B−

h if and only if there is a choice rule (5.3) in P such
that Hh 6= ∅, B+

v ⊆Mv and B−
v ∩Mv = ∅;

3. h ← c′ {B+
h ,∼B−

h } if and only if there is a constraint rule (5.2) in P
such that h ∈ Hbh(P ) and c′ = max(0, c− |B+

v ∩Mv| − |B−
v \Mv|);

4. h ← w′ ≤ {B+
h = WB+

h
,∼B−

h = WB−h
} if and only if there is a weight

rule (5.4) in P such that h ∈ Hbh(P ) and

w′ = max(0, w −WSMv(B
+
v = WB+

v
,∼B−

v = WB−v )).

5.2 SMODELS PROGRAM MODULES

We define SMODELS program modules in analogy to modules based on nor-
mal logic programs. Let Head(P ) denote the set of atoms appearing in the
heads of rules (5.1) – (5.4) in an SMODELS program P .

Definition 5.7 A triple P = (P, I, O) is a (propositional) SMODELS program
module, if

• P is a finite set of rules of the forms (5.1) – (5.5);

• I and O are sets of propositional atoms and I ∩O = ∅; and

• Head(P ) ∩ I = ∅.

The Herbrand base of an SMODELS program module P is the set of atoms
appearing in P combined with I ∪ O, and moreover, Hbv(P) = I ∪ O and
Hbh(P) = Hb(P) \ Hbv(P).

In order to define the conditions for the composition of two SMODELS
program modules we first define the direct positive dependency relation ≤1

for SMODELS programs.

Definition 5.8 Consider an SMODELS program P . Given atoms a, b ∈
Hb(P ), we say that b depends directly on a, denoted by a ≤1 b, if and only if
there is

• a basic rule b← B+,∼B− ∈ P such that a ∈ B+, or

• a constraint rule b← c {B+,∼B−} ∈ P such that a ∈ B+ and
c ≤ |B+|+ |B−|, or

• a choice rule {H} ← B+,∼B− ∈ P such that b ∈ H and a ∈ B+, or

• a weight rule b ← w ≤ {B+ = WB+ ,∼B− = WB−} ∈ P such that
a ∈ B+ and w ≤∑

c∈B+ wc +
∑

d∈B− wd.

Note the additional restrictions applied to constraint and weight rules in Def-
inition 5.8. The restrictions can be justified by noticing that a head atom
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cannot depend on a positive body atom if the dependency is based on a rule
the body of which can never be satisfied8. The positive dependency relation
≤ is defined as the reflective and transitive closure of ≤1, and the positive
dependency graph of an SMODELS program P is a graph with Hb(P ) and
{〈b, a〉 | a ≤1 b} as the sets of vertices and edges, respectively.

The definition of positive recursion between modules, that is, Definition
3.2, can now be extended to SMODELS program modules. Also, the condi-
tions under which two SMODELS program modules can be composed are
exactly the same as given in Definition 3.3.

Definition 5.9 Let P1 = (P1, I1, O1) and P2 = (P2, I2, O2) be SMODELS
program modules such that

(i) O1 ∩O2 = ∅;
(ii) Hbh(P1) ∩ Hb(P2) = ∅ and Hbh(P2) ∩ Hb(P1) = ∅; and

(iii) there is no positive recursion between P1 and P2.

Then the join of P1 and P2, denoted as P1 t P2, is defined, and

P1 t P2 = (P1 ∪ P2, (I1 \O2) ∪ (I2 \O1), O1 ∪O2).

The generalization of Definition 3.5, that is, an instantiation of an SMODELS
program module with an actual input, gives us the means to define stable
model semantics for SMODELS program modules in the natural way.

Definition 5.10 Given an SMODELS program module P = (P, I, O) and a
set of atoms A ⊆ I the instantiation of P with an actual input A is

P(A) = P t (FA, ∅, I).

Definition 5.11 An interpretation M ⊆ Hb(P) is a stable model of an
SMODELS program module P = (P, I, O), denoted by M ∈ SM(P), if and
only if M = LM(PM ∪ FM∩I) and M |= CompS(P ).

Instead of proving directly the generalization of Theorem 3.9 (the module
theorem) for SMODELS program modules, we present a translation from
SMODELS program modules to normal logic program modules, which then
allows us to apply module theorem to SMODELS program modules, too. Be-
fore introducing the translation, we extend the notion of modular equiva-
lence for SMODELS program modules.

Definition 5.12 Two SMODELS program modules P = (P, IP , OP ) and
Q = (Q, IQ, OQ) are modularly equivalent, denoted by P ≡m Q, if and only
if

(i) IP = IQ = I and OP = OQ = O, and

(ii) P(A) ≡v Q(A) for all A ⊆ I .

Since basic rules and constraint rules can be seen as special cases of weight
rules, we only consider in the following SMODELS programs consisting of

8It could be possible to add further restrictions, for example on basic rules, but the defi-
nition given here suffices for our purposes.
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choice rules (5.3), weight rules (5.4) and compute statements (5.5). Note that
the translation presented in Definition 5.13 is in the worst case exponential
with respect to the number of rules in the original module. For a more
compact translation, see for example [16].

Definition 5.13 Given an SMODELS program module P = (P, I, O), its
translation into a normal logic program module is defined as TrNLP(P) =
(TrNLP(P ), I, O), where TrNLP(P ) contains the following rules:

• for each choice rule {H} ← B+,∼B− in P the set of rules

{h← B+,∼B−,∼h. h← ∼h | h ∈ H};

• for each weight rule h ← w ≤ {B+ = WB+ ,∼B− = WB−} in P the
set of rules

{h← C,∼D | C ⊆ B+, D ⊆ B− and w ≤
∑
c∈C

wc +
∑

d∈D

wd}; and

• for each compute statement compute {B+,∼B−} in P the set of rules

{fP ← ∼a,∼fP | a ∈ B+} ∪ {fP ← b,∼fP | b ∈ B−};

where each a and fP are new atoms not appearing in Hb(P), that is,

Hbh(TrNLP(P)) = Hbh(P)∪{fP}∪{a | a ∈ H for {H} ← B+,∼B− ∈ P}.

Notice that the new atoms introduced in TrNLP(P) are hidden.

Example 5.14 Consider an SMODELS program module

P = (P, ∅, {a, b, c, d}),

where P is the SMODELS program given in Example 5.5. Module P has two
stable models, M1 = {a, b, c} and M2 = {a, c}. Translation TrNLP(P) =
(TrNLP(P ), ∅, {a, b, c, d}) is a normal logic program module containing the
following rules:

{ a← ∼d,∼a. a← ∼a. b← ∼d,∼b. b← ∼b.
d← ∼a, b. c← a. c← a, b. c← a, d.
c← b, d. c← a, b, d. fP ← ∼c,∼fp. }.

The stable models of TrNLP(P) are N1 = {c, a, b} and N2 = {a, b, c}, which
correspond to M1 and M2 in Example 5.5, respectively. Thus we have shown
P ≡m TrNLP(P). ¥

We show in Theorem 5.15 that the translation presented in Definition 5.13
does not limit the possible compositions of modules, and

TrNLP(P1) t TrNLP(P2) ≡m TrNLP(P1 t P2),

that is, TrNLP is homomorphic under modular equivalence.
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Theorem 5.15 Consider SMODELS program modules P1 and P2. If P1 tP2

is defined, then also TrNLP(P1) t TrNLP(P2) is defined and

TrNLP(P1) t TrNLP(P2) ≡m TrNLP(P1 t P2).

Proof of Theorem 5.15 is given in Appendix A. In Theorem 5.16 we show
that the translation presented in Definition 5.13 is modularly equivalent.

Theorem 5.16 P ≡m TrNLP(P) for any SMODELS program module P.

Proof of Theorem 5.16 is given in Appendix A. Notice that in Theorem
5.15 ≡m relates two normal logic program modules, that is, Definition 4.1 is
used, and in Theorem 5.16 ≡m relates an SMODELS program module and
a normal logic program module (a special case of an SMODELS program
module), that is, Definition 5.12 is used.

Theorems 5.15 and 5.16 allow us to generalize the module theorem for
SMODELS program modules.

Theorem 5.17 (Module theorem for SMODELS program modules) Let P1

and P2 be SMODELS program modules such that P1 t P2 is defined. Now,
M ∈ SM(P1 t P2) if and only if M1 = M ∩ Hb(P1) ∈ SM(P1), M2 =
M ∩ Hb(P2) ∈ SM(P2) and M1 and M2 are compatible.

Proof of Theorem 5.17 is given in Appendix A. Similarly to the case of normal
logic program modules, Theorem 5.17 directly generalizes to a collection of
submodules.

Corollary 5.18 Let P1, . . . ,Pn be a collection of SMODELS program mod-
ules such that P1 t · · · t Pn is defined. Then M ∈ SM(P1 t · · · t Pn) if and
only if Mi = M ∩ Hb(Pi) ∈ SM(Pi) for all 1 ≤ i ≤ n, and the collection
{M1, . . . , Mn} is compatible.

If we apply Theorem 5.17 instead of Theorem 3.9 in the proof of Theorem
4.2, we see that the congruence property of modular equivalence generalizes
for SMODELS program modules.

Corollary 5.19 Let P,Q and R be SMODELS program modules. If P ≡m Q
and both P t R and Q t R are defined, then P t R ≡m Q t R.

Recall that deciding weak equivalence is a coNP-complete decision prob-
lem for the class of SMODELS programs, and deciding visible equivalence is
a coNP-complete decision problem for SMODELS programs having enough
visible atoms [31]. Thus it is straightforward to see that deciding modu-
lar equivalence for SMODELS program modules with the EVA property is
a coNP-complete decision problem, too.

Corollary 5.20 EQM is a coNP-complete decision problem for SMODELS
program modules having enough visible atoms.
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6 VERIFYING MODULAR EQUIVALENCE

We extend the translation-based method used to verify visible equivalence
in [31] to cover the verification of modular equivalence of SMODELS pro-
gram modules in Section 6.1. We propose a method for modularizing the
verification of visible equivalence in Section 6.2. In Section 6.3 we consider
questions involved in the problem of finding a suitable module structure for
a program for which there is no explicit a priori knowledge on the underlying
structure.

6.1 TRANSLATION FOR VERIFYING MODULAR EQUIVALENCE

As a consequence of Theorem 4.5, the translation-based technique from [31,
Corollary 5.9] can be used to verify P ≡m Q given that P andQ have enough
visible atoms. Recall that GI has the EVA property. More specifically, the
task is to show that EQT(P t GI ,Q t GI) and EQT(Q t GI ,P t GI) have
no stable models, where EQT is the translation function described in [31].
However, it seems that there is still room for improvement since the common
context GI is handled separately for the modules involved.

We start with a brief recapitulation of the structure of translation EQT
proposed in [31]. Given two SMODELS programs P and Q, the translation
EQT(P,Q) is an SMODELS program consisting of four parts, that is,

EQT(P,Q) = P ∪ Hidden◦(Q) ∪ Least•(Q) ∪ UnStable(Q).

The roles of individual parts of EQT(P, Q) in the search for a counter-ex-
ample are the following.

• P finds a stable model M ∈ SM(P ).

• Hidden◦(Q) finds the unique stable model Nh for Qh/Mv.

• Least•(Q) finds the least model of QN , where N = Mv ∪Nh.

• UnStable(Q) checks that N 6∈ SM(Q), that is, N 6= LM(QN) or N 6|=
CompS(Q).

A more detailed discussion on the ideas behind the translation EQT is given
in [31]. We present now a modified version of the translation adjusted to
verification of modular equivalence.

Definition 6.1 Let P = (P, I, O) and Q = (Q, I, O) be SMODELS program
modules having enough visible atoms. The translation

EQT(P,Q) = P t Hidden◦(Q) t Least•(Q) t UnStable(Q)

combines P with three modules to be made precise by Definitions 6.2–6.4.
Atoms c, d, and e introduced in Definition 6.4 are assumed to be new atoms
not appearing in Hb(P) ∪ Hb(Q).
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First thing to notice is that EQT(P,Q) is a module with input IEQT = I
and output OEQT = O ∪ O• ∪ Hbh(Q)• ∪ Hbh(Q)◦ ∪ {c, d, e}. Here A• =
{a• | a ∈ A} and A◦ = {a◦ | a ∈ A} for any set of atoms A; and each
a• and a◦ is a new atom not appearing in Hb(P) ∪ Hb(Q). Furthermore
Hbh(EQT(P,Q)) = Hbh(P).

The overall idea of the translation is the same as in [31]: rules of P capture
a stable model M for P while the remaining modules are used to ensure that
Q does not have a stable model N such that Mv = Nv. The translation
Hidden◦(·) to be introduced in Definition 6.2 contains exactly the same rules
as [31, Definition 5.2]. We, however, define Hidden◦(·) as a module to be
able to take advantage of the module theorem in the correctness proof. The
sets of rules in Least•(·) and UnStable(·) introduced in Definitions 6.3 and
6.4, respectively, are very similar to the sets of rules in [31, Definitions 5.3 and
5.4]. The difference is that the input/output interfaces of P and Q need to be
taken into account, which results in smaller translations, and furthermore,
Least•(·) and UnStable(·) are also defined as modules.

For modules with a completely specified input, that is, P and Q with I =
∅, the translation given in Definition 6.1 results in exactly the same set of
rules as the one presented in [31].

Definition 6.2 The translation

Hidden◦(Q) = (Hidden◦(Q), I ∪O, Hbh(Q)◦)

of an SMODELS program module Q = (Q, I, O) contains

1. a basic rule h◦ ← (B+
h )◦, B+

v ,∼(B−
h )◦,∼B−

v for each basic rule
h← B+,∼B− in Q with h ∈ Hbh(Q);

2. a constraint rule h◦ ← c {(B+
h )◦, B+

v ,∼(B−
h )◦,∼B−

v } for each con-
straint rule h← c {B+,∼B−} in Q with h ∈ Hbh(Q);

3. a choice rule {H◦
h} ← (B+

h )◦, B+
v ,∼(B−

h )◦,∼B−
v for each choice rule

{H} ← B+,∼B− in Q with Hh 6= ∅; and

4. a weight rule

h◦ ← w ≤ {(B+
h )◦ ∪B+

v = WB+ ,∼((B−
h )◦ ∪B−

v ) = WB−}

for each weight rule h ← w ≤ {B+ = WB+ ,∼B− = WB−} in Q with
h ∈ Hbh(Q).

The translation Hidden◦(Q) includes rules that provide a representation for
the hidden part Qh/Mv which depends dynamically on Mv. This is achieved
by leaving the visible atoms from Hbv(Q) = Hbv(P) untouched. The hidden
parts of rules are renamed systematically using atoms from Hbh(Q)◦. This is
to capture the unique stable model Nh of Qh/Mv but renamed as N◦

h .
For the following definitions we introduce shorthands Ao = A ∩ O and

Ai = A ∩ I for any set of atoms A ⊆ Hb(P) and an SMODELS program
module P = (P, I, O).

Definition 6.3 The translation

Least•(Q) = (Least•(Q), I ∪O ∪ Hbh(Q)◦, O• ∪ Hbh(Q)•)
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of an SMODELS program module Q = (Q, I, O) contains

1. a rule h• ← B+
i , (B+

o )•, (B+
h )•,∼B−

v ,∼(B−
h )◦ for each basic rule

h← B+,∼B− in Q;

2. a rule h• ← c {B+
i , (B+

o )•, (B+
h )•,∼B−

v ,∼(B−
h )◦} for each constraint

rule h← c {B+,∼B−} in Q;

3. a rule h• ← h,B+
i , (B+

o )•, (B+
h )•,∼B−

v ,∼(B−
h )◦ for each choice rule

{H} ← B+,∼B− in Q and h ∈ Hv;
a rule h• ← h◦, B+

i , (B+
o )•, (B+

h )•,∼B−
v ,∼(B−

h )◦ for each choice rule
{H} ← B+,∼B− in Q and h ∈ Hh; and

4. a rule

h• ← w ≤ {B+
i ∪ (B+

o )• ∪ (B+
h )• = WB+ ,∼(B−

v ∪ (B−
h )◦) = WB−}

for each weight rule h← w ≤ {B+ = WB+ ,∼B− = WB−} in Q.

The rules in Least•(Q) catch the least model LM(QN ∪ FN∩I) for N =
Mv ∪Nh but expressed in I ∪O• ∪ Hbh(Q)◦ rather than Hb(Q).

Definition 6.4 The translation

UnStable(Q) = (UnStable(Q), I ∪O∪O•∪Hbh(Q)•∪Hbh(Q)◦, {c, d, e})

of an SMODELS program module Q = (Q, I,O) includes

1. rules d← a,∼a• and d← a•,∼a for each a ∈ O;

2. rules d← a◦,∼a• and d← a•,∼a◦ for each a ∈ Hbh(Q);

3. a rule c← ∼a•,∼d for each a ∈ CompS(Q) such that a ∈ O∪Hbh(Q);

4. a rule c← b•,∼d for each∼b ∈ CompS(Q) such that b ∈ O∪Hbh(Q);

5. a rule c← ∼a,∼d for each a ∈ CompS(Q) such that a ∈ I ;

6. a rule c← b,∼d for each ∼b ∈ CompS(Q) such that b ∈ I ;

7. rules e← c and e← d; and

8. a compute statement compute {e}.

The purpose of UnStable(Q) is to disqualify N as a stable model ofQ: either
N and LM(QN ∪ FN∩I) differ, or otherwise LM(QN ∪ FN∩I) violates some
compute statement of Q. The rules in the second last item summarize the
two possible reasons why Q does not have a stable model N such that Mv =
Nv. Atom d is used to indicate that there is a difference between N and
LM(QN ∪ FN∩I), and atom c indicates that a compute statement of Q is
violated. It is then insisted by the compute statement in the last item that
either of these reasons holds.

Theorem 6.5 shows the correctness of the translation-based method for
verification of modular equivalence.

Theorem 6.5 Let P = (P, I, O) and Q = (Q, I, O) be SMODELS program
modules having enough visible atoms. Then P ≡m Q if and only if modules
EQT(P,Q) and EQT(Q,P) have no stable models.
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Proof of Theorem 6.5 is given in Appendix A. Theorem 6.5 allows us to
verify ≡m similarly to verifying ≡v in [31]. Notice that the generator module
GI from Section 4.2 or its variant consisting of a single choice rule, that is,
module ({{I}.}, ∅, I) can be combined with EQT(P,Q) and EQT(Q,P) in
order to generate all the possible inputs in an actual implementation.

6.2 MODULAR APPROACH TO EQUIVALENCE VERIFICATION

Introduction of modular equivalence was much motivated by the need of
modularizing the verification of weak/visible equivalence. We believe that
such a modularization could be very effective in a setting where program
Q is an optimized version of program P as this typically indicates that Q
is obtained by making some local modifications to P . In this section we
propose a strategy to utilize modular equivalence in the task of verifying the
visible/weak equivalence of SMODELS programs P and Q. Since≡m reduces
to ≡v for programs with a completely specified input, the discussion will be
given in the context of modules and≡m. The results established in the sequel
are applicable to the cases of ≡v and ≡ simply by restricting the input sets of
the modules involved to be empty.

Consider SMODELS program modules P = (P, I, O) and Q = (Q, I, O).
To modularize further the verification of P ≡m Q one needs to have mod-
ule structures of P and Q. These can either be specified explicitly by the
programmer or detected automatically, for example, by utilizing the strongly
connected components of Dep+(P) and Dep+(Q). We will assume for now
that modular structures for P andQ are given, and consider in Section 6.3 the
question how to find suitable module structures for P and Q automatically
in case that they are not known beforehand.

Given modules P = (P, IP , OP ) and Q = (Q, IQ, OQ), we say that P is
compatible with Q, if IP = IQ and OP = OQ. Now, if Q is obtained from
P through local modifications, it is likely that their components are pairwise
compatible, and there is a partitioning for P andQ such that P = P1t· · ·tPn

and Q = Q1 t · · · tQn where Pi is compatible with Qi for all i. Notice that
Pi = Qi might even hold for a number of i’s. On the other hand, it might
be the case that P and Q have such dependencies that they have no non-
trivial compatible module structures. This implies that the task of verifying
the equivalence of P and Q cannot be further modularized.

Assume that P = P1 t · · · t Pn and Q = Q1 t · · · t Qn are compatible
module structures.9 Verifying Pi ≡m Qi for every i is not of interest as such,
since Pi 6≡m Qi does not necessarily imply P 6≡m Q. Of course, if Pi ≡m Qi

holds and the equivalence can be verified efficiently, then Corollary 5.19
implies that Pi and Qi are modularly equivalent in every possible context.
However, if this is not the case, it is still possible to organize the verification
of P ≡m Q as a sequence of n module-level tests as follows:

(
i−1t
j=1
Qj) t Pi t (

nt
j=i+i

Pj) ≡m (
i−1t
j=1
Qj) tQi t (

nt
j=i+1

Pj) (6.1)

9Notice that several possible compatible module structures can be obtained for P andQ,
for example, by regrouping or taking compositions of submodules.
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where 1 ≤ i ≤ n. The resulting chain of equalities conveys P ≡m Q.

Example 6.6 Consider normal logic programs P and Q both consisting of
two submodules, that is, P = P1tP2 and Q = Q1tQ2, and the submodules
are the following:

P1 = ({c← ∼a.}, {a, b}, {c}),
P2 = ({a← b.}, ∅, {a, b}),
Q1 = ({c← ∼b.}, {a, b}, {c}), and
Q2 = ({b← a.}, ∅, {a, b}).

Now, P1 6≡m Q1, but P1 and Q1 are modularly equivalent in contexts
produced by both P2 and Q2. In this case actually P2 ≡m Q2 holds as
SM(P2) = SM(Q2) = {∅}, but that is not necessary. Thus

P1 t P2 ≡m Q1 t P2 ≡m Q1 tQ2,

which verifies P ≡ Q and P ≡v Q. ¥

The programs involved in each test (6.1) differ in Pi and Qi for which the
other modules form a common context

Ci = (
i−1t
j=1
Qj) t (

nt
j=i+i

Pj).

A way to optimize the verification of Pi t Ci ≡m Qi t Ci is to adjust the
method discussed in Section 6.1 to use translation EQT(Pi,Qi) t Ci rather
than translation EQT(Pi t Ci,Qi t Ci). The following theorem proves the
correctness of this method.

Theorem 6.7 Let P = (P, I, O) and Q = (Q, I, O) be SMODELS program
modules with the EVA property, and C an SMODELS program module such
that P t C and Q t C are defined. Then P t C ≡m Q t C if and only if
EQT(P,Q) t C and EQT(Q,P) t C have no stable models.

Proof of Theorem 6.7 is given in Appendix A. Theorem 6.7 gives us the
means to modularize the task of equivalence verification together with equa-
tion (6.1). Verifying P ≡m Q, when P and Q have compatible module struc-
tures P = P1 t . . . t Pn and Q = Q1 t . . . tQn, is done as follows.

For each 1 ≤ i ≤ n,

if SM(EQT(Pi,Qi) t Ci) 6= ∅ or SM(EQT(Qi,Pi) t Ci) 6= ∅,
break as P 6≡m Q, continue otherwise.

If no counterexample is found, then P ≡m Q. Note that if there are n sub-
modules, there are n! possible different orders in which to verify the chain
of equivalences. It seems likely that the order has an effect on the efficiency
of the approach. We expect computational advantage from the strategy de-
scribed above, especially when the context Ci is clearly larger than the mod-
ules Pi and Qi. This hypothesis is to be examined in the experimental part.
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6.3 ON FINDING MODULE DECOMPOSITION

A prerequisite for the algorithm described in the previous section is to know
compatible module structures for P and Q. This is always not the case, and
one needs to have a strategy how to find suitable module structures for the
programs involved assuming that there is no a priori knowledge.

First idea for finding a module structure for SMODELS program module
P = (P, I, O) is to use the strongly connected components C1, . . . , Cn of
Dep+(P) and define submodules by grouping the rules so that for each Ci all
the rules r ∈ P such that Head(r) ⊆ Ci are put into one submodule.

Now, the question is whether Pi’s defined this way would form a valid
decomposition of P into submodules. First notice that input atoms are a spe-
cial case because Head(P ) ∩ I = ∅. Each a ∈ I ends up in its own strongly
connected component and there are no rules to include into a submodule
corresponding to strongly connected component {a}. Thus it is actually un-
necessary to include a submodule based on such a component. Obviously,
all basic rules, constraint rules and weight rules in P go into exactly one of
the submodules. One should notice that for a choice rule r ∈ P it can hap-
pen that Head(r) ∩ Ci 6= ∅ and Head(r) ∩ Cj 6= ∅ for i 6= j. This is not
a problem, since it is always possible to replace a choice rule of the form
{H} ← B+,∼B− with choice rules {h} ← B+,∼B− for each h ∈ H .

In regard to compute statements in P, there are several possibilities. One
possibility is to put all of them in one submodule, which is then used as
a submodule checking whether the conditions insisted upon stable models
are satisfied by potential model candidates. Another approach is to place
the compute statements into the submodule containing the definitions of
the atoms which the compute statement concerns. We will use the latter
strategy.10

Based on the discussion above, we define the set of rules defining a set of
atoms for an SMODELS program module in analogy to the definition given
in Section 2.2.2.
Definition 6.8 Given an SMODELS program module P = (P, I, O) and a
set of atoms A ⊆ Hb(P) \ I , the set of rules defining A, denoted by P [A],
contains the following rules:

• a basic rule h ← B+,∼B− if and only if there is a basic rule (5.1) in
P such that h ∈ A;

• a constraint rule h ← c ≤ {B+,∼B−} if and only if there is a con-
straint rule (5.2) in P such that h ∈ A;

• a choice rule {H ∩ A} ← B+,∼B− if and only if there is a choice
rule (5.3) in P such that H ∩ A 6= ∅;
• a weight rule h ← c ≤ {B+,∼B−} if and only if there is a weight

rule (5.4) in P such that h ∈ A; and
10Note how LPARSE handles rules with an empty head. For example a basic rule of the

form ← B+,∼B− is transformed to a rule ⊥ ← B+,∼B− and a compute statement
compute {∼⊥} is added, where atom ⊥ is a new hidden atom shared by all the rules trans-
formed this way. Sharing the head atom groups all these rules together, and this resembles
the first strategy in which compute statements are placed into one module.
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• a compute statement compute {B+ ∩ A,∼(B− ∩ A)} if and only if
there is a compute statement (5.5) in P such that B+ ∩ A 6= ∅ or
B− ∩ A 6= ∅.

We continue by defining a submodule of P = (P, I, O) induced by a set of
atoms A ⊆ Hb(P) \ I . We use Definition 6.8 for the set of rules, and choose
Av to be the output and the rest of the visible atoms appearing in P [A] to be
the input. Let atomsv(P ) denote the set of visible atoms appearing in the
rules of P .
Definition 6.9 Given an SMODELS program module P = (P, I, O) and a
set of atoms A ⊆ Hb(P) \ I , a submodule induced by A is

P[A] = (P [A], atomsv(P [A]) \ Av, Av).

Let C1, . . . Cm be the strongly connected components of Dep+(P) such that
Ci ∩ I = ∅. Now we can define Pi = P[Ci] for each 1 ≤ i ≤ m. Since the
strongly connected components of Dep+(P) are used as a basis, it is guaran-
teed that there is no positive recursion between any of the submodules Pi.
Also, it is clear that outputs of submodules are pairwise disjoint. Unfortu-
nately this construction does not yet guarantee that hidden atoms stay local,
and therefore the composition of Pi’s might not be defined.

A solution is to combine Ci’s in a way that modules will be closed with
respect to dependencies on the hidden atoms, that is, if a hidden atom h
belongs to a component Ci, then also all the atoms in the heads of rules in
which h or ∼h appears, have to belong to Ci, too. This can be achieved
by finding the strongly connected components, denoted by D1, . . . , Dk, for
Deph(P, {C1, . . . , Cm}), where Deph(P, {C1, . . . , Cm}) has {C1, . . . , Cm} as
the set of vertices, and

{〈Ci, Cj〉, 〈Cj, Ci〉 | a ∈ Ci, b ∈ Cj,

r ∈ P, b ∈ Head(r) and a ∈ (Body+(r) ∪ Body−(r))h}
as the set of edges. Now, we take the sets

Ei = ∪
C∈Di

C

for 1 ≤ i ≤ k and use them to induce a module structure for P by defining
Pi = P[Ei] for 1 ≤ i ≤ k.

As it is possible to have atoms in I ∪O not appearing in the rules of P, that
is, Hb(P) = atomsv(P ) does not necessarily hold, it is possible that

Hb(P) \ (Hb(P1) ∪ · · · ∪ Hb(Pk)) 6= ∅.
To keep track of such atoms in I \ atomsv(P ) we need an additional module
defined as

P0 = (∅, I \ atomsv(P ), ∅).
Note that there is no need for similar treatment for atoms in O \ atomsv(P )
as each atom in O belongs to some Hb(Pi).

Theorem 6.10 shows that we have a valid decomposition of P into sub-
modules.
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Theorem 6.10 Consider an SMODELS logic program module P and let
C1, . . . Cm be the SCCs of Dep+(P) such that Ci ∩ I = ∅, and D1, . . . , Dk

the SCCs of Deph(P, {C1, . . . , Ck}). Define Ei = ∪C∈Di
C, Pi = P[Ei], and

P0 = (∅, I \ atomsv(P ), ∅). Then the join of the submodules Pi is defined
and P ≡m P0 t · · · t Pm.

Proof sketch for Theorem 6.10 Based on the construction of Ei’s and the
discussion in this section it is clear that P′ = P0 t · · · t Pm is defined. It is
easy to verify that the input and the output sets of P′ and P are exactly the
same. The only difference between the sets of rules in P and P′ is that some
choice rules and compute statements in P may be split into several rules in
P′. This is merely a syntactical change not affecting the stable models of the
modules, that is, SM(P) = SM(P′). Notice also that Dep+(P) = Dep+(P′).
Thus P′ ≡m P holds. ¤

Considering the problem of modularizing the verification of P ≡m Q, it is
possible to obtain module structures for P and Q separately using the ap-
proach discussed above. However, this does not necessarily yield compatible
module structures for P and Q, and a further step is needed to achieve com-
patibility.

An approach to find directly compatible module structures for SMODELS
program modules P = (P, I, O) and Q = (Q, I,O) is to take Dep+(P ∪ Q)
as a starting point, and proceed to find the set of strongly connected compo-
nents of Dep+(P ∪ Q) closed with respect to hidden atoms as done before.
We denote these by E1, . . . , Ek. Compatible submodules Pi = P[Ei] and
Qi = Q[Ei] for 1 ≤ i ≤ k can be defined according to Definition 6.9 with
the exception, that the input needs to be defined as

atomsv((P ∪Q)[Ei]) \ (Ei)v.

Similarly we need to define P0 = Q0 = (∅, I \ atomsv(P ∪Q), ∅).
Note that it might be possible to find further compatible decompositions

for some submodules Pi and Qi, that is, the approach described above does
not guarantee that the compatible decompositions into submodules obtained
for P and Q are as fine as possible. However, this is not important as such.
Having a decomposition into too many or too small submodules might actu-
ally turn out to be inefficient in practice.
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7 EXPERIMENTS

In this chapter we evaluate experimentally the effect of modularization on
verification of visible equivalence compared to a non-modular approach. We
start by introducing a prototype implementation and practical arrangements
in our experiments in Section 7.1. The problem of placing n queens on a
n × n chess board is used as our first benchmark and results are reported
in Section 7.2. Results for the second benchmark, the problem of finding
Hamiltonian cycles for directed graphs of n vertices, are reported in Sec-
tion 7.3.

7.1 TEST ARRANGEMENTS

The translation function EQT for verifying modular equivalence presented
in Definition 6.1 has been incorporated to translator LPEQ (version 1.18)11 by
Docent Tomi Janhunen. The translation for verifying modular equivalence
is obtained using flag -m. Furthermore, to make the translation compatible
with current solvers, an input generator can be augmented to the translation
using flag -i. Together with a tool called LPCAT (version 1.6) used to com-
pose two modules together, the new version of LPEQ allows us to examine the
feasibility of verification of modular equivalence, compared to the approach
where programs are seen as integral entities.

It is worth noticing that even though LPEQ and LPCAT give us the means
to evaluate the modular approach to equivalence verification, current ver-
sions of LPARSE and SMODELS are not yet fully compatible with the concept
of modules. This brings some difficulties, which we have tried to overcome.
The following example illustrates how LPEQ and LPCAT can be used together
with LPARSE and SMODELS.

Example 7.1 Consider programs P and Q consisting of modules P1, P2,
Q1 and Q2 given in Example 6.6. Their encoding in the input language of
LPARSE is given in Figure 7.1.

Declaration #external is used to tell LPARSE which atoms are not de-
fined inside the module. This declaration does not match exactly what we
would like the declaration of input atoms to be, but currently there is no di-
rect support for declaring input atoms in LPARSE. Information hiding, how-
ever, can be obtained using #hide declaration. For more details see the
user’s manual of LPARSE [67].

LPARSE can be used to obtain the presentation of the modules in the
internal format of SMODELS which is also the input format for LPEQ and
LPCAT. For example, in the case of module P1:

$ lparse p1.lp > p1.sm
3: Warning: predicate 'a/0' doesn't occur in any rule

head.
$ more p1.sm
1 2 1 1 3

11Available at http://www.tcs.hut.fi/Software/lpeq/.
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p1.lp: #external a, b. p2.lp: #external b.
c :- not a. a :- b.

q1.lp: #external a,b. q2.lp: #external a.
c :- not b. b :- a.

Figure 7.1: LPARSE encodings of modules P1, P2, Q1 and P2 given in Exam-
ple 7.1.

0
2 c
3 a
0
B+
0
B-
1
0
1

Since LPARSE is designed for programs with a completely specified input,
there is a warning message. Notice also that since atom b does not occur
in the rules of P1, it does not appear in the symbol table of p1.sm. It is
possible to add b to the symbol table by, for example, inserting a line “4 b” to
the symbol table in p1.sm. Files p2.sm, q1.sm and q2.sm can be obtained
similarly from files p2.lp, q1.lp and q2.lp, respectively.

LPCAT computes the join of two modules with flag -m. For example,
P1 t P2 is obtained as follows.

$ lpcat -m p1.sm p2.sm > p1-p2.sm

The composition q2-p2.sm can be obtained similarly.
Now, we are ready to use LPEQ to verify the (visible) equivalence of P and

Q. First, we can verify P ≡v Q without taking into account our knowledge
about the modular structure using the following commands.

$ lpeq p1-p2.sm q1-q2.sm | smodels 1
$ lpeq q1-q2.sm p1-p2.sm | smodels 1

The modular approach to equivalence verification goes as follows. In the first
step one computes the translation EQT(P1,Q1) using LPEQ with flag -m.
The context P2 is added using the tool LPCAT with flag -m and SMODELS is
used to see if the translation EQT(P1,Q1) t P2 has stable models.

$ lpeq -m p1.sm q1.sm | lpcat -m - p2.sm | smodels 1

Second direction is verified in the same way.

$ lpeq -m q1.sm p1.sm | lpcat -m - p2.sm | smodels 1

Since neither translation has stable models we learn that P1tP2 ≡m Q1tP2.
The second equivalence in the chain, that is,Q1tP2 ≡m Q1tQ2, is verified
similarly:
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$ lpeq -m p2.sm q2.sm | lpcat -m - q1.sm | smodels 1
$ lpeq -m q2.sm p2.sm | lpcat -m - q1.sm | smodels 1

It is also possible to use a different order in the chaining and verify the chain
of equivalences P1 t P2 ≡m P1 tQ2 ≡m Q1 tQ2.

Even though P1 andQ1 behave equivalently in the contexts of P2 andQ2,
they are not modularly equivalent in general. This can be verified using the
translation without a specific context. Note that the translation EQT(P1,Q1)
is a module with input {a, b}. To be able to compute its stable models using
the current SMODELS one needs to attach an input generator. This can be
obtained automatically using flag -i in LPEQ.

$ lpeq -m -i p1.sm q1.sm | smodels 1
smodels version 2.32. Reading...done
Answer: 1
Stable Model: a c'
True
Duration: 0.002
Number of choice points: 1
Number of wrong choices: 0
Number of atoms: 9
Number of rules: 8
Number of picked atoms: 3
Number of forced atoms: 0
Number of truth assignments: 13
Size of searchspace (removed): 2 (2)

The stable model {a, c•} for translation EQT(P1,Q1) gives us a counterex-
ample: {a} ∈ SM(P1) and {a, c} = LM(Q1

{a} ∪ F{a,b}∩{a}), thus we have
{a} 6∈ SM(Q1). ¥

In our experiments SMODELS system (version 2.32) is responsible for the
computation of stable models with flag -nolookahead (for the benchmarks
in this report, this option turned out to give the shortest running times) for
programs that are instantiated using the front-end LPARSE (version 1.0.17).
The total running time for the equivalence verification in one direction is
the sum of running times needed by SMODELS for trying to compute one
stable model of each of the translations produced by LPEQ. Recall that
in the modular approach there is a chain of equivalences needed to verify.
The translation time is also taken into account although it is negligible. We
consider modularly equivalent programs (modules) and therefore one always
has to count running times in both directions. Note, however, that running
times scale differently depending on the direction. Since the running times
of SMODELS depend on the order of rules in programs and literals in rules,
we shuffle them randomly. All the tests reported were run under the Linux
2.6.8 operating system on a 1.7GHz AMD Athlon XP 2000+ CPU with 1 GB
of main memory. As regards timings in test results, we report the sum of user
and system times as measured by /usr/bin/time command in UNIX.

42 7. EXPERIMENTS



7.2 THE QUEENS BENCHMARK

We consider modular encodings solving the n-queens problem, that is, how
to place n queens on a n × n chess board so that they do not threaten each
other. The programs are composed of two modules each, where the first mod-
ule is either Gn

x or Gn
y and the second module is either Cn

1 or Cn
2 . Basically

Gn
x and Gn

y generate a placement of n queens row-by-row and column-by-
column, respectively. The input sets of generator modules Gn

x and Gn
y are

empty, and their output consists of ground instances of predicate q(X,Y).
Modules Cn

1 and Cn
2 are used to check that the placement induced by the

generator module is legal. The check modules Cn
1 and Cn

2 have empty out-
put, and their input consists of ground instances of predicate q(X,Y). All four
possible compositions of modules are

Qn
1 = Gn

x t Cn
1 ,

Qn
2 = Gn

x t Cn
2 ,

Qn
3 = Gn

y t Cn
1 , and

Qn
4 = Gn

y t Cn
2 .

We are mainly interested in the visible equivalence of Qn
1 and Qn

4 , whereas
Qn

2 and Qn
3 serve as (alternative) intermediates steps in the chain (6.1) used

to modularize the verification of visible equivalence.
The encodings of Cn

1 , Cn
2 , Gn

x and Gn
y are given in Appendix B.1. Note

that the encodings contain variables and need to be grounded using LPARSE
to obtain propositional modules. Predicate d(X) appearing in the encodings
is a domain predicate used in order to get an instantiation for q(X,Y), and
q is a constant denoting the parameter n, that is, the number of queens.
Since LPARSE is basically intended for programs with completely specified
input, we need to define predicate q(X,Y) external in modules C1 and C2.
The flag -d none of LPARSE is used to remove domain predicates from the
output. For example, ground instances of modules G2

x and C2
2 are given in

Figure 7.2 in the textual format provided by LPARSE.
First, we compare the time needed to verify

(i) Cn
1 ≡m Cn

2 ,

(ii) Cn
1 tGn

x ≡m Cn
2 tGn

x , and

(iii) Qn
1 ≡v Qn

2 .

Notice that in (ii) and (iii) exactly the same equivalence is verified, the differ-
ence being that in (iii) the knowledge about modular structure is not taken
into account and the translation-based method is applied to complete pro-
grams. In (ii) we use the approach described in Theorem 6.7 with Gn

x as the
common context for Cn

1 and Cn
2 . In (i) we verify the equivalence of Cn

1 and
Cn

2 in every possible context. This is a stronger result than what is obtained
in (ii) and (iii). By Theorem 4.2 it is clear that equivalence in (i) implies
equivalence (ii) and (iii), but not vice versa.

The number of queens n was varied from 4 to 11 and the verification
task was repeated 10 times for each number of queens generating each time
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$ lparse -c q=2 -t gen-x.lp
_false :- __int2(_,1).
__int2(_,1) :- 2 { not q(1,2), not q(1,1) }.
_false :- __int2(_,2).
__int2(_,2) :- 2 { not q(2,2), not q(2,1) }.
_false :- __int1(_,1).
__int1(_,1) :- 2 { q(1,2), q(1,1) }.
_false :- __int1(_,2).
__int1(_,2) :- 2 { q(2,2), q(2,1) }.
{ q(1,2), q(1,1) }.
{ q(2,2), q(2,1) }.
compute 1 { not _false }.

$ lparse -c q=2 -t check-2.lp
_false :- q(2,1), q(1,1).
_false :- q(2,2), q(1,2).
_false :- q(1,2), q(1,1).
_false :- q(2,2), q(2,1).
_false :- q(1,2), q(2,1).
_false :- q(1,1), q(2,2).
compute 1 { not _false }.

Figure 7.2: Modules G2
x and C2

2 in grounded by LPARSE.

new randomly shuffled versions of the modules involved. Notice that after
grounding the number of rules in Gn

x and Gn
y is linear to n (for example, Gn

x

has 20, 30, and 40 rules for n = 4, 6, and 8, respectively) whereas the number
of rules in Cn

1 and Cn
2 is of order n3 (for example, Cn

1 has 152, 580, and 1456
rules for n = 4, 6, and 8, respectively; and Cn

2 has 76, 290, and 728 rules for
n = 4, 6, and 8, respectively).

The average running times and the average numbers of choice points, that
is, the number of choices made by SMODELS during the search, for each
approach are presented in Figure 7.3. We see that taking into account the
common context improves the efficiency of the translation-based method,
as regards both time and the number of choice points. Checking modular
equivalence without a specific context can be time consuming if the number
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Figure 7.3: The average running times (left) and the average numbers of
choice points (right) for verifying (i) Cn

1 ≡m Cn
2 , (ii) Cn

1 t Gn
x ≡m Cn

2 t Gn
x ,

and (iii) Qn
1 ≡v Qn

2 in the first n-queens experiment.
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Figure 7.4: The average running times for verifying (iv) Cn
1 t Gn

x ≡m Cn
2 t

Gn
x ≡m Cn

2 tGn
y , (v) Cn

1 tGn
x ≡m Cn

1 tGn
y ≡m Cn

2 tGn
y , and (vi) Qn

1 ≡v Qn
4

in the second n-queens experiment.

of possible inputs is high, as is the case with the queens encodings (there
are n2 squares in the chess board and as a queen can either be placed or
not in each of them, there are 2n2 possible inputs for modules Cn

1 and Cn
2 ).

However, it should be kept in mind that once Cn
1 ≡m Cn

2 has been verified,
one knows that Cn

1 and Cn
2 are modularly equivalent in any possible context.

In our second experiment, we compare the time needed to verify

(iv) Cn
1 tGn

x ≡m Cn
2 tGn

x plus Cn
2 tGn

x ≡m Cn
2 tGn

y ;

(v) Cn
1 tGn

x ≡m Cn
1 tGn

y plus Cn
1 tGn

y ≡m Cn
2 tGn

y ; and

(vi) Qn
1 ≡v Qn

4 .

In each item exactly the same equivalence is verified. The purpose of this
experiment is to evaluate the efficiency of the modular method, if there are
local changes in more modules, that is, when one verifies a chain of equiva-
lence justifying the modular changes. Again we compare this strategy to the
non-modular one. Another aspect is to see whether the order of the equiva-
lences in the chain has an effect on the efficiency, that is, whether there is a
difference in running times between items (iv) and (v).

In this experiment the number of queens n was varied from 4 to 12 and the
verification task was repeated 10 times for each number of queens generating
each time new randomly shuffled versions of the modules involved. The
average running times for each approach are presented in Figure 7.4. Again,
the approaches that take modularity into account are slightly faster than the
one that treats programs as integral entities. The order in which the chain
of equivalences is evaluated has an effect of the running times, but not on
the number of choice points as the average numbers of choice points in each
approach was approximately the same.
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7.3 THE HAMILTONIAN CYCLE BENCHMARK

We use the problem of finding a Hamiltonian cycle for directed graphs of
n vertices as our second benchmark problem. Basically, we consider two
modularly equivalent encodings of the Hamiltonian cycle problem.

The first encoding consists of three modules Gn
1 tHn

1 tRn, and is similar
to the Hamiltonian cycle encoding used by Simons et al. [65]. We, however,
consider directed graphs instead of undirected ones. Module Gn

1 is used to
generate all possible directed graphs of n vertices represented as a set of edges.
Given a set of edges for n vertices as an input, module Hn

1 selects the edges
to be taken into a cycle by insisting that each vertex is incident to exactly two
edges in the cycle. Finally, given a cycle candidate as an input, module Rn

checks that each vertex is reachable from the starting vertex along the edges
in the cycle. We also use an optimized variant of module Hn

1 . Module Hn
2

takes into account that the input graph is directed and each vertex must then
have exactly one incoming and exactly one outgoing edge in the cycle.

The second encoding Gn
1 t HRn is based on the alternative encoding

presented in [65]. In this encoding we cannot separate the selection of the
edges to be taken into the cycle and the checking of reached vertices into
two modules as their definitions are in positive recursion. Thus moduleHRn

solves the Hamiltonian cycle problem given a graph of n vertices as input.
In addition to the module Gn

1 generating all directed graphs, we consider
also other graph generator modules. Each moduleGn

i for i = 1, . . . , 5 gener-
ates a family of directed graphs with n vertices with the following properties:

• Gn
1 : all (directed) graphs,

• Gn
2 : irreflexive graphs,

• Gn
3 : symmetric and irreflexive graphs,

• Gn
4 : asymmetric graphs, and

• Gn
5 : graphs with Euclidean edge relation.

Encodings for modules Gn
i (i = 1, . . . , 5), Rn, Hn

j (j = 1, 2) and HRn in
the input language of LPARSE are given in Appendix B.2. In the experiments
with the Hamiltonian cycle problem the number of vertices n was varied from
3 to 10 and the verification task was repeated 10 times for each number of
vertices generating each time new randomly shuffled versions of the modules
involved.

First, we compare the time needed to verify

(a) Hn
1 t (Rn tGn

1 ) ≡m Hn
2 t (Rn tGn

1 ),

(b) (Hn
1 t Rn) tGn

1 ≡m (Hn
2 t Rn) tGn

1 , and

(c) Hn
1 t Rn tGn

1 ≡m Hn
2 t Rn tGn

1 .

In this experiment we want to see what effect varying the size of the common
context has on verification of equivalence ofHn

1 tRntGn
1 andHn

2 tRntGn
1 .

Thus the equivalence verified in each item is the same and the difference
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Figure 7.5: The average running times (left) and the average numbers of
choice points (right) for verifying (a)Hn

1 t(RntGn
1 ) ≡m Hn

2 t(RntGn
1 ), (b)

(Hn
1 tRn)tGn

1 ≡m (Hn
2 tRn)tGn

1 , and (c)Hn
1 tRntGn

1 ≡m Hn
2 tRntGn

1

in the first Hamiltonian cycle experiment.

is that the common context is varied from Rn t Gn
1 in item (a) to empty

(module) in item (c). The average running times and the average numbers
of choice points for the approaches are presented in Figure 7.5.

We see that the approach in item (c) becomes infeasible for graphs with
only six vertices (we used a timeout of 6000 seconds here). The difference in
running times for equivalences in items (a) and (b) is smaller, but best results
are achieved when the maximal common context is used in (a). The average
number of choices made by SMODELS behave similarly to the average run-
ning times. For comparison, the time needed to find all stable models for
Hn

2 t Rn t Gn
1 is approximately 1.5 seconds for n = 4 and 2000 seconds for

n = 5. This shows the effectiveness of the modular translation-based method
as a naive approach cross-checking the stable models is likely to be infeasible
even for n = 5, because the number of stable models becomes very high.

Next we compare the time needed to verify

(i) equivalence in item (a) and (Hn
2 t Rn) tGn

1 ≡m HRn tGn
1 , and

(ii) (Hn
1 t Rn) tGn

1 ≡m HRn tGn
1 .

Notice that the equivalence verified in item (i) is the same as verified in
item (ii). The motivation is to see whether it is more efficient to verify the
equivalence ofHn

1 tRntGn
1 andHRntGn

1 directly or havingHn
2 tRntGn

1

as an intermediate step. Furthermore, we wanted to see how the time needed
to verify modular equivalence changes, if we hide predicate reached(X) in
the encodings. Recall that this increases the size of the translation. Thus, we
verify the equivalences (i) and (ii) also with predicate reached(X) hidden
and compare the time needed when predicate reached(X) is visible.

The average running times for this experiment are presented in Figure 7.6
and the average numbers of choice points in Figure 7.7. Hiding predicate
reached(X) in approach (i) increases the average running time by approx-
imately one third. The effect of hiding is more significant in approach (ii)
in which the average running time is doubled when predicate reached(X)
is hidden. Thus, in practice it seems to be a good idea to hide as few predi-
cates as necessary. The difference in the average numbers of choice points is
marginal.

To answer the question whether it is more efficient to first replace Hn
1 by

Hn
2 and verify modular equivalence of this step in context Rn tGn

1 and then
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Figure 7.6: The average running times for verifying (i) Hn
1 t (Rn t Gn

1 ) ≡m

Hn
2 t (Rn tGn

1 ) plus (Hn
2 t Rn) tGn

1 ≡m HRn tGn
1 , and (ii) (Hn

1 t Rn) t
Gn

1 ≡m HRn t Gn
1 with predicate reached(X) hidden/visible in the second

Hamiltonian cycle experiment.

verify (Hn
2tRn)tGn

1 ≡m HRntGn
1 ; or to verify (Hn

1tRn)tGn
1 ≡m HRntGn

1

directly, it seems that it is a good idea to do the optimization step first. The
average running times of approach (i) are less than those of approach (ii)
regardless the visibility of predicate reached(X). The average numbers of
choice points are somewhat higher in approach (i) than in (ii).

Finally, we wanted to see how the choice of the graph family, that is, the
choice of the graph generator module Gn

i for i = 1, 2, . . . , 5 affects the time
needed to verify

(iii) Hn
1 t (Rn tGn

i ) ≡m Hn
2 t (Rn tGn

i ) and

(iv) (Hn
2 t Rn) tGn

i ≡m HRn tGn
i .

As Gn
1 generates all directed graphs, verifying (iii) (respectively (iv)) for i = 1

actually verifies Hn
1 t Rn ≡m Hn

2 t Rn (respectively Hn
2 t Rn ≡m HRn) and

modular equivalence for the other generator modules follows from Corol-
lary 5.19. The motivation, however, is to see whether it is faster to verify
a weaker result, that is, to verify the equivalence in the context of certain
subclasses of directed graphs.

The average running times for this experiment are presented in Figures
7.8 and 7.9. Both equivalences are harder to verify in the contexts of sym-
metric and irreflexive graphs, and graphs with Euclidean edge relation than
in other contexts. Using symmetric and irreflexive graphs as context turned
out to be especially time consuming when verifying equivalence in (iv). We
used a timeout of 6000 seconds in this experiment and were not able to verify
(iv) for the values n = 9 and n = 10 with this limit. For the sake of clarity, we
also dropped the average time needed to verify (H8

2tR8)tG8
3 ≡m HR8tG8

3

(4048 seconds) from Figure 7.9. The average numbers of choice points be-
have similarly to the average running times. The somewhat surprising impli-

48 7. EXPERIMENTS



100

1000

10000

100000

1e+06

1e+07

1e+08

3 4 5 6 7 8 9 10

N
um

be
r

of
ch

oi
ce

po
in

ts

Number of vertices

(ii)+hidden avg
(i)+hidden avg
(ii) avg
(i) avg

Figure 7.7: The average numbers of choice points for verifying (i)Hn
1 t(Rnt

Gn
1 ) ≡m Hn

2 t (Rn t Gn
1 ) plus (Hn

2 t Rn) t Gn
1 ≡m HRn t Gn

1 , and (ii)
(Hn

1 t Rn) t Gn
1 ≡m HRn t Gn

1 with predicate reached(X) hidden/visible
in the second Hamiltonian cycle experiment.

cation of this experiment is that restricting the number of possible inputs by
applying a graph generator having less stable models than Gn

1 does not nec-
essarily make the equivalence verification task more efficient. The reason for
this might be that it can be more difficult to find stable models for a more
specific generator module.
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Figure 7.8: The average running times for verifying (iii) Hn
1 t (Rn tGn

i ) ≡m

Hn
2 t (Rn t Gn

i ) for i = 1 (all graphs), 2 (irreflexive graphs), 3 (symmetric
and irreflexive graphs), 4 (asymmetric graphs), 5 (graphs with Euclidean edge
relation) in the third Hamiltonian cycle experiment.
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Figure 7.9: The average running times for verifying (iv) (Hn
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i for i = 1 (all graphs), 2 (irreflexive graphs), 3 (symmetric and
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relation) in the third Hamiltonian cycle experiment.
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8 CONCLUSIONS

In this report we establish a simple and intuitive notion for a logic program
module that interacts through an input/output interface. This is achieved by
accommodating program modules proposed by Gaifman and Shapiro [17]
to the context of answer set programming. Full compatibility of the mod-
ule system and the stable model semantics is achieved by allowing positive
recursion to occur inside modules only.

One of the main results is the module theorem in Section 3.3 showing
that module-level stability implies program-level stability, and vice versa, as
long as the stable models of the submodules are compatible. Even though
the module theorem is a theoretical result motivating the feasibility of our
module system, it is also a tool for structuring and simplifying mathematical
arguments used in many of the proofs in Appendix A. The module theorem
also generalizes the splitting set theorem [39] in the case of normal logic
programs and SMODELS programs as our result allows negative recursion
between modules.

We introduce a notion of modular equivalence that is a proper congru-
ence relation for composition of modules, and show that deciding modular
equivalence is coNP-complete for modules with the EVA property, that is,
for modules that have enough visible atoms so that one can distinguish their
stable models based on the visible part.

We extend the translation-based method for verification of visible equiva-
lence proposed in [31] to cover the translation-based verification of modular
equivalence. In this way, the verification of modular equivalence can be ac-
complished with existing methods and specialized solvers need not be devel-
oped. We also propose strategies to exploit modular verification techniques,
and consider questions involved in the problem of finding a suitable module
structure for a program when there is no explicit a priori knowledge on the
underlying structure.

Finally, we evaluate experimentally the efficiency of the translation-based
method in the verification of modular equivalence. Based on the experimen-
tal evaluation, modularization of the verification of (modular) equivalence
seems to be a good idea in many cases, especially if the common context
shared by the modules is large and the number of submodules stays reason-
able.

8.1 FUTURE WORK

Several further questions still remain to be considered, for instance, how
to characterize semantically the syntactical restrictions for module composi-
tion, and is it possible to weaken the conditions insisted upon module com-
position, for example, by allowing positive recursion between modules under
some conditions. It is still unclear whether modular equivalence has a model
theoretic characterization similar to SE-models [69] and UE-models [7] for
strong and uniform equivalence, respectively.

The current results should be extended to cover even more general classes
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of logic programs, such as disjunctive logic programs [22, 62], nested logic
programs [38] and weight constraint programs [65]. A way to achieve this is
to find a modularly equivalent translation to SMODELS or normal logic pro-
gram modules similarly to the strategy used in Chapter 5, where we extend
our theoretical results for normal logic program modules to cover the class of
SMODELS program modules.

Current ASP solvers have no support for modularity, and as seen in Chap-
ter 7, workarounds are needed to simulate modular ASP with LPARSE and
SMODELS. To promote modular answer set programming it is necessary to
be able to do modular ASP in practice. Incorporating modularity into current
solvers is thus crucial. Certain aspects are easy to implement, for example,
the current input language of LPARSE has already declarations for defining
the hidden and visible Herbrand bases of a program. To support modular
ASP, one should further partition the visible Herbrand base into input and
output. There are also more involved questions. Note that the input atoms
are not defined inside a module and thus one should be able to tell from
which module the definitions for the input atoms are imported. A meta-
language for defining the modular aspects and whether modules are seen as
libraries and/or macros should be agreed upon. It needs to be considered
how to do grounding for a stand-alone module. To ease the task of handling
several modules it would be desirable to have several modules in one file.

Programs that solve real-life problems can be very large and complex, and
it becomes necessary to be able to structure the programs into modules. We
see that it is not very likely that any single constraint programming approach
proves out to be the most efficient for solving all kinds of hard combinatorial
problems. Therefore there is a need for a well-defined module interface that
gives support for other constraint programming approaches, such as, for ex-
ample, propositional satisfiability (SAT) and constraint programming (CSP),
in addition to ASP. This general module-oriented constraint programming
paradigm would then enable a strategy where different constraint program-
ming approaches and solvers are used, possibly in parallel, to solve the sub-
problems utilizing the characteristics and best features of each approach. The
solution to the problem would then be composed from the solutions for the
individual subproblems.

The module system proposed in this report is a step in the direction of
modular answer set programming. So far we have limited ourselves to propo-
sitional logic program modules under the stable model semantics. In prac-
tice it might, however, be impossible or undesirable to consider only ground
instances of modules. A crucial step further is to extend the concept of modu-
larity to the non-ground case, that is, to consider program modules involving
variables. To extend the module system to the non-ground case is a nontriv-
ial task, and several aspects need to be considered, for example, how to de-
fine the input/output interface and interaction of modules (using predicates,
grounded atoms or constants, etc.), how to define the concept of modular
equivalence for non-ground modules and still maintain the essential congru-
ence property with respect to composition of modules.

An important aspect to consider is what are good programming practices
for module-oriented constraint programming. For example, in the case of
propositional modular ASP, handling positive recursion inside modules, and
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considering modules that have enough visible atoms can be seen as good
ways to structure programs.
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A PROOFS

A.1 PROOFS FOR CHAPTER 3

In this section, the proofs involve normal logic programs and normal logic
program modules unless otherwise stated.

Proof of Theorem 3.9 To prove Theorem 3.9 we apply the following Lem-
mas A.1 and A.2, and note that M ∩Hb(P1) and M ∩Hb(P2) in Lemma A.1
are compatible. ¤

Lemma A.1 Let P1 and P2 be modules such that P1 t P2 is defined. If
M ∈ SM(P1tP2), then M∩Hb(P1) ∈ SM(P1) and M∩Hb(P2) ∈ SM(P2).

Proof of Lemma A.1 Let P1 = (P1, I1, O1) and P2 = (P2, I2, O2) be mod-
ules such that P1 t P2 is defined. Denote

P = P1 t P2 = (P1 ∪ P2, (I1 \O2) ∪ (I2 \O1), O1 ∪O2) = (P, I, O).

Consider arbitrary M ∈ SM(P), that is, M = LM(PM ∪ FM∩I). Define
M1 = M ∩ Hb(P1) and M2 = M ∩ Hb(P2). It holds that M1 ∪M2 = M .
Note that, since the intersection of Herbrand bases of P1 and P2 (see equation
(3.1)) is not necessarily empty, also M1 ∩M2 = ∅ does not necessarily hold.
Since M = M1 ∪M2 is the least model of PM ∪ FM∩I ,

M1 ∪M2 |= (P1 ∪ P2)
M1∪M2 ∪ F(M1∪M2)∩I . (A.1)

By restricting (A.1) to Hb(Pi), we get Mi |= Pi
Mi ∪ FMi∩I for i ∈ {1, 2}, and

furthermore Mi |= Pi
Mi . Since Mi ∩ Ii ⊆Mi, we can conclude

Mi |= Pi
Mi ∪ FMi∩Ii

for i ∈ {1, 2}. (A.2)

Assume that M1 6= LM(P1
M1 ∪ FM1∩I1), that is, there is N1 ⊂ M1 such that

N1 |= P1
M1 ∪ FM1∩I1 . Define A = M1 \N1 6= ∅. Let us show that

N1 ∪ (M2 \A) |= PM ∪ FM∩I = (P1
M1 ∪ FM1∩I)∪ (P2

M2 ∪ FM2∩I). (A.3)

First, note that N1 and M2 \ A are compatible.

• By assumption N1 |= P1
M1 ∪ FM1∩I1 . Since

M1 ∩ I = M1 ∩ ((I1 \O2) ∪ (I2 \O1)) ⊆M1 ∩ I1 ⊆ N1,

it holds N1 |= P1
M1 ∪ FM1∩I .

• Recall equation (3.1). Since M1 ∩ I1 ⊆ N1 and A ⊆ Hb(P1), it holds
A∩Hb(P2) ⊆ O1∩I2. Since the atoms in I2 can appear only in positive
bodies of the rules in P2

M2 and M2 |= P2
M2 , it holds that M2 \ A |=

P2
M2 . Furthermore, since A ∩ I = ∅, we get M2 \A |= P2

M2 ∪ FM2∩I .

Now, N1 ∪ (M2 \ A) ⊂ M and (A.3) holds, which is contradictory to M =
LM(PM ∪ FM∩I). Thus M1 ∈ SM(P1). It follows by symmetry that M2 ∈
SM(P2). ¤
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Lemma A.2 Let P1 and P2 be modules such that P1tP2 is defined. If M1 ∈
SM(P1) and M2 ∈ SM(P2) are compatible, then M1 ∪M2 ∈ SM(P1 t P2).

Proof of Lemma A.2 Consider modules P1 = (P1, I1, O1) and P2 =
(P2, I2, O2) such that their join

P = P1 t P2 = (P1 ∪ P2, (I1 \O2) ∪ (I2 \O1), O1 ∪O2) = (P, I, O)

is defined. Denote H1 = Hbh(P1) and H2 = Hbh(P2). Assume M1 ∈
SM(P1), M2 ∈ SM(P2) and M1∩Hbv(P2) = M2∩Hbv(P1), that is, M1 and
M2 are compatible. Thus it holds

M1 ∩ (I1 ∩ I2) = M2 ∩ (I1 ∩ I2),

M1 ∩ (I1 ∩O2) = M2 ∩ (I1 ∩O2), and
M1 ∩ (O1 ∩ I2) = M2 ∩ (O1 ∩ I2).

Define M = M1∪M2. Since M1 and M2 are compatible, M1 = M∩Hb(P1),
M2 = M∩Hb(P2) and PM = P1

M1∪P2
M2 . Now M1 = LM(P1

M1∪FM1∩I1),
M2 = LM(P2

M2∪FM2∩I2) and we want to show that M = LM(PM ∪FM∩I).
Let C1 < C2 < · · · < Cn be a strict total order for the strongly connected

components of Dep+(P ) (such an order always exists). First, we show that
exactly one of the following holds for each Ci (1 ≤ i ≤ n):

(1a) Ci ∩ I 6= ∅, or

(1b) Ci ∩ (O1 ∪H1) 6= ∅, or

(1c) Ci ∩ (O2 ∪H2) 6= ∅.

As ∅ ⊂ Ci ⊆ Hb(P) and Hb(P) = I ∪ (O1 ∪H1)∪ (O2 ∪H2), at least one of
the conditions must hold.

Assume Ci∩I 6= ∅ and Ci∩ (O1∪H1) 6= ∅. The atoms in I do not appear
in the heads of the rules in P and I∩(O1∪H1) = ∅. Thus it is impossible for
Ci to be a strongly connected component of Dep+(P ). This is contradictory
to the assumption. Similarly, assuming Ci ∩ I 6= ∅ and Ci ∩ (O2 ∪H2) 6= ∅
leads to contradiction.

Assume that Ci ∩ (O1 ∪ H1) 6= ∅ and Ci ∩ (O2 ∪ H2) 6= ∅. Since P1 t
P2 is defined, there is no positive recursion between the modules, and by
Definition 3.2 either O1 ∩ Ci = ∅ or O2 ∩ Ci = ∅ (or both) holds. Assume
without loss of generality O2∩Ci = ∅ which implies H2∩Ci 6= ∅. The atoms
in H2 do not appear in the rules of P1 and since O2∩Ci = ∅ there can be no
dependence between H2 and O1 ∪H1. Thus Ci is not a strongly connected
component, which is again contradictory to the assumption.

It is easy to show that exactly one of conditions (1a), (1b) and (1c) holds
for Ci if and only if exactly one of the following holds:

(2a) Ci ⊆ I , or

(2b) Ci ⊆ O1 ∪H1, or

(2c) Ci ⊆ O2 ∪H2.
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Notice that if condition (2a) holds, then Ci is a singleton set.
Next, we consider (PM ∪FM∩I)[Ci], that is, the set of rules in PM ∪FM∩I

defining the atoms in Ci. As exactly one of the conditions (2a), (2b) and (2c)
holds, exactly one of the following applies:

(3a) If Ci ⊆ I , then (PM ∪ FM∩I)[Ci] = FM∩I∩Ci
= FM∩Ci

.

(3b) If Ci ⊆ O1 ∪H1, then

(PM ∪ FM∩I)[Ci] = PM [Ci] = P1
M1 [Ci] ∪ P2

M2 [Ci]︸ ︷︷ ︸
=∅

= P1
M1 [Ci].

(3c) If Ci ⊆ O2 ∪H2, then

(PM ∪ FM∩I)[Ci] = PM [Ci] = P1
M1 [Ci]︸ ︷︷ ︸
=∅

∪P2
M2 [Ci] = P2

M2 [Ci].

Finally, we show by induction that

M ∩ (
k∪

i=1
Ci) = LM((PM ∪ FM∩I)[

k∪
i=1

Ci]) (A.4)

for all 0 ≤ k ≤ n.

Basis. M ∩ ∅ = LM(∅).
Inductive hypothesis. Assume M ∩ (

k−1∪
i=1

Ci) = LM((PM ∪ FM∩I)[
k−1∪
i=1

Ci]).

Inductive step. There are three possible cases, corresponding to (2a), (2b)
and (2c). In these cases (3a), (3b) and (3c), respectively, are applied. In the
following, Theorem 2.7 (splitting set theorem) is applied with respect to a

splitting set Uk =
k−1∪
i=1

Ci.

(i) If Ck ⊆ I , then

LM((PM ∪ FM∩I)[
k∪

i=1
Ci])

(3a)
= LM((PM ∪ FM∩I)[

k−1∪
i=1

Ci] ∪ (FM∩I ∩ Ck))

T. 2.7
= LM((PM ∪ FM∩I)[

k−1∪
i=1

Ci]) ∪ (M ∩ Ck)

I.H.
= (M ∩ (

k−1∪
i=1

Ci)) ∪ (M ∩ Ck)

= M ∩ (
k∪

i=1
Ci).

(ii) If Ck ⊆ O1 ∪H1, then

LM((PM ∪ FM∩I)[
k∪

i=1
Ci])

(3b)
= LM((PM ∪ FM∩I)[

k−1∪
i=1

Ci] ∪ P1
M1 [Ck])

T. 2.7
= LM((PM ∪ FM∩I)[

k−1∪
i=1

Ci])

∪ LM(e(P1
M1 [Ck], LM((PM ∪ FM∩I)[

k−1∪
i=1

Ci])))

I.H.
= M ∩ (

k−1∪
i=1

Ci) ∪ LM(e(P1
M1 [Ck],M ∩ (

k−1∪
i=1

Ci)))

= M ∩ (
k−1∪
i=1

Ci) ∪ LM(e(P1
M1 [Ck],M1 ∩ (

k−1∪
i=1

Ci)))

= M ∩ (
k−1∪
i=1

Ci) ∪ (M1 ∩ Ck) = M ∩ (
k∪

i=1
Ci).
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(iii) The case Ck ⊆ O2 ∪H2 is symmetrical to (ii).

Thus equation (A.4) holds for all 0 ≤ k ≤ n. For k = n we get M =
LM(PM ∪ FM∩I). ¤
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A.2 PROOFS FOR CHAPTER 4

In this section, the proofs involve normal logic programs and normal logic
program modules unless otherwise stated.

Proof of Theorem 4.2 Let P = (P, I, O) and Q = (Q, I,O) be modules
such that P ≡m Q. Let R = (R, IR, OR) be an arbitrary module such that
P t R and Q t R are defined. Consider an arbitrary M ∈ SM(P t R). By
Theorem 3.9 MP = M ∩Hb(P) ∈ SM(P) and MR = M ∩Hb(R) ∈ SM(R).
Since P ≡m Q, there is a bijection f : SM(P) → SM(Q) such that MP ∈
SM(P)⇐⇒ f(MP ) ∈ SM(Q), and

MP ∩ (O ∪ I) = f(MP ) ∩ (O ∪ I). (A.5)

Denote MQ = f(MP ). Clearly, MP and MR are compatible. Since (A.5)
holds, also MQ and MR are compatible. Applying Theorem 3.9 we get MQ∪
MR ∈ SM(Q t R).

Now, define function g : SM(P t R)→ SM(Q t R) as

g(M) = f(M ∩ Hb(P)) ∪ (M ∩ Hb(R)).

Clearly, g restricted to the visible part is an identity function, that is,

M ∩ (I ∪ IR ∪O ∪OR) = g(M) ∩ (I ∪ IR ∪O ∪OR).

Function g is a bijection, since

• g is an injection: M 6= N implies g(M) 6= g(N) for all M,N ∈
SM(P t R), since f(M ∩ Hb(P)) 6= f(N ∩ Hb(P)) or M ∩ Hb(R) 6=
N ∩ Hb(R).

• g is a surjection: for any M ∈ SM(Q t R), N = f−1(M ∩ Hb(Q)) ∪
(M ∩ Hb(R)) ∈ SM(P t R) and g(N) = M , since f is a surjection.

The inverse function g−1 : SM(Q t R) → SM(P t R) can be defined as
g−1(N) = f−1(N ∩ Hb(Q)) ∪ (N ∩ Hb(R)). Thus P t R ≡m Q t R. ¤
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A.3 PROOFS FOR CHAPTER 5

In this section, the proofs involve SMODELS programs and SMODELS pro-
gram modules unless otherwise stated. Since basic rules and constraint rules
are special cases of weight rules, we will assume that SMODELS programs
and SMODELS program modules consist of choice rules, weight rules and
compute statements only.

Proof of Theorem 5.15 Consider arbitrary SMODELS program modules
P1 = (P1, I1, O1) and P2 = (P2, I2, O2) such that P1 t P2 is defined, that
is, O1 ∩ O2 = ∅, Hbh(P1) is local to P1, Hbh(P2) is local to P2, and there is
no positive recursion between P1 and P2.

Clearly, O1 ∩ O2 holds for translations TrNLP(P1) = (TrNLP(P1), I1, O1)
and TrNLP(P2) = (TrNLP(P2), I2, O2). Translation TrNLP produces a new
(hidden) atom a for each atom a appearing in the head of a choice rule and
fPi

(i = 1, 2) for translating compute statements. Since these are new atoms,
it is reasonable to assume that hidden atoms in TrNLP(P1) and TrNLP(P2)
remain local, too.

Weight and choice rules generate the edges in Dep+(P1 ∪ P2). With re-
spect to the choice rules in P1∪P2 the dependency graph Dep+(TrNLP(P1)∪
TrNLP(P2)) contains the same edges as Dep+(P1 ∪ P2). An additional vertex
is added for each new atom a, but no edges are added because all the new
dependencies introduced in TrNLP are negative. With respect to the weight
rules, 〈a, b〉 ∈ Dep+(P1 ∪ P2) if and only if 〈a, b〉 ∈ Dep+(TrNLP(P1) ∪
TrNLP(P2)). The rules in TrNLP(P1)∪TrNLP(P2) corresponding to compute
statements do not yield positive recursion either. Thus there is no positive
recursion between TrNLP(P1) and TrNLP(P2), and TrNLP(P1)tTrNLP(P2) is
defined.

It is straightforward to see that TrNLP(P1)∪TrNLP(P2) and TrNLP(P1∪P2)
contain exactly the same rules with respect to the choice and the weight rules
in P1 ∪ P2. Recall that new atoms are introduced for atoms appearing in the
heads of choice rules. Because (O1 ∪ Hbh(P1)) ∩ (O2 ∪ Hbh(P2)) = ∅,
there can be no conflict. The translation of compute statements introduces
new atoms fP1 and fP2 in TrNLP(P1) ∪TrNLP(P2) and a new atom fP1∪P2 in
TrNLP(P1∪P2). However, it is easy to see that SM(TrNLP(P1)tTrNLP(P2)) =
SM(TrNLP(P1 t P2)) as atoms fP1 , fP2 and fP1∪P2 are always false in a stable
model.

Finally note that translation TrNLP does not affect the input and output
sets. Thus, they are the same for TrNLP(P1tP2) and TrNLP(P1)tTrNLP(P2),
and we have TrNLP(P1) t TrNLP(P2) ≡m TrNLP(P1 t P2). ¤

Proof of Theorem 5.16 Let P = (P, I, O) be an SMODELS program
module and TrNLP(P) = (TrNLP(P ), I, O) defined as in Definition 5.13.
Consider an arbitrary M ∈ SM(P), that is, M = LM(PM ∪ FM∩I) and
M |= CompS(P ). Define

N = M ∪ {a | {H} ← B+,∼B− ∈ P and a ∈ H \M}.

First note that a ∈ N if and only if a 6∈ M if and only if a 6∈ N for atoms a
appearing in the head of a choice rule in P . We consider the satisfaction
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of the rules in TrNLP(P )N . Consider an arbitrary rule r1 = h ← C ∈
TrNLP(P )N such that h ∈ Hb(P). There are two possibilities:

• There is a rule h← C,∼D,∼h ∈ TrNLP(P ) corresponding to a choice
rule {H} ← C,∼D ∈ P such that h ∈ H , h 6∈ N (which implies
h ∈ N ), and D ∩N = ∅. Since h ∈ N , it holds that N |= r1.

• There is a rule h← C,∼D ∈ TrNLP(P ) corresponding to a weight rule
r2 = h ← w ≤ {B+ = WB+ ,∼B− = WB−} ∈ P such that C ⊆ B+,
D ⊆ B−, w ≤∑

c∈C wc +
∑

d∈D wd and D ∩ N = ∅. If h ∈ N , then
N |= r1. If h 6∈ N , assume that N 6|= r1, that is, C ⊆ N . This implies
h 6∈M , C ⊆M and D ∩M = ∅ and w ≤WSM(B+ = WB+ ,∼B− =
WB−). Thus M 6|= r2 which is in contradiction with M |= P (notice
that if M |= PM and M |= CompS(P ), then M |= P ). Therefore
N |= r1.

Rest of the rules in TrNLP(P )N are one of the following forms.

• A fact h ∈ TrNLP(P )N if there is a rule h ← ∼h ∈ TrNLP(P ), that is,
h appears in the head of a choice rule in P , and h 6∈ N . Since h 6∈ N
implies h ∈ N , then N |= h.

• A rule r = fP ← b ∈ TrNLP(P )N if fP 6∈ N and there is a compute
statement compute {B+,∼B−} ∈ P such that b ∈ B−. Since M |=
CompS(P ) we have B− ∩M = B− ∩N = ∅ and N |= r.

• A fact fP ∈ TrNLP(P )N if fP 6∈ N and there is a compute statement
compute {B+,∼B−} ∈ P such that a ∈ B+ and a 6∈ N . Since
M |= CompS(P ) we have B+ ⊆ M ⊆ N and there cannot be a fact
fP in TrNLP(P )N .

Thus N |= TrNLP(P )N ∪FN∩I . Assume now N 6= LM(TrNLP(P )N ∪FN∩I),
that is, there is N ′ ⊂ N such that N ′ |= TrNLP(P )N∪FN∩I . Clearly N ′∩I =
N ∩ I = M ∩ I . We define M ′ = N ′ ∩ Hb(P) and show M ′ |= PM .

• If r1 = h← B+ ∈ PM then there is a choice rule {H} ← B+,∼B− ∈
P , such that B−∩M = ∅ and h ∈M ∩H . Since B−∩M = ∅ implies
B− ∩ N = ∅, and h ∈ M implies h ∈ N and h 6∈ N , there is a rule
h ← B+ ∈ TrNLP(P )N . Since N ′ |= h ← B+ and N ′ ∩ Hb(P) =
M ′ ∩ Hb(P), it holds M ′ |= r1.

• If r2 = h ← w′ ≤ {B+ = WB+} ∈ PM then there is a weight
rule h ← w ≤ {B+ = WB+ ,∼B− = WB−} ∈ P such that w′ =
max(0, w −WSM(∼B− = WB−)). Assume M ′ 6|= r2, that is, h 6∈ M ′

and w′ ≤WSM ′(B+ = WB+). Define D = B−\M and C = B+∩M ′,
and recall that N ′ ∩ Hb(P) = M ′ ∩ Hb(P). Now w ≤ ∑

c∈C wc +∑
d∈D wd, D∩N = ∅, C ⊆ N ′ and h 6∈ N ′, which implies that there is

a rule r3 = h ← C ∈ TrNLP(P )N such that N ′ 6|= r3, a contradiction,
and therefore M ′ |= r2.

Thus M ′ ⊂M and M ′ |= PM ∪FM∩I . This is contradictory to M ∈ SM(P),
and we have N = LM(TrNLP(P )N ∪ FN∩I).
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Define f : SM(P)→ SM(TrNLP(P)) such that

f(M) = M ∪ {a | {H} ← B+,∼B− ∈ P and a ∈ H \M}.

It is easy to see that M ∩ Hbv(P) = f(M) ∩ Hbv(TrNLP(P)) and we need to
show that f is a bijection.

• f is an injection: M 6= M ′ implies f(M) 6= f(M ′).

• f is a surjection: consider arbitrary N ∈ SM(TrNLP(P)). Let us show
that N ∩ Hb(P) = M ∈ SM(P) and f(M) = f(N ∩ Hb(P)) = N .

(i) M |= PM ∪ FM∩I :
Clearly M |= FM∩I . If r1 = h ← B+ ∈ PM , then there is
{H} ← B+,∼B− ∈ P , such that B− ∩M = ∅ and h ∈M ∩H .
Since h ∈M , we have M |= r1

If r2 = h ← w′ ≤ {B+ = WB+} ∈ PM then there is a weight
rule h ← w ≤ {B+ = WB+ ,∼B− = WB−} ∈ P such that w′ =
max(0, w − WSM(∼B− = WB−)). Assume M 6|= r2, that is,
h 6∈ M and w′ ≤WSM(B+ = WB+). Define D = B− \M and
C = B+ ∩M . Since N ∩ Hb(P) = M and w ≤ ∑

c∈C wc +∑
d∈D wd, there is a rule h← C,∼D ∈ TrNLP(P ). Furthermore,

D ∩ N = ∅ implies r3 = h ← C ∈ TrNLP(P )N . Since h 6∈ M
implies h 6∈ N and C ⊆ M ⊆ N , we have N 6|= r3 which is a
contradiction. Thus M |= r2.

(ii) M = LM(PM ∪ FM∩I):
Assume there is M ′ ⊂ M such that M ′ |= PM ∪ FM∩I . Clearly
M ′∩I = M∩I = N∩I . We define N ′ = M ′∪(N \Hb(P)) ⊂ N
and show N ′ |= TrNLP(P )N . Since N ′ \ Hb(P) = N \ Hb(P),
each rule of the form a ∈ TrNLP(P )N is satisfied in N ′. Also,
each rule of the form fP ← b ∈ TrNLP(P )N is satisfied in N ′, as
N ′ ⊂ N , fP 6∈ N and N |= fP ← b.
If h ← C ∈ TrNLP(P )N for h ∈ Hb(P), then either there is
(a) a choice rule {H} ← C,∼D ∈ P , such that D ∩ N = ∅,
h ∈ H and h 6∈ N (which implies h ∈ N ) or (b) a weight rule
h ← w ≤ {B+ = WB+ ,∼B− = WB−} ∈ P such that w′ =
max(0, w −WSN(∼B− = WB−)) and w′ =

∑
c∈C wc. Since

M ∩Hb(P) = N ∩Hb(P), (a) implies that there is h← C ∈ PM

and (b) implies that there is h ← w′ ≤ {B+ = WB+} ∈ PM .
Recalling M ′ ∩ Hb(P) = N ′ ∩ Hb(P) and M ′ |= PM we have
N ′ |= TrNLP(P )N . Thus N ′ |= TrNLP(P )N ∪ FN∩I , which is a
contradiction.

(iii) M |= CompS(P ):
Assume that there is a compute statement compute {B+,∼B−}
in P that is not satisfied in M , that is, there is (a) a ∈ B+ such
that a 6∈ M or (b) b ∈ B− such that b ∈ M . Recall that since
N is a stable model of TrNLP(P ), we have fP 6∈ N . If (a), then
a 6∈ N . Together with fP 6∈ N this implies that there is a fact
fP ∈ TrNLP(P )N , a contradiction to N |= TrNLP(P )N . If (b),
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then b ∈ N . Since fP 6∈ N , are is a rule fP ← b ∈ TrNLP(P )N .
Thus N 6|= fP ← b, again a contradiction to N |= TrNLP(P )N .
Thus M |= CompS(P ).

(iv) f(M) = f(N ∩ Hb(P)) = N :
Define N ′ = f(M) = f(N ∩ Hb(P)), that is,

N ′ = (N ∩ Hb(P)) ∪ {a | {H} ← B+, B− ∈ P and
a ∈ H \ (N ∩ Hb(P)}.

Now N ∩ Hb(P) = N ′ ∩ Hb(P). Since N ∈ SM(TrNLP(P)), it
holds fP 6∈ N . Furthermore, fP 6∈ N ′ by definition. Assume that
there is a ∈ N such that a 6∈ N ′. Since a 6∈ N ′, we have a ∈ N ′

and furthermore a ∈ N . The only rule with a as the head is of
the form a ← ∼a. Thus, if a ∈ N , there is no rule with a as the
head in TrNLP(P )N and therefore, since N is a minimal model
of TrNLP(P )N ∪ FN∩I , we have a 6∈ N , a contradiction.
On the other hand, assume that there is a ∈ N ′ such that a 6∈ N .
Since a ∈ N ′, we have a 6∈ N ′ and furthermore a 6∈ N . If a 6∈ N ,
then there is a fact a ∈ TrNLP(P )N . Since N |= TrNLP(P )N , we
have a ∈ N , a contradiction. Thus N = N ′.

Thus P ≡m TrNLP(P). ¤
Proof of Theorem 5.17 Let P1 and P2 be SMODELS modules such that P1t
P2 is defined. By Theorem 5.15 also TrNLP(P1) t TrNLP(P2) is defined and
applying Theorem 5.16 we get P1 tP2 ≡m TrNLP(P1 tP2) ≡m TrNLP(P1)t
TrNLP(P2). Therefore there is a bijection

f : SM(P1 t P2)→ SM(TrNLP(P1) t TrNLP(P2))

such that for all M ∈ SM(P1 t P2) it holds Mv = (f(M))v. As shown in the
proof of Theorem 5.16, for any M ∈ SM(P1 t P2),

f(M) = M ∪ {a | {H} ← B+,∼B− ∈ P1 ∪ P2 and a ∈ H \M}.
Similarly by the proof of Theorem 5.16 we have bijections

f1 : SM(P1)→ SM(TrNLP(P1)) and f2 : SM(P2)→ SM(TrNLP(P2));

with inverse functions f−1
1 and f−1

2 defined as

f−1
1 (N1) = N1 ∩ Hb(P1) ∈ SM(P1) for N1 ∈ SM(TrNLP(P1)) and

f−1
2 (N2) = N2 ∩ Hb(P2) ∈ SM(P2) for N2 ∈ SM(TrNLP(P2)).

Consider an arbitrary M ∈ SM(P1 t P2). We know that

f(M) ∈ SM(TrNLP(P1) t TrNLP(P2)).

Since TrNLP(P1)tTrNLP(P2) is a normal logic program module we can apply
Theorem 3.9, and get f(M) ∈ SM(TrNLP(P1) t TrNLP(P2)) if and only if

N1 = f(M) ∩ Hb(TrNLP(P1)) ∈ SM(TrNLP(P1)),

N2 = f(M) ∩ Hb(TrNLP(P2)) ∈ SM(TrNLP(P2)),
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and N1 and N2 are compatible; or equivalently stated

M1 = f−1
1 (N1)

= (f(M) ∩ Hb(TrNLP(P1))) ∩ Hb(P1)

= M ∩ Hb(P1) ∈ SM(P1),

M2 = f−1
2 (N2)

= (f(M) ∩ Hb(TrNLP(P2))) ∩ Hb(P2)

= M ∩ Hb(P2) ∈ SM(P2),

and M1 and M2 are compatible. ¤
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A.4 PROOFS FOR CHAPTER 6

In this section, the proofs involve SMODELS programs and SMODELS pro-
gram modules unless otherwise stated. Since basic rules and constraint rules
are special cases of weight rules, we will assume that SMODELS programs
and SMODELS program modules consist of choice rules, weight rules and
compute statements only.

Proof of Theorem 6.5 Let P = (P, I, O) and Q = (Q, I, O) be SMODELS
program modules having enough visible atoms and EQT(P,Q) defined as in
Definition 6.1. Consider a compatible collection {M, MH,ML,MU} of in-
terpretations for P, Hidden◦(Q), Least•(Q), and UnStable(Q), respectively.
By Corollary 5.18,

1. M ∈ SM(P),

2. MH ∈ SM(Hidden◦(Q)),

3. ML ∈ SM(Least•(Q)), and

4. MU ∈ SM(UnStable(Q))

if and only if MEQT = M ∪MH ∪ML ∪MU ∈ SM(EQT(P,Q)).
Notice that there is no negative recursion between the modules (recall

that positive recursion is not allowed in module composition), and therefore
a compatible collection of stable models can be found sequentially starting
from M ∈ SM(P). By Lemmas A.3–A.5 and Corollary 5.18, it holds MEQT ∈
SM(EQT(P,Q)) if and only if

• M = MEQT ∩ Hb(P) ∈ SM(P),

• Nh = LM((Qh/Mv)
Nh),

• K = LM(QN ∪ FN∩I) for N = Nh ∪Mv, and

• K 6= N or K 6|= CompS(Q),

where Nh and K can be extracted from MH and ML as done in Lemmas A.3–
A.4. Each stable model of EQT(P,Q) gives a counter-example for modular
equivalence of P and Q, and thus SM(EQT(P,Q)) = SM(EQT(Q,P)) = ∅
if and only if P ≡m Q. ¤

Lemma A.3 Let P = (P, I, O) and Q = (Q, I,O) be SMODELS pro-
gram modules having enough visible atoms. Consider an arbitrary M ∈
SM(P) and let Hidden◦(Q) be defined as in Definition 6.2. Let MH ⊆
Hb(Hidden◦(Q)) and M be compatible. Now, MH ∈ SM(Hidden◦(Q)) if
and only if Nh = LM((Qh/Mv)

Nh), where Nh = {a ∈ Hbh(Q) | a◦ ∈MH}.
Proof of Lemma A.3 Let P = (P, I, O) and Q = (Q, I,O) be SMOD-
ELS program modules having enough visible atoms and consider an arbitrary
M ∈ SM(P). Let MH ⊆ Hb(Hidden◦(Q)) be compatible with M , that is,

M ∩ (I ∪O) = MH ∩ (I ∪O).
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We define

N = Nv ∪Nh = (MH ∩ Hbv(Q)) ∪ {a ∈ Hbh(Q) | a◦ ∈MH}.
Thus N ⊆ Hb(Q) is an interpretation for module Q. Furthermore, since
MH is compatible with M , it holds Nv = Mv. The reduct Hidden◦(Q)MH

contains the following rules:

1. h◦ ← (B+
h )◦, B+

v if and only if there is a choice rule {H} ← B+,∼B−

in Q such that h ∈ Hh, h◦ ∈MH, (B−
h )◦∩MH = ∅, and B−

v ∩MH = ∅,
or equivalently h ∈ Hh ∩Nh and B− ∩N = ∅; and

2. h◦ ← w′ ≤ {(B+
h )◦ ∪B+

v = WB+} if and only if there is a weight rule
h ← w ≤ {B+ = WB+ ,∼B− = WB−} ∈ Q such that h ∈ Hbh(Q),
and w′ = max(0, w −WSMH

(∼((B−
h )◦ ∪ B−

v ) = WB−)), or equiva-
lently w′ = max(0, w −WSN(∼B− = WB−)).

(⇒) Assume MH ∈ SM(Hidden◦(Q)). First, we show Nh |= (Qh/Mv)
Nh .

• If r1 = h ← B+
h ∈ (Qh/Mv)

Nh then there is a choice rule {H} ←
B+,∼B− ∈ Q such that h ∈ Hh ∩ Nh, B+

v ⊆ Mv, B−
v ∩ Mv = ∅

and B−
h ∩ Nh = ∅. Since h ∈ Nh, we have Nh |= r1 regardless of the

satisfaction of B+
h in Nh.

• If r1 = h ← w1 ≤ {B+
h = WB+

h
} ∈ (Qh/Mv)

Nh then there is a
weight rule h ← w ≤ {B+ = WB+ ,∼B− = WB−} ∈ Q such that
h ∈ Hbh(Q) and

w1 = max(0, w −WSMv(B
+
v = WB+

v
,∼B−

v = WB−v )

−WSNh
(∼B−

h = WB−h
)).

Assume Nh 6|= r1, that is, h 6∈ Nh and w1 ≤ WSNh
(B+

h = WB+
h
).

Using the definition of w1 and recalling N = Mv ∪Nh we get

w ≤WSN(B+ = WB+ ,∼B− = WB−). (A.6)

Also, r2 = h◦ ← w2 ≤ {(B+
h )◦ ∪B+

v = WB+} ∈ Hidden◦(Q)MH with
w2 = max(0, w −WSN(∼B− = WB−)). Since MH = Mv ∪ N◦

h we
obtain

w2 ≤ WSN(B+ = WB+) = WSMH
((B+

h )◦ ∪B+
v = WB+)

from the definition of w2 and (A.6). Furthermore h◦ 6∈ MH. Thus
MH 6|= r2, a contradiction.

Thus Nh |= Qh/Mv
Nh . Assume that Nh 6= LM((Qh/Mv)

Nh), that is, there
is N1 ⊂ Nh such that N1 |= (Qh/Mv)

Nh . Now, Mv ∪ N◦
1 ⊂ MH. Clearly

Mv ∪N◦
1 |= FMH∩(I∪O). Also, Mv ∪N◦

1 |= Hidden◦(Q)MH holds.

• If r1 = h◦ ← (B+
h )◦, B+

v ∈ Hidden◦(Q)MH then there is a choice rule
{H} ← B+,∼B− ∈ Q such that h ∈ Hh ∩ Nh and B− ∩ N = ∅
(which implies B−

v ∩ Mv = ∅ and B−
h ∩ Nh = ∅). If B+

v 6⊆ Mv,
then Mv ∪ N◦

1 |= r1. On the other hand if B+
v ⊆ Mv, then there is

r2 = h← B+
h ∈ (Qh/Mv)

Nh . Since N1 |= r2 we have Mv ∪N◦
1 |= r1.
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• If r1 = h◦ ← w1 ≤ {(B+
h )◦ ∪B+

v = WB+} ∈ Hidden◦(Q)MH then
there is a weight rule h ← w ≤ {B+ = WB+ ,∼B− = WB−} ∈ Q
such that h ∈ Hbh(Q) and w1 = max(0, w −WSN(∼B−

h = WB−)).
Now, there is a rule r2 = h ← w2 ≤ {B+

h = WB+
h
} ∈ (Qh/Mv)

Nh

such that

w2 = max(0, w −WSMv(B
+
v = WB+

v
)−WSN(∼B− = WB−)).

This implies w2 = max(0, w1−WSMv(B
+
v = WB+

v
)), and since N1 |=

r2, it also holds Mv ∪N◦
1 |= r1.

Thus Mv ∪ N◦
1 |= Hidden◦(Q)MH ∪ FMH∩(I∪O), a contradiction to MH =

LM(Hidden◦(Q)MH ∪ FMH∩(I∪O)). Thus Nh = LM((Qh/Mv)
Nh).

(⇐) Assume Nh = LM((Qh/Mv)
Nh) and denote N = Mv ∪ Nh. Now,

MH = Mv ∪ N◦
h is compatible with M , and we need to show that MH ∈

SM(Hidden◦(Q)), that is, MH = LM(Hidden◦(Q)MH ∪ FMH∩(I∪O)).

• If r1 = h◦ ← (B+
h )◦, B+

v ∈ Hidden◦(Q)MH , there is a choice rule
{H} ← B+,∼B− ∈ Q such that h ∈ Hh ∩ Nh and B− ∩ N = ∅.
Now, h ∈ Nh implies h◦ ∈ MH, and we have MH |= r1 regardless of
satisfaction of (B+

h )◦ ∪B+
v .

• If r1 = h◦ ← w1 ≤ {(B+
h )◦ ∪B+

v = WB+} ∈ Hidden◦(Q)MH then
there is a weight rule h ← w ≤ {B+ = WB+ ,∼B− = WB−} ∈ Q
such that h ∈ Hbh(Q), and w1 = max(0, w −WSN(∼B− = WB−)).
Assume MH 6|= r1, that is, h◦ 6∈ MH and w1 ≤ WSMH

((B+
h )◦ ∪ B+

v =
WB+). Recalling MH = Mv ∪N◦

h and the definition of w1 we get

w ≤WSMv(B
+
v = WB+

v
) + WSNh

(B+
h = WB+

h
)

+ WSN(∼B− = WB−). (A.7)

On the other hand, r2 = h← w2 ≤ {B+
h = WB+

h
} ∈ (Qh/Mv)

Nh for

w2 = max(0, w −WSMv(B
+
v = WB+

v
)−WSN(∼B− = WB−)).

Together with (A.7) this implies w2 ≤WSNh
(B+

h = WB+
h
) and further-

more Nh 6|= r2, a contradiction to Nh |= (Qh/Mv)
Nh . Thus MH |= r1.

Since MH |= r for each r ∈ Hidden◦(Q)MH , we have MH |= Hidden◦(Q)MH .
Assume that MH 6= LM(Hidden◦(Q)MH ∪ FMH∩(I∪O)), that is, there is M ′ ⊂
MH such that M ′ |= Hidden◦(Q)MH ∪ FMH∩(I∪O). We define

N ′ = {a | a◦ ∈M ′} ⊆ Hbh(Q).

Since M ′ |= FMH∩(I∪O), we have M ′ ∩Hbv(Q) = MH ∩Hbv(Q) = Mv and
furthermore N ′ ⊂ Nh. Let us show that N ′ |= (Qh/Mv)

Nh .

• If r1 = h ← B+
h ∈ (Qh/Mv)

Nh , then there is a choice rule {H} ←
B+,∼B− ∈ Q such that h ∈ Nh ∩Hh, B+

v ⊆ Mv, and B− ∩ N = ∅.
Then also r2 = h◦ ← (B+

h )◦, B+
v ∈ Hidden◦(Q)MH . Since B+

v ⊆ Mv

implies B+
v ⊆M ′, and M ′ |= r2, we have N ′ |= r1.
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• If r1 = h ← w1 ≤ {B+
h = WB+

h
} ∈ (Qh/Mv)

Nh then there is a
weight rule h ← w ≤ {B+ = WB+ ,∼B− = WB−} ∈ Q such that
h ∈ Hbh(Q) and

w1 = max(0, w −WSMv(B
+
v = WB+

v
)−WSN(∼B− = WB−)).

Then r2 = h◦ ← w2 ≤ {(B+
h )◦ ∪B+

v = WB+} ∈ Hidden◦(Q)MH with
w2 = max(0, w −WSN(∼B− = WB−)). Recall M ′ = Mv ∪ (N ′)◦.
Now, M ′ |= r2, that is, h◦ 6∈M ′ or

w ≤WSN ′(B+
h = WB+

h
) + WSMv(B

+
v = WB+

v
)

+ WSN(∼B− = WB−). (A.8)

If h◦ 6∈ M ′, then h 6∈ N ′ and N ′ |= r1. Else if (A.8) holds, then by the
definition of w1 we have w1 ≤WSN ′(B+

h = WB+
h
) and thus N ′ |= r1.

Thus we have N ′ |= (Qh/Mv)
Nh , a contradiction to Nh = LM((Qh/Mv)

Nh),
and therefore MH ∈ SM(Hidden◦(Q)). ¤

Lemma A.4 Let P = (P, I, O) and Q = (Q, I, O) be SMODELS program
modules having enough visible atoms, and Least•(Q) defined as in Defini-
tion 6.3. Consider any compatible M ∈ SM(P), MH ∈ SM(Hidden◦(Q)),
and ML ⊆ Hb(Least•(Q)). Now, ML ∈ SM(Least•(Q)) if and only if
K = LM(QN ∪FN∩I), where K = {a ∈ O∪Hbh(Q) | a• ∈ML}∪ (N ∩ I)
and N = Mv ∪Nh for Nh defined as in Lemma A.3.

Proof of Lemma A.4 Let P = (P, I, O) and Q = (Q, I, O) be SMODELS
program modules having enough visible atoms, and M ∈ SM(P), MH ∈
SM(Hidden◦(Q)), and ML ⊆ Hb(Least•(Q)) be compatible. We define
Jv = ML ∩ Hbv(Q), Jh = {a ∈ Hbh(Q) | a◦ ∈ ML} and L = {a ∈
O ∪ Hbh(Q) | a• ∈ ML}. Thus ML = Jv ∪ J◦h ∪ L•, and furthermore,
J = Jv ∪ Jh is an interpretation for Q and L ⊆ O ∪ Hbh(Q). Since ML is
compatible with M and MH, we have

ML ∩ (I ∪O ∪ Hbh(Q)◦) = (M ∪MH) ∩ (I ∪O ∪ Hbh(Q)◦)

Jv ∪ J◦h = Mv ∪N◦
h ,

which implies Jv = Mv and Jh = Nh. The reduct Least•(Q)ML contains
the following rules:

1. h• ← h,B+
i , (B+

o )•, (B+
h )• if and only if there is a choice rule {H} ←

B+,∼B− ∈ Q such that h ∈ Hv, B−
v ∩ML = ∅ and (B−

h )◦ ∩ML = ∅,
or equivalently h ∈ Hv and B− ∩N = ∅;

2. h• ← h◦, B+
i , (B+

o )•, (B+
h )• if and only if there is a choice rule {H} ←

B+,∼B− ∈ Q such that h ∈ Hh, B−
v ∩ML = ∅ and (B−

h )◦ ∩ML = ∅,
or equivalently h ∈ Hh and B− ∩N = ∅; and

3. h• ← w′ ≤ {B+
i ∪ (B+

o )• ∪ (B+
h )• = WB+} if and only if there is a

weight rule h ← w ≤ {B+ = WB+ ,∼B− = WB−} ∈ Q such that
w′ = max(0, w −WSML

(∼(B−
v ∪ (B−

h )◦) = WB−)), or equivalently
w′ = max(0, w −WSN(∼B− = WB−)).
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(⇒) Assume ML ∈ SM(Least•(Q)) and define K = L ∪ (N ∩ I). Clearly
K |= FN∩I . We show that K |= QN .

• r1 = h ← B+ ∈ QN if and only if there is choice rule {H} ←
B+,∼B− ∈ Q such that h ∈ H ∩ N and B− ∩ N = ∅. Furthermore
h ∈ H ∩ N implies h ∈ Hv ∩Mv or h◦ ∈ H◦

h ∩ N◦
h . Thus we have

h ∈ML or h◦ ∈ML, respectively.

If h ∈ Hh, then r2 = h• ← h◦, B+
i , (B+

o )•, (B+
h )• ∈ Least•(Q)ML .

Now B+
i ∪ (B+

o )• ∪ (B+
h )• ⊆ ML implies h• ∈ ML, since ML |= r2

and h◦ ∈ML. Recalling the relation between ML and K, we have also
K |= r1.

If h ∈ Hv, then r3 = h• ← h,B+
i , (B+

o )•, (B+
h )• ∈ Least•(Q)ML .

Now B+
i ∪ (B+

o )• ∪ (B+
h )• ⊆ ML implies h• ∈ ML, since ML |= r3

and h ∈ ML. Again we have K |= r1 by the relation between ML and
K.

• r1 = h ← w1 ≤ {B+ = WB+} ∈ QN if and only if there is a weight
rule h← w ≤ {B+ = WB+ ,∼B− = WB−} ∈ Q such that

w1 = max(0, w −WSN(∼B− = WB−)).

Then also, r2 = h• ← w1 ≤ {B+
i ∪ (B+

o )• ∪ (B+
h )• = WB+} ∈

Least•(Q)ML . Since ML = Mv ∪ N◦
h ∪ L•, K = L ∪ (N ∩ I), and

ML |= r2, we have K |= r1.

Thus K |= QN . Assume that K 6= LM(QN ∪FN∩I), that is, there is K ′ ⊂ K
such that K ′ |= QN and K ′ ∩ I = K ∩ I . We define

M ′ = Mv ∪N◦
h ∪ (K ′ \ I)•

and show that M ′ |= Least•(Q)ML .

• If r1 = h• ← h,B+
i , (B+

o )•, (B+
h )• ∈ Least•(Q)ML then there is a

choice rule {H} ← B+,∼B− ∈ Q such that h ∈ Hv, and B−∩N = ∅.
If h 6∈ M ′, then M ′ |= r1. Else, we have h ∈ M ′ which implies
h ∈Mv, and there is r2 = h← B+ ∈ QN . From the relation between
M ′ and K ′ we see that K ′ |= r2 implies M ′ |= r1.

• If r1 = h• ← h◦, B+
i , (B+

o )•, (B+
h )• ∈ Least•(Q)ML then there is a

choice rule {H} ← B+,∼B− ∈ Q such that h ∈ Hh, B− ∩ N = ∅.
If h◦ 6∈ M ′, then M ′ |= r1. Else, we have h◦ ∈ M ′ which implies
h ∈ Nh, and there is r2 = h ← B+ ∈ QN . Again, we see from the
relation between M ′ and K ′ that K ′ |= r2 implies M ′ |= r1.

• If r1 = h• ← w1 ≤ {B+
i ∪ (B+

o )• ∪ (B+
h )• = WB+} ∈ Least•(Q)ML

then there is a weight rule h← w ≤ {B+ = WB+ ,∼B− = WB−} ∈ Q
such that w1 = max(0, w −WSN(∼B− = WB−)). Then also r2 =
h← w1 ≤ {B+ = WB+} ∈ QN . Now K ′ |= r2 implies M ′ |= r1.

Thus M ′ |= Least•(Q)ML ∪ FML∩(I∪O∪Hbh(Q)◦), which is a contradiction to
ML ∈ SM(Least•(Q)). Therefore it holds K = LM(QN ∪ FN∩I).

68 APPENDIX A. PROOFS



(⇐) Assume that K = LM(QN ∪ FN∩I), where N = Mv ∪ Nh, Nh =
LM((Qh/Mv)

Nh), and M ∈ SM(P). Now ML = Mv∪N◦
h ∪L• for L = K \I

is compatible with M and MH.
Clearly, ML |= FML∩(I∪O∪Hbh(Q)◦), and we show that ML |= Least•(Q)ML .

• If r1 = h• ← h,B+
i , (B+

o )•, (B+
h )• ∈ Least•(Q)ML then there is a

choice rule {H} ← B+,∼B− ∈ Q such that h ∈ Hv and B−∩N = ∅.
If h 6∈ ML, then ML |= r1. Else, we have h ∈ Mv and there is
r2 = h← B+ ∈ QN . Since K |= r2, we have ML |= r1.

• If r1 = h• ← h◦, B+
i , (B+

o )•, (B+
h )• ∈ Least•(Q)ML then there is a

choice rule {H} ← B+,∼B− ∈ Q such that h ∈ Hh and B−∩N = ∅.
If h◦ 6∈ ML, then ML |= r1. Else h ∈ Nh and there is r2 = h← B+ ∈
QN . Again, K |= r2 implies ML |= r1.

• If r1 = h• ← w1 ≤ {B+
i ∪ (B+

o )• ∪ (B+
h )• = WB+} ∈ Least•(Q)ML

then there is a weight rule h← w ≤ {B+ = WB+ ,∼B− = WB−} ∈ Q
such that w1 = max(0, w −WSN(∼B− = WB−)). Then also r2 =
h ← w1 ≤ {B+ = WB+} ∈ QN . Since K |= r2 holds, it also holds
ML |= r1.

Assume that ML 6= LM(Least•(Q)ML ∪ FML∩(I∪O∪Hbh(Q)◦)), that is, there is
M ′ ⊂ML such that M ′ |= Least•(Q)ML ∪ FML∩(I∪O∪Hbh(Q)◦). Now,

M ′ ∩ (I ∪O ∪ Hbh(Q)◦) = ML ∩ (I ∪O ∪ Hbh(Q)◦).

We define L′ = {a | a• ∈ M ′} and K ′ = L′ ∪ (N ∩ I). Now, K ′ ⊂ K and
we show in the following that K ′ |= QN .

• If r1 = h← B+ ∈ QN then there is a choice rule {H} ← B+,∼B− ∈
Q such that h ∈ H∩N and B−∩N = ∅. Now, h ∈ H∩N implies h ∈
ML or h◦ ∈ ML for h ∈ Hv and h ∈ Hh, respectively. Furthermore
h ∈ ML (respectively h◦ ∈ ML) implies h ∈ M ′ (respectively h◦ ∈
M ′).

If h ∈ Hh, then r2 = h• ← h◦, B+
i , (B+

o )•, (B+
h )• ∈ Least•(Q)ML .

Since M ′ |= r2 and h◦ ∈ M ′, B+
i ∪ (B+

o )• ∪ (B+
h )• ⊆ M ′ implies

h• ∈M ′. Recalling M ′ = Mv ∪N◦
h ∪ (L′)• and K ′ = L′ ∪ (N ∩ I) we

see that M ′ |= r2 implies K ′ |= r1.

If h ∈ Hv, then r3 = h• ← h,B+
i , (B+

o )•, (B+
h )• ∈ Least•(Q)ML .

Since M ′ |= r3 and h ∈ M ′, B+
i ∪ (B+

o )• ∪ (B+
h )• ⊆ M ′ implies

h• ∈M ′. Again, we see that M ′ |= r3 implies K ′ |= r1.

• If r1 = h ← w1 ≤ {B+ = WB+} ∈ QN then there is a weight rule
h← w ≤ {B+ = WB+ ,∼B− = WB−} ∈ Q such that

w1 = max(0, w −WSN(∼B− = WB−)).

Then also, r2 = h• ← w1 ≤ {B+
i ∪ (B+

o )• ∪ (B+
h )• = WB+} ∈

Least•(Q)ML and M ′ |= r2 implies K ′ |= r1.

Thus K ′ |= QN ∪ FN∩I , a contradiction to K = LM(QN ∪ FN∩I), and
ML ∈ SM(Least•(Q)) holds. ¤
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Lemma A.5 Let P = (P, I, O) and Q = (Q, I, O) be SMODELS pro-
gram modules having enough visible atoms, and UnStable(Q) defined as
in Definition 6.4. Consider arbitrary M ∈ SM(P), MH ∈ SM(Hidden◦(Q)),
ML ∈ SM(Least•(Q)) and MU ⊆ Hb(UnStable(Q)) such that the collec-
tion {M, MH,ML,MU} is compatible. Now, MU ∈ SM(UnStable(Q)) if
and only if N 6= K or K 6|= CompS(Q), where K and N are defined as in
Lemmas A.3 and A.4, respectively.

Proof of Lemma A.5 Let P = (P, I, O) and Q = (Q, I, O) be SMOD-
ELS program modules having enough visible atoms and consider M ∈
SM(P), MH ∈ SM(Hidden◦(Q)), ML ∈ SM(Least•(Q)) and MU ⊆
Hb(UnStable(Q)) such that the collection {M, MH,ML,MU} is compati-
ble. This implies

MU \ {c, d, e} = (M ∪MH ∪ML) \ Hbh(P).

The reduct UnStable(Q)MU contains the following rules:

1. d← a if and only if a• 6∈MU and a ∈ O;

2. d← a• if and only if a 6∈MU and a ∈ O;

3. d← a◦ if and only if a• 6∈MU and a ∈ Hbh(Q);

4. d← a• if and only if a◦ 6∈MU and a ∈ Hbh(Q);

5. c if and only if d 6∈ MU, a• 6∈ MU and a ∈ CompS(Q) such that
a ∈ O ∪ Hbh(Q);

6. c ← b• if and only if d 6∈ MU and ∼b ∈ CompS(Q) such that b ∈
O ∪ Hbh(Q);

7. c if and only if d 6∈MU, a 6∈MU and a ∈ CompS(Q) such that a ∈ I ;

8. c ← b if and only if d 6∈ MU and ∼b ∈ CompS(Q) such that b ∈ I ;
and

9. e← c and e← d.

(⇒) Assume MU ∈ SM(UnStable(Q)). Since compute {e} ∈ UnStable(Q),
we must have e ∈MU. Since e ∈MU and the only rules having e as the head
are the ones in item 9. we must have c ∈ MU or d ∈ MU. If d ∈ MU, then
the rules in items 1.–4. imply that N 6= K. If d 6∈MU and c ∈MU, then the
rules in items 5.–8. imply that K 6|= CompS(Q).

(⇐) Assume that K = LM(QN ∪ FN∩I), where N = Mv ∪ Nh, and
Nh = LM((Qh/Mv)

Nh). Define L = K \ I . If N 6= K, define MU =
Mv ∪ N◦

h ∪ L• ∪ {d, e}. Since e ∈ MU, MU |= CompS(UnStable(Q)).
Furthermore all the rules in UnStable(Q)MU are satisfied. It is also clear that
MU is minimal with respect to input Mv ∪ N◦

h ∪ L•. On the other hand,
if K = N and K 6|= CompS(Q), define MU = Mv ∪ N◦

h ∪ L• ∪ {c, e}.
Since e ∈ MU, MU |= CompS(UnStable(Q)). Furthermore all the rules in
UnStable(Q)MU are satisfied. Notice especially that rules in items 1.–4. are
satisfied since K = N . Again, it is clear that MU is minimal with respect to
input Mv ∪N◦

h ∪ L•, and MU ∈ SM(UnStable(Q)). ¤
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Proof of Theorem 6.7 Let the assumptions in Theorem 6.7 hold for modules
P = (P, I, O), Q = (Q, I, O) and C = (C, IC , OC). Since P t C and Q t C
are defined, also EQT(P,Q) t C and EQT(Q,P) t C are defined.

Assume first that SM(EQT(P,Q) tC) 6= ∅ or SM(EQT(Q,P) tC) 6= ∅.
We assume without loss of generality, that there is Mt ∈ SM(EQT(P,Q) t
C). By Theorem 5.17,

MEQT = Mt ∩ Hb(EQT(P,Q)) ∈ SM(EQT(P,Q)),

MC = Mt ∩ Hb(C) ∈ SM(C),

and MEQT is compatible with MC . Furthermore, as shown in the proof of
Theorem 6.5, we can extract a counter-example for modular equivalence of
P and Q from MEQT:

• M = MEQT ∩ Hb(P) ∈ SM(P);

• Nh = {a ∈ Hbh(Q) | a◦ ∈MEQT} and Nh = LM((Qh/Mv)
Nh);

• K = {a ∈ O ∪ Hbh(Q) | a• ∈ MEQT} ∪ (N ∩ I) for N = Mv ∪ Nh,
and K = LM(QN ∪ FN∩I); and

• K 6= N or K 6|= CompS(Q).

Since MEQT and MC are compatible and MEQT ∩ Hbv(C) = M ∩ Hbv(C),
also M and MC are compatible. Furthermore, since M ∈ SM(P), MC ∈
SM(C), and MC is compatible with M , we have by Theorem 5.17

M ∪MC ∈ SM(P t C).

Also N and MC are compatible, because Mv = Nv. We define Nt = N ∪
MC , and assume that Nt ∈ SM(Q t C). Then by Theorem 5.17 we get
N ∈ SM(Q), a contradiction, since either N 6= LM(QN ∪ FN∩I) or N 6|=
CompS(Q). Thus Nt 6∈ SM(Q t C). Recalling (Nt)v = (M ∪MC)v, we
have a counter-example for modular equivalence of P t C and Q t C.

Else, assume that SM(EQT(P,Q) t C) = SM(EQT(Q,P) t C) = ∅. By
Theorem 5.17, there is no compatible pair of stable models for EQT(P,Q)
and C, and no compatible pair of stable models for EQT(Q,P) and C. As
each stable model of the translations EQT(P,Q) and EQT(Q,P) represents
a counter-example for P ≡m Q and there is no compatible stable model of C
for any of the counter-examples, we have P t C ≡m Q t C. ¤
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B BENCHMARK ENCODINGS

B.1 QUEENS ENCODINGS

The LPARSE encodings for the modules Gn
x , Gn

y , Cn
1 and Cn

2 used in Section
7.2 to solve the n-queens problem are as follows.

• Module Gn
x generates a placement of queens row-by-row.

#options -d none
d(1..q).

1 { q(X,Y): d(Y) } 1 :- d(X).

• Module Gn
y generates a placement of queens column-by-column.

#options -d none
d(1..q).

1 { q(X,Y): d(X) } 1 :- d(Y).

• Module Cn
1 is a part of the n-queens encoding in [54] checking that

the placement of queens given as input is valid.

#options -d none
#external q(X,Y).
d(1..q). q(X,Y) :- d(X;Y). %% for grounding

:- q(X,Y), q(X1,Y), X1 != X, d(X;X1;Y).
:- q(X,Y), q(X,Y1), Y1 != Y, d(X;Y;Y1).
:- q(X,Y), q(X1,Y1), X != X1, Y != Y1,

abs(X-X1) == abs(Y-Y1), d(X;X1;Y;Y1).

• Module Cn
2 is a variant of Cn

1 in which symmetric rule instances have
been removed.

#options -d none
#external q(X,Y).
d(1..q). q(X,Y) :- d(X;Y). %% for grounding

:- q(X,Y), q(X1,Y), X1 < X, d(X;X1;Y).
:- q(X,Y), q(X,Y1), Y1 < Y, d(X;Y;Y1).
:- q(X,Y), q(X1,Y1), X != X1, Y != Y1,

abs(X-X1) == abs(Y-Y1), X < X1, d(X;Y;X1;Y1).
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B.2 HAMILTONIAN CYCLE ENCODINGS

The LPARSE encodings for the modulesGn
i ,Rn,Hn

j andHRn used in Section
7.3 for finding a Hamiltonian cycle for different families of directed graphs
are as follows.

• Module Gn
i for i = 1, . . . , 5 generates different families of directed

graphs.

#hide.
#show arc(X,Y). %% output
#domain vtx(X;Y;Z).
vtx(1..n).

{ arc(X,Y) } :- vtx(X;Y). %% all graphs

% :- arc(X,X). %% irreflexive
% arc(Y,X) :- arc(X,Y). %% symmetric
% :- arc(Y,X), arc(X,Y). %% asymmetric
% arc(Y,Z) :- arc(X,Y), arc(X,Z). %% Euclidean edge

%% relation

• Module Hn
1 selects edges to be taken into a Hamiltonian cycle candi-

date by insisting that each vertex is incident to exactly two edges in the
cycle given a set of edges as input (similarly to the Hamiltonian cycle
encoding in [65]). Module Hn

2 is an optimized variant of Hn
1 .

#hide.
#external arc(X,Y).
#show arc(X,Y). %% input
#show hc(X,Y). %% output
#domain vtx(X;Y).
#options -d none.
vtx(1..n).

2 { hc(X,Y1): vtx(Y1), hc(Y1,X): vtx(Y1) } 2. %% (*)
:- hc(X,Y), not arc(X,Y).

% 1 { hc(X,Y1): vtx(Y1) } 1. %% in optimized version
% 1 { hc(Y1,X): vtx(Y1) } 1. %% for replacement of (*)
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• ModuleRn checks that each vertex is reachable from the starting vertex
along the edges in the cycle given a candidate for Hamiltonian cycle
as input

#hide.
#external hc(X,Y).
#show hc(X,Y). %% input
#show reached(X). %% output
#domain vtx(X;Y).
#options -d none.
vtx(1..n).
{ hc(X,Y) }. %% for grounding

initialvtx(1).
reached(Y) :- hc(X,Y), reached(X), not initialvtx(X).
reached(Y) :- hc(X,Y), initialvtx(X).
:- not reached(X).

• Module HRn solves the Hamiltonian cycle problem given a set of
edges as input (based on the alternative encoding presented in [65]).

#hide.
#external arc(X,Y).
#show arc(X,Y). %% input
#show hc(X,Y), reached(X). %% output
#domain vtx(X;Y;X1;Y1).
#options -d none.
vtx(1..n).
{ arc(X,Y) }. %% for grounding

start(1).
{ hc(X,Y) } :- start(X), arc(X,Y).
{ hc(X,Y) } :- reached(X), arc(X,Y).

reached(Y) :- hc(X,Y).
:- not reached(X).
:- hc(X,Y), hc(X,Y1), Y != Y1.
:- hc(X,Y), hc(X1,Y), X != X1.
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