
Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 102

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 102

Espoo 2006 HUT-TCS-A102

ALGORITHMS FOR NONUNIFORM NETWORKS

Satu Elisa Schaeffer

AB TEKNILLINEN KORKEAKOULU

TEKNISKA HÖGSKOLAN

HELSINKI UNIVERSITY OF TECHNOLOGY

TECHNISCHE UNIVERSITÄT HELSINKI

UNIVERSITE DE TECHNOLOGIE D’HELSINKI

Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 102

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 102

Espoo 2006 HUT-TCS-A102

ALGORITHMS FOR NONUNIFORM NETWORKS

Satu Elisa Schaeffer

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of

the Department of Computer Science and Engineering, for public examination and debate in Auditorium

T1 at Helsinki University of Technology (Espoo, Finland) on the 28 of April, 2006, at 12 o’clock noon.

Helsinki University of Technology

Department of Computer Science and Engineering

Laboratory for Theoretical Computer Science

Teknillinen korkeakoulu

Tietotekniikan osasto

Tietojenkäsittelyteorian laboratorio

Distribution:

Helsinki University of Technology

Laboratory for Theoretical Computer Science

P.O.Box 5400

FI-02015 TKK, FINLAND

Tel. +358 9 451 1

Fax. +358 9 451 3369

E-mail: lab@tcs.tkk.fi

URL: http://www.tcs.tkk.fi/

©c Satu Elisa Schaeffer

ISBN 951-22-8118-X

ISSN 1457-7615

Painotalo Casper

Espoo 2006

ABSTRACT: In this thesis, observations on structural properties of natural
networks are taken as a starting point for developing efficient algorithms
for natural instances of different graph problems. The key areas discussed
are sampling, clustering, routing, and pattern mining for large, nonuniform
graphs. The results include observations on structural effects together with
algorithms that aim to reveal structural properties or exploit their presence in
solving an interesting graph problem.

Traditionally networks were modeled with uniform random graphs, as-
suming that each vertex was equally important and each edge equally likely
to be present. Within the last decade, the approach has drastically changed
due to the numerous observations on structural complexity in natural net-
works, many of which proved the uniform model to be inadequate for some
contexts.

This quickly lead to various models and measures that aim to characterize
topological properties of different kinds of real-world networks also beyond
the uniform networks. The goal of this thesis is to utilize such observations in
algorithm design, in addition to empowering the process of network analysis.
Knowing that a graph exhibits certain characteristics allows for more efficient
storage, processing, analysis, and feature extraction.

Our emphasis in on local methods that avoid resorting to information of
the graph structure that is not relevant to the answer sought. For example,
when seeking for the cluster of a single vertex, we compute it without using
any global knowledge of the graph, iteratively examining the vicinity of the
seed vertex. Similarly we propose methods for sampling and spanning-tree
construction according to certain criteria on the outcome without requiring
knowledge of the graph as a whole.

Our motivation for concentrating on local methods is two-fold: one driv-
ing factor is the ever-increasing size of real-world problems, but an equally
important fact is the nonuniformity present in many natural graph instances;
properties that hold for the entire graph are often lost when only a small
subgraph is examined.

KEYWORDS: community structure, graph algorithm, graph clustering, graph
data mining, graph similarity, local search, minimum spanning tree, net-
work model, nonuniform network, random graph, random sampling, rout-
ing, scale-free network, shortest path algorithm, small-world network

TIIVISTELMÄ: Työ tarkastelee tehokkaiden algoritmien kehitystä erilaisil-
le verkko-ongelmille perustuen havaintoihin luonnollisten verkkojen raken-
teellisista ominaisuuksista. Painopistealueita ovat otanta, ryvästys, reititys se-
kä hahmonlouhinta suurissa epätasaisissa verkoissa. Tulokset koostuvat niin
havainnoista verkkojen rakenteellisten ominaisuuksien vaikutuksista kuin al-
goritmeista rakenteen selvittämiseen tai hyväksikäyttöön mielenkiintoisten
verkko-ongelmien tehokkaaseen ratkaisuun.

Perinteisesti verkkomallinnus on perustunut oletukseen solmujen tasa-ar-
voisuudesta sekä kaarien tasajakautuneisuudesta solmujen välille. Kuluneen
vuosikymmenen aikana ajattelutapa on muuttunut rajusti erilaisten verkko-
jen rakennetta koskevien havaintojen seurauksena. Tästä muutoksesta ovat
saaneet alkunsa erilaiset mallit ja mittarit, joilla pyritään tunnistamaan ja luo-
kittelemaan käytännön sovelluksien todellisia verkkoja ja niiden rakenteelli-
sia ominaisuuksia tilanteissa, joissa uniformit satunnaisverkot eivät riitä.

Väitöskirjan tavoitteena on hyödyntää luonnollisten verkkojen rakentees-
ta tehtyjä havaintoja algoritmisuunnittelussa ja lisäksi tehostaa verkkojen ra-
kenteen analysointia. Mikäli verkolla tiedetään olevan tiettyjä ominaisuuksia,
voidaan sen tallennusta, käsittelyä, analysointia ja ominaisuuksien tunnista-
mista tehostaa.

Työssä painotetaan paikallisia menetelmiä, jotka välttävät sellaisen verkon
rakennetta koskevan tiedon käyttöä, joka ei suoranaisesti vaikuta haettuun rat-
kaisuun. Esimerkiksi etsittäessä tietyn solmun rypästä, se lasketaan tutkimal-
la vaiheittain alkusolmun läheisiä solmuja käyttämättä tietoa muista verkon
osista. Sama lähestymistapa tuottaa menetelmiä satunnaisotantaan ja tiettyjä
ehtoja täyttävän virityspuun rakentamiseen ilman koko verkon samanaikaista
käsittelyä.

Esitetty otantamenettely perustuu kahden Markovin ketjun yhdistämiseen
siten, että toisella ketjuista on toivottu rajajakauma siinä missä toinen on no-
peasti sekoittuva; kaikki siirtymät voidaan laskea paikallisesti. Työssä esitetään
kaksi paikallista ryvästysmenetelmää, jotka soveltuvat parhaiten yhden tietyn
alkusolmun rypään laskemiseen. Lähestymistapa hakuongelmaan on solmu-
kohtaisen ja rajoitetun ”tähystyspuskurin” käyttö. Reitityspuiden laadinnassa
yhdistetään perinteinen kaaripainojen summan minimointi tuloksena synty-
vän puun astelukujakauman hallintaan, tavoitteena tuottaa puita, joissa sol-
mujen väliset reitit ovat paitsi kevyitä, myös kaarien lukumäärä on pieni. Verk-
kojen louhinnan osalta painopiste on verkkojen samankaltaisuuden tehok-
kaassa likimääräisessä arvioinnissa niin suuntaamattomille ja painottamatto-
mille kuin nimikoiduille ja suunnattuille verkoille.

Perusteluita paikallisiin menetelmiin keskittymiseen on paljon. Kaksi kes-
keisintä valintakriteeriä tämän työn näkökulmasta ovat sovellusaluiden verk-
kotehtävien jatkuvasti kasvava koko sekä useiden luonnollisten verkkojen ra-
kenteellinen epätasaisuus: ominaisuudet jotka pätevät verkolle kokonaisuu-
tena, katoavat usein kun tarkastelu rajoitetaan pieneen aliverkkoon.

AVAINSANAT: epäuniformi verkko, lyhimmän polun algoritmi, paikallinen
haku, pieni maailma -verkko, reititys, ryvästys, samankaltaisuus, satunnais-
otanta, satunnaisverkko, skaalaton verkko, tiedon louhinta, verkkoalgoritmi,
verkkomalli, virityspuu

Contents

1 Introduction 1

2 Networks as graphs 3
2.1 Generation models . 6
2.2 Algorithmic implications of network structure 9

2.2.1 Network properties and computational load 12
2.2.2 Nonuniformity of natural networks 15

3 Sampling 19
3.1 Markov chains . 19

3.1.1 Convergence and mixing time 22
3.1.2 Random walks . 25
3.1.3 Markov Chain Monte Carlo method 25

3.2 Sampling nonuniform graphs 27
3.3 Application areas . 38

4 Clustering 41
4.1 Graph clustering . 43
4.2 Local clustering . 46

4.2.1 Clustering by local search 46
4.2.2 Similarity-based clustering 48
4.2.3 Cluster fitness functions 54
4.2.4 A stochastic algorithm 59

4.3 Evaluation of clusterings . 61
4.4 Experiments . 62

4.4.1 Test data . 63
4.4.2 Locality and stability 64
4.4.3 Comparison with global methods 65
4.4.4 Fiedler clusters . 66

4.5 Applications . 71
4.5.1 A clustering protocol for ad hoc networks 71
4.5.2 Storing massive graphs for improved searchability . . 79
4.5.3 Assessment of web-like graph generators 87

5 Searching and routing 91
5.1 Random walks with limited lookahead 96
5.2 Spanning trees . 102

5.2.1 Communication-cost models 103
5.2.2 Centralized tree-construction algorithms 106
5.2.3 Distributed tree-construction algorithms 110
5.2.4 Experiments on spanning trees 111

6 Graph data mining 117
6.1 Subgraph similarity . 121
6.2 Partial matching in labeled graphs 133

CONTENTS vii

7 Conclusions 141

Bibliography 142

Appendices 171
Matlab code for Fiedler vector calculations 171
Urn model for bit-string similarity measures 175

Index 177

viii CONTENTS

List of Figures

2.1 On the left, the initial lattice graph of Watts and Strogatz with
n = 16 and k = 3; on the right, a rewired version with small
pe (adapted from [314]). 7

2.2 Scatter plots of running time versus edge count (left) and
clustering (right). The edge count predicts the running time
well for most small instances with fewer than 150,000 edges,
but fails for most of the larger ones, as shown in the leftmost
scatter plot. The clustering coefficient is a poor predictor
alone, as shown in the rightmost scatter plot, but combined
with edge count in linear regression helps somewhat in pre-
dicting the runtime. 15

2.3 The degree distribution of the WordNet graph. The inset
shows a line fitted to the “linear part” of the point set using
deg (v) ∈ [8, 100]; the line is f(x) = −3.35524x + 6.78824. . 16

2.4 The degree distributions over the five sets of vertices selected
uniformly at random on the top row, and the degree distribu-
tions obtained by the random walks using five different start-
ing vertices on the bottom row. The lines shown in the plot
have the same slope than the fit in Figure 2.3, but the addi-
tive constant has been adjusted to overlay the line with the
dataset. 17

2.5 The average and standard deviation of the hop-span hv (k)
for small numbers of hops (k). On the left plot, the five data
sets are each averages over 1,000 vertices selected uniformly
at random. On the right, the averages are over sets of 1,000
vertices that are the end-points of 100,000-step random walks,
all started at specific vertices. In each plot, four of the curves
were shifted to avoid overlap. 18

3.1 The estimated bias of Equation 3.25 to the estimator of total
variation distance (Equation 3.22) for four different values
of N (i.e., the order of the state space). Note that when the
number of instances is a multiple of the state count, the curve
displays a kneebend, as the possibility of diving the instances
evenly over the state set decreases the total bias. 24

3.2 A diagram of the mirror construction for two vertices v and
w on the sampling side and their mirror vertices v′ and w′ on
the mixing side. 31

3.3 The pseudo-fractal graph (DGM) Gt for t ∈ {−1, 0, 1, 2, 3}
(adapted from [101]). Vertices added at time step t are shown
white. 34

3.4 Degree distribution of Gt for t ∈ [0, 13]. The degree distribu-
tions settle in left-to-right order such that G13 is the rightmost
plot. 34

LIST OF FIGURES ix

3.5 The spectra of four generations of the DGM model for two
different transition matrices: one based on the regular ran-
dom walk transition probabilities of Equation 3.26 on page 25
(referred to as “Regular”) and another one based on the bal-
anced random walk transition probabilities of Equation 3.35
on page 29 (referred to as “Balanced”). 35

3.6 log log-plots of the sampling frequency of vertices by their de-
gree in a set of n independent samples (fully restarted from
the same randomly chosen vertex, allowing the walks to mix
for t ≥ 5,000) shown together with the degree distributions
of the graphs themselves. The regular walk is the Mrw chain,
min. bal. is Mid, and min. comb. is Mcc; the coin-flip walk
was discussed on page 28. We used ε = 0.25 for the combina-
tion walk. 36

3.7 The coverage achieved by the regular (left) and the degree-
balanced (right) walks at each step. In all six plots, averages
and standard deviations of 50 independent walks are shown. . 36

3.8 The behavior of the combined random walk on a ninth gen-
eration graph for different values of ε. Increase in coverage
is only measured at sampling steps, i.e., the vertex visits of
the mixing side of the construction are not counted in the
coverage but are present in the step count. 37

3.9 Values of ∆est(t) for the balanced (H), minimal-balanced (N),
combined (•), and regular (�) chains. The estimate is cal-
culated over a set of I = 15,000 independent walks in two
DGM and two collaboration graphs, all starting from a fixed
vertex, initially chosen at random. The bias of the uniform
distribution estimate (Equation 3.25) for each graph is shown
as the lower dotted line. Note that for the combination walk
(based on the minimal-balanced RW, k = 4, ε = 0.25), the
expected number of instances on the sampling side of the
combined walk is αI ≤ 15,000 and hence the bias is larger
(the upper line). For ease of comparison, we also ran the
combination walk for I ′ = α−1I to achieve the same ex-
pected bias with the balanced walks. 37

3.10 The number of walk instances out of the total of I = 15,000
instances that are on the sampling side of the combined walk
at each step; the data used is the same than in Figure 3.9.
We use ε = 0.4; this gives α ≈ 0.20 for DGM generations 5
and 7, α ≈ 0.23 for the smaller collaboration graph and α ≈
0.18 for the larger. The theoretical value to which the plots
are expected converge, I ·α, is shown in the plot as a vertical
line for each value of α. 38

x LIST OF FIGURES

4.1 An example dendrogram that groups 23 elements into clus-
ters at four intermediate levels, the root cluster containing
the entire dataset and the leaf clusters each containing one
data point. Any level of the dendrogram, indicated by dotted
lines in the picture, can be interpreted as a clustering, group-
ing together as a cluster those elements that remain in the
same branch of the dendrogram tree above the line. 42

4.2 Visualizations of different similarity measures for a 75-vertex
graph with a clear six-cluster structure, vertices sorted by clus-
ter and the similarity vectors computed for each vertex com-
posed into a matrix where the value range has been mapped
into the unit line [0, 1] which has been further mapped into
256 gray-scale colors, with one mapped to white and zero
mapped to black. The top-row matrices show the Fiedler
values, both exact and approximate, computed with Matlab
(code included in the appendix). The bottom-left matrix
shows the mean absorption times (see Equation 3.5 along
with the explanation of mean absorption times on page 21)
from the other vertices to the seed vertex for a random walk
on the graph, and the bottom-right has the voltages used in
the clustering algorithm by Wu and Huberman [322], aver-
aged over 500 random sink-source pairs. 53

4.3 An example caveman graph with 55 vertices and 217 edges;
each cave (encompassed by a dotted line) is correctly identi-
fied as a cluster by the local optimization of Equation 4.30. . . 64

4.4 The adjacency matrix of a caveman graph with 210 vertices
and 1,505 edges; the left one uses random vertex order, re-
flecting little structure, whereas the one on the right is sorted
by the clusters found by locally optimizing Equation 4.30 —
the sorted matrix clearly reveals the cave-based structure. . . 65

4.5 On the left, the ratio of the number of vertices visited (i.e., the
visit count for an R/S-pair) to that of the number of vertices
selected in the final cluster (i.e., the cluster order) averaged
over 100 vertices selected uniformly at random and repeated
50 times per vertex. On the right, the average final cluster
orders of the same experiment set. 66

4.6 The distribution of the number of vertices per cluster for the
largest connected component of Ginit for three different R/S-
pairs, where R ∈ {10, 25, 50} and S = 10R. 66

4.7 A single cave detached from a 649-vertex caveman graph; the
small circles are neighbors in other caves. The shape of the
vertex indicates its cluster for the post-processed GMC (with
three clusters overlapping the cave) and the color indicates
the clustering of ICC (seven clusters overlap); locally opti-
mizing Equation 4.30 selects an entire cave using of any in-
cluded vertex as the seed vertex. 67

LIST OF FIGURES xi

4.8 Components of a Fiedler clustering vector sorted by index
(left) and in ascending order (right). The vertical lines repre-
sent the cluster selection of the Cheeger-ratio local optimiza-
tion method based on the Fiedler values. 68

4.9 Local Fiedler clusters in a 503-vertex collaboration graph; on
the bottom, a closeup view of the three clusters with distant
and overlapping vertices rearranged to allow a better view of
the structure of the induced subgraphs. 69

4.10 Fiedler values in a 34-vertex karate club social network. 69
4.11 Local Fiedler clusters in a 144-vertex caveman graph. 70
4.12 Each cluster has its own color; the nodes have been added

one by one, with existing nodes updating their clusters after
the newcomer selects a cluster. Cluster heads are drawn with
a black border. In these examples, all nodes have a fixed
communication range and they do not move. 72

4.13 Clusters selected by a method for some anomalous network
structures. 73

4.14 The absolute values of the average differences µi for |C′| (left),
degint (C

′) (middle), and degext (C
′) (right) over a set of I = 10

runs of D = 250 seconds; the average over the runs is drawn
thicker (as respectively is the variation of the variations). . . . 75

4.15 Grouped by the mobility model, averaged over the set of
clusters for each time step in {0, 2, 4, . . . , 600} for each of
I = 10 runs, the difference of the average local density and
the global density of the graph, the cluster order, and the
cluster fitness (average over the runs drawn thick). 78

4.16 The estimate-error distributions of the domain-construction
heuristics with different d/s-pairs (as listed in Table 4.5) and
using clusters as domains for a caveman graph of order 1,533. 85

4.17 The evolution of the average and standard deviation of the es-
timate error for a caveman graph during 1,000 modification
operations. The density and order of the graph after each
modification step are also plotted to reveal the type of modi-
fications that occurred; the start order is 1,533 and the initial
size 50,597. 86

4.18 An example cluster found in one of the ten stochastic clus-
terings of G with the number of outside links shown. Five of
the websites are � �������� �� �	�
 domains, which explains
their interconnectivity. 88

4.19 The cluster distributions (size on the x-axis versus frequency
on the y-axis) for the CWG (10 independent clusterings) and
the comparison graphs (6 independently generated graphs
per model, each clustered 6 times). Cluster order was lim-
ited to 50; hence the cutoffs in the distributions. 90

5.1 The degree distributions of the six instances studied: the col-
laboration graph (Collab.), the neural network of C. Elegans
(Neural), the scale-free graphs with tunable clustering (CSF),
and the deterministic DGM graphs. 98

xii LIST OF FIGURES

5.2 Average path-length matrices for the C. Elegans neural net-
work; the top-left had no lookahead, the bottom-right ma-
trix is based on full lookahead, and the others had a k-place
buffer filled by uniform-probability selection. The color-code
is the following: a black position is one where a path was
found 100% of the time and a white one corresponds to no
paths found. The gray-scale interval is regularly quantized to
256 shades of gray. 99

5.3 The frequencies of the second-neighbor counts of the six in-
stances studied: the collaboration graph (Collab.), the neu-
ral network of C. Elegans (Neural), the scale-free graphs with
tunable clustering (CSF), and the deterministic DGM graphs. 100

5.4 The average path lengths over all vertex pairs and the 30 rep-
etitions for different values of k and different filling strategies
for the three larger instances. 101

5.5 The averages of the lengths of all paths found over 30 repe-
titions of the experiment set using k = 80 and the uniform-
probability filling strategy for the three larger graphs. Each
experiment set consists of 30 repetitions per vertex pair and a
cut-off at 300 steps as above. The repetitions are sorted in in-
creasing order of the averages to better reveal the magnitude
of the variation. 102

5.6 A small graph (on the left) with three possible spanning trees:
a random one, a line, and a star topology. Below the pictures
are the values for two possible global load measures (using
the vertex-betweenness) and the average hop count (calcu-
lating the hop-distance for each pair of distinct vertices once). 105

5.7 A 11-vertex graph G = (V, E) and two possible spanning
trees; the edges shown thick have weight 1 + ε (ε > 0) and
the thin ones have weight 1. The MST (with total weight 10)
is a path with average path length 4, whereas the other tree
has unweighted average path length 2.36, weighted average
path length 2.36 + 1.472ε, and total edge weight 10 + 5ε.
For small values of ε, the latter tree is clearly better with re-
spect to the number of hops needed on average to carry out
communication between to vertices. 106

5.8 A small example graph where vertex v needs to choose whether
to link to w or w′ (the dashed edges) to form a spanning tree
used to route communications. Edge weights (a, b, c, d) are
shown next to the arcs; the length of the edges in the drawing
is does not reflect the weights. We set a > b. 107

LIST OF FIGURES xiii

5.9 On the left, the maximum degree ∆ in the generated graphs
and the low-hop trees (LHT); note that MHT and the graph
have the same ∆ by construction. All MSTs had maximum
degree of four. On the right, the total weights of the spanning
trees — note that as MST optimizes this measure, the value
given for those trees is the absolute minimum achievable for
any spanning tree. All values shown are averages over the
30-graph sets with the same order and density; the standard
deviation (small) is shown as error bars on the y-axis. For
comparison, we calculated for each graph instance the aver-
age edge weight, estimated from that the average tree weight
simply by multiplying the average edge weight by n − 1; av-
erages of this quantity over the 30 instances are shown in the
curve titled “Avg.” — the curve for MHT practically overlaps
with the average weight. 114

5.10 On the left, the average hop-length for the MST set and the
different-parameter LHT sets, as well as the original graphs.
On the right, the average path length for the MST set and
the different-parameter LHT sets, as well as the approximate
MHT set and the original graphs. The values are averages
over the 30-graphs sets with the same order and density; the
standard deviation is shown as error bars on the y-axis. The
legend is the same for all plots, with the MST curve being the
topmost one and the graph curve the lowest. 115

5.11 On the left, the diameter (i.e., the maximum hop-length) for
the MST set and the different-parameter LHT sets, as well
as the original graphs. The values are averages over the 30-
graphs sets with the same order and density; the standard de-
viation is shown as error bars on the y-axis. The MST di-
ameter is naturally the largest and the graph diameter the
lowest. On the right, the weighted diameter (i.e., the the
maximum weighted path length) for the MST set and the
different-parameter LHT sets, as well as the original graphs.
The same legend applies to all plots. 116

6.1 A graph G of order five, an adjacency matrix A = AG with
the entries that form the bit string in boldface, and the corre-
sponding bit-string representation B (A). 119

6.2 On the left, the average running times of exact (left plot)
and approximate (right plot) computation of canonical bit-
strings for input graphs of growing order. The algorithms
were ran for three different graph generation models and the
running times were averaged over 30 independently gener-
ated instances for graphs of order n ∈ [5, 11]. Note the
change of magnitude on the y-axis of the plots. The stan-
dard deviation is plotted with error bars for all data points,
but these are so small that they only show in some of the run-
ning times of the greedy algorithm. 124

xiv LIST OF FIGURES

6.3 The average and standard deviation of the similarities be-
tween the greedy bit string and the k = 2n lexicographically
first bit strings for graphs of order n ∈ {5, 7, 9, 11} for the
three generation models used in the study. The first column
shows the results for δ⊕ (B1,B2) of Equation 6.3, the second
column those of δpos (B1,B2) of Equation 6.6, the third col-
umn those of δw (B1,B2) of Equation 6.7, and the right-most
column the LCS similarity. 129

6.4 On the left, the expected value of Equation 6.8 for δ⊕ (B1,B2)
and δpos (B1,B2) (top curves), and bpos (B1,B2) (bottom curves)
for two random bit strings B1 and B2 with m ones and (n(n+
1)/2 − m) zeroes (corresponding to two random reflexive
graphs with n vertices and m edges; the corresponding formu-
las are given in Table 6.3. On the right, the average LCS sim-
ilarity (top curves) over 1,000 pairs of random bit strings for
each (n, m) pair, together with the standard deviation for
each data point (bottom curves). 130

6.5 Box-whiskers plots that visualize the median and the devia-
tions of the maximum similarity value over the set of k lex-
icographically first strings over a set of 30 graphs of order
nine and their modified versions with one to five additional or
missing edges. The first column corresponds to δ⊕ (B1,B2)
of Equation 6.3, the second column to δpos (B1,B2) of Equa-
tion 6.6, the third column to δw (B1,B2) of Equation 6.7, and
the right-most column has the LCS similarities. 131

6.6 For the generation models used, the position of the list L of
the lexicographically first 2n bit strings at which the greedy
bit string B was found for the sets of 50 graphs of orders
[5, 10]; the position (2n + 1) represents the cases in which
the greedy string was not among the exact strings. The his-
tograms for the Gn,p model were shifted 0.25 to the left and
those of the WS model 0.25 to the right to avoid overlap of
the histograms. 132

6.7 Some simple structures that we would like to be considered
as possible matches when one is given as a pattern P and the
others appear in the graph G as subgraphs. The label sim-
ilarities are represented in a non-formal manner such that
“similar” labels are denoted by primed versions of the same
symbol d, d′, d′′, . . . and labels not similar to d-labels are rep-
resented by another symbol. 134

LIST OF FIGURES xv

6.8 Spearman rank correlations among the difference measures
proposed in Table 6.4 and the similarity obtained from the
construction of a weighted bipartite graph. Red corresponds
to one, blue to minus one, and lighter colors to values gradu-
ally from one to zero (shades of red for positive correlations,
shades of blue for negative correlations). The cells corre-
sponding to negative correlations are striped diagonally. Note
that as the difference measures assign low values to similar
graphs, a negative correlation between the first four and the
last three implies agreement. 138

xvi LIST OF FIGURES

List of Tables

2.1 Some descriptive statistics of 86 connected cyclic graphs of
the [168] data set for which upper bounds for the chromatic
number are known, γub (G) ≥ γ (G), and running times (in
seconds) T (G) of a graph coloring algorithm. 13

2.2 The Pearson (top) and the Spearman rank (bottom) corre-
lations of some measures of graph structure together with
the running time T (G) and the lowest known color count
γub (G) of the graph. The value is in boldface if |ρ| ≥ 0.5 for
improved legibility. 14

4.1 An algorithm that finds the cluster C (v) of a specified seed
vertex v in a given graph G, assuming that the graph is rep-
resented as a set of adjacency lists L. The subroutine Modify
takes as a parameter the seed vertex and a cluster candidate
and selects a neighboring cluster candidate. R is the num-
ber of iterations taken by the simulated annealing algorithm,
each consisting of S modification steps. T0 is the initial tem-
perature of the simulated annealing algorithm, and α is the
cooling constant. F (C) is the fitness function of Equation 4.30.
The procedure UniformRandom() acts as a random variable
X ∼ Uniform (0, 1): each call made to it returns a new uni-
formly distributed real number. 60

4.2 Denote by A the cluster chosen by one method for vertex
v, and by B the cluster chosen for v by another method. If
the two methods agree, the overlaps a = |A ∩ B|/|B| and
b = |A∩B|/|A| are high. For three clusterings of a caveman
graph, the percentages p of vertices for which the values a
and b fall into a certain range are shown. The values are to be
interpreted as follows: if a = a1 and b = b1, then a1 percent
of cluster B (the method of the right column) is included in
A (the method of the left column) and b1 percent of cluster
A is included in B. 67

4.3 Measures of graph (Equation 4.42) and cluster stability (Equa-
tion 4.43) for the four mobility models (MM) used; the val-
ues are averages over the set of I = 10 experiments, each
with duration D = 600 seconds. 76

4.4 The hop-based heuristic for domain creation of Agrawal and
Jagadish [7] (named “Heuristic 3” in the original article). It
takes as input a graph G = (V, E), an integer d, a rational
number s ∈ [1

n
, n], and an integer hmax ∈ [1, diam (G)]. . . . 81

4.5 The values of the parameters d (the domain count) and s (the
filling threshold) of the heuristic algorithm of Table 4.4 used
in the experiments. The bottom row shows n

d
, which Agrawal

and Jagadish [7] used as a starting point in adjusting s; we
rounded the rational values to the closest integers. 84

LIST OF TABLES xvii

5.1 Properties of the three instances studied in the experiment
set: the collaboration graph (Collab.), the neural network
(Neural), the scale-free graphs with tunable clustering (CSF),
and the deterministic scale-free DGM graphs. 98

5.2 The average (Avg.) over all paths found for each of the three
larger instances, together with the standard deviation (SD)
and the percentage (%) of successful searches (right). 100

6.1 A greedy, heuristic algorithm that outputs vertices of a given
connected graph GS = (S, F) in the order that gives a lexico-
graphically large bit-string representation when used to sort
the columns of an adjacency matrix. L is the set of adjacency
lists of the vertices. 123

6.2 The parameters used in generation of the test graphs for the
two test sets and the resulting average edge counts of the
graphs. The probability p for added reflexive edges was 0.3
for smaller graphs and 0.1 for the larger ones; the expected
number of reflexive edges p ·n is included in all the expected
values of the table. 124

6.3 The expected value and the minimum value of the similar-
ity E [ρ (B1,B2)] for two bit strings that both correspond to
graphs with m edges and n vertices (yielding bit strings with
N = n(n + 1)/2 bits, out of which m are ones) when us-
ing the three difference measures E [ρ (B1,B2)]. Note that
δ⊕ (B1,B2) and δw (B1,B2) give the same expected similarity.
We denote u = max{m, N −m} and ` = min{m, N −m}.
For the LCS similarity, the lower bound for similarity using
this notation is simply u

N
. 126

6.4 Some fundamental difference measures for two graphs P =
(VP , EP) and GS = (S, F). The measures all assign the low
values for identical graphs; hence the subtraction from one
in those that naturally map identical sets to one instead. . . . 136

6.5 A few pairs of graphs that obtained the lowest or highest simi-
larities by Equation 6.21; the order and size of the graphs and
the unlabeled edit distance distedit

(

GS, P
)

are shown (in the
last column, denoted by d) for each pair. The identifiers of
the graphs in the test set of 100 graphs are shown in the first
two columns. 140

xviii LIST OF TABLES

NOTATIONS

GENERAL MATHEMATICAL NOTATIONS

A, B, . . . sets
a, b, . . . elements
∅ empty set
Ā complement of set A
A \ B set A “minus” set B;

A \ B = {a ∈ A | a /∈ B}

Z integers
R real numbers

[a, b] closed interval from a to b
(a, b) open interval from a to b
[a, b) half-open interval containing a but not b
(a, b] half-open interval containing b but not a

f(x) ∼ g(x) similar functions; lim
x→∞

f(x)

g(x)
= 1

x ∝ y x is proportional to y

|A| order (or cardinality) of set A,
number of elements in set A

[n] index set {1, 2, . . . , n}

a ∧ b logical and (conjunction);
true if both a and b hold

a ∨ b logical or (disjunction);
true if either one of a and b or both hold

I identity matrix I = [i]j,k,
where ij,k = 1 if and only if j = k, otherwise 0

O (f(x)) if function g(x) grows no faster than f(x),
it has complexity O (f(x)); formally,
∃x0, k > 0 s.t. f(x) < k · g(x) ∀x > x0

NOTATIONS xix

PROBABILITY-THEORETICAL NOTATIONS

X, Y, . . . random variables (r.v.)
Pr [X = x] probability of r.v. X having value x

E [X] expected value of X
Var [X] variance of X
Cov [X, Y] covariance of X and Y
ρ correlation

X ∼ f X has distribution f
Uniform (a, b) uniform distribution over interval [a, b]
Binom (n, p) binomial distribution with n repetitions

and success probability p
Geom (p) geometric distribution with success probability p
Poisson (λ) Poisson distribution with rate of change λ
Exp (λ) exponential distribution with rate of change λ

M Markov chain
P transition matrix P = [p]i,j of a Markov chain
S state space of a Markov chain, S = {1, 2, . . . , N}
N order of the state space; |S| = N
i, j, . . . states in the state space, i, j ∈ S
pi,j transition probability from state i to state j

GRAPH-THEORETICAL NOTATIONS

G graph G = (V, E)
V set of vertices in a graph
E set of edges in a graph
n number of vertices |V | (order of a graph)
m number of edges |E| (size of a graph)
Kk complete graph of order k

u, v, w vertices in V
{v, w} edge connecting vertices v and w
Γ (v) neighborhood of a vertex v
deg (v) degree of a vertex v
∆ (G) maximum degree over the vertices of G
δ (G) density of a (sub-)graph G
diam (G) diameter of G (largest distance)
g (G) girth of G (length of shortest cycle)

A adjacency matrix of a graph

xx NOTATIONS

ABBREVIATIONS AND ACRONYMS

a.s. almost surely

BA Barabási-Albert scale-free graph generation method
BFS Breadth-first search

CWG Chilean Web Graph

DBLP Universität Trier’s Computer Science Bibliography Database

DFS Depth-first search
DGM generation model of Dorogovtsev, Goltsev, and Mendes

ER Erdős-Rényi graph generation model

FIFO First-in first-out queue order

IMDB Internet Movie Database

MC Markov chain
MCMC Markov Chain Monte Carlo method
MHT Minimum-hop tree
MST Minimum spanning tree

� ��� Network Simulator

P2P Peer-to-peer network
PTAS polynomial-time approximation scheme

RDF Resource Description Framework
RW random walk

SCC strongly connected component
s.t. such that

TVD total variation distance

URI Universal Resource Identifier
URL Universal Resource Locator

WS Watts-Strogatz small-world graph generation model
WWW World Wide Web

NOTATIONS xxi

PREFACE

The research that lead to this thesis was supported by the Academy of Fin-
land under grants 81120 (STADYCS, 2002–2003) and 206235 (ANNE, 2004–
2006), as well as the Helsinki Graduate School in Computer Science and
Engineering (2001–2002), the Nokia Foundation (2004), and the Rotary
Foundation (2005).

The thesis would hardly exist without the encouragement and support of
my supervisor, professor Pekka Orponen. Also Pekka Nikander has provided
useful insight on ad hoc networks [307]. For their support and helpful com-
ments, I thank Helger Lipmaa and Harri Haanpää; both were there for me
either online or in person whenever I needed to clear my thoughts on some
calculation or construction.

For not only for exchange of ideas, but also for “material” support, I thank
Kosti Rytkönen for the assisted use of his graph visualization tool, Stefano
Marinoni and Mikko Särelä for the implementation of an � ��� simulator for
ad hoc networks, Barbara Poblete for the data set used in the Chilean web
study [305], and Marco Gaertler for computing global clusterings to which
we compared our local method [277].

Most of the year 2005 I spent in Santiago, Chile, working on this thesis
at the University of Chile, where I was instructed by Ricardo Baeza-Yates
and Carlos Hurtado. For helpful discussions and exchange of ideas during
my stay in Chile, I also thank Javier Bustos, Álvaro Graves, and Claudio
Gutiérrez.

I am in gratitude to the Laboratory for Theoretical Computer Science
in Helsinki University of Technology, where the majority of this work was
done, as well as to the Computer Science Department (Departamento de
Ciencias de Computación) at University of Chile. I am especially obliged to
thank the numerous system administrators whom I have constantly bothered
both at TKK and in Chile while writing this thesis. For their unconditional
support, I thank my dear friends and fellow students at the Department of
Computer Science and Engineering. In addition, I thank Riku Saikkonen
for a last-minute fix on an “ä”.

Finally, I thank the two professors who pre-examined this thesis, Prof.
Erkki Mäkinen (University of Tampere in Finland) and Prof. Sergey Doro-
govtsev (University of Aveiro in Portugal and the Russian Academy of Sci-
ences in St. Petersburg) for their valuable comments and observations.

This document has been typeset on �
 �	� using LATEX, most figures were
either drawn with �

� �� (integrating LATEX-commands into the figures) or gen-
erated directly into � ��� ��-format (occasionally just by hand). A tool called� ������ was most helpful in image conversion. The data plots were pre-
pared with ���� ���, using various scripts for the statistics — programming
was certainly one of the most entertaining parts of this work. Should anyone
be interested to use some software or scripts used in this work, please contact
the author.

xxii PREFACE

1 INTRODUCTION

Deciding which street to take to get to the airport the quickest, finding the
website of an appropriate hotel for an upcoming business trip, and choosing
a set of articles to read on a promising new technology are all problems that
deal with networks. The modern society is largely based on networks, such as
telecommunication networks, social networks, highways, flight routes, power
grids, and water supply systems. The design, usage, and maintenance of these
networks are tasks that affect the cost and reliability of services, which in turn
reflect on the lives of the people who use them without much thought to the
underlying network structure.

Any system that can be characterized as a set of inter-related entities al-
lows an abstraction into a network. The entities are the nodes of the network
and the interactions, dependencies, proximities, or other types of relations
between them are captured in the connections of the network. In general,
properties such as weights, labels, or classifications may be imposed on the
nodes and connections alike. The connections may also be assigned a direc-
tion, for example to represent a one-way street in a road network.

The practical tasks involving networks are numerous in science and en-
gineering, and the networks in question are larger than ever before. Tradi-
tionally network problems have been studied under the assumption that the
networks’ generation, growth, and connection patterns are governed by a ran-
dom process, thereby making little or no use of information on the structure
of the networks.

In natural networks, however, not all nodes have equal connectivity pat-
terns. Some airports offer many more connections than others, and some
people have more and stronger social contacts than others. By characteriz-
ing a network as natural, we simply suggest that the network in question arose
in real-world context rather than as an artificial mathematical model, hence
not restricting ourselves to biological networks.

In this thesis we study networks in which the nodes and their connection
patterns are complex in the sense that the presence or absence of a connec-
tion could not be merely modeled by flipping a coin and where structural
properties are not constant over the entire network. We call such networks
nonuniform; the existing literature lacks a single, descriptive, and widely ac-
cepted term for such networks.

The study of nonuniform networks has become popular ever since the
seminal paper of Watts and Strogatz [314] brought forward the term “small-
world network”, followed by the concept of “scale-free networks”, initiated
largely by Barabási’s research group [25, 26]. In this thesis, we study the
discovery and utilization of observations about nonuniform network structure
from an algorithmic perspective.

The thesis is organized as follows. First, we briefly introduce the concept
of nonuniform networks in Chapter 2, reviewing models and properties of
nonuniform networks and discussing the effects of network structure on al-
gorithmic behavior. Chapter 3 addresses the issue of sampling nonuniform
networks. Chapter 4 presents and discusses methods for network clustering,
also known as community discovery, which allows for more efficient handling

CHAPTER 1. INTRODUCTION 1

of relevance queries, for example, on large nonuniform networks. Chapter 5
concentrates on searching and routing in nonuniform networks. In Chap-
ter 6 we discuss graph data mining, after which we conclude the thesis and
discuss possible continuations of this work in Chapter 7.

All run-time sensitive experiments reported in this thesis were ran on an
AMD Athlon XP 1600 MHz workstation with 1,024 MB of main memory.
With some computation-intensive experiments, the work was divided to het-
erogeneous workstations, in which case run-time comparisons have not been
made.

The author’s contributions in this thesis include sampling, clustering,
path-finding, spanning-tree construction, and pattern-matching algorithms,
together with experiments, comparisons to other work, and applications to
network problems. The thesis partially overlaps with a former monograph
[306], which we suggest to readers unfamiliar with the field of complex
networks as an introduction; a good alternative is Newman’s review arti-
cle [237]. Material from an article co-authored by Pekka Orponen [249] has
been used in Chapter 3, and in Chapter 4, material from other publications
[250, 277, 284, 305, 307] respectively has been included. Contributions of
collaborators that are discussed in this thesis are the following:

• In Section 4.2.2, the idea of using of Fiedler vectors for clustering
and the derivation of the approximation formula are by Pekka Orpo-
nen [250].

• In Section 4.2.3, author’s original reduction for RELATIVE DENSITY

was clarified to its present form by Jiří Šíma [284].

• In Section 4.5.1, many practical concerns of the integration of the lo-
cal clustering in hierarchical ad hoc networks are due to Pekka Nikan-
der [307]; the � ��� simulations of the algorithm are based on an im-
plementation by Stefano Marinoni and Mikko Särelä [280].

The thesis includes many plots and graphics made with ���� ���, some of
which unfortunately are not sufficiently legible in black-and-white prints. For
those plots that appeared risky in this sense, an effort was made to order the
legend in decreasing order of the curves on the y-axis whenever possible. For
the interested reader, we do recommend resorting to an electronic version of
this thesis with zoomable color illustrations; it is available at

���� ������ �� 	� ���� �� ����� ��	�� ��� ����� ����� ����
 �

as well as in the electronic collections of the library of the Helsinki University
of Technology at

���� ������ ���� �� ��� ��������	
 ���� ��	�.

2 CHAPTER 1. INTRODUCTION

2 NETWORKS AS GRAPHS

A mathematical formalization for a network is a graph G, defined as a pair
of sets G = (V, E). A good and comprehensive introduction to graphs is
Reinhard Diestel’s textbook [96].

The set V of vertices represents nodes of a network. The vertices, unless
otherwise stated, are labeled by integers 1, 2, . . . , n. The number of vertices
n = |V | is the order of the graph. The symbols u, v, and w (with subscripts
when necessary) are used to refer to a single specific vertex.

The connections of a network are represented by the set E of edges. Un-
less otherwise stated, an edge is assumed to be an unordered pair of distinct
vertices, denoted simply by {v, w}. If all edges are unordered pairs, the graph
is undirected. An edge {v, v} is a reflexive edge, also called a self-loop. In
a weighted graph, a weight function is defined that assigns a weight on each
edge. In a simple graph, only one edge may exist between a given pair of
vertices (but reflexive edges are allowed).

The edge count |E| = m is the size of the graph. The density of a graph
G = (V, E) is defined as the ratio of the number of edges present to the
maximum possible,

δ (G) =
m
(

n
2

) . (2.1)

For n ∈ {0, 1}, we set δ (G) = 0. A graph of density one is called complete
and is denoted by Kn.

In many cases, instead of studying the graph G itself, it is useful to study its
complement, which is a graph with the same vertex set, but with only those
edges included in its edge set that are not present in E (usually excluding
reflexive edges). Vertices among which no edges appear form an indepen-
dent set. Any independent set in graph G = (V, E) induces a clique in the
complement of G.

If {v, w} ∈ E, we say that v is a neighbor of w. The set of neighbors for
a given vertex v is called the neighborhood of v and is denoted by Γ (v). A
vertex v is a member of its own neighborhood Γ (v) only if the graph contains
a reflexive edge {v, v}.

The adjacency matrix AG of a given graph G = (V, E) of order n is an
n × n matrix AG = (aG

v,w) where

aG
v,w =

{

1, if {v, w} ∈ E,
0, otherwise. (2.2)

For a multigraph, the elements of an adjacency matrix indicate the edge
multiplicities instead of being binary. Another alternative for representing
a graph is to form an adjacency list for each vertex, listing the neighbors it
has. It depends on the application at hand which representation is the most
practical. For sparse graphs, i.e., graphs with low density, the adjacency-list
representation is more compact, whereas for dense graphs, i.e., high-density
graphs, it is often more practical to store and process the adjacency matrix.

A graph where the vertex set can be partitioned into k nonempty non-over-
lapping subsets such that edges only appear across subsets and not within is a

CHAPTER 2. NETWORKS AS GRAPHS 3

k-partite graph. In particular, if the partition consists of two such subsets, the
graph is bipartite.

The number of edges incident on a given vertex v is the degree of v and is
denoted by deg (v). In a simple graph, the degree of a vertex is equal to the
number of neighbors it has,

deg (v) = |Γ (v)| . (2.3)

The maximum degree of a graph G = (V, E) is

∆ = ∆ (G) = max
v∈V

{deg (v)}. (2.4)

The average degree is denoted k̄ and is simply 2m/n, as each edge has exactly
two distinct endpoints.

Listing the degrees of all vertices in G, one obtains a degree distribution
of the graph, fluently represented visually as a histogram and characterized
mathematically by the probability distribution function that gives the proba-
bility for a randomly chosen vertex to have degree k. If all the vertices of a
graph have the same degree k, the graph is k-regular. A 3-regular graph is
also called a cubic graph.

A path from v to w is a sequence of edges in E starting at vertex v and
ending at vertex w;

{v, v1}, {v1, v2}, . . . , {vk−1, vk}, {vk, w}. (2.5)

If such a path exists, v and w are connected. The length of a path is the
number of edges on it, and the distance between v and w is the length of the
shortest path connecting them in G. The distance from a vertex to itself is
zero, as the path from a vertex to itself is an empty edge sequence; sometimes
in the presence of reflexive edges more complex definitions of reachability
between vertices become useful.

A path is said to be a cycle if v = w. A simple path is one that contains
no cycle, i.e., the vertices v, v1, v2, . . . , vk and w are all distinct. The shortest
path between any pair of vertices is always simple.

A graph is connected if there exist paths between all pairs of vertices. If
there are vertices that cannot be reached from others, the graph is discon-
nected and each group of vertices that are all connected by paths is called
a (connected) component of the graph. In directed graphs, a component
where each pair of vertices is connected by a path is called a strongly con-
nected component (SCC).

A connected graph that has no cycles is acyclic; such graphs are called
trees and they always have exactly n − 1 edges. A tree T = (V, F) is a
spanning tree of a graph G = (V, E) if F ⊆ E.

A disconnected graph where each component is acyclic is called a forest.
Graphs that are not trees or forests are said to be cyclic. The length of the
shortest cycle in a cyclic graph is called the girth g (G) of the graph.

The maximum distance over all vertex pairs in V is the diameter of the
graph G = (V, E), denoted by diam (G). The average distance of a graph G
is denoted by L (G); it is also called the average path length of the graph. We
only consider unordered pairs of distinct vertices, which yields a somewhat

4 CHAPTER 2. NETWORKS AS GRAPHS

higher average than including also the n reflexive pairs that all have distance
zero, but in the literature both definitions are used. In a disconnected graph,
distance-based measures are only meaningful for each connected component
independently, as it is not clear whether a disconnected vertex pair should
have infinite distance or simply be excluded of the calculations, resulting in
poorly comparable measures.

When the degrees of the vertices are known, the expected average distance
can be theoretically obtained for certain families of graphs [70]. There are
many terms that refer to the lengths of the shortest paths in a graph, includ-
ing characteristic path length [314] (i.e., the average path length) and graph
geodesics [320].

A subgraph GS = (S, F) of G = (V, E) is composed of a set of vertices
S ⊆ V and a set of edges F ⊆ E such that {v, w} ∈ F implies v, w ∈ S;
graph G is then called a supergraph of GS. Complete subgraphs are called
cliques.

In a graph G = (V, E), an induced subgraph for a vertex set S ⊆ V is
a graph that has S as the vertex set and the edge set includes all such edges
{v, w} in E that have both of the vertices v and w (called the endpoints of
the edge) included in the set S. We often use the symbol for the vertex set
of an induced subgraph in place of the subgraph symbol as the vertex set
unambiguously defines the induced subgraph in a graph G = (V, E); for
example, for the density of a subgraph GS = (S, F), we may write either
δ (S) or δ

(

GS
)

.
A partition of the vertices V of a graph G = (V, E) into two sets S and

V \ S is called a cut and is denoted by (S, V \ S). The number of edges that
connect a vertex in S to a vertex in V \S is called the cut size and is denoted
by c (S, V \ S).

Two graphs G = (V, E) and P = (VP , EP) are isomorphic if there exists
a bijective mapping φ : V → VP that preserves the adjacency relation, i.e.,

{v, w} ∈ E ⇔ {φ (v) , φ (w)} ∈ EP . (2.6)

This means that the graphs are identical except for the vertex labels. The
bijection φ is called a graph isomorphism.

A graph with edges formed by ordered pairs is a directed graph and each
directed edge 〈v, w〉 has a source (or start) vertex v from which the edge leads
to a target (or end) vertex w. For directed graphs, we distinguish between the
out-degree of a vertex

degout (v) = |{〈v, w〉 | w ∈ V }| (2.7)

and the in-degree

degin (v) = |{〈w, v〉 | w ∈ V }| . (2.8)

The above definitions are straightforward to generalize to directed graphs;
in defining density, the maximum number of edges is doubled, for paths,
the edge directions must agree, and for degree distributions, the two types of
degrees are often dealt with separately.

CHAPTER 2. NETWORKS AS GRAPHS 5

2.1 GENERATION MODELS

The mathematical study of graphs is known as graph theory and originates
from the works of Leonhard Euler in the 18th century. When the applica-
tions of networks started to become more eminent in the late 1950s, the study
of random graphs became popular.

In 1959, Gilbert [133] proposed the following model to generate graphs of
arbitrary order: fix the graph order n and choose a probability pe. Out of the
possible

(

n
2

)

unordered vertex pairs, include each one as an edge in the graph
G uniformly at random with probability pe. Hence, the expected number of
edges in the graph is

E [m] = pe

(

n

2

)

. (2.9)

Another approach was taken by Erdős and Rényi [109, 110], who instead fix
both n and m and select the set of m edges out of all possible

(

n
2

)

unordered
pairs uniformly at random. The former model is known as the Gn,p model
and the latter as the Gn,m model. We refer to these kinds of graphs as uni-
form random graphs, occasionally using the widely-spread abbreviation ER
for Erdős-Rényi graphs, although it is also used in the literature to refer to
Gilbert’s Gn,p model. For more information on the properties of these mod-
els, we recommend for example Bollobás’ book on random graphs [39].

These uniform random graph models were not intended to capture prop-
erties of real-world network problems, as emphasized by Erdős and Rényi [110]
already in 1960, but rather to analyze the existence of certain substructures
and the behavior of graph algorithms, such as finding shortest paths, max-
imal cliques, or minimal colorings of graphs. Nevertheless, the need for
generation models in application areas resulted in wide adoption of uniform
random graphs as models of real-world networks, often with modification
such as placing the vertices on a plane and using connection probabilities
proportional to Euclidean distance [315].

In 1998, Watts and Strogatz [314] threw the employment of uniform ran-
dom graphs as models of real-world networks under re-evaluation, reporting
observations on natural network data that were in vast disagreement with the
uniform models. The disagreeing property studied by Watts and Strogatz
measures the density of subgraphs induced by vertex neighborhoods:

Definition 2.1. The clustering coefficient of vertex v is

C (v) = δ (Γ (v)) , (2.10)

i.e., the density of the subgraph induced by the neighbors of v. The clustering
coefficient of a graph C (G) is the average of the clustering coefficients over
the vertex set.

Watts and Strogatz observed that the clustering coefficient was usually
considerably higher for natural network data than for uniform random graphs
with the same order and size.

In addition to the clustering coefficient, Watts and Strogatz [314] also stud-
ied the lengths of the shortest paths connecting two vertices. For uniform

6 CHAPTER 2. NETWORKS AS GRAPHS

random graphs, the average path length grows slowly with the order [70],

L (G) ∼
ln n

ln k̄
. (2.11)

From the construction parameters, for Gn,p it holds for the average degree
that k̄ = p(n − 1) and for Gn,m clearly k̄ = 2m

n
. Watts and Strogatz observed

that for natural networks, L (G) was almost as small as for uniform random
graphs.

Based on these observations, Watts and Strogatz suggested a toy model
(referred to as the WS model) for constructing networks that match the clus-
tering coefficient and average path length of natural graphs. They fix the
graph order n and place the vertices on a circle. An initial lattice is formed
by connecting each vertex to the k nearest vertices along the circle on both
sides. Such a lattice structure produces the high clustering coefficient. With
the goal of introducing small average path length to the graph, Watts and
Strogatz choose a small rewiring probability pe, and for each vertex v, with
probability pe rewire the other endpoint of each of the edges incident on v
uniformly at random over V . See Figure 2.1 for an illustration.

Figure 2.1: On the left, the initial lattice graph of Watts and Strogatz with
n = 16 and k = 3; on the right, a rewired version with small pe (adapted
from [314]).

The model of Watts and Strogatz [314] has its weaknesses, inspired by
which several modifications and alternatives have been proposed [189, 242,
243], but it serves to show that for small values of pe, the introduction of
rewired edges rapidly drops the average path length almost to the expected
level of uniform random graphs of same order and size, but the highly clus-
tered lattice structure keeps the average clustering coefficient high for a rel-
evant regime before it drops as pe is increased above a critical level. Graphs
with these two properties — a high clustering coefficient and a low average
path length — are now commonly known as small-world networks, a term
coined by Watts and Strogatz [314].

The concept of small-world networks became quickly popular and related
studies on natural network properties were initiated by many researchers. In
1999, Barabási and Albert [25, 26] came forward with another observation on
natural networks that disagreed with both the uniform random graphs and the
numerous variations that had sprung off the model of Watts and Strogatz.

The observation made by the research group of Barabási deals with the
degrees of vertices in natural networks. For uniform random graphs, the

CHAPTER 2. NETWORKS AS GRAPHS 7

degree of a vertex follows the binomial distribution Binom (n − 1, pe), yield-
ing a Poissonian distribution for the number of vertices with given degree k
[39]. Calculating and plotting the degree distributions for the original small-
world network model (or a variation) shows a form similar to the Poissonian:
most vertices have a degree close to the average degree, and both tails of the
distribution decay rapidly around the mean value. When plotting the de-
gree distribution of real-world networks, Barabási’s research group discovered
forms strikingly distinct from Poissonian but much alike across different types
of natural networks. All the observed distributions had a persistent right tail.
Also, when the data was plotted on a log log-scale, the majority of the data set
could be approximated with straight lines with almost the same slope.

It had turned out that the average degree of a natural network was not at
all characteristic of the degrees of the included vertices, and practically all
graphs based on natural data contained a few special vertices with extremely
large degrees. These high-degree vertices are known as hubs and such dis-
tributions are called scale-free distributions as they could be more or less
crudely be approximated by a power law1 of the form

Pr [k] ∼ k−γ , (2.12)

meaning that the probability that a randomly chosen vertex has degree k is
proportional to k−γ , possibly with multiplicative and additive constants and
some noise in the beginning and the end of the distribution. Similar obser-
vations were made on several different structural properties of the Internet
[112], after which it became trendy to plot nearly any data set on a log log-
scale and fit a line by linear regression, followed by suggestions of more so-
phisticated functions that provide better fits to the data. The key finding was
nevertheless not the exact function, but the presence of such hubs in vari-
ous natural networks, often forming a hierarchy of hubs and causing a small
diameter and average path length. However, many of such power-law mea-
surements made suffered from sampling bias [77], the reasons of which are
discussed in Chapter 3.

Networks with such approximate degree distributions are widely known as
scale-free networks, also the term power-law graph is used. Also this observa-
tion launched a wave of generation model proposals. The method suggested
by Barabási and Albert uses a small seed graph to grow a graph of order n
by adding one vertex at a time, assigning a fixed number of outgoing edges
to each added vertex v and choosing the other endpoint for each of these
edges with probability proportional to the current degree of the vertices that
are already present in the graph, linking the edges with a higher probability
to vertices that already have a high degree. This principle is known as pref-
erential attachment; ideas similar to preferential attachment, also known as
the “rich get richer” model, can be traced to the 1950s [285]. Generation
models based on this idea are often called Barabási-Albert (BA) models.

Many variations of preferential attachment generation models have been
proposed, for example to introduce clustering into the edge creating process
[154] as it is not captured by the pure preferential attachment rule alone.
The mathematics of the proposal were open to questioning, initiating more

1A review of power laws and related distributions is given by Mitzenmacher [229].

8 CHAPTER 2. NETWORKS AS GRAPHS

formal approaches [41, 83]. Also methods for matching a given degree se-
quence have been suggested [223, 230]. Ferrer i Cancho and Solé [116] ob-
served that simultaneous minimization of density and average distance leads
to such distributions, which may well explain why real-world networks tends
to have these properties, as their natural evolution is in a sense a decentral-
ized optimization process.

The observations of network structure in the real world did not stop there,
but were followed by analysis of other properties, such as degree-degree cor-
relations [37, 304], i.e., whether vertices of high degree tend to be connected
to other high-degree vertices — known as assortative correlation — or rather
to low-degree ones (disassortative correlation). It was also observed that clus-
tering is often a consequence of a hierarchical topology [27]. Further analysis
of clustering properties is given by Newman [236].

As many natural graphs are not static but instead evolve over time, also
observations of the dynamics of structural properties are of interest. It was
recently discovered by Leskovec et al. [204] that the density of some natural
graphs tends to grow (in the sense that the average degree of the graph grows
slowly over time, called accelerated growth [221]) and that the diameter de-
creases, both of which are observations that contradict previous assumptions
— earlier generation models for matching natural network data were con-
structed to capture a constant average degree (a fixed number of edges added
by preferential attachment per vertex [25]) and a slowly increasing diameter
(related to the slow growth of the average path length [10, 314]). Leskovec
et al. propose generation models to match their observations, and it can be
expected that numerous variations of and alternatives to these models will be
proposed in the near future by the natural network research community.

A recent survey [90] summarizes many of the most frequently used mea-
surements of network structure emerging from the aforementioned studies
and related work. Also, it has been proven useful to take advantage of struc-
tural observations, such as the presence of small separators,2 on natural graphs
[33] for applications such as compressing large graphs [34].

As a result of this sudden interest in properties and models of natural net-
works, there now exists a cornucopia of generation models to meet the obser-
vations of almost any imaginable natural network [102, 103, 237, 306]. More
models are suggested on a monthly if not weekly basis, an up-to-date review
on the models is hard to find. We use the term nonuniform random graph to
refer to families of graphs for which the edge placement is not uniform over
the vertex set, yielding interesting structural properties, such as high cluster-
ing or the presence of hubs. The term nonuniform network encompasses
randomly generated nonuniform graphs as well as natural networks that are
modeled by graphs with nontrivial structural properties.

2.2 ALGORITHMIC IMPLICATIONS OF NETWORK STRUCTURE

Algorithms can be evaluated based on the amount of computation they need
to produce a solution for a given problem instance. The amount of com-

2A separator of a graph G = (V, E) is a set of edges the removal of which splits the graph
into components.

CHAPTER 2. NETWORKS AS GRAPHS 9

putation can be measured by the number of elementary operations used or
by the running time of the algorithm. For many problems, the amount of
computation needed depends heavily on the problem instance. An instance
that requires much time on any algorithm for a specific problem is said to be
a hard instance of that problem, although the concept of hardness is tricky
and difficult to define in a generally satisfactory manner.

The traditional approach to the design and analysis of algorithms is to
assume each problem instance equiprobable, although it is known for many
problems that the hard instances seem to form only a specific subset of the
instance space. This is the case, for example, for the satisfiability problem
SAT, where the task is to find a truth assignment to a set of variables such that
a given logical formula, composed of these variables, negations, disjunctions,
and conjunctions, evaluates to true. The logical formulas are called SAT-
instances. If the formula is composed of three-literal disjunctions (called
clauses) that are joined by conjunctions, it is called a 3SAT-instance. For the
decision problem 3SAT, using a specific random instance generator, there is
a clear region of the clauses-to-variables ratio in which randomly generated
instances are much harder to solve than for other ratios [228].

The phenomenon of a rapid transition from an easy regime to a hard
regime or vice versa when adjusting the generation parameters of instances
of a (combinatorial) problem is known as a (combinatorial) phase transition
[217]. Work is undergoing to identify phase transitions for graph problems
and such thresholds (with respect to density measures) have been observed
for graph coloring [197] and vertex cover [29]. There are conflicting reports
on whether the Hamiltonian cycle problem, where the task is to determine
whether a given graph G = (V, E) contains a cycle of length n that visits
each vertex in V , exhibits a phase transition [124, 125, 303].

For problems involving graphs, it is known that restricting the family of
graphs may yield an easier problem than the general one. Bounding the
maximum degree ∆ (G) from above allows for more efficient exact and/or
approximation algorithms — for example the NP-complete clique problem
where the task is to determine whether a given graph contains a complete
subgraph of order k is solvable in O

(

nk+1
)

time if it is known that ∆ (G) ≤
k, as only subsets of vertices of order (k +1) or smaller need to be examined.

Restricting to planar graphs, i.e., graphs that can be drawn on a plane
without having any of the edges cross, allows solving for example the graph
isomorphism problem in linear time, even though for general graphs no poly-
nomial algorithm is known (the problem is known to be in NP, but complete-
ness is not believed to hold) [165].

The problem of determining whether one graph contains the other as a
subgraph is called subgraph isomorphism [301] and is known to be NP-
complete [130]. The subgraph isomorphism problem, along with many other
generally hard problems, is efficiently solvable for planar graphs [108]. Sim-
plifications, special cases, other variants of isomorphism problems and algo-
rithms (both exact and approximate) have been under much study [122, 222].

It has been acknowledged for a couple of decades that comparing the be-
havior of “competing” graph algorithms for a specific problem by generating
uniform random instances and observing the behavior of the algorithms does
not give informative results [50], which suggests that analyzing them for uni-

10 CHAPTER 2. NETWORKS AS GRAPHS

form random instances might not be the most fruitful approach either. An-
other statement towards the significance of structural properties in algorithm
design and analysis is the suggestion of Garay et al. [129] to characterize the
time complexity of a graph algorithm in terms of the diameter instead of the
order of the input graph. They study the distributed construction of mini-
mum spanning trees (MST) for undirected weighted graphs3; they also point
out that the graph diameter has been found to be the governing factor of the
complexity of leader election, which is the problem of choosing one vertex
v ∈ V to have a special role in some process that follows the leader election,
such as spanning tree formation.

Garay et al. [129] bring forth the question of whether it is possible to deter-
mine which structural properties determine the complexities of fundamental
graph problems and employ this information in designing better graph al-
gorithms. Our work addresses essentially the same question, embedding it
into the study of natural networks: given the observations that natural net-
works have nonuniform properties, whether and how this information could
be used to design efficient algorithms for networks that are known to have
a certain property, such as a scale-free degree distribution or a small-world
topology? It is also of interest whether instances with certain properties fall
into the easy or the hard regime for problems with observed or conjectured
phase transitions. In this section we review experiments and observations on
the behavior of algorithms on nonuniform graphs.

A straightforward application area is the study of epidemic spreading in
a population of interacting individuals: the vertices represent the individ-
ual and an edge is placed between two individuals if they are in contact.
The structure of these interactions, referred to as network topology, has been
found to have significant impact on epidemic spreading. Hence making
structural observations of the interaction patterns aids in preventing or lim-
iting epidemic outbreaks. An effect of a small-world topology has been ob-
served [231, 251] as well as implications of having a scale-free topology [255].
An efficient vaccination scheme known as the acquaintance strategy for scale-
free networks [79] works as follows: choosing a uniform random sample and
then a random neighbor of each included vertex results in a sample where
high-degree vertices are more probable to be included. The effects of degree
correlations on epidemic spreading have been studied by Boguñá et al. [38].

In common terms, if one wishes to vaccinate people with many social
contacts, instead of simply vaccinating randomly selected people (even if one
asked them for subjective evaluations on how “connected” they are, which
would not be reliable), vaccinating people who were named as friends by
randomly selected people gives effective results in preventing epidemics, as
people with many social contacts are more probable to be “nominated” for
vaccination and hence become less likely to expose their numerous friends
to the epidemics.

Another property of practical interest is the robustness of networks, a con-
cept which entails for example the decomposition pattern that a network ex-
hibits when vertices or edges are removed. The attack tolerance of scale-free
networks with redundancy is higher than that of networks with redundancy

3A minimum spanning tree is a spanning tree for which the sum of the weights of all
included edges is minimum, i.e., no spanning tree exists with smaller total edge weight.

CHAPTER 2. NETWORKS AS GRAPHS 11

only [11], meaning that the surviving portion of a redundant scale-free net-
work remains more functional under random vertex or edge eliminations,
although a malicious adversary with knowledge of the graph topology may
quickly destroy a scale-free network by eliminating only the hubs. Also theo-
retical results on the robustness of scale-free graphs are available [40].

Searching for a particular vertex in a given graph is a problem with nu-
merous real-world applications. Small-world networks can be hard to search
with local methods even though paths are short [132, 310], but the same
topological property can also be turned into an advantage in, for example,
searching the World-Wide Web [4]. This has also been done for scale-free
topologies [5]. Finding the shortest path between two vertices in a graph has
also been studied in the framework of nonuniform networks [182, 184]. The
effect of the topological properties on the functioning of peer-to-peer (P2P)
networks is a problem of interest and under investigation [253, 327]; such
networks will be discussed in more detail in Chapter 5.

The behavior of random walks, i.e., traversals that select the next vertex
uniformly at random from the neighbors of the current vertex, has many
implications in algorithm design and applications. It has been studied in
different network topologies; small changes to the completely blind uniform
walk can have drastic effects on how many distinct vertices does such a walk
visit on average [294, 325]

2.2.1 Network properties and computational load

The running time of an algorithm on a given instance is not easily predicted.
In many cases, the closer the density is to 0.5, the longer the computation
takes, as a large number of edges is slower to process than a small num-
ber (and with density much larger than 0.5, the complement has a density
smaller than 0.5, and many problems can be solved also through the com-
plement).

In this section demonstrate the complex relationships between graph struc-
ture, different measures such as the clustering coefficient and average path
length, and the running time of an algorithm. We use the COLOR/02/03/04
data set [168] for graph coloring combined with known feasible color counts
and the running times obtained on these graphs with certain heuristic algo-
rithms [63, 64]. In graph coloring, the task is to assign a color to each vertex
such that no two neighbors share a color, minimizing the number of colors
used. The minimum number of colors needed for a given graph G is called
the chromatic number γ (G) of the graph. For graph coloring, small-world
graphs appear even harder instances than uniform random graphs [310]. We
made similar observations [306] for the CLIQUE problem.

It is acknowledged that although many properties of networks may be mea-
sured, it is not clear which set of measurements would be the most informa-
tive for a specific application, as many of the possible measures may be corre-
lated or otherwise dependent of each other [90]. For demonstrative purposes,
we performed a small-scale statistical analysis on a set of 86 connected and
cyclic graphs from the aforementioned data set, some properties of which
are shown in Table 2.1. We only included those instances that had girth
and diameter defined for ease of comparison on the statistics (having infi-

12 CHAPTER 2. NETWORKS AS GRAPHS

Table 2.1: Some descriptive statistics of 86 connected cyclic graphs of the
[168] data set for which upper bounds for the chromatic number are known,
γub (G) ≥ γ (G), and running times (in seconds) T (G) of a graph coloring
algorithm.

Measure C (G) γub (G) diam (G) m g (G) ∆ (G) n L (G) T (G)

Mean 0.31 20.98 3.98 35664 3.03 143.0 624.24 2.45 145.25
Std. dev. 0.27 29.77 2.79 80402 0.5830 167.8 997.93 1.19 426.94
Minimum 0 3 2 20 2 4 11 1.03 0
Median 0.34 9 3 5724 3 94 250 2.12 12.5
Maximum 0.97 224 15 449449 4 924 5231 6.94 2693

nite diameter or girth included would be impractical) and aiming to obtain
meaningful correlations.

Possible linear dependencies between two random variables X and Y can
be studied through their correlation,

ρ(X, Y) =
Cov [X, Y]

√

Var [X] Var [Y]
∈ [0, 1]. (2.13)

Correlation is zero for independent random variables and one for linearly
dependent variables, i.e., X = aY + c for a, b, c ∈ R. Rank correlations
deal with the ranks of the values when ordered by magnitude instead of us-
ing the values directly. All correlations aim to measure the extent to which
one random variable may be explained by observing the value of another
when assuming linear dependency. Table 2.2 shows the Pearson correlations
(assuming Gaussian distribution for both variables) as well as the Spearman
rank correlations (a non-parametric method, hence better suited for this task)
[214] over the data set.

The edge count and maximum degree are correlated with the color count
of the graph as is to be expected — introducing more edges to a graph usu-
ally implies that a higher number of colors is needed to color the modified
version. Also the presence of high-degree vertices, especially those with high
clustering coefficients, tends to cause high color counts. Similarly the run-
ning time is correlated with edge count (as the input must be read in any case,
regardless of the network topology) and maximum degree. The other factors
do not significantly correlate with clustering, although a higher clustering
coefficient is related to a larger color count. Diameter naturally correlates
with average path length, being its upper bound.

As stated above, the size of the graph (i.e., the edge count) governs the
time needed for an algorithm to read the input and can therefore be ex-
pected to explain the runtime well. More complex attempts to explain the
runtime in terms of the other properties by means of linear regression are un-
successful, as the edge count alone gives a relatively high coefficient of deter-
mination, R2 = ρ2 = 0.8471, and adding more independent variables causes
no statistically significant improvement in the model. Using only the edge
count to explain the runtime works well for running times up to 500 seconds,
but fails for instances with high edge counts, as shown in Figure 2.2. This
effect could be caused by the experimental setup rather than some properties

CHAPTER 2. NETWORKS AS GRAPHS 13

Table 2.2: The Pearson (top) and the Spearman rank (bottom) correlations of
some measures of graph structure together with the running time T (G) and
the lowest known color count γub (G) of the graph. The value is in boldface
if |ρ| ≥ 0.5 for improved legibility.

Measure C (G) γub (G) diam (G) m g (G) ∆ (G) n L (G)

γub (G) 0.6286
0.7209

diam (G) 0.0050 -0.2083
-0.1465 -0.2693

m 0.4426 0.8210 -0.1621
0.4678 0.8301 -0.1747

g (G) -0.4490 -0.1267 0.0149 -0.0354
-0.5614 -0.3986 0.2143 -0.2549

∆ (G) 0.4303 0.7670 -0.2252 0.8015 -0.0392
0.4058 0.8094 -0.1593 0.9258 -0.1361

n 0.1297 0.2737 -0.0545 0.6494 0.0132 0.5496
0.1720 0.5803 0.1405 0.8824 -0.0034 0.8266

L (G) -0.2295 -0.3198 0.8390 -0.2217 0.2209 -0.2663 -0.0289
-0.4548 -0.5016 0.8833 -0.3013 0.3424 -0.2729 0.0896

T (G) 0.3498 0.7540 -0.1171 0.9213 -0.0230 0.7156 0.5536 -0.1702
0.2171 0.5261 -0.1860 0.7870 -0.1553 0.7174 0.7526 -0.2166

of the instances themselves. For example, the use of internal versus external
memory may change when the instance grows above a certain size.

Hence we conclude that the factors that determine the running time of
an algorithm for a given graph are not easily interpreted by looking at a set
of global measures of the instance other than the size (which naturally af-
fects the run time as most algorithms read the input before processing the
instance), but rather a consequence of the graph structure as a whole.

In algorithm design, assuming that each edge is equally likely to occur in a
typical instance is not feasible in light of the evidence on the structure of real-
world problems being far from uniform. Instead one could take advantage of
assumptions regarding the structural properties of the data set whenever the
source of the natural data is known. It is an advantage to know whether the
instances dealt with in an application area typically have a scale-free degree
distribution or certain degree-degree correlations. For example, it has been
observed that for many communication networks, power laws govern several
different properties [112] and significant correlation patterns can be found
[254, 304].

If no information on the source of the data is available or no educated
guesses on the structural properties can be made, a quick approximate com-
putation of some central properties can be used, for example, using a sample
of the entire network to speed up the property-discovery phase. The goal of
this thesis is to motivate taking structural properties of the application data
into account in algorithm design, demonstrate with some examples the ben-
efits of such an approach.

14 CHAPTER 2. NETWORKS AS GRAPHS

 0

 100000

 200000

 300000

 400000

 500000

 0 500 1000 1500 2000 2500 3000

E
dg

e
co

un
t

Running time (sec)

f(x) = ax + b

g(x) = ax2 + bx + c
Outliers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
lu

st
er

in
g

co
ef

fic
ie

nt

Running time (sec)

Figure 2.2: Scatter plots of running time versus edge count (left) and clus-
tering (right). The edge count predicts the running time well for most small
instances with fewer than 150,000 edges, but fails for most of the larger ones,
as shown in the leftmost scatter plot. The clustering coefficient is a poor pre-
dictor alone, as shown in the rightmost scatter plot, but combined with edge
count in linear regression helps somewhat in predicting the runtime.

2.2.2 Nonuniformity of natural networks

As an example of a nonuniform network, we discuss the WordNet [224]
graph. The data set we used was extracted from an RDF schema [309] of
the WordNet, forming a graph with 468,951 vertices representing words of
the English language and 1,084,317 edges representing different types of se-
mantical similarities among the words, such as two words being synonyms
or of the opposite meaning. It is noteworthy that this graph, as most other
natural networks, is sparse, with δ (G) ≈ 9.86 · 10−6.

In order to demonstrate the structural variability in a natural graph, we
studied some properties of the WordNet graph. The degree distribution is
shown in Figure 2.3. It shows a clear scale-free structure in the middle-region
of the plot that can be quite well approximated with a line. The average
degree of the graph is 4.6, but this is not a descriptive quantity, as 84.4 percent
of the vertices have a degree below the average, placing the average value
well above the third quartile. The median degree is 3. Simply judging by
the average and/or median degree it is difficult to predict the presence of the
high-degree hubs: the three largest degrees are 79,693 (17 % of the vertices
are immediate neighbors of this vertex), 144,896 (with 31 % coverage), and
203,157 (43 %). Fitting a line to the logarithms of the data points gives γ ≈
3.3 for the middle region of the distribution that obeys a power law.

The difficulty of estimating the degree distribution of a massive graph can
be demonstrated by a simple experiment: five times we chose a set of distinct
1,000 vertices in the WordNet graph uniformly at random by sampling simply
the vertex labels and calculated the degree distribution for those sets. We also
performed random walks4 on the graph, starting at a fixed vertex and moving
uniformly at random to a neighbor of the present vertex for a total of 100,000
steps, using five different start vertices and repeating the walk 10,000 times
for each start vertex and taking the first 1,000 distinct end points of the walks
into the sample set. The words corresponding to the five start vertices (vertex

4Random walks as well as sampling will be discussed in detail in Chapter 3.

CHAPTER 2. NETWORKS AS GRAPHS 15

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

F
re

qu
en

cy

Degree

Fit

Figure 2.3: The degree distribution of the WordNet graph. The inset shows
a line fitted to the “linear part” of the point set using deg (v) ∈ [8, 100]; the
line is f(x) = −3.35524x + 6.78824.

degrees shown after each word) are: ����� 2,
��	�� 3, � �� 5, ���� 12, and

���� 16.
The results are plotted in Figure 2.4 with the five uniform sets on the top

row and the five random-walk based samples on the bottom row. In each
plot, a line with the same slope that the one fitted to the original degree
distribution is drawn on each plot, after adjusting the additive constant for
each plot in order to overlay the line with the sample data sets. The uniform
samples fail to capture the presence of the biggest hubs as the distributions
only carry to degrees of a few hundreds and the slope of the sample set is
a bit steeper than that of the degree plot of the graph shown in Figure 2.3.
The samples obtained by repeating random walks include some of the hubs,
although none have picked the largest ones; the slopes are somewhat gentler
that that of the graph’s degree distribution. The real form of the degree dis-
tribution lies in some sense between the two observed distributions, and in
addition the presence of large hubs remains unknown if only such samples
are available. It can be deduced that a scale-free distribution applies for the
graph, but the exponent of the power law can only be crudely approximated
from the samples.

Neither of the approaches attempted for sampling the WordNet graph
gives a good view on the global structure of the network, simply because
the structure of the graph is not uniform or easily predictable: the observa-
tions one may make vary depending on which part of the graph is viewed.
What we do discover from the plots in Figure 2.4 is that the random walks
and the uniformly chosen sets produce different results, which is an informa-
tive observation in itself — the details of this are related to the behavior of
random-walk based sampling and will be discussed in Chapter 3.

The presence of hubs in a network can be detected by studying the num-
ber of vertices reachable from a single vertex v in k “hops”, i.e., following
paths of length k that start in v. If this quantity, which we denote by hv (k)
and call hop-span, grows fast on average over V as k is increased, then it is
likely that the network contains high-degree vertices that are reached by a
short path from almost any part of the graph and that have several neighbors.
A network with a small-world structure shows the same behavior, regardless of
whether it has hubs: in just a few hops, practically any vertex can be reached.

16 CHAPTER 2. NETWORKS AS GRAPHS

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

F
re

qu
en

cy

Uniform

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

Uniform

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

Uniform

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

Uniform

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

Uniform

 0.1

 1

 10

 100

 1000

 0.1 10 1000 100000

F
re

qu
en

cy

Degree

RW <green>

 0.1

 1

 10

 100

 1000

 0.1 10 1000 100000

Degree

RW <wacky>

 0.1

 1

 10

 100

 1000

 0.1 10 1000 100000

Degree

RW <zip>

 0.1

 1

 10

 100

 1000

 0.1 10 1000 100000

Degree

RW <heat>

 0.1

 1

 10

 100

 1000

 0.1 10 1000 100000

Degree

RW <bear>

Figure 2.4: The degree distributions over the five sets of vertices selected uniformly at random on the top row, and the degree distributions obtained
by the random walks using five different starting vertices on the bottom row. The lines shown in the plot have the same slope than the fit in
Figure 2.3, but the additive constant has been adjusted to overlay the line with the dataset.

C
H

A
P

T
E

R
2

.
N

E
T

W
O

R
K

S
A

S
G

R
A

P
H

S
1

7

468,951

10,000

100

1

 0 1 2 3 4 5

V
er

tic
es

 r
ea

ch
ed

Hop count

Sets chosen uniformly at random

468,951

10,000

100

1

 0 1 2 3 4 5

Hop count

Sets chosen with random walks

Order of G
<bear>

<green>
<heat>

<wacky>
<zip>

Figure 2.5: The average and standard deviation of the hop-span hv (k) for
small numbers of hops (k). On the left plot, the five data sets are each av-
erages over 1,000 vertices selected uniformly at random. On the right, the
averages are over sets of 1,000 vertices that are the end-points of 100,000-step
random walks, all started at specific vertices. In each plot, four of the curves
were shifted to avoid overlap.

Any network with well-positioned high-degree hubs is necessarily a small-
world network.

We calculated hv (k) for 1,000 randomly chosen vertices and small values
of k; the result is shown in Figure 2.5 and indicates that the network is a small
world: even though a vertex selected uniformly at random has fewer neigh-
bors than an endpoint of a random walk (an effect which will be discussed
in more detail in Chapter 3), all vertices in the ten sets of 1,000 samples
have more or less the same number of “second neighbors”, i.e., vertices that
are two hops away, and furthermore, on average one only needs four hops to
reach any given vertex from an arbitrary start vertex. It is also worth notic-
ing how little variability there is in the degree (i.e., the number of one-hop
neighbors) of the uniformly selected sets in comparison to that exhibited by
the vertices in the random-walk based sets — a random walk is likely to end
in the vicinity of a hub.

The raw data sets used to plot Figure 2.5 reveal that the diameter of the
network has to be greater than five, as not all vertices are covered in five
hops from all start vertices used. We can say that “effectively” the diameter
is around four, and assume that it would not be much larger, but we cannot
rule out the possibility of there being a “tail” of a dozen vertices forming an
otherwise isolated path attached to the graph at one end.

It is not hard to imagine that estimating more complex measures such as
clustering or average path-length properties of a massive natural graph is even
more complex and uncertain than the observations made above, mainly on
degree-based measures. The biggest hopes lie in the study of the behavior of
property-discovery methods on small, computationally tractable graphs with
certain natural but nonuniform structural properties, and thereby learning to
interpret signs of their presence in massive, intractable instances as well.

In this thesis, we will concentrate on two issues, the first being the con-
struction of tools to identify and analyze network nonuniformity, and the
second the utilization of such observations in algorithm design.

18 CHAPTER 2. NETWORKS AS GRAPHS

3 SAMPLING

Natural graphs are often large, not readily available, as well as difficult to
process. Hence sampling methods that select a subset of the vertices can be
helpful when structural properties of a network need to be determined. For
example, finding the average path length is computationally demanding for
large sets of vertices, but computing shortest paths among a smaller set of
vertices can be used to obtain an estimate of the global average. The funda-
mental question in sampling is how to select the subset to examine so that
the estimates obtained reflect the global properties of the graph as faithfully
as possible, while keeping the size of the sample needed relatively small. It
is often practical to assume that if a sample reflects some commonly used
structural properties such as the clustering coefficient, average path length,
and degree distribution, then it can also be used to estimate other properties,
although counterexamples of samples that preserve certain properties while
losing others are frequent. Repeating the sampling and using more than one
sampling method can be employed to improve the reliability of the observa-
tions made. The need for repetitions however makes it even more important
that the sampling procedure will not consume much computation or mem-
ory.

If the graph as a whole is available or the number of vertices together
with an ordering on the vertex set are known, it is trivial to obtain a uniform
random sample by simply taking the list of vertices and picking numbers
in [n] uniformly at random to select the sample. Some graphs of interest
are massive, rapidly changing, and in many aspects infeasible for obtaining
global snapshots or calculating the exact vertex count. Methods to sample
such graphs according to a distribution that meets some criteria of interest
are useful for many applications. Such methods should preferably operate
in a local manner, exploring the graph structure progressively without the
need to read large portions of the graph into main memory, or preferably
even without needing access to all of the graph at any time, taking advantage
of lower or upper bounds or estimates of some global properties to guide the
local computation. In this thesis we concentrate on sampling undirected,
unweighted graphs, although methods for sampling directed graphs are also
of great interest and have various applications.

3.1 MARKOV CHAINS

In order to discuss sampling in mathematical terms, basic knowledge of sto-
chastic processes is necessary, especially regarding discrete-time processes op-
erating in a discrete state space. We begin by briefly summarizing some of the
central definitions, but for readers unfamiliar with the fundamentals of the
topic, we recommend a comprehensive text book, such as that of Grimmett
and Stirzaker [138].

A Markov chain is a stochastic process in which future states only depend
on the current state, not the past, taking values from some countable state
space S; for a finite state space we denote |S| = N . Formally, a discrete

CHAPTER 3. SAMPLING 19

random process M is a family
{

Mt : t ∈ {0, 1, 2, . . .}
}

, (3.1)

where each Mt is a discrete random variable that takes a value from S =
{s1, s2, . . . , sN}. A state si will frequently be referred to by its index i in
some fixed ordering of the state space.

When transitions are made from one state to another, the chain runs. The
probabilities at which a certain state is moved into from the current state
characterize a Markov chain. The Markov condition, i.e., the dependency
on only the current state, is formalized as

Pr [Mt = st | M0 = s0, M1 = s1, . . . , Mt−1 = st−1]
= Pr [Mt = st | Mt−1 = st−1] ,

(3.2)

for all t ≥ 1 and all si ∈ S. A Markov chain is (time) homogeneous if the
transition probabilities satisfy

Pr [Mt+1 = j | Mt = i] = Pr [M1 = j | M0 = i] , (3.3)

for all t ≥ 0, i, j ∈ S, meaning that the probability of making a transition
between a certain pair of states does not depend on the time step at which
the transition is made. Assuming time-invariance, the transition probabilities

pi,j = Pr [Mt+1 = j | Mt = i] , (3.4)

for moving from a state i ∈ S to state j ∈ S form an N × N stochastic
matrix1. Furthermore, k-step transition matrices, k ≥ 1, are defined by the
corresponding transition probabilities as pk

i,j = Pr [Mt+k = j | Mt = i].
Using the Markov property, and the law of conditional probabilities2 it is

straightforward to derive that the k-step transition matrix is in fact Pk, the kth
power of P. A state i ∈ S is recurrent (also called persistent), if the chain
starts at state i, it will return to that state almost surely. States that are not
recurrent are called transient. A state is positive recurrent if the expected
number of steps taken to return to that state after leaving it is finite. For
a Markov chain with a finite state set, at least one state must be recurrent
and all recurrent states are necessarily positive recurrent. If state i has no
transitions to other vertices, it is absorbing and pi,i = 1.

The mean first passage time

f t
ij = Pr [M1 6= j, M2 6= j, . . . , Mt−1 6= j, Mt = j | M0 = i] (3.5)

is the time step when the chain first visits state j when started at state i. Thus
the probability that the chain ever visits state j when started at state i is

fij =
∞
∑

t=0

f t
ij. (3.6)

1Take a real-valued matrix M = [m]i,j for which mi,j ∈ [0, 1]. If the row (column)
sums are all one, the matrix is row (column) stochastic. If both the row and column sums
are one, the matrix is doubly stochastic.

2For two events A and B, the conditional probability of B given A is the probability of
B when A is known to hold is Pr [B | A] = Pr[A∧B]

Pr[A] , where A ∧ B is the joint event where
both A and B hold.

20 CHAPTER 3. SAMPLING

The mean absorption time from state j to state i is the mean first passage
time fij in a modified chain, where state i is made into an absorbing state by
removing all of its outbound transitions, that is, by setting pi,k = 0 if i 6= k,
and pi,i = 1. Averaging over all states j yields the mean absorption time to
state i regardless of the starting position.

For each recurrent state i, the period d (i) of the state is the greatest com-
mon divisor of the step counts with which it is possible to return to state i:

d (i) = gcd{t : pt
i,i > 0}. (3.7)

If d (i) > 1, the state is called periodic, otherwise aperiodic. If any state of
a Markov chain is aperiodic, the chain itself is aperiodic; otherwise it is a
periodic chain. A state that is both positive recurrent and aperiodic is called
ergodic.

State i communicates with state j, denoted i → j, if pt
i,j > 0 for some

time step t ≥ 0. If both i → j and j → i hold, we write i ↔ j and say
that the states (inter-)communicate. It is easy to see that if i ↔ j, necessarily
d (i) = d (j). Also, both states i and j are transient if one of them is, and
both are null recurrent if one of them is.

A set of states C is closed if i ∈ C and j ∈ S \ C implies pi,j = 0. A
state set C is irreducible if all states in C communicate. The communication
relation is an equivalence relation over the state space S that partitions it
into irreducible state sets C1, C2, . . . , Ck. A chain whose entire state space
consists of a single irreducible state set is said to be an irreducible Markov
chain, whereas one with several irreducible state sets is called reducible. A
positive recurrent, aperiodic, and irreducible Markov chain is called ergodic.

In order to examine the distribution over the state space at a given time t,
one must specify an initial distribution

η = (µ0, µ1, . . . , µN−1) (3.8)

that defines for each state i ∈ S the probability µi that the chain starts in that
state. If the chain always starts as a specified state, the initial distribution sim-
ply assigns probability one to that state and zero to others. The distribution
over the state space at time t is

µt = ηPt. (3.9)

An irreducible Markov chain that has only positive recurrent states neces-
sarily has a stationary distribution

π =
(

π0, π1, . . . , πN−1

)

, (3.10)

which is a distribution to which the chain converges in time regardless of the
initial distribution η:

π = lim
t→∞

µ′
t = lim

t→∞
ηPt. (3.11)

For any stationary distribution it holds for all j ∈ {0, 1, . . . , N − 1} that

πj =
N−1
∑

i=0

πipi,j, (3.12)

CHAPTER 3. SAMPLING 21

which means that the distribution no longer changes in time; hence the
name stationary. Iterating the above, we obtain for all t ≥ 0 that πPt = π.
The stationary distribution can also be obtained by computing the left eigen-
vector corresponding to the largest eigenvalue of P, namely λ1 = 1 (the
reasons for this are discussed later in this section).

To estimate how close a Markov chain is to its stationary distribution, one
may use the total variation distance (TVD) between two distributions µ1 and
µ2,

∆ (µ1, µ2) =
1

2

∑

s∈S

|µ1 (s) − µ2 (s)| , (3.13)

using the current distribution at time t as µ1 and setting µ2 = π. As an
alternative the relative point-wise distance [286] ∆′

S over a subset S ′ ⊆ S
can be used:

∆′
S = max

i,j∈S′

∣

∣pt
i,j − πj

∣

∣

πj
. (3.14)

The stationary distribution of an irreducible Markov chain is unique; it holds
that

πi =
1

νi

, (3.15)

where νi is the mean recurrence time of state i, meaning the expected num-
ber of steps needed to return to state i after the chain visits i.

For an irreducible Markov chain that has only positive recurrent states,
there exists a reversed chain. Denoting the irreducible positive recurrent
Markov chain by {Mk : k ∈ [t]}, the reversed chain is given by Mrev

k = Mt−k.
The chain Mrev has transition probabilities

Pr
[

Mrev
t+1 = j | Mrev

t = i
]

=
πj

πi
· pj,i, (3.16)

in terms of the transition probabilities and the stationary distribution of the
original chain M.

The detailed balance conditions

∀i, j ∈ {0, 1, . . . , N − 1} : πi · pi,j = πj · pj,i. (3.17)

hold for the stationary distributions of reversible (irreducible positive recur-
rent) Markov chains. Also irreversible chains can have stationary distribu-
tions, although the detailed balance conditions do not hold. Reversibility of
a chain M means that the two chains M and Mrev are statistically indistin-
guishable at equilibrium.

3.1.1 Convergence and mixing time

The time it takes until the probability that a given Markov chain started with
an arbitrary initial distribution gets close to the stationary distribution is of
special interest; it is called the mixing time τη(ε) of the chain and is defined
as the smallest time step after which ∆ (η, π) ≤ ε holds for all future time
steps for a small value ε > 0. In rough terms, if the chain reaches stationary
distribution in time that is polynomial in the input size (i.e., order of the state
space) and also polynomial in 1

ε
, the process is said to be rapidly mixing.

22 CHAPTER 3. SAMPLING

For estimating the mixing time of a reversible chain, the method of canon-
ical paths [167] may prove useful. The method consists of treating the chain
as an undirected graph G. First one chooses a set of paths P in G such that
there is a path connecting each pair of states, denoting the length of the path
by L (i, j) for i, j ∈ S. Then one calculates for P the following quantity that
measures how evenly the “load” of the paths is divided in G:

` (P) = max
i,j∈S

1

πipi,j

∑

πiπjL (i, j) . (3.18)

If for all i it holds that pi,i ≥
1
2
, then for any initial distribution η concentrated

at a single state s ∈ S the mixing time has an upper bound [167]

τη(ε) ≤ ` (P)

(

ln
1

πi

+ ln
1

ε

)

. (3.19)

For a set of states S ′ ⊆ S, the capacity over the cut (S ′,S \ S ′) is

Q (S ′,S \ S ′) =
∑

i∈S′, j∈S\S′

pi,j. (3.20)

The conductance of a Markov chain M is the minimum capacity over all cuts
of S that leave at least a half of the probability mass in S ′ at the stationary
distribution:

Φ (M) = min
S′⊆S

0<
P

i∈S′ πi≤0.5

Q (S ′,S \ S ′))
∑

j∈S′

πj

. (3.21)

Mixing time of a Markov chain M is bounded from above by a function that
is proportional to Φ−2(M) [167, 213].

The eigenvalue spectrum of the transition matrix can also be used to eval-
uate the mixing time of the chain. The eigenvectors form a basis for a vec-
tor space. The primary eigenvalue λ1 of a stochastic matrix is one. The
Perron-Frobenius theorem [138] states that for the non-principal eigenval-
ues, |λi| ≤ λ1 = 1. If there are more eigenvalues with the value one, the
chain has more stationary distributions. As any vector, including the initial
distribution, can be represented as an eigenvalue decomposition in the vec-
tor space determined by the eigenvectors, and all λi other than those corre-
sponding to stationary distributions have absolute value smaller than one, the
corresponding components get smaller and smaller as the chain is ran. This
implies that the smaller the eigenvalues λi are, the faster the chain converges
to the stationary distribution [173]. For more information on mixing times,
we recommend Behrends’ book [30].

Examining whether a Markov chain has converged to the stationary distri-
bution can be done for example by measuring the total variation distance ∆
of Equation 3.13. An experimental evaluation of the total variation distance
for a Markov chain can be done by running several instances of the chain
from the same start position and calculating an estimate based on the state
distribution over the independent instances [49]. Denoting the number of
instances ran by I , the number of states by N , and the number of instances

CHAPTER 3. SAMPLING 23

that are at state i at time t by Ft (i), a conservative estimate that slightly over-
estimates the total variation distance at time step t is

∆est = 1 −
∑

Ft(i)6=0

min

{

Ft (i)

I
,

1

N

}

. (3.22)

The bias of the estimator can be analyzed for different stationary distribu-
tions. For example, take k instances over a chain with N states that has the
uniform distribution as the stationary distribution. Assume that at time tm the
instances have mixed and hence the probability to find any single instance j
in state i ∈ {0, 1, . . . , N − 1} is p = 1

N
. The number of instances Ft (i) in a

state i at time t is binomially distributed,

Ft (i) ∼ Binom (I, p) , (3.23)

with p = 1
N

. As the estimate takes the minimum of 1
N

and the fraction Ft(i)
I

,
we only need to consider states in which there are less than d 1

N
e instances,

as these states are the ones that introduce bias to the estimate. The “deficit”
of a vertex with frequency Ft (i) < d 1

N
e is

1

N
−

Ft (i)

I
. (3.24)

Combining the probabilities that there were exactly j ∈ [0, b I
N
c] instances at

each of the N states and the corresponding deficits, the total bias is

εδ = N

b I
N
c

∑

j=0

pj(1 − p)j

(

I

j

)(

1

N
−

j

I

)

. (3.25)

Figure 3.1 shows the bias estimate of Equation 3.25 for four different values
of N , assuming a uniform stationary distribution and a fully mixed chain.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

es
tim

at
ed

 b
ia

s
in

 T
V

D

Number of instances m

N = 5000
N = 1000
N = 500
N = 100

Figure 3.1: The estimated bias of Equation 3.25 to the estimator of total vari-
ation distance (Equation 3.22) for four different values of N (i.e., the order
of the state space). Note that when the number of instances is a multiple of
the state count, the curve displays a kneebend, as the possibility of diving the
instances evenly over the state set decreases the total bias.

24 CHAPTER 3. SAMPLING

3.1.2 Random walks

A (simple) random walk is a Markov chain in which, given a neighborhood
relation on the state space, the transition probabilities at each state are uni-
form over the neighboring states. In essence, a Markov chain can be thought
of as a directed, weighted graph G = (V, E) such that V = S and there exists
an edge from vertex i to vertex j if and only if pi,j > 0. For a simple random
walk, considering such a representation as a directed graph, the transition
probabilities are

pi,j =







1

deg (vi)
, vj ∈ Γ (vi)

0, otherwise.
(3.26)

Simple random walks on graphs are called regular random walks. The Wiener
process (also called Brownian motion) is a simple random walk on a discrete-
step line that starts in the origin and takes a transition of one unit to the left
with probability p and one step to the right with probability 1−p. On a plane,
a usual definition for the neighborhood structure is a unit grid.

When random walks are used to calculate certain properties or they them-
selves are the object of study, it is common to initiate several independent
random walks from randomly chosen initial vertices, called origins. For each
object of study, a saturation time, i.e., the length of the walk after which accu-
rate measurements can be expected, needs to be determined. The outcomes
of the independent walks are then averaged to yield the overall result of the
experiment.

3.1.3 Markov Chain Monte Carlo method

The Markov Chain Monte Carlo (MCMC) is a popular method with many
applications that involve random sampling of the state space. It is based on
running a carefully designed Markov chain that has some desired distribu-
tion as the stationary distribution for long enough so that it can be assumed
to have reached that distribution. The approach originates from statistical
physics; for an introduction deeper than given here, we recommend the sur-
vey of Jerrum and Sinclair [167]. After the chain is assumed to have con-
verged to the stationary distribution, there are two ways to choose a sample:

(i) one may assume that the reached distribution is close to stationary and
take a sequence of visited states to be the sample,

(ii) or if more of an independent identically distributed sample is wanted,
only accepting in the sample the state the chain was in at the moment
it was considered to be mixed and running the chain (from a fixed
initial distribution or continuing from the current state) again for that
specified amount of time to get more vertices in the sample.

In order to obtain a valid sample, one must be able to estimate how long it
takes for that particular Markov chain to mix, i.e., after how many steps can it
be “safely” assumed to have converged to its stationary distribution. Despite
the uncertainty, the method is widely used, as it is a powerful polynomial-
time method for designing approximation algorithms for hard problems in

CHAPTER 3. SAMPLING 25

combinatorial optimization or enumeration of combinatorial objects. Appli-
cations of the MCMC method include approximate counting, i.e., the estima-
tion of the order of a set of certain combinatorial structures, and combinato-
rial optimization by defining a distribution on the space of feasible solutions
that favors better solutions and then sampling according to this distribution,
as well as approximating properties of large systems by sampling the configu-
ration space of such a system (commonly used in statistical mechanics).

The main challenge is usually in obtaining a proper random sample of
desired size according to a certain distribution; the random sample is then
used to derive the final result in some straightforward manner. For example,
if one gets a uniform random sample of webpages, by simple averaging one
can derive an estimate for the average number of links per website. It is
however nontrivial to get a truly uniform random sample of webpages, for
example — we shall return to this topic later in this chapter.

Propp and Wilson [261, 262] sample objects from a finite set, such as
nodes from a graph, using an ergodic Markov chain M (with a transition
matrix P) with a carefully designed stationary distribution µ. A major issue
here is to determine how many steps should the Markov chain take before
a sample can be taken, i.e., how long does it take for the chain to reach the
stationary distribution µ from an arbitrary start distribution η (such as a fixed
state).

A threshold ε can be set on the total variation distance to determine when
the chain is sufficiently mixed, requiring that the step count T used fulfills

∆
(

ηPT , π
)

< ε. (3.27)

Choosing ε is nontrivial. Propp and Wilson find it tedious for an experi-
menter to analyze the mixing time of the chain, but instead propose using
the chain itself to yield an estimate for T .

Instead Propp and Wilson [261, 262] couple k “copies” of the chain M

into a coupled Markov chain MC where each state is a k-tuple and the transi-
tions between k-tuples obey the statistics of the original Markov chain. They
then run MC for a predetermined number of steps T0, check whether the
k-tuple of states coalesces, and if not, prepend new steps until it does. The
resulting state is the unbiased random sample from the state space.

Fill [119] proposes an algorithm similar to the Propp-Wilson algorithm,
but bases it on rejection sampling. Rejection sampling, also known as accept-
reject sampling, works by picking samples from a large population, the in-
stances of which may or may not satisfy a criterion of interest, and then
checking the sample against a predefined criterion, and rejecting if it does
not comply. Evidently it is difficult to estimate how long one must sample
before obtaining the desired number of non-rejected samples.

For reversible chains, the space requirement of a straightforward imple-
mentation of Fill’s algorithm is much larger than that of the Propp-Wilson
algorithm, but it takes fewer transitions. More elegant implementations,
however, avoid this problem [119]. The assumptions of the algorithm are
the ergodicity of the chain and monotonicity of the reverse transition matrix
under a partial ordering that has a unique minimum element and a unique
maximum element. Fill [119] argues that the running time of this approach
is easier to estimate beforehand than that of the Propp-Wilson algorithm.

26 CHAPTER 3. SAMPLING

Other methods for or related to sampling of the state spaces of Markov
chains include the Metropolis algorithm (we recommend Chapters 11 and
12 of a book in preparation by Aldous and Fill [12] as an introduction), the
Gibbs sampler [58] (also known as the heat-bath algorithm), and Johnson’s
[171] coupling-based approaches. We recommend Sinclair’s [286] book on
the theme. Another comprehensive introduction is provided by Robert and
Casella [269].

3.2 SAMPLING NONUNIFORM GRAPHS

For a regular random walk on a graph G = (V, E), the transition probability
from vertex vi to vertex vj is pi,j = deg (vi)

−1, as observed in Equation 3.26.
Such walks are often referred to as “blind” or naïve as picking any transition
out of the current state is just as likely. The stationary distribution of such a
chain, denoted by Mrw, on a connected graph G is

µrw = (µrw
1 , . . . , µrw

n) =

(

deg(v1)

2m
, . . . ,

deg(vn)

2m

)

, (3.28)

as 2m is the total number of edge endpoints in G. The distribution of Equa-
tion 3.28 can be shown to be a stationary distribution by studying the detailed
balance conditions (Equation 3.17 on page 22) in equilibrium, as their valid-
ity implies stationarity for a distribution:

µrw
i · pi,j = µrw

j · pj,i

deg (vi)

2m
·

1

deg (vi)
=

deg (vj)

2m
·

1

deg (vj)
.

(3.29)

As the equivalence obviously holds, global equilibrium follows from the local
equilibrium of the detailed balance conditions and the distribution is station-
ary.

As the random walk follows any edge outward from the current vertex with
equal probability, the stationary distribution “favors” vertices of high degree,
and hence any sampling done by a regular random walk will be skewed to-
wards the hubs of a nonuniform network. The measurements made on the
degree distribution of the Internet suffered from a similar bias, although in-
stead of sampling single vertices, shortest paths between pairs were sampled
[77]. Achlioptas et al. [3] show that such path-based sampling can make even
a Poissonian degree distribution seem scale-free, as well as a uniform distribu-
tion (i.e., a regular graph). An analysis on what causes such a bias is discussed
by Dall’Asta et al. [92].

The case of vertex sampling is however resolvable. There are several op-
tions on how one may enhance the blind random walk to obtain a uniform
sample over vertex degrees. A relatively simple method is to apply rejection
sampling, accepting a sample with a probability proportional to the inverse
of the degree of the sampled vertex [299]. Possible problems include the
difficulty of estimating the proportion of acceptable samples in the set of
samples obtained and hence uncertainly of the running time of the method

CHAPTER 3. SAMPLING 27

for a given number of samples needed. Also there are some mathematical
constrains on when such a construction is feasible [65].

Another possibility is to add reflexive edges to each vertex to create a mod-
ified graph G′ that is ∆ (G)-regular [95]. This means that each vertex v ∈ V
of the original graph G = (V, E) is included in G′, but with ∆ (G)− deg (v)
(directed) self-loops included in the edge set in addition to the original edges
in E. As each vertex in G′ has the same degree, they all have equal probabil-
ity in the distribution of Equation 3.28 for the modified graph G′. Intuitively,
such a walk on G′ will “stall” on an originally low-degree vertex for a long
time, whereas it “passes through” high-degree vertices much quicker.

While simulating the walk, considering all the self-loops separately can
be avoided due to the following observation: a self-loop will be chosen with
probability

p =
∆ (G) − deg (v)

∆ (G)
, (3.30)

which enables us to “flip a coin” to determine whether to stay in the same
state or to take an outbound transition. This is essentially a Bernoulli trial
with success probability q = 1 − p, success interpreted as following a transi-
tion that leaves the current state. This observation enables us to avoid actu-
ally having to construct G′ with such a large number of edges, as the expected
number of Bernoulli trials before a success is geometrically distributed with
parameter q. Hence one simply needs to draw a geometrically distributed
random number r ∼ Geom (q) to obtain the number of steps that the chain
should “stall” at that state, and then continue with the transition probabilities
of the regular random walk on the original graph G. We call this construction
that uses the geometrically distributed random variable to sample the graph
the coin-flip random walk.

One can also define a Markov chain that has the uniform distribution as
the stationary distribution, instead of running a simple random walk. This is
achieved by choosing transition probabilities pi,j to be inversely proportional
to the degree of the target vertex j and checking that the detailed balance
conditions hold. The detailed balance conditions imply that the probabili-
ties should be symmetric with respect to i and j. The reason for the symmetry
is that the stationary probability is 1

n
for both in the uniform stationary distri-

bution. For example, one may use

pi,j =























1

deg (vi) · deg (vj)
, if j ∈ Γ (vi) ,

1 −
∑

vj∈Γ(vi)

1

deg (vi) · deg (vj)
, if j = i,

0, otherwise.

(3.31)

For this degree-balanced random walk, the detailed balance conditions (Equa-
tion 3.17) also hold with the uniform stationary distribution

µid =
(

µid
1 , . . . , µid

n

)

=
1

n
(1, . . . , 1). (3.32)

28 CHAPTER 3. SAMPLING

The equality is easily seen as

µid
i · pi,j = µid

j · pj,i

1

n · deg (vi) · deg (vj)
=

1

n · deg (vj) · deg (vi)
,

(3.33)

which again obviously holds. Also, the self-loop probability pi,i is large. The
effect of the self-loop is less severe if we choose the following transition prob-
abilities [43]:

qi,j =



























min

{

1

deg (vi)
,

1

deg (vj)

}

, if vj ∈ Γ (vi) ,

1 −
∑

vj∈Γ(vi)

min

{

1

deg (vi)
,

1

deg (vj)

}

, if j = i,

0, otherwise.

(3.34)

Due to symmetry with respect to i and j, detailed balance trivially holds also
for this definition with the uniform distribution as the stationary distribution:

1

n
min

{

1

deg (vi)
,

1

deg (vj)

}

=
1

n
min

{

1

deg (vj)
,

1

deg (vi)

}

. (3.35)

The self-loop probability qi,i can be rewritten in a simpler form: if deg (vi) ≥
deg (vj), the subtracted term is always deg (vi)

−1. Otherwise, the subtraction
is smaller by deg (vi)

−1 − deg (vj)
−1. Hence, if we sum over vj ∈ Γ (vi), the

self-loop probability is the sum of these “leftovers”. Using deg (v) = |Γ (v)|,
we obtain

qi,i = 1 −
∑

vj∈Γ(vi)

min
{

1
deg(vi)

, 1
deg(vj)

}

=
∑

vj∈Γ(vi)

(

1
deg(vi)

− min
{

1
deg(vi)

, 1
deg(vj)

})

=
∑

vj∈Γ(vi)

max
{

1
deg(vi)

− 1
deg(vi)

, 1
deg(vi)

− 1
deg(vj)

}

=
∑

vj∈Γ(vi)

max
{

0, 1
deg(vi)

− 1
deg(vj)

}

.

(3.36)

We refer to the Markov chain with the above transition probabilities by Mid,
and call it the minimal-balanced chain, as it aims to minimize the self-loop
and balances out the degree-dependency present in the “blind” random walk.
The chain defined by the transition probabilities of Equation 3.33 is referred
to simply as balanced.

Intuitively, a walk that visits the hubs of a nonuniform network can quickly
reach any part of the network. Continuing that line of thought, walks like the
above two that avoid visiting hubs, take a longer time to cover the whole
graph. Hence, we expect both of the above chains to mix poorly. Later in
this section we discuss the eigenvalue spectrum of the regular random walk
transition matrix and the balanced random walk defined by Equation 3.35.

In order to construct a rapidly mixing Markov chain for uniform sampling
of G = (V, E), we create a “mirror vertex” v′ for each vertex v ∈ V , connect

CHAPTER 3. SAMPLING 29

the original vertex and the mirror vertex to each other by transitions, and
use different transition probabilities between the original vertices than we do
with the mirrors [249]. We call such a chain a combined random walk and
denote it by Mcc. The original vertices v ∈ V of the input graph G are called
the sampling side of the modified graph and the mirror vertices v′ ∈ V ′ form
the mixing side. The goal of the construction is to ensure that each transition
probability can be computed locally, only knowing the adjacency list of the
vertex corresponding to the current state. This is desirable as for massive
graphs, no global information is available, and even making estimates on
figures such as the graph order, size, or maximum degree can be hard and/or
time-consuming.

We continue to denote by deg (v) the degree of v in the original graph G,
i.e., ignoring in the degree the added edge that connects the two sides. Also
deg (v′) = deg (v) in the following discussion. The transition probabilities
on the sampling side are set relative to those of either of the above degree-
balanced random walks, and on the mixing side, a regular random walk is
mimicked with minor modifications. For transitions from a vertex v to its
mirror vertex v′, we set

pv,v′ = ε, (3.37)

where ε is a parameter of the construction. Hence we need to “set aside”
probability mass on the sampling side in order to ensure that

ε + pi,i +
∑

j∈Γ(i)

pi,j = 1 (3.38)

for each vertex i on the sampling side. Both of the degree-balanced walks
have self-loops, but unfortunately pv,v may be arbitrarily close to zero, for ex-
ample in the presence of a large, star-topology3 induced subgraph. Hence we
need to design such variations of the chains that we may be sure that pi,i ≥ ε
on the walk on the original graph, such that the probability ε may be sub-
tracted from the self-loop when constructing the combined chain, without
altering the other transition probabilities between vertices on the sampling
side.

We achieve this by introducing a guaranteed-weight self-loop for each ver-
tex on the sampling side. For example, if we want to ensure that ε ≥ 1

2
, we

divide each transition probability out of each vertex by two and add the 1
2

thus
gained (as the initial outgoing “flow” was necessarily one and was halved) to
the self-loop probability. For any γ ∈ Z, we may thus ensure that ε ≥ 1

γ
. For

a fixed γ, the transition probabilities ri,j of a given Markov chain are modi-
fied as follows to allow ri,i ≥ γ−1 and hence loosening the restrictions on ε
for all i ∈ S:

r′i,j =











γ − 1

γ
· ri,j, if vj ∈ Γ (vi) ,

γ − 1

γ
· ri,j +

1

γ
, if i = j.

(3.39)

3In a star topology, one vertex is a hub and all other vertices are linked to the hub only.

30 CHAPTER 3. SAMPLING

w′w

v v′

pw,vpv,w pw′,v′

pv′,v′

pw,w pw′,w′

pv′,w′

pv,v′

pv′,v

pw,w′

pw′,w

pv,v

Figure 3.2: A diagram of the mirror construction for two vertices v and w on
the sampling side and their mirror vertices v′ and w′ on the mixing side.

For the two degree-balanced chains this gives

p′i,j =























γ − 1

γ · deg (vi) · deg (vj)
, if vj ∈ Γ (vi) ,

1 −
∑

vj∈Γ(vi)

γ − 1

γ · deg (vi) · deg (vj)
, if i = j,

0, otherwise,

(3.40)

(as γ−1
γ

+ 1
γ

= 1) for the chain defined by Equation 3.31 and respectively

q′i,j =



















γ−1
γ

min
{

1
deg(vi)

, 1
deg(vj)

}

, if vj ∈ Γ (vi) ,

1
γ

+
∑

vj∈Γ(vi)

γ−1
γ

max
{

0, 1
deg(vi)

− 1
deg(vj)

}

, if i = j,

0, otherwise,
(3.41)

to that of Equation 3.34. Choosing one of these guaranteed-self-loop chains
for the sampling side enables us to subtract from the self-loop the transition
probability for moving to the mixing side. Similarly, we add a self-loop to
each vertex v′ ∈ V ′ such that

pv′,v′ ≥ ε′v, (3.42)

where ε′v is the probability of returning to the sampling side from v′,

pv′,v = ε′v. (3.43)

See Figure 3.2 for an illustration of the connections between the sampling
and the mixing sides.

The transition probability from the sampling side to the mixing side is
uniform over the vertices on the sampling side, but the return probabilities
from the mixing side will not be uniform over the mirror vertices, as will be
shown later on. Hence we need to fix a probability

δ ≥ max
v′

ε′v (3.44)

for the self-loop probability on the mixing side so that we can always safely
subtract ε′v from the self-loop of the mixing-side chain. The transition proba-
bilities within the mixing side are therefore

pi′,j′ = (1 − δ)
1

deg (vi)
. (3.45)

CHAPTER 3. SAMPLING 31

The stationary distribution µcc of the combined chain is a weighted com-
bination of the distributions of the sampling side, µid, and that of the mixing
side, µrw, such that an α-fraction of the time, the Markov chain is on the
sampling side and an (1−α)-fraction of the time is spent on the mixing side:

µcc = (µcc
1 , . . . , µcc

n , µcc
1′ , . . . , µ

cc
n′)

=
(

αµid
1 , . . . , αµid

n , (1 − α)µrw
1 , . . . , (1 − α)µrw

n

)

.
(3.46)

We again examine the detailed balance conditions (Equation 3.17) for the
above distribution to show that it is a stationary distribution of the combined
chain. There are three cases to consider; for a self-loop, the detailed balance
conditions trivially hold by definition regardless of the transition probabili-
ties.

(i) Transitions within V on the sampling side: v ↔ w:

As the transition probabilities pi,j in V for i 6= j have not
changed other than the introduction of the same multiplica-
tive constant γ−1

γ
for ensuring the self-loop to be able to

cover for ε, we now multiply both sides of Equation 3.33
or 3.35 (depending on our choice of chain to combine) by
the multiplicative constants γ−1

γ
and α, which both cancel

out.

(ii) Transitions within V ′ on the mixing side: v′ ↔ w′:

The transition probabilities together with the above distribu-
tion fulfill the detailed balance conditions, as we only need
to add the multiplicative coefficients (1−α) and (1− δ) on
each side of Equation 3.29, and they cancel out.

(iii) Transitions between V and V ′: v ↔ v′:

This condition can be met by setting dependencies between
the parameters of the construction, the transition probability
ε, the return probabilities ε′v, and the weighing coefficient α
that determines the proportion of time spent on the sam-
pling side, as described below.

The detailed balance condition of the third type is

µcc
i · pi,i′ = µcc

i′ · pi′,i

α ·
1

n
· ε = (1 − α) ·

deg (vi)

2m
· ε′i.

(3.47)

From their definitions we know that α ∈ (0, 1), ε ∈ (0, 1), and for all vi ∈ V ,
also ε′i ∈ (0, 1). Solving the above equation for ε′i gives

ε′i =
2mαε

n(1 − α) deg (vi)
=

2m

n
·

α

(1 − α)
· ε · deg (vi)

−1 . (3.48)

32 CHAPTER 3. SAMPLING

The first coefficient 2m
n

is the average degree k̄ of the original graph G. This
is a global property of the graph, but we can eliminate its presence in the
parameter equation by further restricting α such that

α

1 − α
· k̄ = 1 ⇒ α =

1

k̄ + 1
. (3.49)

As α does not need to be known for constructing the combined chain, but
only influences the portion of time the chain spends on the sampling side, its
approximate value may be estimated beforehand through estimates of k̄. This
knowledge is necessary for determining the number of steps that the chain
needs to be run until it convergences. Using Equation 3.49, Equation 3.48
becomes simply

ε′i =
ε

deg (vi)
, (3.50)

which in turn gives us a safe value for δ, as ε′i is maximized for the mini-
mum degree in G, which in a connected graph is always at least one, giving
δ ≥ ε. Setting δ = ε we eliminate the presence of the δ-parameter in the
construction of the combined chain.

Implementing the above sampler construction does not require explicitly
copying the vertex set, but only a state flag that indicates which set of transi-
tion probabilities should be used. Each of the transition probabilities needed
at a vertex v, whether on the sampling side or the mixing side, is locally com-
putable from the parameter ε, deg (v), and the degrees of the vertices in Γ (v)
(which are needed on the sampling side).

The above construction of combining two chains, one rapidly mixing but
to an undesired distribution and the other slowly mixing but to a distribution
of interest, can be generalized to scenarios other than uniform sampling.
The prerequisites are the introduction of a self-loop on both sides such that
the side-change transitions can be subtracted without affecting the relative
stationary probabilities on each side. Also, to achieve the detailed balance
conditions for the crossings from one side to another, one needs to define ε′i
fulfill Equation 3.47,

α · µA (i) · ε = (1 − α) · µB (i) · ε′i (3.51)

where µA is the stationary distribution of the sampling side chain alone and
µB that of the mixing side chain. This property would allow applying the
construction to problems in combinatorial generation, enumeration, and
counting, where a problem instance needs to be obtained according to some
distribution of interest, but all simple-definition chains converging to the dis-
tribution in question mix impractically slowly.

We study the convergence behavior of the above chains through a deter-
ministic scale-free graph construction by Dorogovtsev, Goltsev, and Mendes
[101], based on [28]. In the DGM generation model, the initial graph G−1 =
(V−1, E−1) consists of two vertices v and w and the edge {v, w}. At each dis-
crete time step t ≥ 0 of the process, per each {v, w} ∈ Et−1, a new vertex
u is added together with edges {v, u} and {w, u}. Thus at time t = 0, G
is a triangle. See Figure 3.3 for an illustration of the first five generations;
Figure 3.4 shows the degree distributions of generations up to 13. At time t,

CHAPTER 3. SAMPLING 33

G1

G−1 G0 G3

G2

Figure 3.3: The pseudo-fractal graph (DGM) Gt for t ∈ {−1, 0, 1, 2, 3}
(adapted from [101]). Vertices added at time step t are shown white.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000

Gen. 13
Gen. 8
Gen. 3

Figure 3.4: Degree distribution of Gt for t ∈ [0, 13]. The degree distributions
settle in left-to-right order such that G13 is the rightmost plot.

the number of edges is

|Et| = |Et−1| + 2 |Et−1| = 3 |Et−1| = 3t+1, (3.52)

as |E−1| = 1. Similarly, the number of vertices is

|Vt| = |Vt−1| + |Et−1| = 3(3t + 1)/2. (3.53)

Therefore the average degree of the resulting graph Gt is

k̄t =
2 |Et|

|Vt|
= 4(1 + 3−t). (3.54)

The degrees of the vertices are well-behaved: the vector k of distinct de-
gree values at time t ≥ 0 is

k = (k1, k2, . . . , kt+1) = (2, 22, 23, . . . , 2t, 2t+1). (3.55)

Denoting ηi = |{v | v ∈ Vt, deg (v) = ki}|, the vector η of the number of
vertices with degree ki is

ϑ = (ϑ1, ϑ2, . . . , ϑt+1) = (3t, 3t−1, 3t−2, . . . , 32, 3, 3). (3.56)

For these graphs, the transition probabilities ti that go out from a vertex
that has been alive for i generations are easy to compute. The degrees are

34 CHAPTER 3. SAMPLING

-0.5

 0

 0.5

 1

E
ig

en
va

lu
e

DGM generation 4

Balanced
Regular

-0.5

 0

 0.5

 1

E
ig

en
va

lu
e

DGM generation 5

-0.5

 0

 0.5

 1

E
ig

en
va

lu
e

DGM generation 6

-0.5

 0

 0.5

 1

E
ig

en
va

lu
e

DGM generation 7

Figure 3.5: The spectra of four generations of the DGM model for two differ-
ent transition matrices: one based on the regular random walk transition
probabilities of Equation 3.26 on page 25 (referred to as “Regular”) and
another one based on the balanced random walk transition probabilities of
Equation 3.35 on page 29 (referred to as “Balanced”).

known from Equation 3.55, giving ti = 2−(i+1). Thus for the newly created
vertices, the outward transition probability is t0 = 1

2
. Similarly for vertices

that were created on the preceding step we have t1 = 1
4
, and so forth.

We computed the eigenvalue spectra of the regular random walk transi-
tion matrix and the balanced random walk defined by Equation 3.35 for a
few generations of the DGM model; the plots are shown in Figure 3.5. It is
evident from the plots that the eigenvalues of the balanced chain are larger
than those of the regular walk, which supports the previously discussed intu-
ition of slow mixing, partially caused by the self-loop probabilities.

We studied the behavior of the method on the DGM model [101] and
collaboration graphs (see Section 4.4.1 on page 63). From Figure 3.6 it can
be seen that the regular random walk samples vertices preferentially to their
degree, whereas the method that weights vertices inversely to their degree
maintains an indifference to vertex degree, and hence will obtain a sample
with a degree distribution similar to that of the graph from which the sample
is taken. The tendency of the degree-balanced method to unwanted locality
is evident in plots of the coverage, i.e., the percentage of the graph covered
at each step of the walk, shown in Figure 3.7.

We studied the convergence of the sampling methods to their respective
stationary distributions over the vertex set by estimating the total variation
distance between the obtained and the stationary distribution with Equa-
tion 3.22. For the combination walk, only those instances that were currently
in a sampling state (instead of being on the mixing side of the construction)
were included in the estimate, and hence the estimates for the other two

CHAPTER 3. SAMPLING 35

 1

 10

 100

 1000

 10000

 1 10 100

F
re

qu
en

cy

Degree

DGM generation 7 (n = 3,282, m = 6,561)

regular
coinflip

min. comb.
min. bal.

real deg. dist.
 1

 10

 100

 1000

 1 10 100

F
re

qu
en

cy

Degree

Collaboration graph (n = 5,909, m = 13,510)

regular
coinflip

min. comb.
min. bal.

real deg. dist.

Figure 3.6: log log-plots of the sampling frequency of vertices by their degree
in a set of n independent samples (fully restarted from the same randomly
chosen vertex, allowing the walks to mix for t ≥ 5,000) shown together with
the degree distributions of the graphs themselves. The regular walk is the
Mrw chain, min. bal. is Mid, and min. comb. is Mcc; the coin-flip walk was
discussed on page 28. We used ε = 0.25 for the combination walk.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

C
ov

er
 p

er
ce

nt
ag

e

DGM, generation 5 - Regular

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

DGM, generation 5 - Balanced

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000

C
ov

er
 p

er
ce

nt
ag

e

DGM, generation 7 - Regular

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000

DGM, generation 7 - Balanced

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000

C
ov

er
 p

er
ce

nt
ag

e

Step

DGM, generation 9 - Regular

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000

Step

DGM, generation 9 - Balanced

Figure 3.7: The coverage achieved by the regular (left) and the degree-
balanced (right) walks at each step. In all six plots, averages and standard
deviations of 50 independent walks are shown.

36 CHAPTER 3. SAMPLING

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 250000 500000 750000 1e+06

C
ov

er
 p

er
ce

nt
ag

e

Step (combined RW)

DGM, generation 9

0.5
0.25

0.1
0.05
0.01

Figure 3.8: The behavior of the combined random walk on a ninth genera-
tion graph for different values of ε. Increase in coverage is only measured at
sampling steps, i.e., the vertex visits of the mixing side of the construction are
not counted in the coverage but are present in the step count.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 100 10 1

T
V

D
 (

es
t.)

DGM gen. 5 (n = 366, m = 729)

balanced
min. bal.

combined
regular

 0

 0.2

 0.4

 0.6

 0.8

 1

 2000 500 100 25 10 1

DGM gen. 7 (n = 3,282, m = 6,561)

bal.
m. bal.
comb.

reg.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2000 500 100 25 10 1

T
V

D
 (

es
t.)

Step

Collaboration graph (n = 503, m = 828)

bal.
m. bal.
comb.

reg.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2000 500 100 25 10 1

Step

Collaboration graph (n = 5,909, m = 13,510)

balanced
m. bal.

combined
regular

Figure 3.9: Values of ∆est(t) for the balanced (H), minimal-balanced (N),
combined (•), and regular (�) chains. The estimate is calculated over a set
of I = 15,000 independent walks in two DGM and two collaboration graphs,
all starting from a fixed vertex, initially chosen at random. The bias of the
uniform distribution estimate (Equation 3.25) for each graph is shown as the
lower dotted line. Note that for the combination walk (based on the minimal-
balanced RW, k = 4, ε = 0.25), the expected number of instances on the
sampling side of the combined walk is αI ≤ 15,000 and hence the bias is
larger (the upper line). For ease of comparison, we also ran the combination
walk for I ′ = α−1I to achieve the same expected bias with the balanced
walks.

walks are based on a greater number of independent instances than those
of the combination walk. Using such estimation, the stationary distribution

CHAPTER 3. SAMPLING 37

 2500

 5000

 15000

 1 10 100 1000

N
um

be
r

of
 in

st
an

ce
s

m

Step

DGM gen. 5
DGM gen. 7
small collab.
larger collab.

Figure 3.10: The number of walk instances out of the total of I = 15,000
instances that are on the sampling side of the combined walk at each step;
the data used is the same than in Figure 3.9. We use ε = 0.4; this gives α ≈
0.20 for DGM generations 5 and 7, α ≈ 0.23 for the smaller collaboration
graph and α ≈ 0.18 for the larger. The theoretical value to which the plots
are expected converge, I · α, is shown in the plot as a vertical line for each
value of α.

to which the combination walk should converge is the uniform distribution.
Figure 3.9 shows the estimate for the DGM construction, generations five
and seven, and for two collaboration graphs based on natural data. As the
bias of the estimate depends on the number of instances for which it is calcu-
lated, we have plotted the actual number of instances on the sampling side
of the combination walk for the data of Figure 3.9 in Figure 3.10.

3.3 APPLICATION AREAS

Random sampling is a powerful tool in the construction of efficient algo-
rithms for demanding computational problems [74, 75, 131, 177, 178]. Sam-
pling methods are useful for example in lossy data compression [24]. They
also helps to analyze and understand properties of large combinatorial ob-
jects. Lately sampling of large natural networks has been actively studied in
order to better understand the function of such systems.

The Internet has been an object of intensive study ever since its econom-
ical value was recognized in the 1990s. Paxson and Floyd [256] found in
1997 the topology of the Internet difficult to characterize due to the constant
change and growth that are essential qualities of the network. They motivate
the research on Internet simulation by the possibility to approach “compli-
cated scenarios that would be either difficult or impossible to analyze” [256].
Just a few years later the size of the network is already significantly bigger
and the problems related to its topology are more urgent than ever; more
efficient protocols are needed for the ever-growing amount of traffic. Kr-
ishnamurthy et al. [196] discuss sampling of the Internet, with emphasis on
how small of a sample can still be useful and informative. It would be helpful
to be able to predict the future evolution of the network in order to design
better hardware, traffic protocols, and routing algorithms [112, 308]. For a
broader discussion of modeling the Internet as well as the World-Wide Web,

38 CHAPTER 3. SAMPLING

we recommend a recent book by Baldi et al. [21].
Another widely studied network is the World-Wide Web (WWW), with ei-

ther individual pages or entire websites as vertices, and links as edges. The
interest in mathematical models is justified by the size of the resulting net-
work; in 1999 even the best search engines could cover only about one third
of the estimated size of the WWW [203]. Since then, the network has grown
significantly and full indexing is impossible. The Web Graph [48] is a graph
representation of the WWW, with webpages as nodes and hyperlinks as di-
rected edges. A compact review of some of the numerous generation models
proposed is given in [306].

It is a problem of great interest to construct a method to sample webpages
uniformly [148]. In addition to estimating the properties of the Web Graph
in general, for example the coverages, overlaps, and relative sizes of different
search engines could be estimated fairly reliably based on a large uniform
random sample of webpages, as suggested by Bharat and Broder [32]. Just
running a random walk for a while will not trivially adapt to the Web Graph,
as it is directed and has been found to have a scale-free degree distribution.
As a surrogate for the “real” uniform sample, Bharat and Broder discuss as an
alternative sampling from the search engines themselves, still being able to
estimate the relative sizes and overlaps of the engines. This approach suffers
from search engine coverage being neither independent nor random, as they
point out. Any method that is based on sampling from a search engine will
also require access to the database of the engine beyond the regular search
interface.

Essentially the distribution over the webpages produced by random walks
in search engine databases as done by Bharat and Broder [32] is close to that
of the PageRank weights of the pages. The computation of a PageRank value
is such that the value of the weight is proportional to the probability that a
“random web-surfer” hits the page and hence proportional to the number of
times a random surfer hits the page [47].

Henzinger et al. [149] strive to modify this approach so that the sampling
distribution is near-uniform. They use a multi-threaded web crawler to per-
form the random walks; upon entering a page, their crawler with probability
1−p selects one of the links uniformly at random, and with probability p, per-
forms a “jump” to a random webpage that is selected from all pages crawled
so far by any of the threads. Mathematically, the probability that a certain
webpage w is sampled into the sample set S is conditional on whether it is in
the set of crawled pages C,

Pr [w ∈ S] = Pr [w ∈ C] · Pr [w ∈ S | w ∈ C] = Pr [w ∈ S ∩ C] . (3.57)

In order to argue on the distribution of Pr [w ∈ S], one must be able to esti-
mate Pr [w ∈ C]. Denoting the PageRank value of w by r (w), the number of
times w gets visited in a random walk of ` steps is approximately ` · r (w), as
r (w) is by definition comparable to the probability of hitting w on a random
web-surf. In practice, large values of ` are infeasible. Supposing that ` is rel-
atively small, Henzinger et al. argue that each page should be visited at most
once and hence the expected number of visits per page should be in [0, 1].
Hence they approximate

Pr [w ∈ C] ≈ E [visits to w] ≈ ` · r (w) . (3.58)

CHAPTER 3. SAMPLING 39

Therefore, sampling pages in such a manner that

Pr [w ∈ S | w ∈ C] ∝ r (w)−1 (3.59)

should yield a near-uniform distribution. If the PageRanks of the pages are
not known, they need to be estimated along the crawl as well, which poses an-
other challenge, discussed in [149] but omitted here. Henzinger et al. [149]
study the uniformity of the distribution obtained by the above method exper-
imentally by generating random scale-free graphs. Theoretical studies of the
behavior of crawlers for different web graph models also exists [82].

A walk-combination approach similar to ours has been taken by Wei,
Erenrich and Selman [316] in sampling satisfiable evaluations for a SAT in-
stance. They use a random walk mixed with the Walk-SAT [282] algorithm4

to obtain a near-uniform sample of satisfiable truth assignments, whereas us-
ing Walk-SAT alone would result in a nonuniform one. We expect our com-
bination chain to provide a starting point for similar constructions.

As future work, it would be useful to study how well different kinds of
sampling methods preserve different structural properties of large (natural or
generated) networks. Chakrabarti et al. [59] propose the NetMine tool for
analyzing large graphs by providing views on different structural properties
of graph instances given as input. Among other features, the tool aims to
identify vertices or subgraphs that are structural “outliers”, i.e., pointing out
nonuniformities in the network structure. The scalability issues in the imple-
mentation of such tools could be avoided if efficient sampling mechanisms
were first employed to obtain a “preview” of the plots that are assumed to be
of interest and then selecting the measures to be calculated for the full data
set based on observations made on the preview plots.

4Walk-SAT is a popular satisfiability solver introduced in mid-1990s, i.e., an algorithm to
find satisfying truth assignments to the variables of a logical formula.

40 CHAPTER 3. SAMPLING

4 CLUSTERING

Any nonuniform data contains underlying structure due to the heterogeneity
of the data. The process of identifying this structure in terms of grouping
the data elements is called clustering, also called data classification. The
resulting groups are called clusters. The grouping is usually based on some
similarity measure defined for the data elements. Clustering is closely re-
lated to unsupervised learning in pattern recognition systems [106], in which
the task is to recognize some form of regularity from a given data set, usu-
ally by diving the data into a set that forms a pattern and another set that is
considered noise or background. Such systems are usually trained by pro-
viding pre-processed samples to the system that show the correct separation
into pattern and noise. If the system is given feedback on the classifications
it makes in the training phase, the learning process is supervised, and if the
system is only given the data and no interaction takes place, the learning is
unsupervised. In cluster analysis, commonly no a priori information on the
clusters is available, meaning that there a training set of data elements with
predetermined clusters is not usually available. In the presence of such train-
ing set, a clustering method may adapt to a specific application and learn to
classify unlabeled data elements to appropriate initial clusters that are based
on the training data.

Clustering has become an important tool in data mining, in which large
data sets with various attributes per data element are searched for regulari-
ties. The types of data vary. One application is clustering of text documents,
where the working hypothesis is that documents that are relevant with re-
spect to each other form clusters under properly defined semantic similarity
measures [61]. If the data set consists of speech or handwritten characters,
a common task is to identify which sound in the speech correspond to the
same phoneme or which characters of the writing correspond to the same
letter. In such applications, the number of classes in which to classify the
data elements is known a priori, but in general this is not the case. Hence
methods that do not expect a fixed, predefined number of clusters are moti-
vated.

Formally, given a data set D, the goal of clustering is to divide it into
clusters C1, . . . , Ck,

k
⋃

i=1

Ci = D (4.1)

such that the elements assigned to a particular cluster Ci are similar or con-
nected in some predefined sense. It depends on the application area whether
the clusters C1, . . . , Ck should form a partition such that

Ci ∩ Cj = ∅ if i 6= j, (4.2)

or alternatively a cover of the data set D — the latter option allows for one
data element d ∈ D to belong to more than one cluster, but each d needs to
be assigned to at least one cluster.

Computing a clustering does not always produce a single partition or
cover, but rather a hierarchical cluster structure, where each top-level cluster

CHAPTER 4. CLUSTERING 41

is composed of subclusters and so forth. Methods that produce such cluster-
ings are called hierarchical, opposed to the flat clusterings only comprising of
a single partition or cover. A hierarchical clustering is generally constructed
by generating a sequence of partitions, where each subcluster belongs to one
supercluster in its entity. The root cluster contains at most all of the data,
and each of the leaf clusters contains at least one data element; semantically
relevant clusters usually appear on intermediate levels.

Hierarchical clustering algorithms can be further divided into two classes,
depending on whether the partition if refined or coarsened during each iter-
ation:

(1) top-down or divisive algorithms that split the dataset iteratively or re-
cursively into smaller and smaller clusters, and

(2) bottom-up or agglomerative algorithms that start with each data ele-
ment in its own singleton cluster, iteratively merging the clusters into
larger ones.

At each step, the clustering algorithm selects the clusters to merge or split
by optimizing a certain criterion on the data set. A stopping condition may
be imposed on the algorithm to select the best clustering with respect to
a quality measure on the current cluster set. Possibilities for such quality
measures are discussed in Section 4.3. A partitional hierarchical clustering is
best represented by a dendrogram, which is a tree that shows the clusterings
at different levels; an example is shown in Figure 4.1 — dendrograms can
also be drawn with superclusters on the bottom or horizontally.

3 5 61 2 4 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 2310

Figure 4.1: An example dendrogram that groups 23 elements into clusters at
four intermediate levels, the root cluster containing the entire dataset and the
leaf clusters each containing one data point. Any level of the dendrogram,
indicated by dotted lines in the picture, can be interpreted as a clustering,
grouping together as a cluster those elements that remain in the same branch
of the dendrogram tree above the line.

Clustering can either be performed to all of the data elements at once,
or iteratively, assigning one element at a time to an appropriate cluster. The
former approach does not scale well for large data sets. In iterative clus-
tering, the cluster assignments made to elements upon their first processing
may either be considered immutable or may be changed later on to optimize
some property of the clustering being computed. If an clustering algorithm
operates “one datum at a time”, having only the knowledge of previously

42 CHAPTER 4. CLUSTERING

encountered data, it is said to operate online. Also methods that process a
group of elements at a time are possible. Such online algorithms for cluster-
ing provide a partial clustering for the data already seen from an unknown
data stream to be clustered. They can be designed to dynamically determine
the number of clusters to use, often relying on some threshold value to deter-
mine when a newly arriving datum needs to be assigned a new cluster instead
of merging it to an existing cluster.

In order to successfully cluster a large database, an online clustering meth-
od should scan the database at most once, always be able to provide some so-
lution, at least a crude approximation, and incrementally incorporate newly
added data into the clusterings [44]. Such an approach of incremental clus-
tering is useful for clustering data sets that undergo frequent modification,
such as addition, removal or editing of the data elements [61]. These have
been suggested for web page classification in [319]. It is noteworthy that in
online clustering, the order in which the data are processed can significantly
affect the resulting clusters. Especially immutable cluster assignments suffer
from such sensitivity. Hence it is common that the existing partial clustering
is constantly optimized with respect to some carefully selected global mea-
sure as new data are processed.

4.1 GRAPH CLUSTERING

Our emphasis is on graph clustering. We will discuss different possibilities of
constructing and evaluating clusterings on graphs, defining similarities and
fitness functions, and ultimately using these define local methods for graph
clustering. Our methods rely on density measures and eigenvectors.

For many types of datasets, fluent representations as graphs exists. For
example, the Delaunay graph of a set of points on a plane can be constructed
by representing each point by a vertex and placing an edge between each
pair of points that are Voronoi neighbors1 [161]. Also different range-based
and nearest-neighbor methods are basic building blocks for transformation
algorithms that construct graphs from set of n-dimensional vectors.

Usually the data elements d ∈ D are represented by the vertices, and an
edge is placed between two elements depending on their similarity (large
values for similar data elements) or distance (smaller values for similar el-
ements) under some measure, selected according to the application. Any
data for which a similarity measure has been defined can be trivially trans-
formed into a graph using its connectivity matrix [M]i,j, where the element
mi,j contains the similarity measure ρ (di, dj) for data elements di and dj.
If the similarity values are symmetrical, i.e., ρ (di, dj) = ρ (dj , di), an undi-
rected, weighted complete graph can be formed by representing each datum
di by vi ∈ V and using

ω ({vi, vj}) = ρ (di, dj) . (4.3)

1Two points are Voronoi neighbors if their Voronoi cells are adjacent [18]. A Voronoi cell
of a datum is formed by those points in the data space that are closer to that data point than
any other. The boundaries of the Voronoi cells are hyperplanes that partition the space in
which the data lie.

CHAPTER 4. CLUSTERING 43

For asymmetrical similarities, the resulting graph is directed and hence the
number of edges is doubled. A problem is that such a number of edges is
quadratic in the size of the data set, and for large data sets, this is computa-
tionally infeasible. The number of edges in the graph can be controlled by
setting a threshold value ξ:

{vi, vj} ∈ E if and only if ρ (di, dj) ≥ ξ, (4.4)

although choosing the value of the threshold is application-specific and not
always easily justified. Also more complex methods than using a mere thresh-
old are available for making a connectivity graph sparser. One possible ap-
proach is to place an edge with weight +1 between all vertex pairs that
are similar (e.g., above a threshold) and an edge with weight −1 between
those that are dissimilar; optimal clustering of such graphs is NP-hard, but
polynomial-time approximation schemes exist [23].

In the field of applied graph theory, clusters are also called communities,
and identifying the clusters in a graph is known as determining the commu-
nity structure of the graph [239, 240]. In an ideal graph cluster, all cluster
members share edges with each other and have few if any connections with
the rest of the graph [175, 191, 239]; the edges that connect vertices within
a cluster are called intra-cluster edges and those crossing cluster boundaries
are called inter-cluster edges.

Should the edges have weights, cutting an important edge when separat-
ing a cluster is to be punished more heavily than cutting a few unimportant
ones. If a similarity measure has been defined for the vertices, the cluster
should contain vertices with close-by values and exclude those for which the
values differ significantly from the values of the included vertices. For a dis-
tance measure, the cluster boundary should be located in an area where
including more of the outside vertices would drastically increase the intra-
cluster distances (for example, the sum of squares of all-pairs distances).

The naïve definition of a cluster as a subgraph with maximum density
fails in many ways: trying to grow the subgraph containing v with maximum
density, one will always reach the maximum value of 1 after the addition of
any single neighbor of v. Attempting to find the largest subgraph with density
one is also infeasible for large graphs, as deciding whether a graph contains
a clique of a given order is NP-complete [130] and optimization to find the
maximum clique is NP-hard, and hence the computation needed would be
exponential in n. For many optimization problems, good fitness measures
are NP-complete, and as density is a natural clustering measure, it makes a
useful component in defining a well-behaving fitness measure for clustering.

Clusters in graphs can also be defined through connectivity, calculating
the number of (edge-distinct) paths that exist between each pair of vertices.
For some vertices to belong to the same cluster, they should be highly con-
nected to each other, whereas there should not be many paths connecting
them to vertices outside the cluster [145]. For a better understanding and in-
tuition on what properties good clusters exhibit, we will first review methods
for global clustering. Such methods output a clustering for the entire vertex
set of the input graph. Later we will discuss methods where the output is
restricted to the clusters of specific “seed vertices”.

44 CHAPTER 4. CLUSTERING

In order to cluster an unweighted graph, Newman and Girvan [241] im-
pose weights on the edges. The weight they use is the (edge-) betweenness
of the edge, which is the number of shortest paths connecting any pair of
vertices that pass through the edge. If there are k shortest paths connecting v
and w, each of them will have weight 1

k
in calculating the betweenness mea-

sures of the included edges. The current algorithms to compute betweenness
for an edge operate in O (nm) time; also a method based on random walks
rather than exact computation has been proposed by Newman [235].

Newman and Girvan assume edges with high betweenness to be links be-
tween communities instead of internal links within a community: the several
shortest paths passing through these edges are the shortest paths connecting
the members of one community to those of another. Hence they split the
network into clusters by removing one by one edges with high betweenness
values. If more than one edge has the highest betweenness value, one of
them is chosen randomly and removed. The removal is followed by recal-
culation of the betweenness values, as the shortest paths have possibly been
altered. This gives an algorithm polynomial in n and m for clustering. Of
course one still must decide when to stop the partitioning, just as for the hi-
erarchical clustering method. Newman [239] proposes computing a quality
measure called modularity over the entire clustering (namely Equation 4.38
discussed later in Section 4.3) and stopping the clustering when there is no
improvement.

Clauset et al. [78] present another hierarchical, agglomerative method
that has complexity O (mk log n), where k is the depth of the generated
dendrogram. They state that for sparse, natural graphs the method runs in
O
(

n log2 n
)

time in practice, presenting results for a graph with over 400,000
nodes and some two million edges. The method performs greedy optimiza-
tion of modularity similarly to the method of Newman [239].

Spectral clustering [175] is based on computing eigenvectors (usually that
corresponding to the second-largest eigenvalue) of a matrix representing the
graph structure, such as a modified version of the adjacency matrix or the
transition matrix of a regular random walk on the graph. The component val-
ues of the resulting eigenvectors are used in a sense as similarity values among
the vertex set to determine the clustering, usually by identifying a cut and
performing divisive hierarchical clustering [259, 288]. Spectral methods are
in general computationally demanding, although a distributed algorithm for
decentralizing the computational load has been proposed [183]. For exam-
ple clustering and other analysis of the network of the Internet autonomous-
system domains has been done with spectral methods [135, 223]. Analysis on
why spectral methods work well for clustering is currently somewhat scarce,
but the field is becoming better understood [139, 175].

Goh, Kahng and Kim [137] have studied the spectrum created by the
Barabási-Albert generation method for scale-free graphs with two outgoing
edges per added vertex. They are able to find the exact spectrum for graphs
up to 5,000 vertices and determine the first few of the largest eigenvalues for
graphs of order as high as 400,000. Hence we do not expect spectral methods
to scale up to massive graphs. Also theoretical results on the spectra of graphs
with defined degree distributions is available [71]. Another alternative is to
use maximum-flow [87] calculations between vertex pairs as a starting point

CHAPTER 4. CLUSTERING 45

for clustering [45, 121, 302].
Clustering methods can also be based on or evaluated by computing the

conductance of a graph (or namely of the corresponding Markov chain for
a regular random walk, defined in Equation 3.21 on page 23) [45, 175]. A
variation of conductance is known as normalized cut [147]. Conductance
corresponds to an NP-complete problem [284], as do practically all good
measures for clustering computations. The normal procedure in a divisive,
hierarchical, conductance-based method is to remove the cut that gives the
graph’s conductance; this splits the graph into two clusters which are then
further iterated upon to split them into smaller clusters.

We denote a cluster in a graph G = (V, E) by C, where C ⊆ V is the
vertex set. We usually think of the internal structure of the cluster as the
subgraph induced by the vertex set C, and use the cut (C, V \ C) to evaluate
the connectivity of the cluster to the rest of the graph, often directly using the
cut size c (C, V \ C).

4.2 LOCAL CLUSTERING

Traditionally, clustering algorithms have been designed to obtain a global
clustering for a given graph, i.e., to assign each vertex to a cluster. For large
graphs, this becomes computationally difficult, as the running time of an al-
gorithm should not grow faster than linearly in the order of the graph n in
order for it to be at all scalable; sublinearity is strongly preferable. For exam-
ple, the World-Wide Web has billions of vertices and many more edges, set-
ting it out of reach of the global algorithms. The existing global approaches
a capable of dealing with up to a few millions of vertices on sparse graphs
[156, 239, 240]. Another issue is that many large networks are not explic-
itly available but rather require on-demand generation or exploration with a
crawler, such as the programs that are used to index the WWW for search-
engine construction [67, 298].

For many applications, only a small subset of vertices needs to be clus-
tered instead of the whole graph. These include locating documents or genes
closely related to a given “seed” data set. This motivates the use of a local ap-
proach for finding a good cluster containing a specified seed vertex or a set of
vertices by examining only a limited number of vertices at a time, proceeding
in the “vicinity” of the seed vertex. The scalability problem is avoided, as
the graph as a whole does not need to be processed unless a single cluster is
composed of nearly the entire graph. Also, clusters for different seeds may be
obtained by parallel computation.

4.2.1 Clustering by local search

Local search methods are probabilistic algorithms designed to find near-
optimal solutions in large, complex state spaces. Instead of performing a
complete, exhaustive search of all possible states, they “navigate” the search
space by moving from one state to a “neighboring” state using a heuristic,
usually involving transition probabilities, for choosing the next state to visit.
At each visited state, a fitness function is evaluated to determine whether that

46 CHAPTER 4. CLUSTERING

state provides a good solution. Out of all the visited states, the one yielding
the best fitness value is returned as the solution of the local search.

The decisions to be made in formulating a local search method are defin-
ing the neighborhood relation over the space of possible solutions, aiming
to define one that can be navigated with light computation, the choice of
the fitness function to choose good solutions with tolerable computational
cost, and the guidance of the search in the neighborhood. If the neighbor-
hood definition produces local optima, the search must be guided in such
a manner that it is possible to “escape” a local optimum — a simple greedy
search always proceeding to the neighbor with the highest fitness value will
always return the first local optimum it reaches. When running a local search
method, usually several iterations with either fixed or somehow randomized
start states are performed, each iteration composing of a predetermined max-
imum number of steps to be taken. For a good review on local search meth-
ods, we recommend the book by Aarts and Lenstra [1].

To locate a cluster containing a given vertex v ∈ V from a graph G =
(V, E), we stochastically examine subsets of V containing v, and choose the
candidate with maximal F (C) to be C (v); note that the same procedure is
applicable to any fitness function that assigns higher values to better clus-
ters. The extent to which the graph is traversed depends on the local search
method applied.

We define an initial cluster C′ (v) of a vertex v such that it contains v it-
self and its neighborhood Γ (v). We then allow each search step to either
add a new vertex that is adjacent to an already included vertex, or remove an
included vertex. Upon the removal of u ∈ C′ (v), u 6= v, the connected com-
ponent containing v becomes the next cluster candidate. Note that also other
definitions of an initial cluster can be used, such as starting from a singleton
cluster with the seed vertex v only, and also the neighborhood definition can
be modified to fit an application area.

One option for guiding a local search procedure (in a manner that aims to
avoid getting stuck on local optima) is the simulated annealing method [186]
that allows the search to proceed to a lower-fitness neighbor in the search
space with probability that decreases over time as the search proceeds. The
speed at which the probability decreases is controlled by two parameters: the
initial temperature and a cool-down coefficient — the aim is to mimic cool-
ing in metals. In addition, one fixes the number of iterations to be computed
and the number of steps taken per each iteration. The parameters are usually
chosen by running some initial experiments and choosing a parameter set
that gives promising results [193]. An application of simulated annealing to
optimizing a cluster fitness function is given in Section 4.2.4, with pseudo
code in Table 4.1.

With the proposed method, also clusterings for partially unknown graphs
are fluently obtained. The method’s strongest asset is the possibility for online
computation of clusters that are with high probability locally optimal with
respect to the fitness measure. It is also noteworthy that the method requires
no parameters, whereas typically parameters such as a density threshold or
the number of clusters need to be user-defined for clustering algorithms.

CHAPTER 4. CLUSTERING 47

4.2.2 Similarity-based clustering

For general data, it is not always immediately clear what would be the proper
similarity measure. The case is equally confusing on graphs. We begin be
discussing similarity measures and similarity-based clustering for point sets to
shed light on the foundations on which similarity-based methods for graphs
are commonly built.

If the data can be fluently mapped into vectors, for example in R
n, a suit-

able distance measure such as the Euclidean distance of two n-dimensional
vectors x and y

distEucl (x,y) = ‖x − y‖2 =

√

√

√

√

n
∑

k=1

|xk − yk|. (4.5)

can be used as the clustering similarity measure. It works well for datasets
that are spread evenly in the range of X in all dimensions and are not sen-
sitive to rotations or translations. For strings, for example, there are several
alternative definitions of similarity than can be employed, such as variations
of the edit distance [142]. The choice will eventually depend on the appli-
cation. Using a distance as a similarity measure, a good clustering is such
where the distance of elements that belong to the same cluster is small in
comparison to the inter-cluster distance.

A widely-spread method for clustering points in space is the k-means clus-
tering [106, 144]. The method clusters a given set of vectors X ⊂ R

n into
k classes by iteratively constructing a set of k mean vectors µ1, . . . , µk using
the Euclidean distance to optimize the positions of the mean vectors with
respect to the total distance to the elements of X . After computing the mean
vectors, the dataset X is reclassified accordingly: a vector xj ∈ X belongs to
class i if and only if µi is the nearest mean vector to xj with respect to the
Euclidean instance.

If the exact number of clusters, which is the value of the parameter k,
is not known beforehand, it may be estimated by running the algorithm for
several different values of k, but this may be costly for large datasets. Another
option is minimizing the Davies-Bouldin index [93] to choose the best value
of k [265, 180]. The k-means method is also sensitive to the initial cluster
assignments. There are also a number of approximation algorithms for the
k-means problem [6], some of which operate online [140, 247].

For clustering large datasets of points in space, Nagesh et al. [232] sug-
gest a parallel clustering algorithm called PMAFIA that clusters the data in
a bottom-up fashion, attempting locally to identify clusters in subspaces of
the data instead of handling all of the data at once. Also Zhang et al. [328]
propose a local method, based on a “closeness” value of data elements, com-
putable during the clustering. The clusters of BIRCH are dense regions of the
data space, and isolated points may be optionally altogether ignored. Both
of these methods are reported to be efficient and to produce high-quality
clusters. They are however somewhat complex to implement.

Electrical circuits provide reasonable intuition for graph clustering: think
of the graph as a circuit that has a unit resistor on each edge, calculate the
potentials (i.e., solve the Kirchoff equations) for all of the vertices, and cluster

48 CHAPTER 4. CLUSTERING

the vertices based on the potential differences [240, 241]. The problem is
the placement of a battery into the system; how to choose the source and the
sink of the current? The idea of computing voltages can however be fluently
applied to local clustering [322]: fix the seed vertex at a high potential and a
random sink vertex at low potential. The voltages of the vertices “close” to the
seed vertex will be higher than the voltages of those that are far and hence
the voltage difference of a vertex pair can be used as a similarity measure.
The algorithm obtains an approximate solution to the Kirchhoff equations
by iterative computation, starting with all but the seed and sink vertices at
potential 1

2
, the seed at 1 and the sink at 0. A pitfall is that if the random sink

may be selected “too close” to the seed vertex, the voltage values do not work
for clustering purposes; this can be avoided by repeating the calculation over
a set of random sinks — for each repetition, the cluster of the seed vertex is
calculated by locating the biggest drop of the voltage levels and majority vote
is used to combine the repetitions [322]. Another straightforward approach
is to take the averages of the voltages for each vertex over the repetitions and
cluster with the final values.

It is simple to convert an unweighted graph into a circuit understood by
the SPICE [264, 263] resistor circuit. If vertices with labels 1 and 2 share
an edge, one creates a corresponding unit resistor for example by assigning a
name to the resistor, such as �� ���, uses the vertices as “intersections” in the
circuit (labeled � and �). In SPICE syntax,

�� ��� � � ��

creates such a resistor with label � ���. Each edge corresponds to such a
resistor-definition line, and a voltage source (such as a battery) is placed be-
tween a source vertex (in this case with label 3) and a sink vertex (vertex 4)
by

� � ������� ��� ����� �	 �

with adjustable battery voltage (here set at two volts). The simulator can then
calculate and report the voltage for each resistor, among other things.

The problem of choosing a random sink can be avoided by considering
diffusion in an unbounded medium instead of a finite electrical circuit. We
fix a seed vertex vs at zero potential and obtain similarities as the solution
to the discrete Dirichlet problem [68] imposing the boundary condition of
keeping v at zero potential on G [250]. The transition matrix P correspond-
ing to a graph G = (V, E) is

pv,w =

{ 1
deg(v)

, {v, w} ∈ E,

0, otherwise.
(4.6)

Fixing a seed vertex vs to zero potential corresponds to setting pvs,w = 0 for
all w 6= vs and pvs,vs = 1. We find the right eigenvector f that corresponds to
the second largest eigenvalue of modified P and use the values of the vector
as the similarity values for finding the cluster of the seed vertex vs. For more
intuition on electrical networks, we recommend the book of Doyle and Snell
[104].

Recall from Section 3.1.1 that the second eigenvalue is closely related to
the mixing time of the chain, providing an intuition that the components of

CHAPTER 4. CLUSTERING 49

the second eigenvector serve as some kind of “proximity” measure for how
long it takes for the walk to reach each vertex. This observation is the founda-
tion of the global (usually hierarchical and divisive) spectral clustering meth-
ods. We propose a local method based on the same technique.

We call the components of the vector the Fiedler values of the vertices of
the graph with respect to the seed vertex vs, with reference to the work of
Fiedler on matrices and graph connectivity [117, 118]. The Fiedler values
of vertices in C (vs) differ clearly from those outside the cluster, as will be
demonstrated later in this section as well as in Section 4.4. Similar work with
Fiedler vectors on document clustering of the WWW is reported by He et
al. [147], who also observe a clear difference in the Fiedler values of those
vertices that belong in different clusters for a 2-classification task. Our goal
is, however, to define a local method to identify the cluster of a given seed
vertex, whereas He et al. do not find clusters for determined seed vertices.

Another approach to computing the same vector is to use the Dirichlet
matrix [250]. Denote the (Dirichlet-)Fiedler vector for a given graph G and
seed vertex vs by f . It has f (vs) = 0. The vector elements with values
close to zero for correspond to vertices that are “close” to vs in the sense that
they intuitively belong to the cluster of v. In the case that there are more
seed vertices, they all can be fixed to zero to find their shared cluster. This
however may produce unnatural results if the seed vertices themselves should
not share a cluster.

The Fiedler vector f can be computed by minimizing the degree-adjusted
Rayleigh quotient [69, 68]:

σ1 = inf
f

∑

{v,w}∈E(f (w) − f (v))2

∑

w deg (w) · f2 (w)
, (4.7)

where the infimum is computed over such vectors f that satisfy the boundary
condition f (vs) = 0. This equality allows local approximation of f . As the
normalization of the final Fiedler vector f is unrestricted, we constrain the
minimization to vectors that satisfy

|f |
.
=
∑

w

deg (w) · f2 (w) = 2m, (4.8)

where 2m is chosen as it gives an upper bound to the value of the sum when
f (w) ∈ [0, 1]. Hence we wish to find a vector f for which

f = argmin
{

∑

{v,w}∈E

(

f (w) − f (v)
)2

| f (vs) = 0 ∧ |f | = 2m

}

. (4.9)

A related method for global clustering with similar computations is proposed
by Ding and He [99]. However, we perform neither exact nor global compu-
tations. The first useful observation is that Equation 4.9 can be approximated
by weighting the constraint |f | = 2m with c > 0 and using the gradient-
descent method to optimize the following function:

F (f) =
1

2

∑

{v,w}∈E

(

f (w)− f (v)
)2

+
c

2

(

2m−
∑

w

deg (w) · f (v)2). (4.10)

50 CHAPTER 4. CLUSTERING

A second, even more fruitful observation is that the objective function has
partial derivatives

∂F(·)

∂f (w)
= −

∑

{v,w}∈E

f (v) + (1 − c) · deg (w) · f (w) , (4.11)

a simple form which allows local computation of the gradient-descent step
for each vertex v, only accessing the current estimate for f (v) together with
the estimates for vertices in Γ (v). We initialize a gradient-descent iteration
with f (vs) = 0 and f (v) = 1 for all v ∈ V , v 6= vs, choosing a descent-speed
parameter δ > 0, and taking the iteration steps defined by

f̃ (w)t+1 = min
{

1, f̃ (w)t + δ · γ
}

, (4.12)

where the minimum is taken to ensure that no value exceeds one and

γ =
∑

{v,w}∈E

f̃ (v)t − (1 − c) · deg (w) · f̃ (w)t . (4.13)

Should f̃ (·) become negative, the descent is too rapid and a smaller value
for δ should be chosen. The effect of the normalization |f | = 2m is that most
vertices in G will have f (v) ≈ 1, assuming that

|C (vs)| � n, (4.14)

which holds for many natural networks that have a clustered structure.
Note that we only need to compute the descent step at time t for vertices

v that have f̃ (w)t−1 < 1 for some w ∈ Γ (v). Simple Matlab codes for
computing both the exact values and our approximation are given in appen-
dices. Note that in an efficient implementation it is only needed to store
the estimates that are less than one. If the cluster C (vs) is small compared
to the order of the graph, this brings considerable savings in both memory
usage and computational load especially for large instances. We observed
clear improvement in runtime when including this optimization in our im-
plementation of the method.

The apparent disadvantages of the method are having to choose the weight
constant c and the descent-speed parameter δ, as well as deciding when to
stop the iteration. The parameters need to be chosen such that the descent
is not too rapid, i.e., that the estimate vector f̃ remains non-negative. The
changing either one of the constants c and δ will affect the iteration. We used
the following heuristics to choose initial values for both and hand-tuned these
in situations where too rapid of a descent occurred: estimate the average
degree k̄ of the graph, set c = k̄−2, and δ = 0.1c. For determining when to
stop iteration, one can either limit the maximum number of steps or setting
a threshold ξ such that we stop the iteration when the maximum change in
the estimate vector f̃ is no greater than ξ; we usually started with ξ = 0.1δ
and adjusted it manually if the descent did not appear to converge before
reaching the threshold.

The estimates of the Fiedler vector thus obtained can be used as a simi-
larity measure for clustering, similarly to the aforementioned voltages of Wu

CHAPTER 4. CLUSTERING 51

and Huberman [322], but with local computation. For both these meth-
ods, it remains an open problem what would be the best way to choose the
cluster for vs given such similarity values. From Figure 4.2 it is easy to see
that the vertices included in the cluster have Fiedler values clearly differing
from those not included in the cluster, and hence the task is relatively sim-
ple. A standard 2-classifier such as the k-means algorithm for points in space
(in both of these cases, the data is one-dimensional) can be used to separate
C (vs) from the rest of the graph, but also other options are available. Ideally
the separation process could be combined with the calculation of the sim-
ilarities. The stronger the contrast between the similarity values, the easier
the classification task becomes; the approximate Fiedler vectors have a strong
contrast between the cluster members and the outsiders for each cluster (as
illustrated in Figure 4.2) and hence gives an easy input set for the classifica-
tion task.

Figure 4.2 shows in addition to the Fiedler and Wu-Huberman values a
matrix for the mean absorption times of Markov chains corresponding to the
same graph. As explained in Section 3.1, the mean absorption time of a state
is the mean first-passage time in a modified chain where that state is made
absorbing. Mean first-passage time can be expressed in terms of the station-
ary distribution vector π, which is the left eigenvector corresponding to the
eigenvalue 1 of the transition matrix, and the unit vector E = (1, 1, . . . , 1),
which is the corresponding right eigenvector as [73]

fi = πi(I −Pi,i)
−1E. (4.15)

Hence using P of a modified chain with i as an absorbing state yields the
mean absorption time in terms of the stationary distribution. The Fiedler
values are the elements of the eigenvector related to the second eigenvalue
of the same P. As seen in Figure 4.2, both of these measures indicate a
cluster structure, but it is more emphasized in the Fiedler vectors.

The local search approach outlined in Section 4.2.1 can also be employed
for clustering with exact or approximate Fiedler values. First assume that
in addition to G = (V, E) and vs, also the corresponding Fiedler vector
(possibly approximated) f is given. We base our fitness function on the the
weighted Cheeger ratios [68]

R (C (vs)) =

∑

w∈C(vs)

∑

{v,w}∈E
v/∈C(vs)

ω ({v, w})

∑

w∈C(vs)

∑

{v,w}∈E

ω ({v, w})
, (4.16)

where the edge weights ω ({v, w}) > 0 can be chosen appropriately. Low
R (C (vs)) implies little connectivity between the cluster and the rest of the
graph and high density within the cluster (both in a weighted sense), which
agrees with the criteria used above to define clusters. Hence we choose an
edge-weight function — for example,

ω ({v, w}) =
(

|f (w) − f (v)|
)−1 (4.17)

gives good experimental results — and use simulated annealing with the
same modification steps as used above to minimize R (·) of Equation 4.16
to select C (vs).

52 CHAPTER 4. CLUSTERING

Exact Fiedler vectors Approx. Fied. vectors

Mean abs. times Average voltages

Figure 4.2: Visualizations of different similarity measures for a 75-vertex
graph with a clear six-cluster structure, vertices sorted by cluster and the sim-
ilarity vectors computed for each vertex composed into a matrix where the
value range has been mapped into the unit line [0, 1] which has been fur-
ther mapped into 256 gray-scale colors, with one mapped to white and zero
mapped to black. The top-row matrices show the Fiedler values, both exact
and approximate, computed with Matlab (code included in the appendix).
The bottom-left matrix shows the mean absorption times (see Equation 3.5
along with the explanation of mean absorption times on page 21) from the
other vertices to the seed vertex for a random walk on the graph, and the
bottom-right has the voltages used in the clustering algorithm by Wu and
Huberman [322], averaged over 500 random sink-source pairs.

CHAPTER 4. CLUSTERING 53

It is also possible to perform essentially the same process without precom-
puted Fiedler estimates setting the initial estimates as in the gradient descent
and computing the descent steps for vertices on demand. For example, an
iteration can be performed for v and w every time ω ({v, w}) is needed for
the computation of the fitness function. The longer the simulated annealing
runs, the closer the Fiedler estimates get to those obtained by the local pre-
processing described above, which implies that vertices that are not neighbors
of the current cluster candidate do not need to be accessed. Updating the es-
timates every time an edge weight is needed ensures that the estimates for the
current cluster candidate are frequently updated, and since vs ∈ C (vs) at all
times during the search, these are the same vertices that would be expected
to get a Fiedler value lower than one in the preprocessing as well. Note that
those vertices which at no point become neighbors of a cluster candidate are
not accessed at all during the clustering.

4.2.3 Cluster fitness functions

Instead of calculating similarities for the vertices on which to base the cluster-
ing, it is also possible to define fitness functions that evaluate the suitability
of a given (connected) subgraph containing vs as C (vs). In order to locate
the cluster for a seed vertex v in G = (V, E), we define a fitness function that
“rates” (connected) subgraphs of G so that we may stochastically examine
possible solutions. The stochastic search algorithm then chooses the candi-
date that gives the best value for the fitness function among those examined;
due to its stochasticity, the search will not explore the entire solution space
but will attempt, with probabilistic decision-making, to study a limited region
that assumably contains good if not the best solutions. A similar approach for
points in space has been suggested [42, 187].

The cluster fitness functions should be locally computable, meaning that
the fitness of a cluster candidate should not depend on global properties of
the graph. We begin the derivation of possible fitness functions by listing
measures that can be calculated for a given subgraph resorting only to infor-
mation on the included vertices and their neighbors. For unweighted graphs,
this means that only the adjacency lists of the included vertices may be ac-
cessed. For edge weights, the weight of each edge that has at least one end-
point in the subgraph is considered locally available, and for vertex weights,
the weights of the included vertices and their immediate neighbors are con-
sidered locally available.

We begin by considering measures for determining whether a cluster C is
a good cluster for a particular vertex v ∈ C in a given graph G = (V, E). We
classify the edges incident on v into two groups: internal edges that connect
v to other vertices in C, and external edges that connect v to vertices that are
not included in the cluster C,

degint (v, C) = |Γ (v) ∩ C|

degext (v, C) = |Γ (v) ∩ (V \ C)|

deg (v) = degint (v, C) + degext (v, C) .

(4.18)

54 CHAPTER 4. CLUSTERING

Clearly, if degext (v) = 0, C is a good cluster, as v has no connections outside
of it. Also, if degint (v) = 0, there is no reason why v should be included in
C as it is not connected to any of the vertices in it. In general, the higher the
internal degree degint (v), the better v fits into the given cluster. In order to
compare the suitability over different cluster candidates with varying order,
we need to scale this by the maximum number of neighbors that a vertex
could have in C, namely |C| − 1, to obtain a measure in [0, 1]:

δ (v, C) =
degint (v, C)

|C| − 1
. (4.19)

This measure indicates how densely v is connected to C and it should give
a high value if C is a good cluster for v. We also want to make sure that the
vertex is not densely connected also to other parts of the graph, and hence
define a measure in [0, 1] for vertex introversion, namely the ratio of internal
edges to all edges incident on v:

ρ (v, C) =
degint (v, C)

deg (v)
. (4.20)

If both of the above measures have a high value, we can assume v to be
correctly classified into C. If either one is low, it would be worthwhile to try
reassigning v to some other cluster.

The quality of a given cluster can be evaluated on the basis of the suitabil-
ity of the included vertices; a possible measure for cluster density would be a
scaled sum of vertex densities (Equation 4.19):

δs (C) =
1

|C|

∑

v∈C

δ (v, C)

=
1

|C| (|C| − 1)

∑

v∈C

degint (v, C) .
(4.21)

We define the internal degree of a cluster C to be the number of edges con-
necting vertices in C to each other:

degint (C) = |{{v, w} ∈ E | v, w ∈ C}| . (4.22)

The sum of the internal degrees of vertices in C is clearly twice the internal
degree of the cluster, as each internal edge is counted independently by both
of its endpoints. This simplifies Equation 4.21 into

δs (C) =
1

|C| (|C| − 1)
· 2 degint (C) =

degint (C)
(

|C|
2

) = δ (C) (4.23)

obtaining exactly the local density of the subgraph induced by the vertex set
C. Clearly, optimizing δ (C) ∈ [0, 1] alone makes small cliques superior
to larger but slightly sparser subgraphs, which is often impractical. Hence
it is essential to find a fitness function that avoids getting “stuck” at small
cliques containing v. The cluster of v should intuitively contain at least the
largest clique that contains v. The natural cluster of a vertex, however, is
not necessarily a complete subgraph, but rather just a “surprisingly” dense

CHAPTER 4. CLUSTERING 55

subgraph considering the global density of the graph. Note that the local
density can also be interpreted as the probability of two included edges being
connected, and the higher the probability, the more tightly connected the
cluster.

Also algorithms that search for maximal subgraphs that have a density
higher than a preset threshold have been proposed [185]. Without a thresh-
old such an algorithm would search for complete subgraphs, including K2

and K3, which are neither appealing as clusters; any edge will produce a K2

subgraph whereas K3 is a simple triangle. Another approach was proposed
by Matsuda et al. [218] who consider p-quasi complete subgraphs as clusters;
a graph G = (V, E) is p-quasi complete for p ∈ [0, 1], if for all v ∈ V ,

deg (v) ≥ p(n − 1). (4.24)

The connection probability p is given as a parameter to their algorithm. They
show that it is NP-complete to determine whether a given graph has a 0.5-
quasi complete subgraph of order at least k. Hence they conclude that ap-
proximation algorithms are the only feasible approach for locating such sub-
graphs [218]. Holzapfel et al. [155] discuss the computational complexity of
a related problem, namely the detection of clusters that have average degree
above a given threshold.

The introversion of a cluster C can be similarly characterized by summing
the suitability measures of Equation 4.20 and scaling with the cluster order
to remain in [0, 1]:

ρs (C) =
1

|C|

∑

v∈C

ρ (v, C) =
1

|C|

∑

v∈C

degint (v, C)

deg (v)
. (4.25)

If we calculate the capacity of the cut (C, V \ C) (Equation 3.20 on page 23)
for a uniform random walk with transition probabilities as in Equation 3.26
on page 25, we obtain

Q (C, V \ C) =
∑

v∈C,
w∈V \C

pv,w

=
∑

v∈w,
w∈(Γ(v)∩(V \C))

1

deg (v)
=
∑

v∈C

degext (v, C)

deg (v)
.

(4.26)

As degext (v, C) = deg (v) − degint (v, C) by definition, there is an obvious
relation between the capacity of the cut and Equation 4.25 above. A cluster
is properly introvert if Equation 4.25 has a high value and the capacity of the
cut is low. The cut capacity used above as an introversion measure is used to
define the conductance of a graph, which has been used in global clustering
algorithms [170], for example, recursively removing a cut from the similarity
graph of the data set such that the removed cut has a conductance almost
at low as the minimum over all cuts [62]. Another related measure used for
clustering is the relative density ρ (C) [223] that is defined in terms of the
internal degree degint of Equation 4.22 and external degree of a cluster C,
which is the size of the cut (C, V \ C),

degext (C) =
∣

∣

{

{v, w} ∈ E | v ∈ C, w ∈ V \ C
}∣

∣ , (4.27)

56 CHAPTER 4. CLUSTERING

as the ratio of the internal degree to the number of incident edges:

ρ (C) =
degint (C)

degint (C) + degext (C)
=

∑

v∈C degint (v, C)
∑

v∈C

degint (v, C) + 2 degext (v, C)
. (4.28)

For cluster candidates with only one vertex as well as all larger independent
sets, we set ρ (C) = 0. Also this measure favors subgraphs with few con-
nections to other parts of the graph. All of these introversion measures are,
however, optimized for any connected component in which all edges are by
definition internal, yielding zero for cut capacity and one for relative density
as well as the summation of 4.25. This imposes restrictions on their usage
as fitness functions, as a local search method would prefer any connected
component as a cluster selection even if it would allow intuitively pleasing
divisions into smaller clusters.

One possible interpretation of the relative density is as follows: consider a
global, partitional clustering of G = (V, E) into clusters C1, . . ., Ck. Evidently

k
∑

i=1

(

degint (Ci) + degext (Ci)
)

= m +

k
∑

i=1

degext (Ci) , (4.29)

as every external edge has endpoints in exactly two clusters. Now for a clus-
tering to be of high quality in terms of introversion, as m is a constant, we are
interested to minimize

∑k
i=1 degext (Ci), which means that out of all cluster-

ings into k clusters, one clustering is better than another if any two clusters
have a smaller external degree whereas the external degrees of the others re-
main unaltered. Note that modifying just a single cluster is not possible, as a
removed vertex must be included into another cluster. The computation is
even more tedious if the number of clusters is allowed to vary.

Hence, to approximate this global optimum, each cluster may locally at-
tempt to minimize its own degext (Ci); as the cluster should also attempt to be
the maximal-order cluster with the minimal external degree, it should favor
higher values of degint (Ci) over lower ones, meaning that it attempts to maxi-
mize degint (Ci) while minimizing degext (Ci), which can be directly achieved
by maximizing the ratio degint(Ci)

degext(Ci)
. This measure however can take arbitrary

positive values over connected cluster candidates and may result in division
by zero in the absence of external edges. In order to scale it to values in
[0, 1] and avoid division by zero, we add to the denominator the value of the
numerator, which yields exactly Equation 4.28.

A good cluster has both high density and high introversion (i.e., low capac-
ity). Possible combinations of the above measures are numerous; in this work
we concentrate on examining the behavior of the product of local (Equa-
tion 4.23) and relative (Equation 4.28) densities as a cluster quality measure:

F (C) = δ (C) · ρ (C) =
2 degint (C)2

|C| (|C| − 1)(degint (C) + degext (C))
. (4.30)

For weighted graphs with weights in [0, 1], we simply replace the internal
and external edge counts by the sums of the weights of the corresponding
edges.

CHAPTER 4. CLUSTERING 57

The local density can be interpreted as the probability that two randomly
chosen cluster members are connected by an edge, whereas the relative den-
sity is the probability that a randomly chosen edge incident on the cluster
is an internal edge. In a good global clustering, when picking an edge uni-
formly at random, we would like the probability that it is internal to a cluster
to be high (which can be formulated into a quality measure, as will be dis-
cussed in Section 4.3). Also, we would like the probability that two vertices
that are in the same cluster are connected to be high, interpreting strong
connectivity as an indicator of vertex similarity.

Therefore, when building clusters one by one, we aim to form every single
cluster such that it has only a few edges connecting it to other clusters (i.e.,
high relative density) and that as many as possible of the cluster members
would share an edge (i.e., high local density). A low value for either measure
indicates that the cluster boundary is badly chosen (allowing too big of a por-
tion of the edges to connect to outside vertices or including poorly connected
vertices in the same cluster). Optimizing the product of Equation 4.30 yields
the desired behavior in a simple form.

The complexity of optimizing Equation 4.30 can be studied through the
decision problem of whether a given graph G has a k-vertex subgraph C for
which F (C) ≥ γ for some fixed k ∈ N and γ ∈ [0, 1]. Especially, we are
interested in knowing whether there is such a subgraph that contains a given
vertex v. Both δ (C) and ρ (C) alone correspond to NP-complete decision
problems of the following form [284]:

Maximum Density (DENSITY)
Instance: An undirected graph G = (V, E), a density measure δ (·) defined
over vertex subsets S ⊆ V , a positive integer k ≤ n, and a rational number
ξ ∈ [0, 1].
Question: Is there a subset S ⊆ V such that |S| = k and the density δ (S) ≥
ξ?

When the density measure used is δ (C), we call the problem LOCAL
DENSITY; it is NP-complete since for ξ = 1 it coincides with the NP-
complete CLIQUE problem [181]. Using ρ (C), we call the resulting problem
RELATIVE DENSITY, which is clearly a problem in class NP since a nonde-
terministic algorithm can guess a cut S ⊆ V of order k and verify in poly-
nomial time that the relative density is above the threshold ξ. The following
minimum bisection problem on cubic graphs is known to be NP-complete
[50] and can be reduced to RELATIVE DENSITY in polynomial time:

Minimum Bisection for Cubic Graphs (CUBIC MIN BISECTION)
Instance: A cubic graph G = (V, E) with n vertices and positive integer b.
Question: Is there a cut S ⊆ V such that |S| = n

2
and the cut size is smaller

than the bound b, degext (S) ≤ b?

Given a CUBIC MIN BISECTION instance G of order n, and a positive in-
teger b, a corresponding RELATIVE DENSITY instance consists of the same
graph G, with parameters k = n

2
and

ξ =
3n − 2b

3n + 2b
. (4.31)

58 CHAPTER 4. CLUSTERING

For any subset S ⊆ V such that |S| = k = n
2

it holds that the total number
of edges incident on S is

3 |S| − degext (S)

2
=

3n − 2 degext (S)

4
(4.32)

due to G being a cubic graph. This allows us to write the relative density in
terms of the cut size only, as the external degree and the internal degree of S
together form the set of all incident edges:

ρ (S) =
3n − 2 degext (S)

3n + 2 degext (S)
, (4.33)

which combined with the threshold of Equation 4.31 yields ρ (≥) ξ if and
only if degext (S) ≤ b.

4.2.4 A stochastic algorithm

Calculation of the fitness measure of Equation 4.30 only requires the adja-
cency lists of the included vertices. Therefore, a good approximation of the
optimal cluster for a given vertex can be obtained by local search with the
method discussed in Section 4.2.1, using Equation 4.30 as the fitness func-
tion of a simulated annealing procedure. The neighborhood over cluster
candidates for the seed vertex v is defined such that if C can be transformed
into C′ by adding a vertex adjacent to at least one vertex included in C or
by removing an included vertex along with any vertex that is not in the con-
nected component of the seed vertex v after the removal (easily determined
by a depth-first search). The pseudo code of a “skeleton implementation” is
given in Table 4.1.

The method is well-suited for memory-efficient implementation: if the
graph is stored as adjacency lists of the form

〈v : w1, w2, . . . , wdeg(v)〉, (4.34)

only one such entry at a time needs to be retrieved from memory. For n
vertices, the entries can be organized into a search tree with O (log n) access
time. The search needs to maintain only the following information:

(a) the list of currently included vertices C,

(b) the current internal degree degint (C) (Equation 4.22), and

(c) the current external degree degext (C) (Equation 4.27).

When a vertex v is considered for addition into the current cluster candidate
C, its adjacency list is retrieved and the degree counts for the new candidate
C′ = C ∪ {v} are calculated as follows:

degint (C
′) = degint (C) + k, degext (C

′) = degext (C) − k + `, (4.35)

where k = |C ∩ Γ (v)| and ` = deg (v) − k. The removal of vertices from
a cluster candidate is done analogously, subtracting from the internal degree
the lost connections and adding them to the external degree.

CHAPTER 4. CLUSTERING 59

Table 4.1: An algorithm that finds the cluster C (v) of a specified seed vertex
v in a given graph G, assuming that the graph is represented as a set of ad-
jacency lists L. The subroutine Modify takes as a parameter the seed vertex
and a cluster candidate and selects a neighboring cluster candidate. R is the
number of iterations taken by the simulated annealing algorithm, each con-
sisting of S modification steps. T0 is the initial temperature of the simulated
annealing algorithm, and α is the cooling constant. F (C) is the fitness func-
tion of Equation 4.30. The procedure UniformRandom() acts as a random
variable X ∼ Uniform (0, 1): each call made to it returns a new uniformly
distributed real number.

Cb := {v}. �� ���� ������� 	
���
Fb := 0. ��
������
	 ��� ���� ��� ����
For i ∈ [1, R], �� ������ �
� �

C := Γ (v) ∪ {v}.
T := T0.
Fp := F (C).
For j ∈ [1, S], �� ����� ��� ������ �
�

C′ := Modify (v, C).
Fc := F (C′).
If
(

(Fc ≥ Fp) ∨
(

UniformRandom() < e
Fc−Fp

T

))

,
then C := C′, Fp := Fc.
If (Fc > Fb),

then Fb := Fc, Cb := C.
Return Cb.

60 CHAPTER 4. CLUSTERING

The memory consumption of the local algorithm is determined by the
local structure of the graph. The order of the initial cluster is limited from
above by the maximum degree of the graph ∆ plus one; in natural graphs,
usually ∆ � n and |C| � n. Hence examining the adjacency lists of the
vertices included in the final cluster candidate takes O (∆ · |C|) operations.
Redefining

degext (C) = |{〈v, w〉 ∈ E | v ∈ C, w ∈ V \ C}| (4.36)

allows for clustering directed graphs. The method has been applied to obtain
a clustering of a 32,148-vertex directed graph representing the Chilean inter-
domain link structure [305].

4.3 EVALUATION OF CLUSTERINGS

For traditional methods of clustering points in space, clusters that are of very
different sizes or shapes often produce difficulties, as well as clusters that over-
lap each other [123]. In graph clustering, this implies that when the clusters
are of different orders and have varying densities, global methods tend to run
into difficulties in correctly classifying them. Attempting to overcome diffi-
culties caused by different densities or other properties of the data set, most
clustering algorithms require as input several parameters in addition to the
data to be clustered. Determining proper values for the parameters is usually
nontrivial or even impossible, and the methods may be highly sensitive to
the parameter values. Hence a practical clustering algorithm should require
few if any parameters. It should also be insensitive to small changes in the
parameter values.

Cluster fitness functions, when not used in the clustering algorithm it-
self, can also be used to evaluate the clusterings produced and especially to
choose between two alternative clusterings, preferring those clusterings that
yield high-fitness clusters. Extending the definitions of internal and external
degrees for a global clustering C1, . . . , Ck of a graph G = (V, E) as

degint (C1, . . . , Ck) =

k
∑

i=1

degint (Ci) and

degext (C1, . . . , Ck) = 1
2

k
∑

i=1

degext (Ci) ,

(4.37)

we may use the local or relative densities or the combination fitness function
of Equation 4.30 to evaluate the quality of a given global clustering. Although
optimizing such measures is computationally demanding, evaluating them
for a given clustering of a given graph is a light-weight operation.

In addition, given a clustering C1, C2, . . . , Ck for G = (V, E), the following
measure [238] (known as modularity) may be used to evaluate its quality:2

Q (C1, . . . , Ck) =

k
∑

i=1

Eii −
∑

i6=j
i,j∈{1,...,k}

Eij, (4.38)

2Many formulations of essentially the same quality measure exist, depending on whether
the graph is weighted and whether minimization or maximization is used.

CHAPTER 4. CLUSTERING 61

where
Eij =

∑

{v,w}∈E
v∈Ci, w∈Cj

ω ({v, w}) , (4.39)

with a single edge {v, w} ∈ E only included once in the summation. In
terms of our previous definitions, for an undirected and unweighted graph,
using constant unit weights we have

degint (Ci) = Eii

degext (Ci) = −Eii +

k
∑

j=1

Eij.
(4.40)

The higher the value of Q (C1, . . . , Ck), the better the clustering, as the to-
tal weight of intra-cluster edges is large and the total weight of inter-cluster
edges is small. The measure coincides with the intuition that vertices in
the same cluster should be connected to each other with high probability
and that the probability of a randomly chosen edge connects two clusters is
low. This intuition of inter-cluster sparsity combined with intra-cluster den-
sity has been used by Brandes et al. [45] both with formulations similar to the
above equation and conductance-based notions to evaluate the performance
of clustering algorithms.

Equation 4.38 is in essence the graph-theoretical equivalent of minimiz-
ing the sum-of-squares of distances within clusters and maximizing it be-
tween the clusters for a clustering of a set of points in n-dimensional space
[161], closely related to the Davies-Bouldin index [93]. Implementing a clus-
tering algorithm to directly optimize the measure would suffer from the same
scalability problems than the general clustering methods, but for a moderate
size graph a stochastic search could be implemented assigning vertices to
initial clusters and then moving vertices from one cluster to another, using
Equation 4.38 as a fitness function. Such a search space would unfortu-
nately be large, as it would consist of all possible partitions of the vertex set,
and global information would be needed to evaluate the fitness. Nonethe-
less, approximate methods may be build to optimize this measure [78, 239],
as discussed earlier in this chapter.

Other measures for evaluating a single cluster are distance measures such
the average or maximum distance, which should be small for a good cluster.
These measures are useful if a method returns two candidate clusters and
only one is to be chosen. A clustering fitness measure used by Wu et al. [320]
compares the differences in average path lengths of the original graph and a
graph where each cluster is contracted into a single vertex and distances are
calculated by having that single vertex represent all of its “member vertices”.
This measure is called the distortion of the graph geodesics.

4.4 EXPERIMENTS

In this section we describe some of the experiments performed with the local
methods presented earlier in this chapter. We have conducted experiments
on natural and generated nonuniform random graphs.

62 CHAPTER 4. CLUSTERING

4.4.1 Test data

We have used two main data sets for natural data: one being a large collabo-
ration graph [234], which can be reasonably assumed to have the topology of
a social network, and the other being a graph representing the inter-domain
links of the Chilean Web Graph [305]. In this section we introduce the con-
structions of both of these natural graphs as well as explain the method used
to generate artificial test data.

Our collaboration graph is based on bibliography files from The Collec-
tion of Computer Science Bibliographies [2], using only the mathematical
bibliographies in BIBTEX format.3 The sample includes 379 files from the
FTP server of the Department of Mathematics at the University of Utah4 and
about 50 other files. The collaboration graph was constructed by processing
the author fields of the files, attempting to ignore authors that are not persons
(such as institutes and committees), to simplify the spelling of the names, ig-
noring Roman numerals, and to interpret which word is the first name and
which is the last name of an author.

As the bibliographic data was somewhat diverse and especially all exotic
names have varying forms of spelling even within just one bibliography file,
we represented all authors with the same first initial and surname by the
same vertex. For comparison we also tested a construction in which only
the surname was used. Dashes and other such characters in the names were
removed, and special Unicode characters were replaced by their ASCII coun-
terparts, for example, replacing á and ä by a. Even with the above simplifi-
cations, more than 170,000 bibliographic entries with multiple authors were
found. Each such entry is represented by a line in the parser output that de-
fines the “vertex labels”, which are the simplified last names of the authors,
with duplicates eliminated. Multiple and reflexive edges were omitted.

The graph that results from joining all the above BIBTEX files with just
the surname as author identification has 78,758 vertices and 331,551 edges
(referred to as Glast). Adding the first initials increases it to 129,215 vertices
and 350,914 edges (Ginit). More details of the construction are given in our
earlier work [306]. The largest connected component of Glast has 73,707 ver-
tices and 327,891 edges, therefore covering 93.6 % of the network. For Ginit,
the connected component covers 84.1 percent of the graph with 108,624
vertices and 333,546 edges.

The Chilean Web Graph (CWG) was constructed from a data set of a
complete crawl of all Chilean websites in 2002 [20]. We extracted from each
web page its domain and placed a directed edge between two domains if the
source domain contains a page that has a link to the target domain, i.e., an
edge 〈v, w〉 signifies that there exists a link from at least one webpage under
v to a webpage under w. Links pointing to non-Chilean websites, pages from
non-Chilean websites, self-loops, and edge multiplicities (that could be used
as weights in clustering) were ignored.

An early attempt in social sciences to capture the clustering properties of
social networks was the caveman graph, produced by linking together a ring

3The data was collected from ���� ���������� 	�
� 	�
� 	���� ������
����������
on December 2, 2002; eight bibliographies were unavailable at the time.

4Available online at ��� ������ 	� ��� 	���� 	������������� �� .

CHAPTER 4. CLUSTERING 63

Figure 4.3: An example caveman graph with 55 vertices and 217 edges; each
cave (encompassed by a dotted line) is correctly identified as a cluster by the
local optimization of Equation 4.30.

of small complete graphs called “caves” by moving one of the edges in each
cave to point to another cave [313]. In earlier work [306], we present a con-
struction for creating hierarchical, probabilistic versions of caveman graphs.
We call these the generalized caveman graphs. A connection probability
p ∈ (0, 1] of the top level of the hierarchy is given as a parameter, together
with a scaling coefficient s that adjusts the density of the lower-level caves.
The minimum nmin and maximum nmax for the numbers of subcomponents
(subcaves at higher levels, vertices at the bottom level) are given as parame-
ters. The generation procedure is recursive. For an example of a first-level
construction, see Figure 4.3.

A cave at a certain level ` of the hierarchy is formed of a random number
r ∈ [nmin, nmax] of subcaves with connection probability min{s ·p′, 1}, where
p′ is the connection probability at level `. Each subcave is either a hierarchi-
cal cave, or at the bottom level, a random graph of type Gn,pb

with a random
n ∈ [nmin, nmax]; pb is the connection probability of the bottom level. Caves
that consist of subcaves are randomly connected into a larger graph; the con-
nections are placed as in the Gn,p model, considering the subcaves as single
vertices, the inter-cave connection being assigned to a random member at
each subcave. These graphs all have high clustering and relatively short path
length by construction unless both the initial connection probability and the
scaling factor are set to produce sparse caves and a sparse hierarchy.

4.4.2 Locality and stability

For generalized caveman graphs, local optimization of Equation 4.30 cor-
rectly identifies any dense “cave” regardless of the starting point; an example
is shown in Figure 4.4. As local search procedures are not prohibited from
traversing further away in the graph or revisiting parts of the graph, we wish
to examine whether the extent to which the search traverses the graph has
a significant effect on the clusters that the algorithm chooses. Hence we
clustered the largest connected component of Ginit (a collaboration graph)
by optimizing Equation 4.30 with simulated annealing, varying the num-
ber of independent restarts R ∈ {20, 40, . . . , 100} per search vertex and the
number of cluster modification steps S taken after each restart for simulated

64 CHAPTER 4. CLUSTERING

annealing from 200 to 1,000 with increments of 100.
The Figure 4.5 shows the ratio of the number of vertices visited during the

search to the final cluster order, averaged over 100 vertices selected uniformly
at random; the final orders are plotted for reference. Figure 4.5 plots the ra-
tio of the number of vertices visited and the final order of the selected cluster
using R restarts of S steps averaged over 50 randomly selected vertices. The
extent to which the graph is traversed grows much slower than the number
of modification steps taken, implying high locality of the search. As the iter-
ation count is increased, the relative difference gets smaller, which indicates
that the number of vertices visited practically stops growing if the increasing
possibility for random fluctuations is ignored. The distributions of the clus-
ter orders over three R/S-pairs of the same graph are shown in Figure 4.6;
the distribution hardly changes as the parameters are varied, indicating high
stability of the method.

4.4.3 Comparison with global methods

We compared the clusterings obtained with the local optimization of Equa-
tion 4.30 to the clusterings of two global methods: GMC (Geometric Mini-
mum Spanning Tree Clustering) with additional linear-time post-processing
[45] and ICC (Iterative Conductance Cutting) [175]. The data set used con-
sisted of generalized caveman graphs of different orders. For each graph,
we compared the clusters of each vertex obtained with the three methods
by calculating their overlap, i.e, what fraction (shown in percentages) of the
vertices of a cluster A determined by one method are also included in the
cluster B determined by another method.

Table 4.2 shows the results for a caveman graph with 1,533 vertices and
50,597 edges; the results for the smaller graphs allow the same conclusions.
ICC splits the caves into small clusters, which is a sign that it fails to recognize
the cave boundary on which the density jump takes place. GMC and the lo-
cal method agree in a majority of cases exactly in cluster selection, and even
when they differ, one is usually a subset of the other. GMC and ICC agree
poorly with each other. For an illustration of this effect, Figure 4.7 shows a
single cave, correctly identified as a cluster by the local method regardless of

Figure 4.4: The adjacency matrix of a caveman graph with 210 vertices and
1,505 edges; the left one uses random vertex order, reflecting little structure,
whereas the one on the right is sorted by the clusters found by locally op-
timizing Equation 4.30 — the sorted matrix clearly reveals the cave-based
structure.

CHAPTER 4. CLUSTERING 65

 0

 5

 10

 15

 20

 25

 30

 35

 40

 200 400 600 800 1000
V

is
it-

to
-o

rd
er

 r
at

io
 (

av
g)

S = Steps per iteration

R = 100
R = 80
R = 60
R = 40
R = 20

 5

 5.2

 5.4

 5.6

 5.8

 6

 200 400 600 800 1000

F
in

al
 c

lu
st

er
 o

rd
er

 (
av

g)

S = Steps per iteration

R = 100
R = 80
R = 60
R = 40
R = 20

Figure 4.5: On the left, the ratio of the number of vertices visited (i.e., the
visit count for an R/S-pair) to that of the number of vertices selected in
the final cluster (i.e., the cluster order) averaged over 100 vertices selected
uniformly at random and repeated 50 times per vertex. On the right, the
average final cluster orders of the same experiment set.

 1

 10

 100

 1000

 10000

 1 5 10 100 500

F
re

qu
en

cy

Number of vertices in a cluster

50/500
25/250
10/100

Figure 4.6: The distribution of the number of vertices per cluster for the
largest connected component of Ginit for three different R/S-pairs, where
R ∈ {10, 25, 50} and S = 10R.

the seed vertex, but split into disagreeing clusters by both global methods.

4.4.4 Fiedler clusters

For the Fiedler clustering method, we experimented on three types of net-
works: generalized caveman graphs, subsets of the collaboration graph, and
a small social interaction graph.

Figure 4.11 on page 70 represents some of the results of the approximate
Fiedler vector calculations on a 144-vertex caveman graph, starting from
three different source vertices. For visual effect, the vertices are color-coded
so that dark colors correspond to small approximated Fiedler potential values,
with the source node in each case colored black. The parameter values used
in this case were the standard ones derived from k̄ = 6.14 (i.e., c = 0.027,
δ = 0.003, ε = 0.0003, as explained on page 51).

It can be seen in the illustrations how well the method distinguishes the
natural clusters embedded in the graph. The vertices selected by the Cheeger-
ratio heuristic for the relevant clusters in each of the three cases are indicated
by thickened node boundaries; also the clusters determined in this manner
can be seen to correspond to the natural ones. A small graph of order 144

66 CHAPTER 4. CLUSTERING

Table 4.2: Denote byA the cluster chosen by one method for vertex v, and by
B the cluster chosen for v by another method. If the two methods agree, the
overlaps a = |A∩B|/|B| and b = |A∩B|/|A| are high. For three clusterings
of a caveman graph, the percentages p of vertices for which the values a and
b fall into a certain range are shown. The values are to be interpreted as
follows: if a = a1 and b = b1, then a1 percent of cluster B (the method of
the right column) is included in A (the method of the left column) and b1

percent of cluster A is included in B.

Local GMC % Local ICC % GMC ICC %
a b p a b p a b p

all all 74 all (11, 14) 45 all (5, 14) 71
all (74, 95) 14 all (22, 27) 12 all (22, 34) 10
all (2, 24) 4 all (5, 7) 36 all (40, 55) 2

(86, 97) all 5 all (46, 54) 6 (80, 91) (7, 31) 7
(3, 57) (5, 87) 3 [50, 67) (5, 20] 4

(71, 89) (45, 55) 3
(9, 46) (2, 100] 3

was chosen for illustrative purposes. Results on a bigger graph of order 1,533
are qualitatively similar, but the bigger graph is infeasible to be represented
in such a drawing.

Another perspective on the data is provided by Figure 4.8, where the com-
ponents of an approximate Fiedler vector corresponding to the middle one of
the three local clusterings shown of Figure 4.11 are plotted. On the left, the
components of the Fiedler vector (i.e., the Fiedler values) are ordered simply
by node index, and on the right they are sorted in increasing order by com-
ponent value. The vertical lines indicate the vertices selected for the cluster
of the source node (which in this case has index 95) by the Cheeger ratio
heuristic. In our generating process for the synthetic caveman graphs, ver-
tices deemed to belong to the same cave are assigned consequent indices, and

Figure 4.7: A single cave detached from a 649-vertex caveman graph; the
small circles are neighbors in other caves. The shape of the vertex indicates
its cluster for the post-processed GMC (with three clusters overlapping the
cave) and the color indicates the clustering of ICC (seven clusters overlap);
locally optimizing Equation 4.30 selects an entire cave using of any included
vertex as the seed vertex.

CHAPTER 4. CLUSTERING 67

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

F
ie

dl
er

 v
al

ue

Vertex label

 0

 0.2

 0.4

 0.6

 0.8

 1

F
ie

dl
er

 v
al

ue
 (

F
V

)

Vertices in ascending order of FV

Figure 4.8: Components of a Fiedler clustering vector sorted by index (left)
and in ascending order (right). The vertical lines represent the cluster se-
lection of the Cheeger-ratio local optimization method based on the Fiedler
values.

hence good clusterings should group in a band-like formation as observed on
the left in Figure 4.8.

A 503-vertex subgraph of the collaboration network is shown in the left
panel of Figure 4.9. The right panel shows three small collaborative clusters
identified by the local Fiedler clustering method, starting from three distinct
source vertices; the clusters are non-overlapping in the sense that none of
the source vertices gave values less than one for any of the members of the
other two clusters. The parameter values were set to c = 0.09, δ = 0.1c, and
ξ = 0.1δ.

The third example (Figure 4.10) represents the friendship relations among
34 members of a university karate club [326]. Due to internal tensions, the
club split into two during the study period, and some of the members joined
the former instructor of the club in establishing a new organization. This
network is frequently referred to as an example by community discovery lit-
erature [237, 240, 322]. In the graphs of Figure 4.10, the actual partition of
the club is indicated by the shape of the vertices: square vertices correspond
to the club members who stayed in the original club together with its admin-
istrator, and circular vertices correspond to the members who moved to the
new club.

On the left side in Figure 4.10, the vertices are colored according to their
approximate Fiedler values in the cluster of the original club’s administrator,
and on the right, according to the club’s instructor. As can be seen, the
correlation between the shapes and colors of the vertices is quite good in
both cases; only a few vertices in the middle are “undecided” as to which
club they belong to, but this may correspond also to the actual social reality
of the situation.

We wish to emphasize that the small size of our example graphs here is
due to the requirements of illustration. The presented methods are local and
hence their running time scales relative to the order of the resulting cluster,
and does not depend on the order of the graph.

68 CHAPTER 4. CLUSTERING

Figure 4.9: Local Fiedler clusters in a 503-vertex collaboration graph; on the
bottom, a closeup view of the three clusters with distant and overlapping
vertices rearranged to allow a better view of the structure of the induced
subgraphs.

Figure 4.10: Fiedler values in a 34-vertex karate club social network.

CHAPTER 4. CLUSTERING 69

Figure 4.11: Local Fiedler clusters in a 144-vertex caveman graph.

7
0

C
H

A
P

T
E

R
4

.
C

L
U

S
T

E
R

I
N

G

4.5 APPLICATIONS

For example the performance of services provided on the World-Wide Web
can be improved by clustering web clients in order to identify groups of
clients that request similar information and reside at nearby locations with
respect to each other, in which case e.g. a mirror server can be set to serve
each such cluster of clients. Such a clustering has been studied by Krishna-
murty and Wang [195].

Flake et al. [120] identify communities on the web, i.e., groups of web-
sites with more internal links than links to “outside” websites, using a net-
work flow approach. A similar definition for web communities is given in
[48], in which also using density as a clustering measure is suggested. In doc-
ument databases that record the inter-document references in addition to
the document contents, link-based local clustering could be combined with
content-based similarity measures when serving relevance queries where the
user wishes to locate documents similar or related to a given document.

In this section we discuss three application areas for clustering, namely
the employment of clusterings for routing in mobile networks, clustering of
graph databases to facilitate efficient queries, and the assessment of graph
generators.

4.5.1 A clustering protocol for ad hoc networks

An ad hoc network is formed by communication nodes residing in the same
region with no or little central control in the formation and the function of
the network. For an introduction to such systems, we recommend Perkins’s
book [258]. In ad hoc networks, there are no centrally maintained rout-
ing tables telling the nodes how to communicate to other nodes. Methods
for constructing routing tables that can be used to locate other nodes in ad
hoc networks need to be scalable and dynamic, as in many applications the
nodes are mobile and hence there are frequent topology changes in the sys-
tem. It is known that grouping the nodes into clusters allows for savings in
the size of the routing tables while maintaining good efficiency in the choice
of the communication paths [192], also reducing the number of messages
that the nodes need to send in order to form and maintain the routing ta-
bles [174, 202, 292]. Proposals for and analysis of cluster-based routing in
dynamic networks include [194, 292] — an introductory review is provided
by Steenstrup [290].

We employ the ideas of local clustering presented earlier in this chapter
to design an efficient scheme for forming clusters in a mobile ad hoc net-
work. When clustering is introduced to an ad hoc routing system, a locally
computable clustering is a necessity in order to avoid generation of further
control traffic. In the ideal case, each arriving node is able to determine the
appropriate cluster simply by consulting its immediate neighbors, who will
not need to communicate further to determine the best cluster. The scheme
works similarly to that of Lin and Gerla [209] — our contribution is in clus-
ter construction that allows for topology changes at any step of the execution
of the algorithm as it functions well under incomplete information, as will
be shown in our experiments later in this section. The method resembles

CHAPTER 4. CLUSTERING 71

Figure 4.12: Each cluster has its own color; the nodes have been added one
by one, with existing nodes updating their clusters after the newcomer selects
a cluster. Cluster heads are drawn with a black border. In these examples, all
nodes have a fixed communication range and they do not move.

that of Ohta et al. [248], with the difference that we choose between cluster
candidates by optimizing a density-based fitness function.

If we are able to produce connected clusters that have high local density
with only few links to the rest of the network, the routing task is simplified.
For intra-cluster routing, it becomes possible to use link-state algorithms,
such as OLSR [76], which require dense and relatively small networks in
order to be efficient [273]. If the clusters are stable enough, this gives good
performance. Inter-cluster routing, on the other hand, may well use on-
demand routing protocols.

By optimizing Equation 4.30, we may cluster ad hoc networks without
extra messages, since the required messages are simple enough to be pig-
gybacked on link layer or routing messages. Based on our simulations, this
produces intuitively good clusters, thereby minimizing address changes and
allowing us to optimize routing traffic.

A simple protocol for clustering is the following [280]: upon arriving to a
new location or waking up from sleep, a new node probes its neighborhood.
All existing nodes that hear the probe, if any, send their cluster identifier
together with three integers: the number of nodes in the cluster |C′|, the
internal degree degint (C

′) of the cluster, and the external degree degext (C
′)

of the cluster. Since these values take so little space, they could be easily
embedded into existing messages.

Based on the messages the arriving node receives, it constructs a neighbor
list and calculates the fitness that each of the neighboring clusters would
obtain if it were to join that particular cluster. It is also able to deduce the
current fitness of each cluster, and chooses to join the cluster which “gains”
the most (or “suffers” the least) due to the arrival of the new member. If a
node has no neighbors or no neighboring cluster accepts it, that is, it receives
no answers to the probe, it starts its own cluster. The acceptance criteria may
for example include a maximum cluster size or a threshold on how much
the cluster fitness may decrease upon a new arrival. Such parameters to the

72 CHAPTER 4. CLUSTERING

Figure 4.13: Clusters selected by a method for some anomalous network
structures.

cluster formation serve to regulate the amount of routing traffic in link-state
based routing schemes. Once the node has solved the cluster it wants to join
to, it sends a message indicating its desire. This can be implemented as a
routing-protocol message, such as an OLSR HELLO message [76].

The cluster-selection protocol described above should be repeated as the
network evolves. The cluster memberships can be updated, for example,
on regular intervals or upon the creation or loss of connections. Detection
of a new edge causes a node to re-execute the cluster-selection protocol; a
node will only change its cluster if the new cluster arrangement is (much)
better than the current one. This reduces the amount of routing and address
management traffic.

Clearly, if a cluster splits, each node must select a new cluster, and such
information should propagate along the disconnected component. In order
to determine which “half” of a separated cluster should select a new cluster
identity, one node in each cluster needs to hold a “cluster head” status. A
node that has no intra-cluster paths remaining to the cluster head must re-
initiate the selection protocol, hereby alerting its neighbors to check whether
they still have a proper path to the cluster head. If a full link-state protocol
is used within a cluster, routing information allows trivial partitioning detec-
tion.

To examine what the resulting clusters look like, we have built a simulator
to visualize clusterings. Figure 4.12 shows an example of a randomly gener-
ated graph and Figure 4.13 shows the clustering for some anomalous shapes.
We also built an � ��� implementation [219] of the algorithm for more re-
alistic experiments. Our experiments with simulation tools are promising:
the clusters achieve a proper sense of locality in space and their structure
corresponds well to the intuitive global clusterings of the network.

In the � ��� simulations, we used networks with 30 nodes in a one square-
kilometer area and set the minimum cluster order to be five and the max-
imum to eight nodes; the simulator was very slow for larger networks. We
had each node probe its neighborhood, within a range of 250 meters, on
five-second intervals and the cluster heads broadcasting a status message for
intra-cluster flooding also on five-second intervals. A node i executing the

CHAPTER 4. CLUSTERING 73

cluster-selection protocol would only switch from its current cluster C (i) to
another cluster C′ if the switch is quality-increasing, the sum of the fitnesses
of the clusters C (i) and C′ will grow as i switches from C (i) to C′. Having
received the cluster-offer message from a node in C′, i has the information
needed for such a computation. The minimum and maximum cluster orders
were enforced such that a switch was forced to happen if C (i) was too small
and no switch was made if C′ was already at maximum order.

Observing the behavior of the clustering method on the simulators, it also
seems feasible to approximate the fitness function using estimates of the re-
quired values |C′|, degint (C

′), and degext (C
′). Such an approach with “lazy

updates” of the fitness-function inputs would allow for a more relaxed con-
trol traffic within the cluster, as not all nodes need to be immediately aware
of newcomers, departing nodes, or changes in edges. The effects of outdated
information can be deduced from the fitness function (Equation 4.30): a
node can have an outdated value for cluster order |C′|, for the internal de-
gree degint (C

′), or the external degree degext (C
′); the magnitude of the dif-

ference between the actual value and the assumption made at a single node
depends on the rate of change in the clustering as well as the frequency with
which updated information is propagated in the network. We traced a set
of � ��� runs and computed at each time step the true values of the above
measures and compared those to the “belief” of each node, calculating the
absolute value of the difference. Small deviations between the observed and
actual values of the fitness-function input do not drastically affect the fitness
value. Therefore a practical clustering can be achieved as long as all nodes
maintain an approximate “guess” for each required value, and the error of
the estimate and the actual value does not diverge rapidly.

Figure 4.14 shows that the estimates do not diverge over time and hence
the clustering does not suffer from outdated information; the nodes are able
to function well with their limited information on the values needed to eval-
uate cluster fitness. However, in cluster splits, there is a risk that the original
cluster will not notice the departure of some nodes. In situations where splits
are frequent and the departing nodes will often become completely detached
from the old cluster, not even remaining in the neighborhood, the cluster
heads should send out time-stamped beacon messages containing the cluster
member list that are propagated by broadcast within the respective clusters,
and the member nodes respond (through a broadcast tree formed by the or-
der in which the nodes received the beacon message from each other) by
stating which of those members are currently their neighbors and how many
other neighbors they have. The number and contents of these response mes-
sages informs the cluster head of the current cluster order, internal degree,
and external degree. The cluster may then include these three values in the
next beacon message.

Such a mechanism allows for the entire cluster to maintain a more up-
to-date view on the cluster topology. The cluster head should not send out
a new beacon before it receives the replies to the previous ones; the waiting
time should be reset upon the arrival of a reply and the computation of the
current values should only be done after a timeout occurs with no further
reply arrivals. If however the cluster head receives a reply after the timeout,
it should increase the waiting time for the next beacon round. A mechanism

74 CHAPTER 4. CLUSTERING

 0

 2

 4

 6

 8

A
ve

ra
ge

Cluster order

 0

 10

 20

 30

 40

 50

Internal degree

 0

 5

 10

 15

 20

 25

External degree

 0

 2

 4

 6

 8
V

ar
ia

tio
n

Simulation time

 0

 10

 20

 30

 40

 50

Simulation time

 0

 5

 10

 15

 20

 25

Simulation time

Figure 4.14: The absolute values of the average differences µi for |C′| (left),
degint (C

′) (middle), and degext (C
′) (right) over a set of I = 10 runs of D =

250 seconds; the average over the runs is drawn thicker (as respectively is the
variation of the variations).

for reducing the time if all replies arrive quickly could also be included. Note
that by adding a hop counter to the beacon messages, incremented by each
forwarding node, nodes can include the value of the counter upon their first
reception of the message to their replies and thus inform the cluster head of
their “effective” distance from the cluster head; this information could also
be used to adjust the waiting time at the cluster head.

For moderately sized clusters (at most 256 nodes) and 64-bit cluster iden-
tifiers, all of the required information can be fit into 16 bytes. This can be
easily included in existing link-layer frames, IP layer address resolution or
neighbor-discovery messages, or routing messages; the information could be
carried in Wireless LAN beacon frames or in IPv6 neighbor-discovery mes-
sages.

We studied the quality and stability of the clusterings produced by a se-
ries of � ��� simulations, studying cluster density, fitness, and stability as the
main indicators. We ran I = 10 simulations to study the performance of the
algorithm under four different mobility models. The mobility models uti-
lized were reference-point group mobility (GM) model with nodes moving
in small groups, random direction (RD) model, random walk model (RW),
and random way-point (RWP) model [57, 246].

In all our scenarios the nodes move with speed uniformly distributed in
[0, 15] m/s after an initial period of [0, 5] seconds. In GM, each individual
node moves as in RWP, but within a restricted area of 200 m2 surrounding
the group imaginary reference point, while reference points also move as in
RWP, but within the whole simulation area. For RW, node change direction
on one-second intervals.

We report averages and variations of the measured indicators, denoting the
average over values of variable xi with i ∈ {a, a+1, . . . , a+b} by Avg [xi]

a+b
a

and employing the following measure of variation:

% [xi]
a+b
a =

√

√

√

√

∑k
i=0

(

Avg [xi]
a+b
a − xi

)2

b + 1
. (4.41)

CHAPTER 4. CLUSTERING 75

Table 4.3: Measures of graph (Equation 4.42) and cluster stability (Equa-
tion 4.43) for the four mobility models (MM) used; the values are averages
over the set of I = 10 experiments, each with duration D = 600 seconds.

MM B̃/D B̃int/D Ẽ/D Ẽint/D T̃ /D T̃int/D Q̃ F̃ S̃ T̃ · S̃

GM 1.53 0.25 1.55 0.21 3.08 0.46 0.03 0.01 0.04 0.13
RD 1.04 0.43 1.06 0.20 2.10 0.46 0.10 0.08 0.18 0.39
RW 1.13 0.47 1.15 0.42 2.28 0.90 0.04 0.02 0.07 0.15
RWP 1.50 0.59 1.51 0.26 3.01 0.86 0.09 0.07 0.16 0.48

The metrics measured over a period of D = 600 seconds were the following,
with k denoting the cluster count (at a certain time step) and a measurement
was taken for time steps t ∈ {0, 2, 4, . . . , 600}: the cluster order Avg [|Ci|]k1 ,
the cluster fitness Avg [F (Ci)]k1 , and the local density of the clusters versus

the density of the graph
(

Avg [δ (Ci, C)]k1 − δ (G)
)

. For the density differ-
ence, the range is [−1 , 1] and a positive value indicates that dense subgraphs
have been selected as clusters; if the value is close to one, almost all links
present in the graph are internal to some cluster.

The results are shown in Figure 4.15 with separate plots for each mobility
model and each metric. All mobility models produced clusters with much
higher local density than the density of the entire graph. Unexpectedly, the
group mobility model produced large clusters with very high density, whereas
random way-point and random direction produced small, but dense clusters.
Similarly, clusters in the group mobility scenario had consistently much bet-
ter fitness than in other mobility models.

We also studied the stability of the graph and cluster topologies, recording
the total amount of link breakages Bi and new link establishments Ei and
the average topology change rate T /D by considering the graph variations
occurred per second in experiment i, i ∈ {1, 2, . . . , I}:

B̃ = Avg [Bi]
I
1 , Ẽ = Avg [Ei]

I
1 , T̃ = B̃ + Ẽ . (4.42)

We additionally recorded the number of topology changes that were internal
to clusters, denoting these by Bint, Eint, and Tint, respectively.

The cluster stability was measured by the number of cluster changes, dis-
tinguishing between two categories: Qi is the number of quality-increasing
cluster switches and Fi is the number of switches due to a cluster split:

Q̃ = Avg

[

Qi

Bi + Ei

]I

1

, F̃ = Avg

[

Fi

Bi + Ei

]I

1

. (4.43)

We denote S̃ = Q̃ + F̃ ; note that as T̃ is the average number of topology
changes, S̃ · T̃ is the average amount of cluster changes in a single simulation
run.

The results in Table 4.3 show that group mobility model and random walk
model have the most stable clustering structure of the four models. The rea-
sons, though, differ. Random walk creates mainly local movements, which
means that the overall topology of the graph will tend to stay the same with
small variations. It has as low rate of topology changes as random direction,

76 CHAPTER 4. CLUSTERING

but causes much less changes in the clustering structure. This is due to the
local movements of nodes in random walk vs. global movements of nodes
in random direction. Group mobility model creates global movements, but
with certain groups of nodes staying close to each other. This causes a high
rate of changes in the topology, but low rate of changes in the clustering. The
random-direction model also produces global movements.

We experienced very few clusters splits and changes in general. Overall,
the rate of changes in clustering is small. Group mobility and random walk
cause changes in clustering in 4% and 6% of cases when topology changes
and random direction and random way-point models in 16% and 18% re-
spectively.

The simulations show that the clustering algorithm is capable of captur-
ing the structure that may exist in the movements of nodes. This is especially
marked by the observation that group mobility model had the highest rate of
topology change, but still had least changes in clustering both per topology
change and per unit of time. The algorithm also managed to create clusters
with high local density, allowing us to partition the network into smaller sub-
networks which are easily managed by proactive routing algorithms such as
OLSR [76] that are designed especially for dense networks with small diame-
ter.

We plan to study further how the proposed clustering algorithm could be
used to further optimize routing and addressing management. On top of a
base-layer clustering, the clusters may be clustered further to form a hierar-
chy of clusterings on different levels. Informally speaking, each cluster of
the base-layer clustering is abstracted into a node and edges appear between
adjacent clusters — essentially the cluster-formation protocol can be used, re-
lying on routing the higher-level cluster requests to the cluster heads. Such a
layering requires the cluster heads to perform additional tasks, as the higher-
level clustering takes place among the cluster heads, some of which become
also cluster heads on the meta-level, and so forth. We leave the details of
such hierarchical clustering for further work.

CHAPTER 4. CLUSTERING 77

-1

-0.5

 0

 0.5

 1

A
ve

ra
ge

Diff. of local and global density

 0

 2

 4

 6

 8

Average cluster order

 0

 0.5

 1

Average cluster fitness

 0

 0.2

 0.4

 0.6

 0.8

 1

V
ar

ia
tio

n

Simulation time

 0

 2

 4

 6

Simulation time

 0

 0.2

 0.4

 0.6

Simulation time

-1

-0.5

 0

 0.5

 1

A
ve

ra
ge

Diff. of local and global density

 0

 2

 4

 6

 8

Average cluster order

 0

 0.5

 1

Average cluster fitness

 0

 0.2

 0.4

 0.6

 0.8

 1

V
ar

ia
tio

n

Simulation time

 0

 2

 4

 6

Simulation time

 0

 0.2

 0.4

 0.6

Simulation time

GROUP-MOBILITY MODEL RANDOM-DIRECTION MODEL

-1

-0.5

 0

 0.5

 1

A
ve

ra
ge

Diff. of local and global density

 0

 2

 4

 6

 8

Average cluster order

 0

 0.5

 1

Average cluster fitness

 0

 0.2

 0.4

 0.6

 0.8

 1

V
ar

ia
tio

n

Simulation time

 0

 2

 4

 6

Simulation time

 0

 0.2

 0.4

 0.6

Simulation time

-1

-0.5

 0

 0.5

 1

A
ve

ra
ge

Diff. of local and global density

 0

 2

 4

 6

 8

Average cluster order

 0

 0.5

 1

Average cluster fitness

 0

 0.2

 0.4

 0.6

 0.8

 1

V
ar

ia
tio

n

Simulation time

 0

 2

 4

 6

Simulation time

 0

 0.2

 0.4

 0.6

Simulation time

RANDOM WAY-POINT MODEL RANDOM-WALK MODEL

Figure 4.15: Grouped by the mobility model, averaged over the set of clusters for each time step in {0, 2, 4, . . . , 600} for each of I = 10 runs, the
difference of the average local density and the global density of the graph, the cluster order, and the cluster fitness (average over the runs drawn
thick).

7
8

C
H

A
P

T
E

R
4

.
C

L
U

S
T

E
R

I
N

G

4.5.2 Storing massive graphs for improved searchability

Current databases are well-suited to store relational data and to serve queries
asking for all entries that fulfill given criteria. When storing graph data in
such a database, we may for example build one relational table out of the
vertices and their properties, and another table of the edge set. Such stor-
age formats however do not support well navigational queries such as path
searches, although finding paths or common neighbors for a given vertex
pair are frequent subtasks of graph algorithms. Therefore it is of interest to
develop database-like storage formats for massive graphs that support these
kinds of queries with ease.

Knowing that the average path length in natural graphs is often small, it
should be possible to store a graph in such a way that a path query will not
need to access irrelevant parts of the graph. Also, as natural graphs often have
a clear cluster structure, common-neighbor queries and queries on connec-
tivity and relevance in general could be efficiently served storing each cluster
together. In this section we discuss methods that take such structural observa-
tions into account in deciding how to store a large graph in external memory
while facilitating efficient queries.

We separate two fundamental query types for graphs: path queries [56]
and cluster queries in the sense of nearest-neighbor queries that are relevant
for spatial data [272]. Path queries contain lookups of shortest or longest
paths and other connectivity properties. Cluster queries contain neighbor-
hood retrieval and “relevance” queries. An ideal graph database would sup-
port both of these query types with minimal page accesses in external mem-
ory, for example by storing precomputed clusters on nearby pages (if they do
not fit on single pages) and using preprocessing of vertex distances to avoid
retrieval of irrelevant pages during path construction.

The database should also be flexible for updates such as vertex insertions
and deletions; maintaining the preprocessing status could be implemented
in a relaxed fashion, as has been proposed for the balancing of tree-based
index structures [201]. Graphs with different structural properties would
benefit from different storage methods: a scale-free graph that has low clus-
tering is efficiently accessed by hub-based grouping, whereas a graph with
a more even degree distribution and strong clustering benefits from cluster-
based grouping. For a highly nonuniform graph, different parts of the graph
could be stored according to different heuristics for optimal performance.

Agrawal and Jagadish [7] propose storing massive graphs by decomposing
them into domains with low diameter. The goal is to provide a data struc-
ture that facilitates efficient solving of extremal path problems, consisting of
finding the shortest or longest paths between a given pair of vertices. The
approach they choose is to precompute some of the distances over the graph
at storage time and then employ this information to prune the path search
at run time. This works particularly well with nonuniform graphs that al-
low a natural clustering, i.e., graphs that are formed of dense subgraphs that
are only sparsely connected to each other. A similar idea was independently
proposed by Wu et al. [320].

We assume each edge to have a real-valued weight ω ({v, w}) ∈ [0, 1]

CHAPTER 4. CLUSTERING 79

associated to it.5 We set ω ({v, v}) = 0 for all v ∈ V . The input graph
G = (V, E) to be stored is preprocessed as follows: the vertex set V is divided
into subsets S1, . . . , Sk. Each subset Si is called a domain and is assigned a
center cnt (Si) = v ∈ Si. The radius of a domain S with center v is defined
as

radv (S) = max
w∈S

{dist (v, w)} , (4.44)

where dist (v, w) is the total weight of the edges on the shortest path con-
necting v to w.

The construction of Agrawal and Jagadish [7] generalizes also to directed
graphs, but we restrict our discussion to undirected graphs. The 1

2
k(k − 1)

distances between the k domain centers cnt (S1) , . . . , cnt (Sk) are stored in
a table that is used to obtain bounds on distances of arbitrary vertices when
their domains are known.

The division into domains is based on heuristics, with three alternatives
presented along the formulation of the algorithm [7]; the heuristics are all
somewhat similar, with the first two ones fitted for weighted graphs, and the
third (shown in Table 4.4) using hop counts (i.e., path lengths) to build do-
mains around randomly chosen centers. As the algorithms for clustering
undirected graphs have developed significantly since the proposal of Agrawal
and Jagadish, we suggest as an alternative using an existing top-down cluster-
ing algorithm that has efficient implementations. If the initial, global domain
assignment is done only once, it is not critical if this step takes a noticeable
amount of computation time. Hence we suggest using the speed-up version
[239] of the edge-betweenness algorithm originally proposed by Newman
and Girvan [241].

For graphs that are too large for global computation, we resort to a varia-
tion of the algorithm of Table 4.4 based on the local clustering algorithm of
Section 4.2.4, picking a random seed vertex v as in the heuristic, and instead
of computing the domain based on hop counts and a threshold, computing
C (v) with the algorithm of Table 4.1 (on page 60), and repeating until no
vertices remain unassigned [278]. If desired, a minimum cluster order could
be set such that no cluster smaller than that will be accepted, and vertices
whose clusters are smaller than that are joined to a neighboring cluster (as in
the heuristic), choosing among the nearest clusters by optimizing the local
cluster-fitness function of Equation 4.30, for example.

Also other clustering algorithms could be used; what interests us is that
the resulting global clustering constructed is of high quality even if not quite
optimal with respect to the clustering quality measure of Equation 4.38 on
page 61. Each cluster of the graph becomes a domain in the storage con-
struction; what remains to be done is the selection of the center for each
domain.

Agrawal and Jagadish [7] aim to minimize the distance between each ver-
tex and the center of the corresponding domain. The goal is to construct
low-diameter domains, whereas many natural networks have an altogether
small diameter due to the small-world property. Hence simply thresholding
on the diameter will not be useful. In the original algorithm the heuristics

5If the weight function of an application uses another interval of the real axis, a simple
scaling to the unit interval can be done if an upper bound on the edge weights is known.

80 CHAPTER 4. CLUSTERING

Table 4.4: The hop-based heuristic for domain creation of Agrawal and Ja-
gadish [7] (named “Heuristic 3” in the original article). It takes as input a
graph G = (V, E), an integer d, a rational number s ∈ [1

n
, n], and an integer

hmax ∈ [1, diam (G)].

For each v ∈ V ,
C (v) := undefined. �� �� �� ����� ����� ��� �
 �
�����

i := 0.
While (i < d), �� ������� �

����� �
� ��� ������ �

C := {v | v ∈ V, C (v) = undefined }.
Select v ∈ C uniformly at random.
cnt (Ci) := v.
C (v) := Ci.
j := 1.
While

((|Ci|
n

< s
)

∧ (j ≤ hmax)
)

,
C := {w | w ∈ V, C (w) = undefined, dist (v, w) = j}

Select w ∈ C uniformly at random.
C (w) := Ci.
If (C = {w}),

then j := j + 1.
i := i + 1.

C = {v | v ∈ V, C (v) = undefined}.
For each v ∈ C,

Select w s.t. dist (v, w) is minimal and (C (w) 6= undefined).
C (v) := C (w).

that assign the domains also address the question of center selection, but as
clustering algorithms simply deal with partitioning the vertex set, we select
the center of a domain after the domain has been constructed, optimizing es-
sentially the same criteria as Agrawal and Jagadish. We fix the center cnt (Ci)
of the domain Ci to be a vertex v ∈ Ci that has minimal total distance within
the domain, resolving ties by vertex identifiers. This minimizing value is
called the fitness of the center F (cnt (Ci)) and is assumed to be stored in the
domain graph structure,

F (cnt (Ci)) = min
v∈Ci

{

∑

w∈Ci

dist (v, w)

}

. (4.45)

We begin by discussing the addition of a new vertex v into a graph G =
(V, E) that has currently domains C1, C2, . . . , Ck. Assume that along with
vertex v, a list of vertices Γ (v) ⊆ V is given and that all edges {v, w} such
that w ∈ Γ (v) will also be added to E. Denote the set of these edges by
Fv =

{

{v, w} | w ∈ Γ (v)
}

. If the set Γ (v) is empty, we simply create a new
domain Ck+1 = {v} and assign cnt (Ck+1) = v.

The candidate domains for including v are those domains Ci that contain

CHAPTER 4. CLUSTERING 81

at least one neighbor of v. The weight of their connectivity to v is defined as

ω (v, Ci) =
∑

{v,w}∈Fv

ω ({v, w}) . (4.46)

For each domain, we define a fitness using a unit-interval fitness measure
F (Ci) ∈ [0, 1]. For unweighted graphs, we use Equation 4.30 on page 57
directly; it is straightforward to see that F (Ci ∪ {v}) is obtained as

F (Ci ∪ {v}) =
2 +

(

Eii + ω (v, Ci)
)2

(|Ci| + 1) |Ci|
k
∑

j=1

(

Eij + ω (v, Cj)
)

, (4.47)

using Eij to denote the total weight of edges connecting clusters i and j
(Equation 4.39). Generalizations to weighted graphs are simple, given that
the weights are bounded to some interval that can then be scaled to the unit
interval such that the longest edges have the smallest weight; the clustering
algorithm will then avoid “breaking” short edges when forming the clusters
more than it will avoid separating vertices that are farther apart. For simplicity
of presentation, we continue discussing the unweighted case.

For each domain candidate, we calculate the change in cluster fitness
should v be added into that domain,

∆v (Ci) = F (Ci ∪ {v}) −F (Ci) . (4.48)

If for some Ci, ∆v (Ci) ≥ 0, we insert the new vertex v into the domain Ci.
If several domains qualify, we choose the one that has the highest value of
∆v (Ci). If all such values are negative, there are several options. If we are
not worried about the number of domains growing, we may create a new
domain for the newly arrived vertex and assign cnt (Ck+1) = v. The growth
in domain count increases the size of the domain-to-domain distance table
that needs to be maintained in the domain structure [7], so it may be of
interest to allow domain quality to decrease using a predetermined threshold
ξfit ∈ [0, 1]: if it holds that

max
i=1,...,k

{

∆v (Ci)
}

≥ −ξfit, (4.49)

add v to the domain that has the maximum ∆v (Ci)-value, otherwise create
a new domain for v. Also, the additions could be carried out to the do-
main of the least-decreasing fitness, maintaining a counter on how many
fitness-decreasing insertions have been made, and performing a complete re-
clustering of the graph whenever a critical update count is exceeded (as in re-
laxed balancing of index trees, during a low-access period on the database [201]).

If v was inserted into an existing domain Ci, set

dist (v, cnt (Ci)) = min
w∈Γ(v)

{

ω ({v, w}) + dist (w, cnt (Ci))
}

. (4.50)

It may not be desirable to recalculate the optimal center for Ci every time
an insertion occurs, as this would require the update of the global center-to-
center distance table of the domain graph storage structure [7]. We suggest

82 CHAPTER 4. CLUSTERING

setting a threshold ξdist > 1 such that the center selection is only repeated
upon the addition of a vertex v when

dist (v, cnt (Ci)) > ξdist · F (cnt (Ci)) . (4.51)

If a vertex v ∈ Ci is removed from G = (V, E), the procedure is the
following. If Ci \ {v} = ∅, the domain Ci is removed from the structure. If
Ci remains non-empty but connected, i.e., there exists a path between any
vertex pair within Ci, no large changes are required on domain level, unless
v = cnt (Ci), in which case the center selection needs to be performed. In
full-scale implementations it would be useful to recalculate the center status
after several vertices have been removed from the same domain, but we omit
this for simplicity as it would require introducing yet another threshold value
or some other decision criterion.

If the removal of v splits Ci into connected components, but v 6= cnt (Ci),
the connected component containing cnt (Ci) becomes Ci and the other con-
nected components form new domains Ck+1, Ck+2, . . . and have centers se-
lected respectively. If v is the center, one of the resulting components is cho-
sen to be Ci and the others form new domains. If increase in domain count
is undesirable, another option is to remove Ci altogether from the graph and
add the vertices in Ci \{v} back into the graph one by one, in the order of de-
creasing number of neighbors in V \ Ci, preserving the neighborhoods of the
original graph in neighbor lists given as parameters to the addition process
described above.

When a single edge {v, w} is added, no major changes are needed. If the
vertices v and w belong to the same domain Ci, we do nothing, although
some criterion for deciding whether to recalculate cnt (Ci) would be useful
in an industrial-strength implementation. If on the other hand v ∈ Ci and
w ∈ Cj , i 6= j, a decision criterion for whether to reselect the domains for
the vertices (equivalently as upon vertex addition) is needed. For example,
the protocol could be executed only on the endpoint that currently has lower
domain quality, resolving ties by vertex identifiers.

For the removal of an edge {v, w}, nothing at all should be done if the
two vertices are in different domains. If {v, w} ⊆ Ci, it needs to be checked
whether its removal will disconnect Ci into two components. If so, the com-
ponent that contains cnt (Ci) becomes Ci (with center-recalculation if de-
sired), and the remainder becomes Ck+1 and calculates its center.

Due to the unfortunate lack of benchmark datasets for graph clustering
problems, we again resort to generalized caveman graphs to evaluate how
the algorithm functions on a graph of order 1,533 that has a clear cluster
structure of 30 caves and diameter three.

We computed the initial domains and centers with a hop-based heuristic
of Agrawal and Jagadish [7] as well as the centers using the caves as domains
(as a good clustering algorithm will identify each cave as a cluster — we use
the locally computed clusters used in Section 4.4.3). We chose the hop-
based heuristic as the caveman graph is unweighted and hence all distances
are hop-distances in any case. The hop-based heuristic of Agrawal takes three
parameters: the number of domains d, a “share” s ≈ n

d
, and a distance

threshold hmax. The center election is combined in the domain creation; the
algorithm was given in Table 4.4 on page 81.

CHAPTER 4. CLUSTERING 83

Table 4.5: The values of the parameters d (the domain count) and s (the
filling threshold) of the heuristic algorithm of Table 4.4 used in the exper-
iments. The bottom row shows n

d
, which Agrawal and Jagadish [7] used as

a starting point in adjusting s; we rounded the rational values to the closest
integers.

d 5 10 15 20 25 30 35 40 45 50 Set

s 300 150 100 80 70 60 45 40 35 30 A
s 200 120 90 70 55 50 40 30 25 20 B
s 150 100 80 60 50 40 30 20 15 10 C

n/d 306 153 102 77 61 51 44 38 34 30

As the number of caves is 30, and the caves are used directly as domains
in our version, we use for the heuristic of Table 4.4 several “near-by” values,
including 30, and some further-away values to examine whether the heuristic
algorithm obtains better performance with a number of domains different
from the number of the caves. The selection of the s-parameter is more
difficult; we know that the smallest caves have only a dozen vertices, whereas
the largest ones are closer to a hundred (one having 94 vertices), but there
are no means to account for such nonuniformity in the heuristic construction
of Agrawal and Jagadish [7]. For each value of d, we chose three different s
values smaller than or close to n

d
; the hope was that with small values, many

of the caves could form their own domains already in the center-assignment
phase. We fixed the distance threshold to two, as one is limiting and three
is already the diameter of the test graph. The parameter sets are shown in
Table 4.5; note that successful parameter selection requires the user to have
some approximate knowledge of global properties such as the diameter and
cluster-structure of the input graph.

We then calculated the distribution of estimate errors over the complete
set of vertex-to-vertex distances using these domain structures, using the basic
upper-bound formula of Agrawal and Jagadish [7], which simply states that
going to w from v cannot require a path longer than the one that passes
through the centers of the respective domains:

dist (v, w) ≤ dist (v, cnt (C (v)))+

dist (cnt (C (v)) , cnt (C (w))) +

dist (cnt (C (w)) , w) .

(4.52)

Remember that the storage algorithm stores all intra-domain instances and
all center-to-center distances, so these values are known and have zero error;
we leave them out of the average to eliminate the effect of the size of these
“routing tables” in the averages. We compute each unknown distance (only
in one direction, as the graph is undirected) by Dijkstra’s algorithm [87] and
then compute the corresponding upper bound with Equation 4.52, take the
difference of the two, and average over all computed distances.

The results of the estimate-error experiment are shown in Figure 4.16.
The cluster-based approach achieves a small error and the decision on the

84 CHAPTER 4. CLUSTERING

 0

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30 35 40 45 50

A
vg

. e
st

im
at

e
er

ro
r

Domain count

Clusters
Set A
Set B
Set C

Figure 4.16: The estimate-error distributions of the domain-construction
heuristics with different d/s-pairs (as listed in Table 4.5) and using clusters
as domains for a caveman graph of order 1,533.

number of domains does not have to be made beforehand, but is derived
from the graph structure by the clustering algorithm. It is possible to achieve
similar estimate errors with the heuristic of Agrawal and Jagadish [7], but
this requires adjusting the parameters with some a priori knowledge or as-
sumptions on the graph structure. It is also noteworthy that as the domains
become smaller, the domain centers tend to be closer to the members of the
domain, and hence the increase in domain count will inevitably reduce the
estimate error, but with the cost of having to manage more domain tables
and a larger center-to-center table. Hence, with respect to this quality mea-
sure, the cluster-based approach works better, especially considering the ease
of use.

In addition we made random modifications to the graph and studied the
evolution of the estimate error. The operations were vertex splits and merges,
as we wanted to mimic a more natural evolution of the graph than mere ran-
dom removals and addition of elements. In each split, a vertex v is selected
uniformly at random and a new vertex v′ is introduced such that with proba-
bility p = 0.75 for each w ∈ Γ (v), the edge {v′, w} is included in the graph.
We always link v and v′ to ensure that the graph remains connected.

In a merge operation, two distinct vertices v and w are chosen at ran-
dom and combined into a vertex v′ such that with probability p for each
u ∈ (Γ (v) ∪ Γ (w)), the edge {v′, u} is included in the graph, whereas v
and w along with all of the incident edges are removed. In order to keep
the graph connected for as long as possible, we required that the result of a
merge always links to at least one vertex in Γ (v) ∪ Γ (w). Also, as the merge
may cause some edges to disappear, we monitor the graph and restart the
experiment should the graph become disconnected at any point.

In order to slowly increase the density of the graph, a trend which has
been observed to be a natural evolution for graphs [204, 221], we also added
an edge from the newly created vertex (the result of a split or a merge) to
any other vertex uniformly at random with probability 0.01, hence slowly
breaking the cave structure of the graph.

After a split, the new vertex v′ chooses its domain. For the cluster-based
algorithm, an arriving vertex always chooses a domain among the domains

CHAPTER 4. CLUSTERING 85

 1.8

 2

 2.2

 2.4

 2.6

Avg. estimate error

Clusters
Hop domains

 0.02
 0.04
 0.06
 0.08

Density

 1500

 1520

 1540

 1560
Order

Figure 4.17: The evolution of the average and standard deviation of the esti-
mate error for a caveman graph during 1,000 modification operations. The
density and order of the graph after each modification step are also plotted
to reveal the type of modifications that occurred; the start order is 1,533 and
the initial size 50,597.

of its neighbors maximizing the increase (or minimizing the decrease) of
cluster fitness over the set of possible domains; the domain centers are not
recomputed. In the hop-based heuristic, the choice is made as in the final
part of the algorithm of Table 4.4, joining the domain of a random neighbor.
In a merge, if neither vertex was a center, the newly created vertex behaves as
if it was an arriving vertex. For each domain center taking part in a merge, a
center is recalculated after the removal of the current center by minimizing
the total distance in the domain; this is done before the new arrival proceeds
with the domain selection procedure.

Figure 4.17 shows the behavior of the average estimate error up to 1,000
modifications; at each step either a split or a merge was carried out with equal
probabilities. The cluster-based experiment used the caves as the initial do-
mains, whereas for the hop-based heuristic, we used a parameter combina-
tion that has a lower average estimate error than the setups with less domains
but is not inferior to those with more domains in Figure 4.16, namely d = 40
and s = 30 (fixing hmax = 2 as before). Both of the approaches suffer from
the loss of structure in the graph, but neither one clearly dominates the other.

For future work, it would be of interest to use a real-world weighted graph
to compare the performance of different base clusterings and different fit-
ness functions for the dynamic modification of the clusters upon topology
changes. Another issue is that not all natural graphs are composed of clus-
ters. For example in a tree-like scale-free graph with little or no clustering,
good domains are formed by identifying the hubs rather than by clustering.

86 CHAPTER 4. CLUSTERING

In such a graph, one could run a regular random walk for k � n steps and
then choose the highest-degree vertex visited to be a domain center and in-
clude all of the neighbors to the domain. The goal is to identify hubs and use
them as domain centers, iterating such a selection procedure until no vertex
with degree above a predefined threshold is found over a few random-walk tri-
als, after which the remaining vertices would join the closest domain. Hence
such a graph storage structure would first need to “probe” the graph to dis-
cover what structural properties it has, and then choose a domain-formation
strategy based on the observations. For highly nonuniform graphs, different
parts of the graph could be processed with different strategies. For example,
one could first run a random walk using the endpoint as a seed vertex for
local clustering, and in the presence of a high-quality cluster, use the cluster
as a domain. If no high-quality cluster is found for the seed vertex, one would
instead resort to the hop-strategy for domain formation,

4.5.3 Assessment of web-like graph generators

During the recent years, analysis and modeling of the World-Wide Web has
received growing interest in several disciplines. One starting point for the
modeling work was a paper by Kleinberg et al. [190] in 1999, in which the
authors construct a graph to mimic the Web Graph. Their motivation is im-
proving search performance on the WWW as well as providing more accurate
topic-classification algorithms; they foresee a “growing commercial interest”
in web modeling, which is still a major driving force in network research
[190].

Broder et al. [48] were the first to map the structure of the Web graph.
They confirmed that the degree distributions follow power laws, but the main
contribution is the study of the connected components, both directed and
undirected, of the Web graph. The largest strongly connected component
(SCC) of the graph — i.e., a subgraph in which any page can be reached by
hyperlinks from any other page — they call the central core of the graph. The
next two major subgraphs are called IN and OUT. There exists a sequence
of hyperlinks connecting each page in IN to the central core but not vice
versa, and respectively OUT contains those pages that can be reached from
the central core but do not have hyperlinks pointing back at the SCC. The
rest of the Web graph Broder et al. call the tendrils of the World-Wide Web;
these consist of pages that cannot reach the central core or vice versa.

It is known that the Web Graph has many small cuts [32], and hence
can be expected to allow meaningful clusterings. The Chilean Web Graph
(CWG) is a coherent subset of the Web Graph, discussed in Section 4.4.1.
We have performed a global clustering [305] on the CWG by local optimiza-
tion of Equation 4.30. Comparing the obtained cluster distribution to that of
two models of the Web Graph allows for qualitative comparison of different
generation models proposed for mimicking the Web Graph — a good gener-
ation model should produce a cluster distribution similar to that of the real
Web Graph. Also the number of bipartite cliques in graphs has been used for
theoretical model assessment for web-like graphs [198].

Most of the components of the CWG are tiny; in addition to 6,904 single-
vertex components, there is only one 2-vertex component in addition to the

CHAPTER 4. CLUSTERING 87

691

374

726

15
595

401

768

691

Figure 4.18: An example cluster found in one of the ten stochastic cluster-
ings of G with the number of outside links shown. Five of the websites are
� �������� �� �	�
 domains, which explains their interconnectivity.

giant component G of order 32,148. Hence G, in which each vertex is con-
nected to at least one other included vertex, clearly dominates the CWG.
Our clustering analysis was conducted on G.

In a web graph, such as the CWG, an intuitive cluster is a set of web-
sites (or webpages, depending on the granularity of the graph construction)
that are densely connected by hyperlinks, but have relatively few links to
other parts of the web. We obtained flat and partitional stochastic global
clusterings by iteratively optimizing the product of local and relative densi-
ties (Equation 4.30 on page 57) without a seed vertex, i.e., letting the local
search move freely towards better solutions, and then removing the best clus-
ter found, iterating until the graph became empty.

The cluster order was limited from above to 50 for computational ease.
The initial clusters used to start the stochastic search contained up to 10 ran-
dom neighbors of a random start vertex. At each step, one vertex was removed
from or added to the cluster candidate, maintaining connectivity. The algo-
rithm was repeated 30 times for each initial cluster, taking 250 modification
steps per each iteration.

The distribution of cluster sizes we obtained is quite stable; the general
shape and position of the distribution do not change over independent runs
when varying the repetition counts and the order cutoff. For comparison, we
generated graphs of the same order and similar density as G by two web-like
graph models.

The first model studied was the simple evolutionary web-like generation
model [205] that combines a preferential-attachment process with a non-
preferential one. The model builds on the foundation of Simon’s early model
for generation of scale-free distributions [285], considering the process as
a urn transfer model, and aims to match the data measurements reported
by Broder et al. [48]. Assume initially that there is a countable number
of urns where balls can be placed. The urns are labeled with the integers
i = 1, 2, 3, . . . and each ball in urn Ui has exactly i pins attached to it. The
process will be discrete-time and has two parameters: α > −1 and p ∈ (0, 1).
Initially at time t = 1, urn U1 contains one ball and the other urns are empty.

Denote by Fi(t) the number of balls in urn Ui at time t. At time n ≥ 1, a

88 CHAPTER 4. CLUSTERING

new ball with one pin is added to urn U1 with probability

pt+1 = 1 −

(1 − p)
t
∑

i=1

(i + α)Fi(t)

k(1 + αp) + α(1 − p)
, (4.53)

if pt+1 ∈ [0, 1]. If the event does not occur or the value is not in the unit
interval, one ball from Ui is transferred to urn Ui+1 with an additional pin —
the urn Ui is selected randomly with probability that depends on the number
of balls in Ui:

Pr [Ui is chosen] =
(1 − p)(i + α)Fi(n)

k(1 + αp) + α(1 − p)
. (4.54)

At each time step, exactly one new pin appears, either along the new ball
inserted in the first urn or as a result of transferring a ball one urn up. There-
fore at time t, there are in total exactly t pins attached to the balls in the
urns. In terms of the Web graph, the pins are incoming links, adding a new
ball corresponds to the creation of a webpage with one incoming link, and
moving a ball to the next urn corresponds to adding a new incoming link (the
level of preferentiality depending on α) to an existing webpage.

The second model was the Barabási-Albert construction for scale-free net-
works [25] based on preferential attachment alone. The initial graph6 G0 =
(V0, E0) at time t = 0 consists of a small initial set of vertices, |V0| = n0. At
time step t, a new vertex vt is added to V and assigned d edges; the probability
that vt is connected to w ∈ Vt−1 is

Pr [{v, w} ∈ Et] =
deg (w)
∑

u∈V

deg (u)
. (4.55)

We also included in the comparison the uniform random graph model
Gn,m that can be expected to differ from the real data with respect to the
cluster distribution. The resulting distributions are shown in in Figure 4.19.

As the CWG is a subset of the complete Web Graph, it is likely that some
of the properties of the CWG can be generalized to the Web Graph. As the
cluster distribution of CWG may be characteristic of the Web Graph as well,
we may assess the validity of web-like graph generators by the obtained distri-
butions; an assessment of Internet graph generators by clustering is reported
in [223]. According to Figure 4.19, the evolutionary model provides the best
match to G. When choosing a graph generator to be used for a specific
application or adjusting the parameters of a generator, a good way to guar-
antee that the generated instances reflect the properties of the network to be
modeled is to measure several different structural properties of the natural
data available — preferably distributions instead of plain averages, sampling
if necessary due to time or memory constrains — and making choices and
adjustments after observing the level of agreement of the generator and the
natural data.

6Barabási and Albert [25] do not define what the initial graph is; E0 = ∅ is implicitly
suggested. This however causes problems as the sum of vertex degrees is initially zero.

CHAPTER 4. CLUSTERING 89

 1

 10

 100

 1000

 10000

 1 10

 1

 10

 100

 1000

 10000

 1 10

CWG connected component Evolutionary web-like graphs

 1

 10

 100

 1000

 10000

 1 10

 1

 10

 100

 1000

 10000

 1 10

Barabási-Albert graphs Uniform random graphs

Figure 4.19: The cluster distributions (size on the x-axis versus frequency
on the y-axis) for the CWG (10 independent clusterings) and the compari-
son graphs (6 independently generated graphs per model, each clustered 6
times). Cluster order was limited to 50; hence the cutoffs in the distributions.

90 CHAPTER 4. CLUSTERING

5 SEARCHING AND ROUTING

Searching in a graph is the process of locating a desired target vertex w by
traversing the edges of the graph, starting at an initial vertex v, as efficiently
as possible, i.e., using a strategy that minimizes the number of intermediate
vertices visited during the search. A simple search procedure only examines
one vertex at a time, referred to as the current vertex. Once a search pro-
cedure has examined a vertex v and moved on to another one, we say that
vertex v is a visited vertex. In many applications, several parallel searches or
some branching mechanism are practical for improved search efficiency —
however, this may cause problems such as network congestion [17].

In general, a search procedure is only allowed to access local information
of the graph, such as the adjacency list of the current vertex, possibly includ-
ing the degrees of the neighbors. In some situations, when there is sufficient
memory available, it is useful to allow the procedure to remember parts of
the graph visited thus far and even record properties of some or all of the the
visited vertices. The search time is usually defined as the number of edges
traversed before the search reaches the desired vertex w.

If the task is not only to locate vertex w starting from v, but also to de-
termine a minimum-length path that connects them, the problem is called
a shortest-path problem [87], variations of which include the single-source
shortest paths problem where the shortest paths from a given vertex v to all
other vertices are requested, and the all-pairs shortest path problem, where
a shortest path is to be found over all vertex pairs. As the distance between
two vertices is defined as the length of the shortest path connecting them,
many distance-based calculations begin with or contain solving shortest-path
problems.

A naïve solution to finding the distances from a given vertex v is to perform
a breadth-first search (BFS) [87] from v until either a given target vertex w is
encountered (for the case of a single path construction) or all vertices have
been reached. The breadth-first search essentially constructs a spanning tree
T for an unweighted graph G = (V, E) the root of which is v. It initializes
by placing the edges from v to all of its neighbors not yet in the tree, storing
the processed vertices in a FIFO queue, then iterating by popping the top-
of-the-queue vertex and adding edges from it to those of its neighbors not yet
connected to v in the tree. Each examined neighbor w of v is appended
to the end of the queue if and only if {v, w} is included in T . Note that
after (n − 1) edges have been included in T , the construction is finished, as
introducing additional edges would form cycles.

Two general conclusions of much of the existing literature on search and
distance problems are that natural networks tend to have surprisingly small
diameters [10] and that the network topology may have a significant effect on
the search time [94]. The average time to locate a desired vertex in a sim-
plistic small-world network [314] has been studied by de Moura et al. [94],
who find that a small-world topology minimizes the search time for two sce-
narios, namely when the computation needed to browse the neighbor list
of the current vertex during the search process is negligible with respect to
the computation needed to “follow” an edge, and a setting in which both

CHAPTER 5. SEARCHING AND ROUTING 91

computational costs are significant. Another practical setting is that in which
querying an edge weight is the dominating-cost operation of solving such
problems [293].

A measure proposed by Sneppen et al. [271, 287] for the searchability of
a graph is a formulation of the (information) entropy [283], characterizing
the amount of information available for locating a given target vertex v when
starting a search at a vertex w. The general definition of the entropy of a ran-
dom variable Xd with discrete outcomes x1, . . . , xk, given the probabilities
Pr [Xd = xj], is

H (Xd) = −
k
∑

j=1

Pr [Xd = xj] log2 Pr [X1 = xj] . (5.1)

Blindly choosing which neighbor of w to go to when searching for v, we have
probability 1

deg(w)
for choosing any particular neighbor of w. Continuing

from a chosen neighbor u, we know that returning to w is not the answer and
hence have 1

deg(u)−1
probability over the other neighbors. Hence Sneppen et

al. define the probability of finding a path from w to v in blind random walk
as

Pr [w → v] =
∑

P∈P

(

1

deg (w)

∏

u∈P

1

deg (u) − 1

)

(5.2)

where P is the set of (degenerate) paths from w to v, and define the informa-
tion gained by knowing a path from w to v as

HS (w → v) = − log2

∑

P∈P

Pr [w → v] . (5.3)

From the above definition they generalize further the searchability of a graph
G = (V, E)

HS (G) =
1

n2

∑

v∈V

∑

w∈V

HS (v → w) (5.4)

and the access information of a vertex v as

HS (v) =
1

n

∑

w∈V

HS (v → w) . (5.5)

They employ these measures to analyze the searchability of natural networks
as well as adjusting the network topologies to optimize searchability mea-
sures.

If no information on the network topology is available, searching for a
particular vertex can be done by conducting a random walk on the graph.
If the system has memory available, a variation of a “blind”, naïve random
walk is a self-avoiding random walk, where the walk is not allowed to re-visit
a previously visited vertex. Such walks, however, suffer from “dead ends” in
the graph structure, such as leaf vertices. A milder version of a self-avoiding is
achieved with the idea of tabu search [1, 136], which is a local search method
that keeps a buffer of the k most recently visited vertices, and will not return
to those, but may return to any vertex visited earlier on in the walk. This

92 CHAPTER 5. SEARCHING AND ROUTING

approach avoids getting stuck in small cycles, but is not as prone to run into
a dead end as a pure self-avoiding walk. More variations of random walks are
easily constructed for specific applications, varying the amount of informa-
tion that is considered to be available to the walker, as well as allocation of
computational or memory resources to the vertices or the walker itself. If for
example each vertex also knows its neighbors and the walker has access to
a large memory, we may implement a neighbor-avoiding random walk with
the aim of quickly exploring the entire graph.

There have been various research efforts to study the behavior of different
types of random walks that employ different information of the graph topol-
ogy and their efficiency in locating a given vertex with respect to the average
length of the walk needed and the probability or frequency of reaching the
target vertex. Random walks with discrete power laws for the walk lengths
have been formally analyzed by Annibaldi and Hopcraft [15].

Tadić [294] studies how random walks with adaptive move strategies pro-
ceed in directed networks resembling the Web graph. The test networks have
been generated by her own model of directed scale-free networks that grow
and rearrange, using preferential attachment both in growth and rearrange-
ment [295]. The model produces power laws for both the in-degree and the
out-degree distributions. The adaptive random walk is allowed to use locally
available information, in particular the out-degree of the current vertex and
the in-degrees of the neighboring vertices, to decide where to proceed. The
edges are assigned weights to make high in-degree vertices more likely to be
visited than they would be under the regular random walk.

Tadić finds that for certain parameter values of her model, indicating a
high degree of “rewiring” in the graph, an adaptive random walk proceeds to
some fixed level of hierarchy in the graph considerably quicker than a regular
random walk. The difference in access time is some orders of magnitude
[296]. Hence she concludes that such an adaptive walk can pass messages
efficiently for that particular class of Web-like graphs when the degree of
rewiring is large [294, 296].

Adamic et al. [5] study the behavior of search algorithms in power-law
graphs such as the Barabási-Albert scale-free graphs; similar work was done
by Kim et al. [184]. The goal to find efficient algorithms for that particular
ensemble as so many natural networks have been shown to display a power-
law degree distribution. The emphasis is on distributed search that lacks
global knowledge or control, which was also the starting point of Kleinberg’s
lattice model [189]. Distributed search algorithms, not requiring a central
server to have complete knowledge of the network topology, are necessary
in ad hoc networks that are important in mobile communication [88] (cf.
Section 4.5.1). Methods for “augmenting” graphs to be locally navigable
were recently addressed by Duchon et al. [105].

Adamic et al. propose a decentralized algorithm that exploits the power-
law topology to make the search more efficient. Even though searching with
a regular random walk is more likely to visit high-degree vertices, they impose
scaling to emphasize high-degree vertices during the search and construct a
message-passing algorithm based on this principle and apply variants of this
to power-law graphs. The variation is mainly on the knowledge that a vertex
possesses of its neighborhood while passing a message. The scaled approach

CHAPTER 5. SEARCHING AND ROUTING 93

passes messages somewhat faster than a regular random walk for the power-
law ensemble.

Properties of self-avoiding walks on scale-free networks have been studied
by Herrero [150], with emphasis on the path attrition problem. He uses ap-
proximate analysis to deduce the number of walks surviving after N steps, i.e.,
walks that are still able to proceed in contrast to those that have reach a “dead
end” they cannot escape from without revisiting vertices. Yang [325] studies
the behavior of random walkers on complex networks and finds that the self-
avoiding walk is the optimal strategy if no global information is available.
Addition of preferentiality does not help in improving the search according
to Yang.

Zhu and Huang [329] study search using only local information for the
Watts-Strogatz small-world model, assuming that each vertex knows how to
get to any vertex that is at distance k or closer, having the vertices use this
information in making routing decisions when sending and forwarding mes-
sages in the network.

A peer-to-peer (P2P) network is a distributed system composed of inde-
pendent computers that work together to achieve a common goal, usually
involving the sharing of computing, file or network resources. The possible
architectures of such systems are [215]:

1. networks with centralized topology and content information and cen-
trally governed evolution of the structure, such as the original Napster,
which is based on a full directory of peers;

2. decentralized but structured networks, such as Freenet [72], where the
topology is imposed in a central manner but the network functions in
a decentralized manner; and

3. decentralized and unstructured networks, such as Gnutella [267, 268].

For a comprehensive review, we recommend the survey of Androutsellis-
Theotokis and Spinellis [13]. Traditionally, file-exchange P2P network per-
formance (namely routing of requests for content) is achieved by replicating
or moving content. According to Cooper [81], there exist three alternative
techniques for improving P2P performance:

(i) reorganizing the network topology to make random-walk search effi-
cient;

(ii) biasing the document count to find the “content hubs”, giving pref-
erentiality to where there is a lot of content when choosing where to
proceed with a given search task;

(iii) and using memory to maintain a search cache of some kind, such as
only remembering the document counts for the k “best” peers.

Cooper concludes that setting the degree of a network peer proportional
to the square root of the “popularity” of the contents that it holds provides
optimal topology for random walk searches. The maintenance of a search
cache coincides with the idea of lookahead buffers discussed later in this

94 CHAPTER 5. SEARCHING AND ROUTING

chapter In P2P-systems, the choice of the stored entries depends not only on
the topology of the network but also on the resources provided by the peers.

Flooding of resource request, i.e., performing a BFS over the entire net-
work by having all peers forward to all of their neighbors any new request
messages they receive, has been widely used in early-generation P2P sys-
tems, such as Gnutella, despite its poor scalability [215]. A naïve method for
trying to limit the circulation of messages in the network, especially if the
peers can not be expected to recognize previously seen messages, is to assign
a time-to-live (TTL) to each message, i.e., a counter on how many peers it
is allowed to pass through, and have each peer decrement this counter as it
forwards the message, such that any peer receiving it with TTL zero will not
forward it further. Choosing a TTL value is not easy when there is little or
no information on network structure — especially considering the small di-
ameters of such networks. And even with TTL, the amount of messages sent
may be large in certain network topologies. Reachability problems caused by
TTLs are discussed by Annexstein et al. [14].

In order to limit the generated traffic, probabilistic approaches on when
and to whom to forward an arriving request message have been proposed.
Banaei-Kashani and Shahabi [22] provide theoretical results on probabilis-
tic flooding and self-avoidance of random walks on P2P systems. Wang et
al. [311] use a variation of probabilistic flooding resembling simulated an-
nealing. Lv et al. [215] present a method that uses multiple random walks,
achieving coverage of the system almost as quickly as flooding, but with traffic
reduced by up to two orders of magnitude.

Gkantsidis et al. [134] propose using combinations of short random walks
that finish by performing a shallow flooding (i.e., a BFS-procedure only to
limited depth from the source vertex) that corresponds to having a lookahead
table at the final peer. They conclude that even a one-step lookahead gives a
significant advantage especially when the degree distribution is nonuniform.
Sarschar et al. [276, 275] propose an algorithm for search in P2P networks
using content caching, query implementation (on a short random walk), and
bond percolation (i.e., probabilistic broadcast). Ganguly et al. [128] discuss
search in P2P systems based on ideas of epidemic spreading, performing ran-
dom walks for packets until a profile similarity in the present vertex is above
a threshold. The topology is then modified to to move a vertex v “closer” to
the peers who perform searches looking for content that v possesses. Chirita
et al. [66] discuss personalization of PageRank-like preferences in P2P.

In finding a short path between two vertices in a given graph, there are
many aspects to be considered. One may try to find a shortest path, but in
many cases, the computational cost for this is high. This is especially the
case in large or dynamically modified graphs. In a weighted graph, if the
cost of determining the edge weights is high, then the algorithm must also
try to minimize the number of edge-weight queries it makes when finding
the shortest path [293]. Should there exist a good approximate solution, i.e.,
a path with length only a little above the optimal length, but with signifi-
cantly lower construction cost, many application areas could benefit from
using such an approach. The optimality of the path length becomes signifi-
cant when communication is repeated over the path several times, whereas
for one-time communication, keeping the computational cost of finding the

CHAPTER 5. SEARCHING AND ROUTING 95

path low is more relevant.
Finding paths by random walks usually produces paths much longer than

the optimal, but with postprocessing, any cycle is trivially removed. Also,
with access to the neighbor lists of the vertices included in the path, the path
may be “straightened out” to achieve a shorter one. In distributed comput-
ing, such a path-straightening procedure can be executed while returning
the information of the newly found path from the target vertex back to the
source vertex by having each vertex on the way back take a short cut to the
earliest of its neighbors on the path list instead of forwarding the message to
the neighbor from which it originally received the path request message. We
leave this idea for future work.

5.1 RANDOM WALKS WITH LIMITED LOOKAHEAD

In a radio-channel network, each node is aware of those neighbors only from
whom it has received a beacon signal1 in a determined time slot. Also the
total number of neighbors of which it may be aware at a certain time may be
limited due to memory constraints. Under such conditions, the path search
is always done under incomplete information of the neighborhood structure.

Instead of conducting a blind random walk or a flooding among the pres-
ently acknowledged neighbors, this partial information could be used to limit
the number of messages traversing the network without severely degrading
the search time. For such conditions, communicating the currently known
neighbors in each beacon signal transmitted allows for maintenance of a
lookahead buffer of the second neighbors of each node.

In practise it is well-known that allowing a one-step lookahead significantly
improves the efficiency of search, also when conducted as a random walk in a
complex network. Manku et al. [216] show that greedy routing with one-step
lookahead is optimal. An effective approach for search by random walks is
to perform a short random walk followed by a shallow flooding, correspond-
ing to a small lookahead [134]. Such observations have many applications,
especially in the field of P2P networks.

In scale-free networks, even storing the list of the immediate neighbors is
laborious for hubs due to their high degree. For any neighbor of a hub, the
number of second neighbors is at least the same as the degree of the hub,
and vertices with several hubs as neighbors suffer from an explosion in the
number of second neighbors. These observations combined with the nature
of radio-network communications discussed earlier suggest that in the real
world, incomplete information of the second neighbors is a more realistic
assumption for decentralized search.

With this motivation, we propose and study alternatives for imposing a
limit on the number of second neighbors that each vertex is aware of. Our fo-
cus is on distributed search that lacks global knowledge or control, which was
also the starting point of Kleinberg’s lattice model [189]. We study the sim-

1In radio networks it is customary that each node periodically broadcasts a message to
inform the others of its presence and identity. This message is called a beacon signal and
can usually be modified to carry additional information as well, such as information on nodes
that the sender has communicated with previously.

96 CHAPTER 5. SEARCHING AND ROUTING

plest possible search: blind random walks that at each vertex select uniformly
at random one of the neighbors of the current vertex to move to, considering
the following three variations:

1. A regular random walk that may only examine whether the target vertex
is the neighbor of the current vertex.

2. A regular random walk with full second-neighbor lookahead at all steps,
i.e., it may also check whether the target vertex is a neighbor of a neigh-
bor.

3. A regular random walk that may check from a list of k second neigh-
bors selected locally for each vertex whether the target is included, in
addition to checking whether it is a neighbor of the current vertex.

In order to fill the k-buffer of vertex v, we examine the following methods
to choose the included vertices from

⋃

Γ (w) where w ∈ Γ (v):

1. Uniformly at random.

2. Proportionally to deg (w), favoring large-degree vertices.

3. Proportionally to 1
deg(w)

, favoring small-degree vertices.

No duplicate elements are allowed in the lookahead buffer. The justifica-
tion of the above choices is that in a scale-free network, the degree of a vertex
tends to dominate its role and properties in the functions performed on or
by the network. Favoring large degree vertices is sensible if most search tar-
gets are hubs. Nonetheless, hubs are reached rapidly even without resorting
to lookahead buffers, whereas the small-degree vertices are hard to arrive at
by a random walk. Hence we include a heuristic that improves the “visibil-
ity” of these vertices by placing them more likely in the lookahead buffers of
their neighbors. For comparison we include the uniform random selection,
so that we can better evaluate whether the heuristic used to fill the buffers
influences the search performance.

In ad hoc networks [88], a feasible way to communicate the second-neigh-
bor information would be to attach a neighbor list to the beacon signal that
the nodes send. If nodes have too many neighbors to fit in the beacon packet,
they could select (using, for example, one of the above selection criteria) a
subset to include at each beacon interval. Nodes that overhear this beacon
signal would thus learn at least partial information of their two-hop neighbor-
hoods and could fill their lookahead buffers (using a selection criteria, if the
candidates outnumber the slots) upon receiving the beacon signals of their
neighbors. It would be of interest in future work to study how such a dynamic
environment with nodes joining and leaving the network and communicat-
ing within a specified range can be efficiently searched with dynamic and
limited lookahead buffers; a further complication would be added by allow-
ing node movement. In P2P networks one usually searches for a specific
content on any node instead of a particular node [134]. In this case, the
lookahead would not consist of knowing just the identity of the second neigh-
bor, but also a (partial) listing of the content that it provides in the network.

CHAPTER 5. SEARCHING AND ROUTING 97

We ran search by random walk for all vertex pairs in a 503-vertex collab-
oration graph and a 202-vertex neural graph of the nematode C. Elegans
(constructions for both are given in previous work [306]) taking 30 repeti-
tions and limiting the length of the random walk (TTL) to 300 steps. We
ran the experiment set using no lookahead, full lookahead, and for k ∈
{5, 10, 20, 40, 80, 120}. The same was repeated for scale-free graphs with
clustering [154] of similar order and size: one of order 503, using 0.7 cluster-
ing probability, linking rate of 2, and a seed graph of 7 vertices, and another
of order 202, using 0.9 clustering probability, linking rate of 10, and a seed
graph of 15 vertices. In the test set we also include the fourth and fifth gen-
eration DGM graphs [101]. See Table 5.1 for more details on the instances
studied; their degree distributions are plotted in Figure 5.1. We keep the k-
buffer contents static over the execution of a single experiment; we study the
effects of reselecting the buffer contents later in this section.

Table 5.1: Properties of the three instances studied in the experiment set:
the collaboration graph (Collab.), the neural network (Neural), the scale-
free graphs with tunable clustering (CSF), and the deterministic scale-free
DGM graphs.

Property Collab. Neural CSF 503 CSF 202 DGM4 DGM5

Vertex count 503 202 503 202 123 366
Edge count 828 1954 999 1894 243 729

Maximum degree 49 47 48 75 32 63
Clust. coeff. 0.648 0.305 0.088 0.247 0.791 0.797

 300

 100

 10

 1

 50 10 1

F
re

qu
en

cy

COLLAB

 300

 100

 10

 1

 50 10 1

CSF 503

 300

 100

 10

 1

 50 10 1

DGM 5

 100

 10

 1

 50 10 1

F
re

qu
en

cy

Degree

NEURAL

 100

 10

 1

 50 10 1

Degree

CSF 202

 100

 10

 1

 50 10 1

Degree

DGM 4

Figure 5.1: The degree distributions of the six instances studied: the col-
laboration graph (Collab.), the neural network of C. Elegans (Neural),
the scale-free graphs with tunable clustering (CSF), and the deterministic
DGM graphs.

The gray-scale matrices of Figure 5.2 (shown only for the three smallest
graphs due to large size of the graphics) have been drawn in the following
manner: if the position (i, j) is white, it means that no path from i to j was
found during the 30 random walks, 100 steps each. If it is black, i = j as all

98 CHAPTER 5. SEARCHING AND ROUTING

the paths were of length zero. The shades of gray represent path lengths be-
tween one and 102 steps (a 100-step walk may end in a vertex that knows the
target to be a second neighbor, hence 102), with short average path length in-
dicated by dark shades and long average path length by light shades. Hence,
the darker the matrix as a whole, the better the search performance over the
whole graph. From Figure 5.2 it can be seen that allowing a moderate-size
lookahead buffer of second neighbors gives an advantage over the blind ran-
dom walk: the color-map matrix gets noticeably darker, especially in the up-
per half. The values of k chosen are not close to the full lookahead, as many
vertices have second-neighbor counts significantly above thirty, as illustrated
in Figure 5.3.

None k = 5 k = 10

k = 20 k = 30 Full

Figure 5.2: Average path-length matrices for the C. Elegans neural network;
the top-left had no lookahead, the bottom-right matrix is based on full looka-
head, and the others had a k-place buffer filled by uniform-probability selec-
tion. The color-code is the following: a black position is one where a path
was found 100% of the time and a white one corresponds to no paths found.
The gray-scale interval is regularly quantized to 256 shades of gray.

We also computed the average path length and the standard deviation
over all the paths found in each experiment to obtain a single figure for
the global performance of the different setups. A more complete data set
is given in Table 5.2 showing the standard deviation and the percentage of
walks that actually reached the target vertex; the averages alone are plotted
in Figure 5.4 for ease of comparison. Note that for the collaboration graph,
the full lookahead does not outperform the limited lookahead, unlike in the
other two instances. We repeated the full lookahead search several times and
always found similar results. Hence it is not a one-time anomaly, but rather a
property of the graph. For the three larger graphs, 300-step walks were taken,
whereas for the smaller, 100-step walks were used.

CHAPTER 5. SEARCHING AND ROUTING 99

Table 5.2: The average (Avg.) over all paths found for each of the three larger
instances, together with the standard deviation (SD) and the percentage (%)
of successful searches (right).

k Crit. Collab. CSF DSF

Avg. SD % Avg. SD % Avg. SD %

No lookahead 110.23 88.72 41.16 84.23 76.00 84.59 73.34 74.69 86.77

5 1 97.29 87.86 46.43 77.76 75.53 85.27 65.29 72.89 87.68
5 2 97.37 87.74 47.11 77.54 75.57 85.28 63.53 71.91 88.19
5 3 98.80 88.23 45.76 78.68 75.69 85.15 67.47 73.37 87.52

10 1 93.68 87.72 47.86 74.08 74.90 86.31 59.80 71.01 88.82
10 2 95.21 88.05 47.10 75.86 75.25 86.05 64.10 72.73 88.07
10 3 95.06 87.86 47.63 75.86 75.43 85.88 63.86 72.24 88.16

20 1 90.99 87.26 51.71 68.43 72.56 89.87 55.01 69.51 89.58
20 2 90.50 87.06 51.93 67.64 72.48 89.82 53.33 68.93 89.68
20 3 91.49 87.28 51.24 69.45 72.86 89.68 58.83 71.08 88.99

40 1 87.86 85.62 58.03 57.02 66.58 93.17 48.44 66.39 91.42
40 2 87.75 85.65 58.03 57.82 67.25 93.01 47.61 66.39 91.18
40 3 89.55 86.18 57.35 58.90 67.46 92.89 52.07 68.96 90.54

80 1 82.90 83.33 64.62 41.45 55.35 97.10 38.87 60.32 93.92
80 2 82.63 83.23 64.72 41.25 55.36 97.13 37.45 59.44 93.98
80 3 83.57 83.75 63.79 42.40 56.26 97.01 41.15 62.09 93.61

120 1 81.36 82.09 68.60 34.12 47.50 98.82 33.56 55.89 95.35
120 2 81.24 82.06 68.67 33.82 47.20 98.85 32.96 55.62 95.44
120 3 81.24 82.07 68.60 34.02 47.14 98.85 35.69 58.03 95.00

Full lookahead 83.18 83.39 65.54 23.95 32.82 99.73 21.75 36.35 99.65

We also constructed average path-length matrices as those shown in Fig-
ure 5.2 to compare how the three selection heuristics compare. In the figures
there are no apparent differences, and the numerical differences shown in Ta-
ble 5.2 are small as well. It may also be an effect due to the randomness in
the selection method and not a consequence of the selection criterion used.

Figure 5.4 reveals how the shapes of the curves for all three larger graphs
are strikingly different; for the collaboration graph, the effect of using even

 50

 10

 1

 500 100 10 1

F
re

qu
en

cy

COLLAB

 50

 10

 1

 500 100 10 1

CSF 503

 50

 10

 1

 500 100 10 1

DGM 5

 50

 10

 1

 200 50 10 1

F
re

qu
en

cy

2nd-neighbor count

NEURAL

 50

 10

 1

 200 50 10 1

2nd-neighbor count

CSF 202

 50

 10

 1

 200 50 10 1

2nd-neighbor count

DGM 4

Figure 5.3: The frequencies of the second-neighbor counts of the six in-
stances studied: the collaboration graph (Collab.), the neural network of
C. Elegans (Neural), the scale-free graphs with tunable clustering (CSF),
and the deterministic DGM graphs.

100 CHAPTER 5. SEARCHING AND ROUTING

a small lookahead is bigger than for the others, whereas in the two artificial
graphs the full lookahead search is by far the best. For the clustered scale-
free construction, the biggest gain appears when using 80-slot buffers instead
of 40, whereas for the deterministic construction the gain is relatively linear.
There is no obvious difference in how the three selection criteria perform,
although overall criterion three — preferring small-degree vertices — seems
to have the poorest performance.

As the filling of the k-place lookahead buffer is probabilistic, it is also of
interest to see how the performance varies over different buffer contents. Fix-
ing k = 80 and using the uniform-probability filling strategy, we repeated the
path search experiments for all three instances 30 times and plotted the aver-
age path length in Figure 5.5. The variations between the experiment sets are
relatively small, only a couple on average, which indicates that the contents
of the buffer do not usually have a drastic effect on the overall performance.
Although it is evident that on a local level, the “searchability” of a particular
node depends heavily on whether the nodes in its vicinity include it in their
buffers.

We have examined the effect of limited lookahead buffers for search by
random walk, allowing each vertex to remember k of its second neighbors,
i.e., vertices that are two hops away. The benefit from this lookahead is evi-
dent in the experiments, but it is not clear whether one of the filling criteria
would be significantly better than the others. In further work, it would be of
interest to study how weighted random walks behave under limitations of the
lookahead, especially considering the preferential walk for power-law graphs
[5]. Also, allowing neighboring vertices to communicate in order to optimize
the contents of their lookahead buffers would be of interest.

 80

 90

 100

 110

Full120804020105None

Buffer size k

Collab

 20

 40

 60

 80

Full120804020105None

A
ve

ra
ge

 p
at

h
le

ng
th

Buffer size k

CSF

 20

 30

 40

 50

 60

 70

Full120804020105None

A
ve

ra
ge

 p
at

h
le

ng
th

Buffer size k

DSF

Crit. 1
Crit. 2
Crit. 3

Figure 5.4: The average path lengths over all vertex pairs and the 30 repeti-
tions for different values of k and different filling strategies for the three larger
instances.

CHAPTER 5. SEARCHING AND ROUTING 101

 80

 81

 82

 83

 84

 85

A
ve

ra
ge

 p
at

h
le

ng
th

Repetitions

Collab

 40

 41

 42

 43

 44

 45

Repetitions

CSF

 35

 36

 37

 38

 39

 40

Repetitions

DSF

Figure 5.5: The averages of the lengths of all paths found over 30 repeti-
tions of the experiment set using k = 80 and the uniform-probability filling
strategy for the three larger graphs. Each experiment set consists of 30 repe-
titions per vertex pair and a cut-off at 300 steps as above. The repetitions are
sorted in increasing order of the averages to better reveal the magnitude of
the variation.

5.2 SPANNING TREES

We consider networks formed by nodes that are connected by edges. Each
edge is assigned a weight that determines the cost of communicating a sin-
gle packet along that edge. Usually, especially in range-based neighborhood
formation, a node v may have various neighbors and it is necessary to deter-
mine which of these neighbors are in charge of forwarding communications
received from node v — if every node would always forward any communi-
cation it receives, the network would easily be flooded and the energy wasted
in making these transmission could quickly disable a battery-operated net-
work. One way to decide how the nodes should route their traffic is to build
an MST of the weighted graph and have each node adjust their transmission
range such that their transmissions can be received and forwarded by their
parent and children in the resulting tree [207, 318].

To construct a spanning tree for a given input graph G = (V, E) with n
vertices (each representing a node of the network), we must select a subset
of n − 1 edges such that each edge connects two vertices that correspond to
nodes that are able to communicate directly (the weight of the edge should
capture the cost of the communication) and that every vertex is reachable
through the set of selected edges from any other vertex. In an ideal case, the
spanning tree construction could be done in a distributed manner having
each of the vertices execute an algorithm that only resorts to local informa-
tion. Construction of a certain kind of spanning subgraphs (for information
dissemination) based on local information are discussed by Stauffer and Bar-
bosa [289].

A task of special interest is to select among all possible subtrees a minimum
spanning tree (MST). We are assuming the edge weights to be interpreted as
distances or costs, hence preferring smaller values to larger ones (and disal-
lowing negative weights). For unweighted graphs, however, all spanning trees
are equal in this sense and another measure is needed to distinguish between
different spanning trees when one needs to be chosen as the “backbone” of
communications or for performing some other task on the graph. In this
section, we will combine approaches that produce a “beneficial” spanning
tree for an unweighted graph with those constructing an MST for a weighted
graph.

102 CHAPTER 5. SEARCHING AND ROUTING

5.2.1 Communication-cost models

In radio-communication networks, routing of the network traffic should be
done efficiently with respect to the time consumed and the energy required
from the nodes of the network that take part in passing on the information
[172]. We denote the furthest distance to which a node can communicate
by r and call it the range of the node. In this work we only deal with uni-
form nodes, that is, all nodes present in the network are assumed to have the
same range. We do not address problems caused by interference of broad-
casts or the broadcast storm problem of message propagation; such issues are
addressed by many recent studies on ad hoc networks [158, 208, 211, 212,
245, 257], but rather discuss a fundamental building block of many routing
protocols: the construction of a spanning tree of the network.

We represent such a network as a weighted graph, where each node is
represented by a vertex and the nodes that are within the transmission range
of a node will be connected to the representative vertex v with edges {v, w}
weighted by the Euclidean distances of the nodes in the physical space in
which the network operates,

ω ({v, w}) = distEucl (v, w) . (5.6)

Traditional cost models take into account the transmission power needed
for two nodes to communicate, which is proportional to the physical distance
between the nodes. In the real world, the energy consumption E (often re-
ferred to as the cost of the communication) of making a transmission over a
distance distEucl (v, w) is proportional to a power of the distance instead of
being linearly dependent on it:

E ∼ distEucl (v, w)k . (5.7)

In vacuum-like conditions k ≈ 2, but in most real-world scenarios, a range
of values k ∈ [2, 4] has been observed [60] (although workarounds exist for
some setups to lower the value of k [291]).

The efficiency with respect to battery usage of radio transmitters is usually
better for high distances close to the maximum range than for small ones, as
the range is proportional to the square-root of the transmission power. There
are many different path-loss models proposed for analyzing and simulating
radio networks [166, 274], but we limit to studying a simplified case fixing
k = 3 for the transmission power.

Also, in addition to having a distance-dependent element in the cost of
communicating between two nodes, there is also an initial transmission cost
for any node that makes a broadcast that does not depend on the transmission
range used, and additionally, an initial receive cost per each transmission that
a node needs to receive. One estimate used in the literature is that the receive
cost R is proportional to the maximum transmission range r of a node [114]:

R =
r2

5
. (5.8)

Unfortunately such estimates are not universal, and hence no general rule
exists for how big the initial transmission and receive costs are for a given

CHAPTER 5. SEARCHING AND ROUTING 103

application. In another simplified communication-cost model [141], the en-
ergy consumed by transmission per bit over distance distEucl (v, w) is

Et = αt + αamp · distEucl (v, w) (5.9)

and the energy consumed per bit in receiving is

Er = αr, (5.10)

where αt is the energy per bit consumed by transmitter electronics, αamp is a
coefficient for (again per bit) the energy consumed in amplifying the signal to
reach the requested distance, and αr is the energy consumed by the receiver
electronics per bit.

The initial transmission costs and receive costs have often been ignored
and distance-based spanning trees used as a starting point for routing. After
all, these costs are easily, although misguidedly, considered just an equal-size
addition to all of the edge weights that would not affect the minimization.
Minimizing the total weight of the tree will not be any different if all edge
weights are multiplied by a constant or additive constants are introduced to
all edges. Hence, with this approach, simple minimization of the total sum
of edge weights given by Equation 5.6 has been employed.

Taking a slightly more realistic perspective, if there are two possible com-
munication paths between a given pair of nodes that have the same total
edge weight (of Equation 5.6), the one with fewer intermediate nodes should
result in a lower total cost when the initial transmission and receive costs
are taken into account. This motivates methods for construction of span-
ning trees that not only minimize the total weight of the included edges but
simultaneously minimize the number of nodes that will take part in a com-
munication between two arbitrary nodes [279]. One measure that helps in
choosing a spanning tree that keeps the number of intermediate nodes low
is the average path length of an unweighted version of the spanning tree T ,
L (T).

We call trees that are minimal with respect to the unweighted average path
length minimum-hop trees (MHT). In the literature they are known at least
as MAD trees and minimum routing-cost spanning trees; the construction of
such trees is in general NP-hard [169] for undirected weighted graphs, but
approximations and exact polynomial algorithms for special cases are known
[91]. A related class of spanning trees are those that instead of minimizing the
average hop-based distance, minimize the (hop-based) diameter, known as
minimum-diameter spanning trees (MDST) [227] that can be constructed in
O (mn + n2 log n) time [146]. However, constructing a minimum-diameter
MST is NP-hard [226].

A third, largely independent consideration is the load of the nodes, i.e.,
the amount of traffic that passes through each node: the more frequently a
node has to take part in communication between other nodes, the heavier
its load becomes. If a node has high degree in the tree, it is likely to have a
higher load — the maximum degree of minimum spanning trees is discussed
by Robins and Salowe [270] and load in hierarchical lattice graphs by Arenas
et al. [17].

One possibility to model vertex load is to use the edge-betweenness [241]
of the vertices in an unweighted version of the spanning tree T = (V, F) used

104 CHAPTER 5. SEARCHING AND ROUTING

Load δ` (T) 854 588 1,350
Load δ` (F) 362 70 1,350

Avg. hop count 2.05 2.66 1.71

Figure 5.6: A small graph (on the left) with three possible spanning trees:
a random one, a line, and a star topology. Below the pictures are the val-
ues for two possible global load measures (using the vertex-betweenness) and
the average hop count (calculating the hop-distance for each pair of distinct
vertices once).

to route the traffic: the load of an edge is proportional to the number of paths
connecting any pair of vertices that pass through that edge; in a tree any path
for a given pair of vertices is always the unique shortest path. The load of a
vertex v can either be measured as the sum of the edge-betweenness of the
edges incident on it in the spanning tree or by the vertex-betweenness, which
is defined equivalently as the number of shortest paths that pass through (or
begin or end) at v; we will use the latter definition.

In the optimal situation, all vertices would have the same load — this is
of special importance when the communication nodes are battery operated,
as a heavy-load node runs out of power faster after which it will not be able to
take part in the function of the network. One way to measure how evenly the
load has been distributed is sum of squares of the load differences; denoting
the load of a vertex v by ` (v), we can use either the load over all distinct
vertex pairs

δ` (T) =
∑

v,w∈V

(

` (v) − ` (w)
)2 (5.11)

or, denoting by F the edges that are included in the spanning tree T , over
only the edges of the tree,

δ` (F) =
∑

v,w∈V
{v,w}∈F

(

` (v) − ` (w)
)2

. (5.12)

As argued above, good spanning trees for communication networks are
those that use low-weight edges, have small unweighted average path length,
and in which the load is uniformly spread over the network, meaning that
δ` (∗) is small. Unfortunately, these goals are often contradictory, as illus-
trated in Figure 5.6, where the star topology clearly achieves the smallest
average distance, but puts a heavy load on the central vertex.

The worst-case tree T with respect to the average hop count is a “line” of

CHAPTER 5. SEARCHING AND ROUTING 105

Figure 5.7: A 11-vertex graph G = (V, E) and two possible spanning trees;
the edges shown thick have weight 1 + ε (ε > 0) and the thin ones have
weight 1. The MST (with total weight 10) is a path with average path length
4, whereas the other tree has unweighted average path length 2.36, weighted
average path length 2.36 + 1.472ε, and total edge weight 10 + 5ε. For small
values of ε, the latter tree is clearly better with respect to the number of hops
needed on average to carry out communication between to vertices.

length n − 1, for which the average path length is always

L (T) =
1

n(n − 1)

n
∑

i=1

(

i−1
∑

j=1

j +

n−i
∑

j=1

j

)

=
1

n(n − 1)

n
∑

i=1

(

i(i − 1)

2
+

(n − i)(n − i + 1)

2

)

=
1

n(n − 1)
·
n(n2 − 1)

3
=

n + 1

3
,

(5.13)

where the vertices are denoted by their index i ∈ [n], sequentially numbered
from one end of the path to the other. It is easy to construct graphs where
the minimum spanning tree is a path, but where there exists an alternative
spanning tree with near-optimal cost and much smaller average path length;
see Figure 5.7 for an example.

In this work we do not propose algorithms for load balancing, but rather
use measures of the evenness of the load to evaluate spanning trees generated
by optimizing other criteria. Our goal is to find methods that construct non-
minimal spanning trees with respect to the edge weights, but with desirable
properties such as those of the leftmost tree in Figure 5.6 and the rightmost
one in Figure 5.7: moderate load, near-optimal total edge weight, and a small
average hop length.

5.2.2 Centralized tree-construction algorithms

In order to gain a better understanding of the problem at hand, we first dis-
cuss optimizing each of the properties — total edge weight and average path
length — separately with a centralized algorithm. The standard minimum
spanning tree algorithms [157, 162, 179, 260] solve efficiently the weighted
MST problem, always finding the optimal solution.

For minimizing the average hop count, we propose the following simple
heuristic that produces a spanning tree T = (V, F) for a given connected

106 CHAPTER 5. SEARCHING AND ROUTING

v

w

w′

ua

b
c

d

Figure 5.8: A small example graph where vertex v needs to choose whether
to link to w or w′ (the dashed edges) to form a spanning tree used to route
communications. Edge weights (a, b, c, d) are shown next to the arcs; the
length of the edges in the drawing is does not reflect the weights. We set
a > b.

graph G = (V, E) (ignoring possible edge weights) such that the average
path length (in terms of hops) of T is low. It draws from the observation that
scale-free networks usually have low average path length [25], attempting to
construct a tree that is as close to a star topology as possible, promoting high-
degree vertices to serve as hubs to their neighborhood.

For a disconnected graph, the following simple procedure can be repeated
for each component to obtain a spanning forest. The main loop of the algo-
rithm is executed at most n−1 times, as each repetition connects at least two
vertices by an edge and the resulting tree necessarily has exactly n− 1 edges.

(i) Initialize a union-find data structure such that each vertex v forms its
own singleton set C (v) and mark all vertices as unused.

(ii) Select the unused vertex v that has the most neighbors outside its own
set. Resolve ties by preferring smaller vertex label.

(iii) For each neighbor w of v (one at a time in increasing order of vertex
labels) such that w /∈ C (v), add the edge {v, w} into the tree and
merge the set C (w) into the set C (v) in the union-find structure. Mark
v as used.

(iv) Repeat from step (ii) until all vertices are in the same set.

If a graph contains a star-topology subgraph, it always yields the hop-count
optimal spanning tree. A solution given by the above approach could very
likely be improved with stochastic strategies such as 2-opt [89] or 3-opt [210]
moves, choosing a pair or a triplet of edges and rewiring the endpoints if the
global solution is improved by the switch. A more sophisticated approach is
the PTAS of Wu et al. [321], but for our small-scale experiments it suffices
to use the above heuristic, as computing the optimum would be exponential
in any case. We call trees that are not minimal with respect to the total hop-
count, but that have low hop counts low-hop spanning trees (LHT).

A simple approach to centrally combine the two goals at hand (small edge
weights and small hop counts) is to modify the edge weights to contain a
component that depends on the degrees of the source and the target vertex
w in addition to being proportional to a power of the inter-vertex distance
distEucl (v, w). We want to favor close-by high-degree neighbors when decid-
ing which edge to use to link a vertex into the spanning tree.

CHAPTER 5. SEARCHING AND ROUTING 107

Our goal is to determine a natural and computationally efficient method
to incorporate the degrees and the Euclidean-distance component, also tak-
ing into account the initial transmission and receive costs T and R. Consider
the simple example of Figure 5.8, namely the situation that vertex v needs
to be linked to either w or w′ in order to construct a spanning tree T . De-
note the total cost of communication along a path v, . . . , w by c (v, . . . , w),
including the initial transmission and receive costs per each path segment.
In the example, ω ({v, w}) = a is larger than ω ({v, w′}) = b, but also
degV \{v} (w) = 2 is larger than degV \{v} (w′) = 1. If v was to communicate
once with all of the other vertices, the total communication cost (denoting
τ = T + R) would be

c (v, w) + c (v, w, w′) + c (v, w, u)
= τ + αa3 + 2τ + α(a3 + c3) + 2τ + α(a3 + d3)
= 5τ + α(3a3 + c3 + d3)

(5.14)

should we choose to include {v, w} in the tree, and

c (v, w′) + c (v, w′, w) + c (v, w′, w, u)
= τ + αb3 + 2τ + α(b3 + c3) + 3τ + α(b3 + c3 + d3)
= 6τ + α(3b3 + 2c3 + d3)

(5.15)

if we instead selected {v, w′} ∈ T . Hence, if vertex is just as likely to com-
municate with any other vertex in the graph, v should link to w if

5(T + R) + α(3a3 + c3 + d3) < 6(T + R) + α(3b3 + 2c3 + d3)
α · 3a3 < T + R + α · 3b3 + α · c

a3 < b3 + 1
3α

(α2 · c3 + T + R),
(5.16)

which can be simplified by eliminating the effect of the unknown distance c
and simply stating that choosing a heavier edge a is cost-efficient in the sit-
uation depicted in Figure 5.8 if the cube of the distance is no more than τ

3α

higher than that of the cheaper edge b. Should the difference in degrees be
larger, the savings in transmission and receive costs would grow proportion-
ally to the difference in degrees.

We propose building spanning trees such that the tree construction ac-
counts also for the path-formation possibilities instead of only considering
the simple distances of Equation 5.6. Assume that the tree construction is
done incrementally by joining components of a forest until the spanning tree
T = (V, F) is ready. Initially place each vertex in a singleton component
in the forest. Two components may be joined by selecting an edge from the
input graph G = (V, E) that links a vertex in one component to a vertex in
another component; the set of selected edges will form F . Edges connect-
ing vertices in the same component are never considered as candidates for
inclusion into T .

We denote the number of neighbors that v has in G that are not in the
same component C with v by Dv = degV \C (v). It is of interest in a dis-
tributed tree formation for a vertex v to link to a vertex that has many neigh-
bors that are not yet in the same component as v in the formation forest, as
those paths that are already formed from v to the members of its component

108 CHAPTER 5. SEARCHING AND ROUTING

will not benefit in hop count from linking to that neighboring vertex, as cy-
cles will not be introduced into the tree in any case. Note that knowledge of
the whole vertex set is not actually needed, but only the lists of neighbors of
the vertices in Γ (v); this can be easily transmitted in an ad hoc network after
the vertices have initiated communication.

As we consider undirected graphs, we would like to incorporate in the
modified edge weight the mutual interest of the two vertices to link to each
other. A good spanning-tree edge is one that provides both endpoints with
several second neighbors: v wants Dw to be high, and w wants Dv to be high,
but for the tree as a whole it suffices for one of the participants to be a hub for
benefit to be gained in the average hop count. Hence we choose to introduce
a factor

d = Dv + Dw (5.17)

in the modified edge weight, deriving the equation from the above example
of the effect of the degree (denoting τ = T + R):

ω ({v, w}) = 2∆(v)τ
α

+ α distEucl (v, w)3 + d(d−1)τ
α(d+1)

= τ
α

(

2∆ (v) − d(d−1)
d+1

)

+ α distEucl (v, w)3 ,
(5.18)

where ∆ (v) is the maximum value of Du over u ∈ Γ (v) and ensures that
all resulting edge weights are positive. Note that the above function is just
one possible modification function, but as will be shown later through ex-
periments, it serves for this purpose quite well. The key elements are the
presence of the initial costs, degree-dependence, the exponent on the dis-
tance, and the possibility of adjusting through parameter selection whether
the distance-based element should dominate over the degree-dependent ele-
ment or vice versa.

When the edge weights are not determined online in a distributed envi-
ronment but are needed beforehand for centralized tree formation, we sub-
stitute deg (v)− 1 in place of Dv, as any other neighbor of v than w itself is a
potential benefit for w. This essentially corresponds to having all the vertices
evaluate the weights when each vertex forms a singleton component in the
formation forest and no edges have yet been added. Also, in a centralized
setting, ∆ (v) can be replaced by the maximum degree of the graph minus
one, ∆ − 1.

We choose this approach of combining the two goals in a straightforward
weight-based manner, because a closely related problem of constructing a
spanning tree that has upper bounds for both the total weight and the diam-
eter is known to be NP-complete [227] and hence we believe the combina-
tion at hand, bounding both the total weight and the average distance, to
be computationally demanding to solve optimally. We would like to point
out the similarity of this approach to multi-objective optimization, where a
(linear) combination of several fitness functions is optimized in order to find
a solution that is “agreeable” with respect to at least two usually somewhat
contradictory criteria.

In our experiments in Section 5.2.4 we examine the behavior of these
precomputed edge weights with different values of T , R, and α. We assume,
based on Equation 5.8, that R is smaller than T .

CHAPTER 5. SEARCHING AND ROUTING 109

5.2.3 Distributed tree-construction algorithms

Many important applications do not allow for a centralized control and hence
the methods discussed above are infeasible. One such application are sen-
sor networks, which are collections of sensor nodes spread around an area
in which a certain phenomenon of interest is expected to take place [8, 9].
An example could be a national park, where forest fires are to be avoided —
sensor nodes that are capable of detecting e.g. smoke or high temperatures
are scattered in the park and the network needs to propagate an alarm to
the forest guard in case of a fire. In most cases, the sensor placement is not
a carefully designed process but more of a random scattering. Each sensor
node is composed of essentially four components [8]:

• the sensing unit that makes observations of the environment,

• the processing unit that determines what actions need to be taken; this
is commonly a limited computational device with little memory,

• the transceiver unit that receives and broadcasts signals enabling nearby
sensor nodes to communicate; usually the range of the broadcast is
somewhat limited,

• the power unit — essentially a battery — that supplies energy for the
other components; the battery life of the nodes governs the life-time of
the network [111, 172, 317].

There exist algorithms to construct minimum spanning trees in a dis-
tributed manner [107, 113, 127, 129], having each vertex execute a certain
algorithm that contains a communication protocol to exchange information
with neighboring vertices. Usually the tree is grown by connecting single
vertices to pairs and pairs to triplets and so forth until the spanning tree is
complete. The growth is achieved by detecting and adding minimum-weight
edges to connect currently disconnected tree fragments.

A classical algorithm by Gallager et al. [127] uses at most 2m + 5n log2 n
messages and O (n log n) time for the tree construction assuming that all
edge weights are distinct (or alternatively that the vertices have unique iden-
tifiers for which an ordering exists). An algorithm by Garay et al. [129] oper-
ates in O (diam (G) + nε log∗ n) and combines the aforementioned growth
approach with elimination of candidate edges. In most of these algorithms
each vertex v is assumed to have a unique identifier id(v); an ordering exists
for these identifiers. For example any network adapter in a computer has a
MAC address that could be used as such an identifier.

If the network undergoes frequent topology changes, one possibility is to
use a self-stabilizing algorithm [97, 100], where the idea is that a distributed
system, starting from an arbitrary initial state, performs some steps that will
eventually bring the system into a legal configuration, after which the sys-
tem will stay within legal configurations until a fault occurs. If the system is
composed of communicating nodes that are choosing links to use to commu-
nicate, a configuration is any subgraph of the full-connectivity graph of the
nodes and a legal configuration with respect to the spanning tree construc-
tion would be any spanning tree. Such algorithms have high fault tolerance,

110 CHAPTER 5. SEARCHING AND ROUTING

as they provide full and automatic protection against transient process failures
(i.e., data corruption) [297].

Such algorithms do not necessarily provide accurate results when starting
or recovering from a fault or a topology change, and the processes have no
way of detecting when to stop computing as new faults may occur at any
time. The computational complexity is often worse and also the performance
inferior to rigid algorithms. For spanning tree construction, one can employ
a distributed BFS variant where one vertex is be selected as the root2 and all
vertices are assumed to be aware of their neighbors [100]. The knowledge of
Γ (v) is easily achieved with some simple HELLO messages [76]. The idea
of the algorithm is that each vertex attempts to compute its distance from the
root, reporting the outcome of each iteration to its neighbors, keeping record
of their currently chosen parent vertices. When the system reaches a legal
configuration, the tree can be read from the parent fields maintained by the
vertices. There are also several other self-stabilizing distributed variants of the
spanning tree problem [126, 281], including MST algorithms [16] as well as
shortest-path problems [300].

What comes to achieving a low average hop count, we simply modify ba-
sically any existing distributed MST algorithm. Our goal is to build in a
distributed manner a LHT spanning tree T that has low average path length.
We achieve this by changing the edge selection criterion from choosing one
with minimum weight to choosing an edge that links the component to the
highest-degree neighbor, not counting links to the component that is choos-
ing the neighbor to link to. The combined weight measure of Equation 5.18
can also be directly applied in an existing MST algorithm.

5.2.4 Experiments on spanning trees

For experiments on the qualities of the trees produced by the proposed method,
we generated a set of random graphs and constructed several spanning trees
for each instance. We used a graph generator that places n vertices in a unit
square. The basic generator generates the coordinates x, y ∈ [0, 1] indepen-
dently, uniformly at random. We choose to use such random uniform net-
works to ensure that the underlying graph topology is not scale-free, so that
we may observe whether the LHT method of modified edge weights is capa-
ble of constructing such a topology in the spanning tree instead of merely
reproducing or amplifying a property inherent in the input graph. Note that
we are not addressing radio interference or other such considerations in our
experiments, but merely testing how the LHT spanning trees differ from the
“traditional” MSTs.

The expected degree of a vertex v with communication range r > 0 is
directly proportional to the area of the unit square that its communication
range covers. If the entire communication range falls within the unit square,
which is a reasonable assumption for small values of r, the area covered is
πr2, and as unit square has unit area, the probability that another vertex falls

2Distributed leader-election algorithms [252] solve the problem of selecting such a root
without centralized control; they are however time-consuming [19] (even reducible to
spanning-tree construction) and hence any approach relying on the existence of a leader
suffers from the election cost.

CHAPTER 5. SEARCHING AND ROUTING 111

within this range is min{πr2, 1} and therefore

E [deg (v)] = (n − 1) min{πr2, 1}. (5.19)

We may use this value as an estimate of the expected average degree E
[

k̄
]

of
the graph, although in reality vertices close to the border of the unit square
have a lower degree; the average degree is simply k̄ = 2m/n. Doing so, we
obtain an upper bound for the expected density of a graph with n vertices as

E [δ (G)] =
2 E [m]

n(n − 1)
=

2 E [m]

n
·

1

n − 1
=

E
[

k̄
]

n − 1

<
min{πr2, 1}(n − 1)

n − 1
= min{πr2, 1}.

(5.20)

We ran a set of experiments generating 30 graphs with n = 1,000 using ranges
that give expected density E [δ (G)] ∈ {0.1, 0.2, 0.4} using Equation 5.20,

r =

√

δ (G)

π
. (5.21)

We wanted to ensure that the graphs would be connected in order to pro-
duce comparable spanning trees; with density 0.05, for example, some of
generated graphs would remain disconnected. For each of the graphs, we
generated spanning trees with the above algorithms and computed the total
weight of the tree together with the average path length and the average hop
count (i.e., the average path length of the unweighted tree). We also com-
puted load measures such as the evenness of the degree distribution of the
tree.

As r increases, the average weight of the edges present in the graph grows
and hence the hop-count minimizing methods are likely to start using heav-
ier and heavier edges, growing the difference in total tree weight when com-
pared with the MST, but also enabling a lower hop count to be realized.

In our experiments, the minimum-weight spanning trees were computed
with Prim-Jarnik algorithm3 for simplicity, hence using global pre-computation
of the edge weights. We varied the values of T , R, and α to study under which
circumstances the savings are the highest. For each parameter combination,
we used a set of 30 independently generated unit-square graphs of order n =
1,000. For each graph we also computed the minimum spanning trees based
purely on Euclidean distances; these trees are denoted by the abbreviation
MST in reporting the results.

The values of the parameters used to globally modify the edge weights ac-
cording to Equation 5.18 we selected according to the following observations:
when varying T and R, only their sum affects the modified edge weights,
which decreases the number of informative parameter combinations and al-
lows us to use a fixed value R = 1. Because the average Euclidean distances
in the unit square are small, large values of α are needed to obtain dominance
of the distance-dependent term over the degree-dependent one. We ran ex-
periments using all combinations of α from 1,000 to 10,000 in increments of
1,000 combined with T ∈ {1, 5, 10, 50}.

3A simple centralized greedy algorithm that picks edges in the order of increasing weight
while avoiding cycle-formation [162, 260].

112 CHAPTER 5. SEARCHING AND ROUTING

The left plots of Figure 5.9 demonstrate the maximum degrees present
in the generated spanning trees. As the degree-dependent component gets
stronger (with lower values of α and/or higher values of T), the maximum de-
gree begins to grow as hubs are being introduced into the spanning tree. With
even higher values than those displayed in the plot, the method would start
producing trees that approximate a star topology by choosing an edge that
links vertices to high-degree neighbors regardless of the Euclidean-distance
edge weights.

The total weights of the spanning trees are plotted on the right in Fig-
ure 5.9. The same phenomenon can be seen here: as α decreases and/or
T grows, heavier edges are being selected. Hence the parameter adjustment
clearly allows for different topologies to be chosen. In order to study what
we gain for what we lose by increasing the total edge weight, we show in
Figure 5.10 the average hop counts together with the average lengths of the
paths (the latter use the Euclidean distances). The hop counts behave as de-
sired, with the MSTs having the worst values and the LHTs getting closer to
those of the input graphs as T is increased or α is decreased. The difference
is favorable and hence we may conclude that the modified weights function
as desired. The effect remains even in the average path lengths that take into
account the inter-vertex Euclidean distance, as shown in Figure 5.10.

We wanted further insight into the distances, and plotted the diameters,
unweighted and weighted, in Figure 5.11. As expected, in the hop-based
diameter, the LHTs have lower diameter than the MSTs; the LHTs are able
to reduce the diameter of the tree, although only the MHT-approximate had
diameter close to the diameter of the graph. The MSTs are more path-like in
structure with large diameter; notice the logarithmic scale on the y-axis of the
diameter plot. The differences become smoother when the edge weights are
taken into account in calculating the maximum distance, but the ordering of
the curves stays the same: the gain of the LHTs over the MSTs remains, but is
small, whereas the graph has a much smaller weighted diameter than any of
the trees, which is to be expected for uniform random networks of densities
as high as the ones used in the experiments.

In conclusion, utilizing a degree-dependent modification on the edge
weights of a graph in Euclidean space helps to construct trees that have on
average fewer intermediate vertices on communication paths, empowering
savings in total transmission costs. The method is tunable to take into ac-
count the expenses of transmitting over different ranges. The experiments on
uniform random graphs are a “baseline setup” where the graph itself does not
have an underlying scale-free structure, and hence seeing the method work
for such graphs indicates that the advantages would be even stronger in appli-
cations where the network topology itself contains hubs. As this is the case in
numerous natural setups, we hope the method to be applicable as one com-
ponent in designing routing solutions for practical problems involving radio
communication or other setups where the communication cost has a initial
component and a distance-based component.

CHAPTER 5. SEARCHING AND ROUTING 113

400

100

10

4

0.40.20.1

M
ax

im
um

 D
eg

re
e

T = 1

G
MST
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

400

100

10

4

0.40.20.1

T = 5

400

100

10

4

0.40.20.1

M
ax

im
um

 D
eg

re
e

Density

T = 10

400

100

10

4

0.40.20.1

Density

T = 50

320

160

80

40

20

0.40.20.1

T
ot

al
 tr

ee
 w

ei
gh

t

T = 1

Avg.
MST
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
MST

320

160

80

40

20

0.40.20.1

T = 5

320

160

80

40

20

0.40.20.1

T
ot

al
 tr

ee
 w

ei
gh

t

Density

T = 10

320

160

80

40

20

0.40.20.1

Density

T = 50

Figure 5.9: On the left, the maximum degree ∆ in the generated graphs and the low-hop trees (LHT); note that MHT and the graph have the same
∆ by construction. All MSTs had maximum degree of four. On the right, the total weights of the spanning trees — note that as MST optimizes this
measure, the value given for those trees is the absolute minimum achievable for any spanning tree. All values shown are averages over the 30-graph
sets with the same order and density; the standard deviation (small) is shown as error bars on the y-axis. For comparison, we calculated for each
graph instance the average edge weight, estimated from that the average tree weight simply by multiplying the average edge weight by n−1; averages
of this quantity over the 30 instances are shown in the curve titled “Avg.” — the curve for MHT practically overlaps with the average weight.

1
1

4
C

H
A

P
T

E
R

5
.

S
E

A
R

C
H

I
N

G
A

N
D

R
O

U
T

I
N

G

 0

 20

 40

 60

 80

0.40.20.1

A
vg

. h
op

 c
ou

nt

T = 1

MST
10000

9000
8000
7000
6000
5000
4000
3000
2000
1000
MHT

G 0

 20

 40

 60

 80

0.40.20.1

T = 5

 0

 20

 40

 60

 80

0.40.20.1

A
vg

. h
op

 c
ou

nt

Density

T = 10

 0

 20

 40

 60

 80

0.40.20.1

Density

T = 50

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

0.40.20.1

A
vg

. p
at

h
le

ng
th

T = 1

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

0.40.20.1

T = 5

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

0.40.20.1
A

vg
. p

at
h

le
ng

th

Density

T = 10

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

0.40.20.1

Density

T = 50

Figure 5.10: On the left, the average hop-length for the MST set and the different-parameter LHT sets, as well as the original graphs. On the right,
the average path length for the MST set and the different-parameter LHT sets, as well as the approximate MHT set and the original graphs. The
values are averages over the 30-graphs sets with the same order and density; the standard deviation is shown as error bars on the y-axis. The legend
is the same for all plots, with the MST curve being the topmost one and the graph curve the lowest.

C
H

A
P

T
E

R
5

.
S

E
A

R
C

H
I
N

G
A

N
D

R
O

U
T

I
N

G
1

1
5

200

100

10

2

0.40.20.1

D
ia

m
et

er
 (

ho
ps

)

T = 1

MST
10000

9000
8000
7000
6000
5000
4000
3000
2000
1000
MHT

G

200

100

10

2

0.40.20.1

T = 5

200

100

10

2

0.40.20.1

D
ia

m
et

er
 (

ho
ps

)

Density

T = 10

200

100

10

2

0.40.20.1

Density

T = 50

 1

 2

 3

 4

 5

0.40.20.1

W
ei

gh
te

d
di

am
et

er

T = 1

 1

 2

 3

 4

 5

0.40.20.1

T = 5

 1

 2

 3

 4

 5

0.40.20.1

W
ei

gh
te

d
di

am
et

er

Density

T = 10

 1

 2

 3

 4

 5

0.40.20.1

Density

T = 50

Figure 5.11: On the left, the diameter (i.e., the maximum hop-length) for the MST set and the different-parameter LHT sets, as well as the original
graphs. The values are averages over the 30-graphs sets with the same order and density; the standard deviation is shown as error bars on the y-axis.
The MST diameter is naturally the largest and the graph diameter the lowest. On the right, the weighted diameter (i.e., the the maximum weighted
path length) for the MST set and the different-parameter LHT sets, as well as the original graphs. The same legend applies to all plots.

1
1

6
C

H
A

P
T

E
R

5
.

S
E

A
R

C
H

I
N

G
A

N
D

R
O

U
T

I
N

G

6 GRAPH DATA MINING

It has been observed that in natural networks, certain subgraphs occur with a
much higher frequency than they do in uniform random graphs [225, 240].
In graph data mining [312], one fundamental problem is the identification
of such frequent patterns, i.e., subgraphs that occur repeatedly in the struc-
ture of an input graph. Basic graph data mining algorithms enumerate all
subgraphs and list the most frequent ones [160, 199, 200, 244].

Aiming for efficient and localizable graph data mining for massive natural
graphs, we propose a method for finding (approximate) matches to a given
pattern graph P in an input graph G instead of obtaining a complete listing
of all frequent subgraphs. This approach is fitted to scenarios where it is of
interest to know whether some substructure appears or not and in what form,
such as hypothesis verification or examining whether a substructure that has
been found to be a frequent pattern in one setting is present in another data
set.

The common approach for mining frequent subgraphs is to start with a
complete enumeration of small subgraphs, calculate how many times each
subgraph-pattern occurs, and then iteratively grow subgraphs that have mini-
mum support. In data mining, the term support refers to the number of times
a pattern appears in a database, and in graph data mining, it is the number
of times a subgraph appears in a given graph or a set of graphs. Hence mini-
mum support means that the frequency of appearances of a pattern is above
a predetermined threshold.

Apriori-based algorithms generate subgraphs starting from very small “seed
subgraphs” (usually formed by single edges and the end-point vertices) and
iteratively combine currently stored frequent subgraphs to construct larger
patterns, keeping track of the frequency of each pattern [143]. Such algo-
rithms include Apriori-Based Graph Mining (AGM) [160] and FSG [199].
Approaches designed to avoid generation of duplicates in the subgraph enu-
meration process include GSPAN [323] and CLOSEGRAPH [324] that em-
ploy canonical labelings1 (namely a DFS code [323]) and lexicographic or-
dering of subgraphs. The CLOSEGRAPH algorithm mines for closed pat-
terns, that is, subgraphs for which no superpattern exists with the same sup-
port.

Heuristic, greedy algorithms include SUBDUE [153] that aims to com-
press a given input graph using the minimum description length principle
combined with subgraph frequency. Heuristic graph data mining methods
do not in general examine all subgraphs in order to save computation time,
but instead greedily choose to examine only those subgraphs that appear to
be promising patterns in some sense.

Our focus is on studying whether a given graph G contains subgraphs sim-
ilar to a given pattern graph P ; this problem includes as a subproblem defin-
ing graph similarity. The strictest form of similarity is graph isomorphism,

1In settings where combinatorial objects are generated and the same structure may be
generated multiple times, duplicates can be eliminated by computing a canonical label for
each item, such that two objects are assigned the same label if and only if they are structurally
identical.

CHAPTER 6. GRAPH DATA MINING 117

already discussed in Chapter 2. There are two important “constructional”
problems related to (sub-)graph isomorphism problems:

(i) the maximum common subgraph problem [53, 115] (given two graphs
G and P , construct a graph G′ of maximum order and size such that
both G and P contain a subgraph isomorphic to G′) and

(ii) the minimum common supergraph problem [54, 115] (given two graphs
G and P , construct a graph G′ of minimum order and size s.t. G′ con-
tains a subgraph isomorphic to G and a subgraph isomorphic to P).

For the latter problem, the two subgraphs are likely to overlap in case
that G and P are similar, and in the former problem, the order and size of G′

should be close to those of G and P in the case that the two input graphs have
similar structure. Similarity metrics can be defined based on both of these
constructions, maximum common subgraph appearing to be more widely
used [55, 151]. Both problems are evidently in NP; also, solving either one
solves the graph isomorphism problem, as (only) for isomorphic graphs the
construction is of equal order and size as the graphs themselves.

The most popular variants of graph similarity measures include the edit
distance (also widely known as script distance and Levenshtein distance)
[142], which is the minimum number of operations needed to transform G
into P , closely related to the above two transformation problems — originally
edit distance was defined for strings, but as graphs have fluent representations
as strings, the definition easily generalizes for graphs.

Defining edit distance is in many ways problematic, as one has to define
the set of operations (i.e., whether to only allow vertex and edge additions
and removals or also operations such as splitting vertices, joining vertices,
contracting edges, and rewiring edge endpoints). Furthermore, in practical
applications different operations may have different “costs”; for example the
lack of a vertex may have more impact on practical similarity than the ab-
sence of an edge. For a specific application area for which a training data set
exists, it is possible to automatically infer the operation costs [233], but such
a setup is not always feasible. In addition, the similarity values obtained are
highly sensitive to the selection of a cost function [151]. Edit distance is an
NP complete problem, as it solves the graph isomorphism problem — the
edit distance problem is known to be equivalent to the maximum common
subgraph problem [51].

Another related problem is that of graph matching [52, 84, 152], where
the goal is to find a mapping that might not necessarily be an isomorphism
and may not even be bijective, but that in some sense relates the vertices of
one graph to those of another to maximize some similarity measure. Less for-
mal approaches to graph similarity include proposals of similarity evaluation
in terms of measures of network nonuniformity [98], such as the measures
discussed in Chapter 2.

As we are trying to avoid having to solve an NP complete problem each
time we wish to evaluate the similarity of a candidate subgraph with a user-
defined pattern, we will be returning to the graph matching scenario, but will
not experiment with variants of the common sub- and supergraph problems.

118 CHAPTER 6. GRAPH DATA MINING

We begin by exploring computationally feasible approaches to determin-
ing subgraph similarity. A bit-string representation B (A) of a n × n adja-
cency matrix A is a bit string of length N = n(n + 1)/2 that is composed of
a concatenation of the upper triangular matrix of A, i.e., the complete first
row, the last (n − 1) elements of the second row, and so forth, as illustrated
in Figure 6.1. If the graphs were known to be non-reflexive, the diagonal
could be ignored, saving n bits. This encoding is essentially equivalent to the
column-wise graph code used in AGM [160]. We do not use edge labels in
the basic definition, but the encoding could easily be extended to hold edge
label identifiers instead of binary values.

A relabeling of a graph G = (V, E) is a bijection ϕ : V → V . Each rela-
beling corresponds to a reordering of the adjacency matrix A = AG. Each
reordering of the matrix further defines a bit-string representation B (A).

Let Bϕ(G) be the bit-string representation given relabeling ϕ. Given all
possible relabelings of G, the canonical bit-string representation B (G) of G
is the bit-string representation B is the lexicographically largest one over the
set of possible relabelings, i.e., corresponds to the largest number when the
bit string is interpreted as a binary number:

B (G) = max
ϕ:V →V

{

Bϕ(G)

}

. (6.1)

If two graphs GS and P have the same canonical label, they are isomorphic.
Therefore computing the canonical label has the same complexity as graph
isomorphism and is in NP. Our goal is to find a way to avoid having to com-
pute canonical labels for all the subgraphs that are compared to the pattern
during the search.

B (A) = 011100100001010

AG =













0 1 1 1 0

1 0 1 0 0

1 1 0 0 1

1 0 0 0 1

0 0 1 1 0













Figure 6.1: A graph G of order five, an adjacency matrix A = AG with the
entries that form the bit string in boldface, and the corresponding bit-string
representation B (A).

The weight ω (B) of a bit string B is the number of one bits it has. For a
graph G = (V, E) and A = AG, the weight is the edge count of the graph,
ω (B (A)) = |E|, as each edge corresponds to two one-bits of the adjacency
matrix, only one of which lies in the upper triangular matrix.

The Hamming distance of two bit strings is the number of positions at
which the two strings differ. Similarly, for binary data, the exclusive or (XOR)
B1 ⊕B2 of two bit strings B1 and B2 of the same length N is a bit string B3 in
which the bit bB3 (p) at position p is one if and only if the bits at position p in
B1 and B2 differ:

bB3 (p) =

{

1, if bB1 (p) 6= bB2 (p) ,
0, otherwise. (6.2)

CHAPTER 6. GRAPH DATA MINING 119

Hence, ω (B1 ⊕ B2) is the number of bit positions in which the two bit strings
differ. The XOR-difference δ⊕ (B1,B2) ∈ [0, 1] of two bit strings B1 and B2

of length N is defined as

δ⊕ (B1,B2) =
ω (B1 ⊕ B2)

N
. (6.3)

The measure, known as normalized Hamming distance in general form, as-
signs value zero for identical strings and one for complement strings, as desir-
able. The definition does not take into account the positions at which the two
strings differ. In some cases, the most significant bits2 are truly more impor-
tant, and other difference measures work better in estimating how drastically
two given bit strings differ. For the purpose of defining difference functions
sensitive to bit positions bi (B), we define an indicator function over the bit
positions of two bit strings B1 and B2 as

I (i) =

{

1, if bi (B1) = bi (B2) ,
0, if bi (B1) 6= bi (B2) .

(6.4)

Using this definition, we denote the first position in which two bit strings
differ, starting from the most significant bit at position N going down to the
lowest bit at position 1, by

bpos (B1,B2) = max
i∈[N]

{I (i) = 0} (6.5)

and set bpos (B1,B2) = 0 for B1 = B2. We define a position-sensitive differ-
ence measure

δpos (B1,B2) =
bpos (B1,B2)

N
(6.6)

that assigns the value zero for equal strings and one for pairs that differ in the
first position. This measure heavily punishes a difference in an early posi-
tion even if all the remaining bits are equal. A smoother possibility for em-
phasizing the importance of the most significant bits is to define a weighted
difference measure, such as

δw (B1,B2) = 1 −

∑N
i=1 (I (i) · i)
∑N

i=1 i
= 1 −

2
∑N

i=1 (I (i) · i)

N(N + 1)
. (6.7)

The subtraction from one is included so that a zero difference would corre-
spond to equal strings, as in the above two definitions.

Yet another option is to calculate the longest common subsequence (LCS)
[142] of the two strings, which is a sequence of characters of maximum length
over all sequences that appear as subsequences in both of the strings under
comparison. We define a similarity measure by computing the length of the
longest common subsequence and normalizing it to the interval [0, 1] by
dividing by the string length (in case of unequal-length strings, the minimum
length, which is an upper bound to the length of any common subsequence).

2In binary numbers, the left-most bit that corresponds to the highest power of two is
known as the most significant bit as its effect on the numerical value is higher than that of
the other bits.

120 CHAPTER 6. GRAPH DATA MINING

If and only if the two strings are equal, the similarity value is one. In a general
setting also a zero value would be possible, but for bit strings it only occurs
when one strings has only zeroes and the other only ones. We refer to this
similarity measure as LCS in this chapter. The computation of LCS is worst-
case quadratic in the string length and can be done efficiently by a dynamic
programming algorithm.

6.1 SUBGRAPH SIMILARITY

Given a connected pattern graph3 P = (VP , EP) and a subgraph GS =
(S, F) of G = (V, E) such that |VP | = |S| = k, we define the similarity of
a subgraph to the pattern through their bit-string representations. We want
the similarity to be one when the two graphs are isomorphic and zero when
the two graphs disagree completely (that is, one is a clique and another is an
independent set).

Over all possible relabelings ϕ of GS , the one that minimizes a difference
measure δ∗

(

Bϕ(GS),B (P)
)

gives the similarity of the subgraph GS and the
pattern P . Note that for zero difference under any of the proposed difference
measures, Bϕ(GS) corresponds exactly to AP and hence the two graphs GS

and P are isomorphic. Hence we define the exact similarity of a subgraph
and a pattern to be determined by the lowest difference over all possible
relabelings of the subgraph,

ρ
(

GS, P
)

= 1 − min
ϕ:S→S

{

δ∗
(

Bϕ(GS),B (P)
) }

. (6.8)

This is evidently computationally demanding (as it solves the isomorphism
problem), although all the difference measures themselves are simple to
compute for a given pair of bit strings. Trying out all possible relabelings of
vertices for a graph G is exponential in n as there are n! orderings. A naïve al-
gorithm to obtain the k lexicographically largest bit-string representations
B (G) for a given graph G = (V, E) simply generates all these permutations
of the adjacency matrix. Such a search can be pruned by comparing the bit
string to the largest one found thus far during its generation and discarding it
as soon as a bit is appended that makes it lexicographically smaller.

With such a procedure, we may also store k of the lexicographically largest
bit strings instead of storing just the canonical one. This is clearly a compu-
tationally infeasible approach for large graphs or for frequent repetition, but
in the pattern-matching scenario, the pattern can be assumed to be of much
smaller order than the graph G in which it is to be matched. Therefore ob-
taining a such a set of lexicographically large bit strings for the pattern is not
a dominating factor in the runtime of a matching procedure. Hence we as-
sume that it is feasible to compute k largest bit strings for B (P)1 , . . . ,B (P)k

for the pattern graph P . Let B (P) = B (P)1.
In order to avoid having to directly minimize Equation 6.8, we concentrate

on finding a lexicographically large bit string for GS , as B (P) is assumed to
be known. We cannot compute the canonical labels for the subgraphs, as

3Should one wish to mine for disconnected patterns, the procedure presented here could
be repeated for each connected component separately.

CHAPTER 6. GRAPH DATA MINING 121

numerous subgraphs need to be examined while matching a pattern in a
large graph. We use the following notation. Given a subset S ⊆ V , we
denote the number of neighbors a vertex v has in S by

degS (v) = |S ∩ Γ (v)| . (6.9)

For constructing a bit-string representation for a subgraph encountered
during the pattern matching, we propose a greedy, heuristic algorithm (given
as pseudo code in Table 6.1) that outputs the vertices of an input graph in
such an order that produces a lexicographically high bit string when the ad-
jacency matrix of the graph is sorted into that order from the initial ordering
based on vertex labels 1, 2,

The algorithm prioritizes outputting reflexive vertices over non-reflexive
ones. This is useful as the diagonal elements of the adjacency matrix are
the leftmost elements of each row included in the bit string. The reflex-
ive neighbors of an already output vertex are always output before reflexive
non-neighbors and the non-reflexive neighbors are output before the non-
reflexive non-neighbors. The algorithm attempts to order the vertices such
that as many ones as possible would be placed as early as possible in the
bit-string representation, preferably avoiding intermediate zeroes.

We assume the input to be given in the form of adjacency lists; the com-
putational complexity of each step is given in the rightmost column of Ta-
ble 6.1; assignments involving sets are considered to be worst-case linear in
the number of elements. The algorithm necessarily terminates: it outputs
one vertex at step 5 of each repetition of the loop between steps 5 and 14,
and each vertex is output exactly once, implying that the loop is processed
exactly n times.

In order to compute an approximate similarity for a given subgraph GS in
G with a pattern P , we compute for the pattern k lexicographically first bit
strings B (P)1 , . . . ,B (P)k and calculate the similarities using each B (P)i

and the approximate representative bit string of the subgraph GS obtained
by the algorithm of Table 6.1. This gives us a lower bound of ρ

(

GS, P
)

as

ρ
(

GS, P
)

≥ max
j∈[k]

{

1 − δ∗

(

B
(

GS
)

,B (P)j

)

}

. (6.10)

If the subgraph and pattern are identical, using more than one representative
bit string for the pattern increases the likelihood that the greedily constructed
representative of the subgraph matches one of the pattern’s representatives.

We conducted a small-scale experiment to study how similar the greedily
constructed bit strings are to the top k bit strings of the same input graph
found by an exhaustive search. The limited scope of the experiment fol-
lows from the combinatorial explosion in the running time of the exhaustive
search: it becomes slow already for fewer than a dozen vertices. The greedy
algorithm, however, performs well for graphs of much larger order.

For an illustration on the run times, averaged over fifty graphs output by
different graph generators, see Figure 6.2. We used the three graph genera-
tion models: the Gn,p model [133], a variation of the Watts-Strogatz model
that overlays a Gn,p-graph on the circulant lattice [242, 243], and the Bara-
bási-Albert generation method for scale-free graphs [25]; implementational

122 CHAPTER 6. GRAPH DATA MINING

Table 6.1: A greedy, heuristic algorithm that outputs vertices of a given con-
nected graph GS = (S, F) in the order that gives a lexicographically large
bit-string representation when used to sort the columns of an adjacency ma-
trix. L is the set of adjacency lists of the vertices.

Main procedure obtaining as input L = {Γ (v)}v∈S O
(

n5
)

1 v := maximum-degree reflexive vertex ∈ S, non-reflexive if none. O
(

n2
)

2 ` := 0. O (1)
3 W (v) := `. O (1)
4 ` := ` + 1. O (1)
5 Output v. O (1)
6 c := W (v). O (1)
7 W (v) := invalid. O (1)
8 For each w ∈ Γ (v) ×O (n)
9 If W (w) is undefined, O (1)

10 then W (w) := `. O (1)
11 If at least for one vertex w, W (w) was set, O (1)
12 then ` := ` + 1. O (1)
13 v := SelectVertex (c,W (·), `, L). O

(

n4
)

14 If v is defined, then go to line 5.
15 Exit.

Subroutine SelectVertex to pick v s.t. W (v) ≥ c, given L and `. O
(

n4
)

1 C := ∅. O (1)
2 j := c. O (1)
3 While

(

(C = ∅) ∧ (j ≤ `)
)

: ×O (n)
4 C := {w | W (w) = j}. O (n)
5 If C 6= ∅, then break. O (1)
6 Else j := j + 1. O (1)
7 If (C = ∅), then return undefined. O (1)
8 If (|C| = 1), then return the included vertex. O (1)
9 C ′ := {w ∈ C | w ∈ Γ (w)}. O

(

n2
)

10 If (|C ′| = 1), then return the included vertex. O (1)
11 If (C ′ 6= ∅), then C := C ′ O (n)
12 Repeat until a break occurs: ×O (n)
13 If (j > `), j := stop. O (1)
14 S := {u | W (u) = j}. O (n)
15 C ′ := {w ∈ C | degS (w) is maximal}. O

(

n2
)

16 C := C ′. O (n)
17 If (|C| = 1), then return the included vertex. O (1)
18 If ((j = stop) ∨ (j 6= invalid)), then break. O (1)
19 Return the first element in C . O (1)

details of the constructions are available in our previous work [306]. Af-
ter generating the graphs, we added reflexive edges independently for each
vertex with probability p. This was done because none of the model im-
plementations incorporate reflexive edges, which however are often found
in application areas of subgraph data mining. The model parameters and

CHAPTER 6. GRAPH DATA MINING 123

resulting average edge counts are given in Table 6.2.

Table 6.2: The parameters used in generation of the test graphs for the two
test sets and the resulting average edge counts of the graphs. The probability
p for added reflexive edges was 0.3 for smaller graphs and 0.1 for the larger
ones; the expected number of reflexive edges p · n is included in all the
expected values of the table.

Small graphs, n ∈ [5, 11]

Model Parameters Expected edge count

Gn,p pe = 0.7 E [m] = 0.7
(

n
2

)

+ 0.3n
WS k = 1, pe = 0.3 E [m] = n + 0.3

(

n
2

)

BA n0 = 3, deg0 (v) = 2 E [m] ≈ 2.3n

Larger graphs, n ∈ [15, 200]

Model Parameters Expected edge count

Gn,p pe = 0.4 E [m] = 0.4
(n
2

)

+ 0.1n
WS k = 3, pe = 0.2 E [m] = 3n + 0.2

((n
2

)

− 3n
)

+ 0.1n
BA n0 = 5, deg0 (v) = 3 E [m] ≈ 3.1n

 1

 10

 100

 1000

 10000

 100000

 1e+06

 5 6 7 8 9 10 11

R
un

tim
e

(m
s)

Graph order n

Exact algorithm

 1

 10

 100

 1000

 10000

 20 40 60 80 100 120 140 160 180 200

Graph order n

Greedy heuristic algorithm

Gnp
BA
WS

Figure 6.2: On the left, the average running times of exact (left plot) and ap-
proximate (right plot) computation of canonical bit-strings for input graphs of
growing order. The algorithms were ran for three different graph generation
models and the running times were averaged over 30 independently gener-
ated instances for graphs of order n ∈ [5, 11]. Note the change of magnitude
on the y-axis of the plots. The standard deviation is plotted with error bars
for all data points, but these are so small that they only show in some of the
running times of the greedy algorithm.

As expected, the running time of the naïve exhaustive search does not dif-
fer for the models as graph structure plays no part in the way the algorithm
proceeds; hence all three curves overlap perfectly with no deviations. How-
ever, the different models behave differently for the greedy heuristic both
with respect to running time and accuracy. For graphs of order seven, the
exact algorithm took approximately 40 seconds, whereas those of order eight
already took more than eight minutes per repetition, and hence the complete
test set of three models with 30 repetitions each required more than twelve
hours. The full enumeration of the permutations alone (using a standard

124 CHAPTER 6. GRAPH DATA MINING

algorithm to advance from a given permutation to the next [193]) takes for
about a second for eleven elements on the same machine, but for twelve ele-
ments it needs almost 20 seconds, and for 13 elements almost four minutes.
Therefore the algorithm is clearly not appropriate for frequent repetition for
graphs with as few as a dozen vertices and will not be at all applicable for
larger graphs.

We used test sets for larger orders from 15 up to 200 with increments of
five for the approximation algorithm, in addition to those on which the exact
algorithm was tested. For these graphs, the exhaustive search is evidently im-
practically slow and hence was not attempted. The approximation however
scales well for graphs of considerable order. Therefore, if the canonical label
of a pattern of interest can be obtained, our method would allow for mining
rather large subgraphs. We conjecture that a method in which the approxi-
mate bit strings are used for both the pattern and the subgraphs could prove
useful for some applications and hope to study this in future work.

In order to examine how well the greedy heuristic performs, we checked if
the greedy bit string was among the k = 2n lexicographically first bit strings
for those graphs for which the exact algorithm was ran, and if so, at which
index. Figure 6.6 on page 132 shows the results of this study in the form of
a histogram. The results are not surprising; for small graphs, we recognize
isomorphism easily, but as the graphs grow, the greedy string hardly ever
appears within the k largest bit strings. The Gn,p graphs are the hardest, which
is not surprising, as there is no structure or nonuniformity to take advantage
of. Similarly the most regular of the graph models, the Watts-Strogatz lattice
with additional random edges, has the greedy string most frequently included
in the set of exact strings.

It is worth remembering that there are in total n! bit strings in the com-
plete lexicographic ordering of a given graph of order n, some of which may
be identical if the graph structure has symmetries. For example the symmetry
of the circulant lattice of the Watts-Strogatz small-world model causes a high
probability for different orderings of the vertices to produce identical and/or
highly similar bit strings. The bit-string length n(n+1)/2 grows quadratically
with n, making the relative importance of a single-bit difference inversely
quadratically smaller in calculating the similarities.

In addition we calculated the similarity values between the greedy string
and all k lexicographically first strings; Figure 6.3 shows the average similar-
ities and standard deviations over the test sets. It can be easily seen that the
first different bit position arrives early, and hence δpos (B1,B2) of Equation 6.6
gets low values. The LCS similarity maintains on average the highest values,
but it is a little slower to compute than the others, as the other measures are
linear and LCS is quadratic in the length of the string.

In order to interpret Figure 6.3, it is of interest to know what is the ex-
pected value of each similarity measure given two random bit strings of length
N = n(n+1)/2 both corresponding to a graph with order n and size m. De-
note the probability that two bit strings B1 and B2, both of length N with
exactly m ones, first differ at position k by q (m, N, k); the corresponding for-
mula is given along with a derivation in an appendix starting on page 175
(Equation 7). The expected values of the similarity under the different dif-
ference measures are shown in Table 6.3 — it is noteworthy that the XOR-

CHAPTER 6. GRAPH DATA MINING 125

difference and the weighted difference have exactly the same expectation for
two random strings with the same number of ones, as the symmetry in com-
puting the expectation over all possible strings effectively “cancels out” the
effect of the weights.

Table 6.3: The expected value and the minimum value of the similarity
E [ρ (B1,B2)] for two bit strings that both correspond to graphs with m edges
and n vertices (yielding bit strings with N = n(n + 1)/2 bits, out of which
m are ones) when using the three difference measures E [ρ (B1,B2)]. Note
that δ⊕ (B1,B2) and δw (B1,B2) give the same expected similarity. We denote
u = max{m, N −m} and ` = min{m, N −m}. For the LCS similarity, the
lower bound for similarity using this notation is simply u

N
.

Measure E [ρ (B1,B2)] Lower bound

δ⊕ (B1,B2)
E [ω (B1 ⊕ B2)]

N
=

2m(N − m)

N2
u−`
N

bpos (B1,B2) 1 −
E
[

bpos (B1,B2)
]

N
= u−`

N

1 −

N
∑

i=1

(N − i + 1) ·
i−1
∏

j=0

q (m, N, j)

N

δw (B1,B2) 1 − E [δw (B1,B2)] = 2m(N−m)
N2

(u−`)(u−`+1)
N

The plots of the expected similarities in Figure 6.4 show that for dense
or sparse graphs, even a random pair achieves high similarity. For random
pairs with density not at an extreme value, the XOR and weighted similari-
ties have expected values lower than those shown in Figures 6.3 achieved by
comparing a greedy string of an exact match. Hence the measure exhibits
capability of distinguishing true matches from non-matching pairs. For the
LCS similarity on a pair of binary strings with the same number of ones and
zeroes in both strings, the value is never below 0.5; also, the average val-
ues for random strings are rather high, which means that in thresholding the
LCS similarity, a rather high value may still imply dissimilarity of the input
graphs — this could be partially resolved by scaling the minimum from 0.5
to zero, hence amplifying the differences between similarities that should be
considered matches and those that should not be considered matches. With
this observation in mind, the weighted similarity measure is easier to use.

We also wanted to see what values would partial matches give, i.e., graphs
where some edges are absent or where additional edges are included. For
this purpose, we generated another test set using the same parameters than
in the accuracy tests (given in Table 6.2), but for each graph, also calculating
a greedy string for modified graphs with one to five edges missing and with
one to five additional edges. We ran the experiment for graphs of orders
in {8, 9, 10} and with 2n exact strings, but only the results for n = 9 using
the maximum similarity among the set of k strings (the approximation of
Equation 6.10) are shown.

126 CHAPTER 6. GRAPH DATA MINING

For visualization of how the three difference functions and the LCS sim-
ilarity function behave when computing the maximum similarities over the
set of k strings of original graphs of order n = 9 and greedy strings generated
for modified graphs, we give box-whiskers plots4 of the values in Figure 6.5. It
can be seen that the simple exclusive-or difference δ⊕ (B1,B2) does not drop
very clearly when the graph is modified, even though that would be desirable.
The bit-position difference measure δpos (B1,B2) suffers from high variability,
but the difference of the good matches to the modified ones is more clearly
visible. All in all, the weighted difference and the LCS difference appear to
be the most useful ones.

The weighted measure δw (B1,B2) succeeds in giving on average higher
values to graphs that are more similar to the pattern with respect to their con-
nection patterns, and the similarity values decrease as more differences are
introduced. The LCS similarity measure also shows the decrease as mod-
ifications are introduced, but it falls somewhat slower as modifications are
made and hence may be harder to adjust when choosing which threshold to
use to filter the matches. In conclusion, we choose to use the combination
of the weighted measure and the greedy strategy for determining whether
or not a given subgraph resembles a given pattern or not, expecting values
near 0.8 or above for matches and near 0.5 or below for non-matches as seen
from the experiments on similar versus random pairs; for cases where only
small deviation from the input pattern is tolerated, we recommend using the
LCS similarity.

Generalization to directed graphs only requires the use of the full adja-
cency matrix instead of the upper-diagonal part in defining a bit-string rep-
resentation. For a weighted graph, instead of binary values the weights may
be put in an array to produce a string-like representation, but as searching
for the exact weights would be restrictive, we recommend defining a table of
prototype weights such that an edge weight in a certain range gets mapped
into a certain prototype weight, and the differences of the weights are used
in computing the difference, such that the normalization is done with the
string length multiplied by the maximum weight-difference possible.

Given a graph G = (V, E) of order n and a pattern graph P = (VP , EP)
of order k ≤ n, the task of interest is to find a set of subgraphs GS

1 , . . . , GS
s in

G such that ρ
(

GS
i , P

)

≥ ξ for a given threshold ξ ∈ [0, 1].
If the search is not restricted to perfect matches only, modifications such

as single or multiple edge removals or additions can be done on the pattern,
with the search repeated for each modified pattern. This is necessary as hav-
ing even a single edge, especially a reflexive one, present in a subgraph and
not in the pattern, can have drastic effects on what are the lexicographically
first bit-string representations. Also, it allows for a user interface where the
user first defines a pattern for exact search and then, if the set of matches
found is unsatisfactory, the user may either modify the pattern manually or
run an automated search for mutations until a sufficient number of satisfying

4A box-whiskers plot is composed of a box that captures the samples that fall between
the first and the third quartile with a horizontal line inside the box representing the median
value, and a vertical line indicating the full range of the set of observations: If the set contains
some obvious outliers, they are usually excluded from the calculation of the box-whiskers
plot and drawn as dots further outside the vertical line representing the range [266].

CHAPTER 6. GRAPH DATA MINING 127

matches is found or the user concludes that nothing similar to the pattern
currently exists in the graph.

Enumerating and comparing all subgraphs of order k in G is time-con-
suming and inefficient. Alternatives are to either prune the search space
or use a stochastic search method. Several algorithms exist for generating
all maximal induced subgraphs with a given property, if the property itself
meets some requirements, such as being hereditarity [80]. Methods using
complete search are time consuming, especially for a graph where the struc-
ture changes often and no intermediate results of previous searches help in
serving future pattern queries. For such scenarios, we propose instead an
approximate search. For a stochastic, local search, a neighborhood over the
subgraphs of order k and with a fixed number of edges in G = (V, E) needs
to be defined. A possible neighborhood definition is considering GS

1 and GS
2

neighbors if either their vertex sets differ by one or if their edge sets differ
by one while the vertex set remains static. The field of bioinformatics could
benefit from such an approach for studying massive data sets; we hope to
experiment on local pattern mining on real-world data set in the future.

128 CHAPTER 6. GRAPH DATA MINING

 0

 0.5

 1

1051

S
im

ila
rit

y

n = 5, XOR

 0

 0.5

 1

1051

n = 5, bitpos.

 0

 0.5

 1

1051

n = 5, weighted

 0

 0.5

 1

1051

n = 5, LCS

 0

 0.5

 1

151051

S
im

ila
rit

y

n = 7, XOR

 0

 0.5

 1

151051

n = 7, bitpos.

 0

 0.5

 1

151051

n = 7, weighted

 0

 0.5

 1

151051

n = 7, LCS

 0

 0.5

 1

151051

S
im

ila
rit

y

n = 9, XOR

 0

 0.5

 1

151051

n = 9, bitpos.

 0

 0.5

 1

151051

n = 9, weighted

 0

 0.5

 1

151051

n = 9, LCS

 0

 0.5

 1

20101

S
im

ila
rit

y

Index in lex. order

n = 11, XOR

 0

 0.5

 1

20101

Index in lex. order

n = 11, bitpos.

WS
BA

Gnp

 0

 0.5

 1

20101

Index in lex. order

n = 11, weighted

 0

 0.5

 1

20101

Index in lex. order

n = 11, LCS

Figure 6.3: The average and standard deviation of the similarities between the greedy bit string and the k = 2n lexicographically first bit strings for
graphs of order n ∈ {5, 7, 9, 11} for the three generation models used in the study. The first column shows the results for δ⊕ (B1,B2) of Equation 6.3,
the second column those of δpos (B1,B2) of Equation 6.6, the third column those of δw (B1,B2) of Equation 6.7, and the right-most column the
LCS similarity.

C
H

A
P

T
E

R
6

.
G

R
A

P
H

D
A

T
A

M
I
N

I
N

G
1

2
9

 0
 5

 10
 15

 20

 100

 200

 0.2
 0.4
 0.6
 0.8

 1

Exp. sim.

XOR/weighted diff.
First diff. pos.

n

m

Exp. sim.

 0
 5

 10
 15

 20

 100

 200

 0
 0.2
 0.4
 0.6
 0.8

 1

Avg. sim.

LCS sim.
Std. dev.

n

m

Avg. sim.

Figure 6.4: On the left, the expected value of Equation 6.8 for δ⊕ (B1,B2) and δpos (B1,B2) (top curves), and bpos (B1,B2) (bottom curves) for two
random bit strings B1 and B2 with m ones and (n(n + 1)/2−m) zeroes (corresponding to two random reflexive graphs with n vertices and m edges;
the corresponding formulas are given in Table 6.3. On the right, the average LCS similarity (top curves) over 1,000 pairs of random bit strings for
each (n, m) pair, together with the standard deviation for each data point (bottom curves).

1
3

0
C

H
A

P
T

E
R

6
.

G
R

A
P

H
D

A
T

A
M

I
N

I
N

G

 0

 0.2

 0.4

 0.6

 0.8

 1

-5 -4 -3 -2 -1 0 1 2 3 4 5

S
im

ila
rit

y

Difference in edge count

Gnp, max.sim., XOR

 0

 0.2

 0.4

 0.6

 0.8

 1

-5 -4 -3 -2 -1 0 1 2 3 4 5

S
im

ila
rit

y

Difference in edge count

BA, max.sim., XOR

 0

 0.2

 0.4

 0.6

 0.8

 1

-5 -4 -3 -2 -1 0 1 2 3 4 5

S
im

ila
rit

y

Difference in edge count

WS, max.sim., XOR

 0

 0.2

 0.4

 0.6

 0.8

 1

-5 -4 -3 -2 -1 0 1 2 3 4 5

S
im

ila
rit

y

Difference in edge count

Gnp, max.sim., bitpos.

 0

 0.2

 0.4

 0.6

 0.8

 1

-5 -4 -3 -2 -1 0 1 2 3 4 5

S
im

ila
rit

y

Difference in edge count

BA, max.sim., bitpos.

 0

 0.2

 0.4

 0.6

 0.8

 1

-5 -4 -3 -2 -1 0 1 2 3 4 5

S
im

ila
rit

y

Difference in edge count

WS, max.sim., bitpos.

 0

 0.2

 0.4

 0.6

 0.8

 1

-5 -4 -3 -2 -1 0 1 2 3 4 5

S
im

ila
rit

y

Difference in edge count

Gnp, max.sim., weighted

 0

 0.2

 0.4

 0.6

 0.8

 1

-5 -4 -3 -2 -1 0 1 2 3 4 5

S
im

ila
rit

y

Difference in edge count

BA, max.sim., weighted

 0

 0.2

 0.4

 0.6

 0.8

 1

-5 -4 -3 -2 -1 0 1 2 3 4 5
S

im
ila

rit
y

Difference in edge count

WS, max.sim., weighted

 0

 0.2

 0.4

 0.6

 0.8

 1

-5 -4 -3 -2 -1 0 1 2 3 4 5

S
im

ila
rit

y

Difference in edge count

Gnp, max.sim., LCS

 0

 0.2

 0.4

 0.6

 0.8

 1

-5 -4 -3 -2 -1 0 1 2 3 4 5

S
im

ila
rit

y

Difference in edge count

BA, max.sim., LCS

 0

 0.2

 0.4

 0.6

 0.8

 1

-5 -4 -3 -2 -1 0 1 2 3 4 5

S
im

ila
rit

y

Difference in edge count

WS, max.sim., LCS

Figure 6.5: Box-whiskers plots that visualize the median and the deviations of the maximum similarity value over the set of k lexicographically first
strings over a set of 30 graphs of order nine and their modified versions with one to five additional or missing edges. The first column corresponds to
δ⊕ (B1,B2) of Equation 6.3, the second column to δpos (B1,B2) of Equation 6.6, the third column to δw (B1,B2) of Equation 6.7, and the right-most
column has the LCS similarities.

C
H

A
P

T
E

R
6

.
G

R
A

P
H

D
A

T
A

M
I
N

I
N

G
1

3
1

 0

 10

 20

 30

N/A51

n = 5

 0

 10

 20

 30

N/A51

n = 6

 0

 10

 20

 30

N/A1051

n = 7

 0

 10

 20

 30

N/A1051

n = 8

 0

 10

 20

 30

N/A151051

n = 9

 0

 10

 20

 30

N/A151051

n = 10

 0

 10

 20

 30

N/A151051

n = 11

Gnp
BA
WS

Figure 6.6: For the generation models used, the position of the list L of the lexicographically first 2n bit strings at which the greedy bit string B was
found for the sets of 50 graphs of orders [5, 10]; the position (2n+1) represents the cases in which the greedy string was not among the exact strings.
The histograms for the Gn,p model were shifted 0.25 to the left and those of the WS model 0.25 to the right to avoid overlap of the histograms.

1
3

2
C

H
A

P
T

E
R

6
.

G
R

A
P

H
D

A
T

A
M

I
N

I
N

G

6.2 PARTIAL MATCHING IN LABELED GRAPHS

The Semantic Web [31] is an overlay of the current World-Wide Web with
metadata annotations that aim to help in structuring, querying, and browsing
information available on the web. With the current plenitude of languages,
terminology, and different practises of people writing web pages, having a
computer organize and interpret the information available is demanding if
not impossible. For an introduction to the Semantic Web, we recommend
an article by Berners-Lee et al. [31].

In the Semantic Web, each resource on the web has a unique resource
identifier (URI) that enables a computer system to identify the resources re-
ferred to in the information it attempts to parse. Ontologies define classes
of objects, inter-object relations, and inference rules that allow reasoning on
objects and their relations. One of the goals of the use of ontologies in the
Semantic Web is to resolve issues related to ambiguous, ill-defined, misused,
or overlapping terminology.

The Resource Description Framework (RDF) is a representation of an
ontology as a directed, labeled graph, where the vertices represent the re-
sources (each of which has a URI) and the edges represent properties of the
resources [46]. An RDF is formed by triples that contain a subject, a predi-
cate and an object, where the subject and object map to vertices of the graph
and the predicate to an edge from the subject vertex to the object vertex. An
RDF schema is a set of definitions of classes, inheritance relations between
classes, and class properties. Such schemas can be extended (with OWL)
to define ontologies and related knowledge. Applications include social net-
works and semantic search engines in general; in the literature, common
data sets for experiments are RDF versions of databases such as IMDB [159]
and DBLP [206].

An RDF graph is a richer structure than the undirected, unweighted graphs
we have mostly concentrated on. All of the vertices have labels ω ∈ V ∪ ⊥,
where ⊥ is a “dummy” label for those vertices that have no semantic label
assigned. The graph definition includes a function fV : V → V ∪ ⊥. We
denote the label of vertex v by fV (v). Similarly the edges are labeled, in addi-
tion to being directed; an edge label ε ∈ E∪⊥ is assigned to each edge by the
function fE : E → E and the label of edge 〈v, w〉 is denoted by fE (〈v, w〉).
Note that V and E may and often in applications do have a non-empty inter-
section. The edge set allows multiple edges for a given pair of vertices, i.e.,
the graph may be a multigraph. Also reflexive edges are possible.

A special application to the similar-subgraph search is the distributed con-
struction of a collaborative RDF ontology graph by several, independent users
who use different terminology and hence can not easily determine by brows-
ing the existing schema or by performing keyword-based searches if the con-
cept they are about to introduce is already present. Such distributed anno-
tation systems are becoming increasingly popular in bioinformatics applica-
tions, such as in annotation of genomes. The schema may either be directly
edited by several users or the process may involve aggregation of indepen-
dently written schema. A similar problem is that of combining database views
from several independent servers [220].

Two descriptions of the same concept, such as a university course that has

CHAPTER 6. GRAPH DATA MINING 133

a lecturer, a lecture hall, a schedule, a course book, etc., are however likely
to have similar structure. Hence, if such a concept is already included in the
existing schema, searching the graph by using the newly proposed concept
as a pattern will return parts of the schema that are structurally close to the
pattern. The result of the search can then be presented to the user so that
he or she may evaluate whether an already existing concept in the schema
could be used instead of introducing duplicate or overlapping elements into
the ontology. With large ontologies and big user populations, such as with
the Semantic Web, such a mechanism could greatly assist in avoiding redun-
dancy in the schema.

With this application in mind, it is easy to see that exact isomorphism
between the pattern and the subgraphs encountered is not of interest, as two
people independently designing exactly the same ontology is less likely than
them designing largely overlapping ones. The application brings many new
challenges in comparison to the simplified scenario discussed above, such as
vertex and edge labels and the need to mine for disconnected patterns.

An application of pattern mining in an RDF is the realization of queries,
where a partial pattern is given and (approximate) matches to the pattern
from an RDF database are requested. Kanza et al. [176] use vertex mappings
from the pattern to the subgraphs of a rooted, finitely branching “database
graph”, which imposes restrictions that we would like to avoid. First of all,
we do not place any restrictions on the graph G = (V, E), and secondly, we
are also interested in matches where a single vertex in the user-defined query
pattern can be captured by two or more vertices in a “matching” subgraph or
the opposite scenario, where the pattern uses two or more vertices to repre-
sent a concept only captured by a single vertex in the graph G. The approach
of Kanza et al. preserves edges of the pattern by aiming to satisfy edge con-
straints, whereas we would prefer a more flexible way of handling missing,
additional or reversed-direction edges. Figure 6.7 illustrates some examples
of structures and matches we aim to mine.

One work-around to the limitations of vertex-to-vertex mappings is to mod-

c c

c c

c′ c′

c′

c′′
c′ca

a

a b

b

b′

b a

a′

a

a b

b

b

Figure 6.7: Some simple structures that we would like to be considered as
possible matches when one is given as a pattern P and the others appear in
the graph G as subgraphs. The label similarities are represented in a non-
formal manner such that “similar” labels are denoted by primed versions of
the same symbol d, d′, d′′, . . . and labels not similar to d-labels are represented
by another symbol.

134 CHAPTER 6. GRAPH DATA MINING

ify the user-defined query, i.e., to make transformations to the pattern P
that produce a set of patterns P1, P2, . . . , Pk, and then search the graph
G = (V, E) for occurrences of all these patterns Pi and combine the re-
sults to obtain subgraphs similar to P but with more flexibility within the
order, size and connectivity structure of the matches. Another possibility is
to define similarity measures that do not attempt to produce a one-to-one
mapping of the pattern to the subgraph but evaluate the similarity by other
means.

Algorithms to compute graph similarity and algorithms for inexact match-
ing for directed, labeled graphs have been proposed [85, 86]. Blondel et
al. [35] calculate similarity values for vertices with a matrix scheme that
draws from Kleinberg’s famous “hubs and authorities” method for ranking
web pages [188], similarly calculated as an eigenvector of a matrix derived
from the graph topology. A matrix approach to determining the similarity of
two graphs is proposed by Blondel and Van Dooren [36].

A nice approach by Jeh and Widom [163]for computing vertex similarities
for a given graph is based on the idea of the PageRank algorithm [47]. The
vertex similarity values are based on the edge set: two vertices are similar if
the neighbors these vertices point to are similar [163]. The formal definition
is recursive in the spirit of PageRank and the algorithm itself is called Sim-
Rank. Jeh and Widom [164] present in later work a tool called F-Miner for
answering similarity and relevance queries for labeled graphs.

In the following we assume that we have been given two similarity func-
tions that evaluate how similar two labels are; one function for vertices and
another for edges, both assigning similarity one to identical labels and any
pair that contains at least one occurrence of ⊥. We denote these functions
respectively by ρV : V × V → [0, 1] and ρE : E × E → [0, 1]. A variable
vertex is a vertex v which has no label, i.e., fV (v) = ⊥. This means that
ρV (v, w) = 1 for any vertex w.

We denote the multi-set of labels that are assigned to a set A by L (A). For
example, in a subgraph GS = (S, F) where S = {v1, v2, . . . , vk},

L (S) = {fV (v1) , fV (v2) , . . . , fV (vk)}; (6.11)

this is a multi-set because more than one vertex may have the same label. We
use the same notation for labels of edge sets. Given two multi-sets of labels,
L (A1) and L (A2) we calculate their similarity as

ρ (L (A1) ,L (A2)) =
|L (A1) ∪ L (A2)|

max{|A1| , |A2|}
∈ [0, 1], (6.12)

where the intersection of a multi-set is defined naturally to contain an ele-
ment a b times if and only if it appears at least b times in both of the sets for
which the intersection is computed and no more than b times in at least one
of them.

Similarities between a pattern P = (VP , EP) and a subgraph GS = (S, F)
(assuming that the pattern and the subgraph are independent graphs in the
sense that they share no vertices) inherently compose of several factors; we
listed some basic ones in Table 6.4.

In addition to the measures listed in Table 6.4, we wish to study how well
the structure of one graph maps to that of the other, without having to solve

CHAPTER 6. GRAPH DATA MINING 135

Table 6.4: Some fundamental difference measures for two graphs P =
(VP , EP) and GS = (S, F). The measures all assign the low values for
identical graphs; hence the subtraction from one in those that naturally map
identical sets to one instead.

� � Normalized difference of the vertex label sets 1 −
1

|S||VP |

∑

v∈S

∑

w∈VP

ρV (fV (v) , fV (w)).

� � Normalized difference of the edge label sets 1 −
1

|F ||EP |

∑

〈v1,v2〉∈F

∑

〈v3,v4〉∈EP

ρE (fE (〈v1, v2〉) , fE (〈v3, v4〉)).

�� The correspondence of the orders of the two graphs, |S| =

kS
G, |VP | = kP as δ

(

kS
G, kP

)

=

∣

∣kS
G − kP

∣

∣

max{kS
G, kP }

.

�� The correspondence of the size of the two graphs, defined
as in ��: δ (|F | , |EP |).

the computationally hard graph isomorphism problem. We resort to binary
relations R : S × VP composed of |R| = kR vertex pairs {v, w} such that
v ∈ S and w ∈ VP . We assume that a relation is constructed by pairing ver-
tices that hold a similar role in the graphs under comparison; for isomorphic
graphs, a good relation would only contain a vertex pair if those two vertices
map to each other in a graph isomorphism.

Similarity of two graphs GS = (S, F) and P = (VP , EP) can be studied
by determining how well such a binary relation R : S × VP can satisfy the
following three criteria:

(i) � �: How low is the deficit of a maximal matching in a bipartite graph
with vertex set S ∪ VP with the pairs of the relation R as a set of undi-
rected edges. A matching in a bipartite graph is a subgraph of a bipar-
tite graph where deg (v) ≥ 1 for all vertices; a matching is maximal if it
has maximal edge- and vertex-cardinalities. The deficit of a matching
is the number of vertices in the bipartite graph that have degree zero in
the matching, sometimes only perceived from the smaller-cardinality
bipartite vertex set. We denote the number of edges in the maximal
matching by M and normalize a deficit measure to be one for rela-
tions that contain a complete matching:

ρR
1 (R, P) =

M

min{|S| , |VP |}
. (6.13)

We choose to compute a maximal matching instead of simply checking
whether the relation itself is a bijection, as structural symmetries will
introduce redundancies in relations constructed to pair vertices that
have a similar role in the two graphs being compared. The weakness of
this measure is that simply adding all vertex pairs to the relation maxi-
mizes it; hence we define two more measures that punish the presence
of extra pairs in the relation unless the vertex labels and corresponding
connectivity patterns are highly similar.

136 CHAPTER 6. GRAPH DATA MINING

(ii) ��: How well the relation R preserves the vertex labels:

ρR
2 (R, P) =

∑

{v,w}∈R ρV (fV (v) , fV (w))

kR
∈ [0, 1]. (6.14)

(iii) ��: How well the relation R preserves the edges of the graphs, with
respect to their presence, direction, and labels. We use an indicator
function

I ({v, w}) =

{

1, if {v, w} ∈ R,
0, otherwise (6.15)

and the abbreviations

i = I ({v, v′}) · I ({w, w′})
j = I ({v, w′}) · I ({w, v′})
a = ρE (fE (〈v, w〉) , fE (〈v′, w′〉))
b = ρE (fE (〈v, w〉) , fE (〈w′, v′〉))

(6.16)

to define a similarity measure in [0, 1]:

ρR
3 (R, P) =

1

2 |F | |EP |

∑

〈v,w〉∈F

∑

〈v′,w′〉∈EP

(i · a + β · j · b) (6.17)

where β ∈ [0, 1] is a parameter that allows rewarding for the presence
of an otherwise appropriate but reverse-direction edge; we use β = 0.5.

In light of the above measure and those of Table 6.4, in order to evalu-
ate the similarity of two graphs GS and P , we would need to find a binary
relation of the vertex sets that simultaneously optimizes the above criteria.
Note that any relation that preserves all edges in both directions defines a
graph isomorphism which suggests that instead of optimizing the relation,
constructing a relation that can be assumed to be approximately optimal is
a feasible approach to construct a similarity-evaluation subroutine that needs
to be invoked frequently during the subgraph scan.

We propose obtaining an approximate relation by iteratively constructing
a weighted bipartite graph B = (S ∪ VP , EB) and then pruning the edges
to improve the similarity rating. Such a construction should at least account
for edge-presence, edge and vertex labels, and degree differences in some
way. First we build an auxiliary bipartite graph using the edges as vertices:
the vertex set is F ∪ EP and an edge is placed between two vertices if the
corresponding edge labels have nonzero similarity, storing the similarity as
the weight of that edge. At this point also thresholding based on application-
specific a priori information could be done.

We then switch to using the intended vertex set S ∪ VP by splitting each
vertex of the auxiliary graph into the endpoints of the edge it represents. Each
edge of the auxiliary bipartite graph is multiplied into four edges: an edge
connecting {v, w} (v, w ∈ S) and {v′, w′} (v′, w′ ∈ VP) in the auxiliary
graph produces edges {v, v′}, {w, v′}, {v, w′}, and {w, w′}. Multiple oc-
currences of each vertex are merged into one, and the edge weights of the
resulting bipartite graph are multiplied by the vertex label similarity of the
endpoints, pruning out zero-weight edges.

CHAPTER 6. GRAPH DATA MINING 137

Next we compute for each vertex pair v ∈ S, w ∈ VP such that {v, w} is
included in the bipartite graph

1

|deg (v) − deg (w)| + 1
(6.18)

and multiply the weight of the corresponding edge by this number, thus
weakening the edges that connect vertices that have different degrees. Af-
ter the weight computations, we compute the minimum of the maximum
weights in the neighborhoods of the bipartite graph:

ξ = min
v∈S∪VP

{

max
w∈Γ(v)

{

ω ({v, w})
}

}

(6.19)

and prune out any edge with weight lower than ξ in order to limit the num-
ber of pairs in the resulting relation. The relation R is formed by the vertex
pairs that are connected by an edge in the remaining bipartite graph. The
procedure has polynomial worst-case complexity, albeit high. Considering
that the worst-case complexity for all known general algorithms are exponen-
tial (the naïve solution scales as a factorial of the graph orders), this is not a
bad complexity.

� �� �
� �� �

� �� �
� �� �

� �� �
� �� �

� �� �
� �� � � �� �

	 		 	

� �� �

� �� �

� �� �
� �� � � �� �

� �� �

� �

� �

��

��

��

� �

��

��

� �

��
��

� �

��

Figure 6.8: Spearman rank correlations among the difference measures pro-
posed in Table 6.4 and the similarity obtained from the construction of a
weighted bipartite graph. Red corresponds to one, blue to minus one, and
lighter colors to values gradually from one to zero (shades of red for positive
correlations, shades of blue for negative correlations). The cells correspond-
ing to negative correlations are striped diagonally. Note that as the difference
measures assign low values to similar graphs, a negative correlation between
the first four and the last three implies agreement.

We generated a set of 100 small uniform random graphs of order n ∈
[5, 10] and size m ∈ [2n, n(n − 1)] using the Gn,m model, and then added
labels L of length |L| ∈ [3, 6] for each vertex and edge using an alphabet
Σ = {a, b, c} such that each symbol in Σ was equally likely to appear at each
position of the label string. For label similarities, we used the normalized
edit distance

distnorm
edit (L1,L2) =

distedit (L1,L2)

max{|L1| , |L2|}
(6.20)

where distedit (L1,L2) is the minimum number of insertions, deletions, and
replacements required to transform L1 into L2 (computable by a standard

138 CHAPTER 6. GRAPH DATA MINING

dynamic-programming algorithm [142]). We then computed the similari-
ties using all four difference measures of Table 6.4 and the bipartite-graph
method proposed; Table 6.8 shows the rank correlations of the similarity fac-
tors together with the similarity value obtained by the bipartite construction;
Pearson correlations for the values themselves were practically identical in
visualization, although small numerical differences are present.

The relation-derived measure � � correlates with the four difference mea-
sures negatively as desirable, but the three relation-derived measures are not
all positively correlated themselves; although the first and the second are
correlated, their correlations with the other measures differ. This gives us
a reason to believe that none of the relation-dependent measures alone will
suffice to characterize graph similarity, as they cannot be explained by each
other. We experimented further with a combined measure

ρR (R, P) = ρR
1 (R, P) ·

ρR
2 (R, P) + ρR

3 (R, P)

2
(6.21)

using the above construction for the relation R given P and GS over the set
of 100 random graphs to see which pairs of graphs it points out as similar and
which as dissimilar. Using a simple product of the three terms punishes too
severely graphs that have high similarity over vertex labels but low over edge
labels and vice versa, and hence we use their sum instead of allowing either
one to “pull down” the total similarity.

Some of these pairs are listed in Table 6.5. For each of the pairs shown,
we ignored the labels and computed the edit distance using the set of all pos-
sible adjacency matrices and having operation cost one for edge-deletions
and removals, first embedding both of the graphs to the order of the larger
one. Only nine of the twenty edit-distance computations finished in less
than a few hours; the rest were allowed to run for several hours (some well
over a month) and then terminated, recording the current known minimum
distance, which serves as an upper bound to the edit distance. The largest
graphs take the longest to compute, and the bound improves as the compu-
tation proceed, and hence we can assume that the bounds obtained are the
crudest for the pair where at least one of the instances is of order ten.

It is easy to see from Table 6.5 that the measure of Equation 6.21 gives
high similarity to graphs of similar order and size, without putting too much
emphasis on the similarity, as it assigns highest similarities to pairs where
structural and labeling similarities go beyond such simple means.

Similarity of the edge structure, as captured by the heavy-computation
edit distance, is well-preserved in the computationally lighter measure: in
general, the graphs of low similarity have high edit distance (average bound
11.2) and those of high similarity have low edit distance (average bound 5.9),
although a few exceptions are included. The relatively high bounds on the
last two pairs can be explained by the order of the graphs: the computation
has not obtained a tight bound before being cut off. Such edit distances pro-
vide a more established but computationally heavily obtained information
on graph similarity for directed graphs.

The two low-similarity instances with low edit distance have differing edge
labelings, the pair (13, 51) only has �� ≈ 0.01 and the pair (15, 39) ≈ 0.02.
The desired effect is observed in the experiment: the differences in vertex

CHAPTER 6. GRAPH DATA MINING 139

Table 6.5: A few pairs of graphs that obtained the lowest or highest similarities
by Equation 6.21; the order and size of the graphs and the unlabeled edit
distance distedit

(

GS, P
)

are shown (in the last column, denoted by d) for
each pair. The identifiers of the graphs in the test set of 100 graphs are shown
in the first two columns.

GS P ρR |S| |F | |VP | |EP | d

13 51 0.0774 7 14 5 10 5
47 87 0.1089 5 10 10 21 ≤ 12
18 44 0.1090 5 10 10 21 ≤ 14
17 77 0.1120 5 10 9 18 ≤ 10
44 47 0.1178 10 21 5 10 ≤ 15
18 56 0.1209 5 10 10 22 ≤ 16
15 39 0.1270 7 14 6 12 4
2 17 0.1292 10 21 5 10 ≤ 14

26 47 0.1301 10 20 5 10 ≤ 14
17 93 0.1305 5 10 10 20 ≤ 13

8 61 0.4973 7 14 8 16 5
75 81 0.4997 9 18 8 16 ≤ 8
11 38 0.5004 6 12 7 14 5
16 95 0.5031 6 12 5 10 3
50 60 0.5063 8 16 7 14 4
30 46 0.5070 6 12 8 16 5
14 81 0.5170 7 14 8 16 5
67 78 0.5538 7 14 8 16 5
22 98 0.5665 10 20 10 22 ≤ 8
31 72 0.5696 10 22 10 21 ≤ 11

or edge labels bring down the similarity value of a structurally close pair,
whereas agreement in labels in the structural parts that do overlap increases
the similarity. Hence we believe that an approach based on computing a
relation between the vertex sets of two graphs considering vertex and edge
similarities is a promising way to evaluate similarity of labeled directed graphs
in polynomial time.

140 CHAPTER 6. GRAPH DATA MINING

7 CONCLUSIONS

We opened the thesis by explaining the structure and motivation of the work
in Chapter 1, also explaining the collaborations and contributions. In Chap-
ter 2 we summarized recent advances on natural networks, through the con-
cept of nonuniform networks. We reviewed essential properties and analyt-
ical models of such networks and discussed the implications that structural
properties of graph instances have for the design on graph algorithms. For
a more concrete view on the topic at hand, we studied as examples a data
set on graph coloring algorithms and a graph representing the words of the
English language called WordNet.

After establishing the structural complexity inherent in natural networks,
we began the development of algorithms for studying and handling such
complex networks, accompanied by reviews of existing methods. First in
Chapter 3 we studied graph sampling, proposing a generalizable Markov-
chain combination for uniform sampling.

This was followed by a broad discussion on graph clustering in Chapter 4,
including proposals for local methods that efficiently locate the clusters of
given seed vertices in large nonuniform networks. The applications explored
in the chapter include ad hoc networks, storing massive graphs, and evalua-
tion of graph generators.

In Chapter 5 we addressed problems related to search and spanning tree
construction, with emphasis on constructing spanning trees for Euclidean-
plane communication networks that are not too far from minimizing the dis-
tances of communicating nodes but that also take into account the number
of hops each communication packet must traverse. We also discussed the
effect of graph structure on search strategies and random walks, studying the
effect of storing limited-capacity lookahead buffers in a network.

In the rest of the thesis we concentrated on mining subgraphs that are sim-
ilar to a given pattern in Chapter 6. We first proposed a method of estimating
the similarity of undirected reflexive graphs, and then studied similarity mea-
sures for labeled directed graphs.

For further work, of special interest are extensions to directed and weighted
graphs on all of the topics studied in this work. Applying the presented
methods on large real-world problem instances would give more insight on
their flexibility and provide valuable feedback on how to improve the effi-
ciency of the algorithms as well as on the structural properties present in the
application-specific data.

In the area of sampling, we hope to study applications of sampling for
property-discovery and network classification. We would like to work with
practical applications of local clustering to gain insight on how the appli-
cation area affects the choice of the fitness function. Also energy-efficient
routing in mobile radio networks closer to the grass-level with knowledge of
the physical capabilities of the nodes and the environment in which the net-
work is to operate and under what conditions is a motivating area of future
investigation. We are also interested in implementing information retrieval
systems that use the clustering and pattern-matching methods to serve the
data mining needs of people with little or no expertise in computer science.

CHAPTER 7. CONCLUSIONS 141

BIBLIOGRAPHY

[1] Emile Aarts and Jan Karel Lenstra, editors. Local Search in Combina-
torial Optimization. John Wiley & Sons, Inc., Chichester, UK, 1997.

[2] Alf-Christian Achilles. The collection of computer science bibliogra-
phies. At ���� ���������� ���� ���� ���

�� �� ���������
�
, accessed

Dec. 2, 2002.

[3] Dimitris Achlioptas, Aaron Clauset, David Kempe, and Cristopher
Moore. On the bias of traceroute sampling (or: Why almost every net-
work looks like it has a power law). In Harold N. Gabow and Ronald
Fagin, editors, Proceedings of the Thirty-seventh Annual ACM Sym-
posium on Theory of Computing (STOC), pages 694–703, New York,
NY, USA, 2005. ACM Press.

[4] Lada A. Adamic. The small world web. In S. Abiteboul and A.-M.
Vercoustre, editors, Proceedings of ECDL’99, volume 1696 of Lecture
Notes in Computer Science, pages 443–452, Berlin, Germany, 1999.
Springer-Verlag GmbH.

[5] Lada A. Adamic, Rajan M. Lukose, Amit R. Puniyani, and Bernardo A.
Huberman. Search in power-law networks. Physical Review E,
64(4):046135, October 2001.

[6] Pankaj K. Agarwal and Cecilia M. Procopiuc. Exact and approxi-
mation algorithms for clustering. In Proceedings of the Ninth An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages 658–667,
Philadelphia, PA, USA, 1998. Society for Industrial and Applied Math-
ematics.

[7] Rakesh Agrawal and H. V. Jagadish. Algorithms for searching mas-
sive graphs. IEEE Transactions on Knowledge and Data Engineering,
6(2):225–238, April 1994.

[8] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal
Cayirci. A survey on sensor networks. IEEE Communication Maga-
zine, 40(8):102–114, 2002.

[9] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal
Cayirci. Wireless sensor networks: a survey. Computer Networks,
38:393–422, 2002.

[10] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Diameter
of the World Wide Web. Nature, 401:130–131, September 1999.

[11] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Error and at-
tack tolerance of complex networks. Nature, 406:378–382, July 2000.

[12] David J. Aldous and James Allen Fill. Reversible Markov chains
and random walks on graphs, Book in preparation. Some chapters
are available at

���� ������ ����� ��������� ����
�� ��� �

������ ��
����� ��� ���
 �.

142 BIBLIOGRAPHY

[13] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey
of peer-to-peer content distribution technologies. ACM Computing
Surveys, 36(4):335–371, December 2004.

[14] Fred S. Annexstein, Kenneth A. Berman, and Mijhalo A. Jovanovic.
Broadcasting in unstructured peer-to-peer overlay networks. Theoreti-
cal Computer Science, 355(1):25–36, April 2006.

[15] S. V. Annibaldi and K. I. Hopcraft. Random walks with power-law
fluctuations in the number of steps. Journal of Physics A, 35(41):8635–
8645, October 2002.

[16] Gheorghe Antonoiu and Pradip K. Srimani. Distributed self-
stabilizing algorithm for minimum spanning tree construction. In
Proceedings of the Third International Euro-Par Conference on Paral-
lel Processing, volume 1300 of Lecture Notes in Computer Science,
pages 480–487, London, UK, 1997. Springer-Verlag GmbH.

[17] Alex Arenas, Antonio Cabrales, Albert Díaz-Guilera, Roger��������
and Fernando Vega-Redondo. Search and congestion in complex net-
works. In Romualdo Pastor-Satorras, Miguel Rubi, and Albert Diaz-
Guilera, editors, Statistical Mechanics of Complex Networks, volume
625 of Lecture Notes in Physics, pages 175–194, Berlin, Germany,
2003. Springer-Verlag GmbH.

[18] Franz Aurenhammer. Voronoi diagrams – a survey of a fundamental
geometric data structure. ACM Computing Surveys, 23(3):345–405,
1991.

[19] Baruch Awerbuch. Optimal distributed algorithms for minimum
weight spanning tree, counting, leader election and related problems
(detailed summary). In Proceedings of the Nineteenth Annual ACM
Symposium on Theory of Computing (STOC), pages 230–240, New
York, NY, USA, 1987. ACM Press.

[20] Ricardo Baeza-Yates, Barbara J. Poblete, and Felipe Saint-Jean. Evolu-
ción de la web chilena 2001–2002. Technical report, Centro de Inves-
tigación de la Web, Deptartamento de Ciencias de la Computación,
Universidad de Chile, Santiago, Chile, January 2003.

[21] Pierre Baldi, Paolo Frasconi, and Padhraic Smyth. Modeling the Inter-
net and the Web: Probabilistic Methods and Algorithms. John Wiley
& Sons, Inc., Chichester, UK, 2003.

[22] Farnoush Banaei-Kashani and Cyrus Shahabi. Criticality-based anal-
ysis and design of unstructured peer-to-peer networks as “complex sys-
tems”. In Third International Workshop on Global and Peer-to-Peer
Computing, 2003. CCGRID.

[23] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation cluster-
ing. In Proceedings of the Fourty-third Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 238–247, Washing-
ton, DC, USA, 2002. IEEE Computer Society Press.

BIBLIOGRAPHY 143

[24] Ziv Bar-Yossef, S. Ravi Kumar, and D. Sivakumar. Sampling algo-
rithms: lower bounds and applications. In Proceedings of the Thirty-
third Annual ACM Symposium on Theory of Computing (STOC),
pages 266–275, New York, NY, USA, 2001. ACM Press.

[25] Albert-László Barabási and Réka Albert. Emergence of scaling in ran-
dom networks. Science, 286:509–512, October 1999.

[26] Albert-László Barabási, Réka Albert, and Hawoong Jeong. Mean-field
theory for scale-free random networks. Physica A, 272:173–187, 1999.

[27] Albert-László Barabási, Erzsébet Ravasz, and Zoltán N. Oltvai. Hi-
erarchical organization of modularity in complex networks. In Ro-
mualdo Pastor-Satorras, Miguel Rubi, and Albert Diaz-Guilera, edi-
tors, Statistical Mechanics of Complex Networks, volume 625 of Lec-
ture Notes in Physics, pages 46–65, Berlin, Germany, 2003. Springer-
Verlag GmbH.

[28] Albert-László Barabási, Erzsébet Ravasz, and Tamás Vicsek. Deter-
ministic scale-free networks. Physica A, 299(3–4):559–564, October
2001.

[29] Wolfgang Barthel, Alexander K. Hartmann, and Martin Weigt. Phase
transition and finite-size scaling in the vertex-cover problem. Com-
puter Physics Communications, 169(1–3):234–237, July 2005.

[30] Ehrhard Behrends. Introduction to Markov Chains, with Special Em-
phasis on Rapid Mixing. Vieweg & Sohn, Braunschweig/Wiesbaden,
Germany, 2000.

[31] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.
Scientific American, pages 35–43, May 2001.

[32] Krishna Bharat and Andrei Z. Broder. A technique for measuring the
relative size and overlap of public Web search engines. In Proceedings
of Seventh International World-Wide Web Conference, pages 379–
388, Amsterdam, The Neatherlands, 1998. Elsevier Science Publish-
ers.

[33] Daniel K. Blandford, Guy E. Blellch, and Ian A. Kash. An exper-
imental analysis of a compact graph representation. In Lars Arge,
Giuseppe F. Italiano, and Robert Sedgewick, editors, Proceedings
of the Sixth Workshop on Algorithm Engineering and Experiments
and the First Workshop on Analytic Algorithmics and Combinatorics,
pages 49–61, Philadelphia, PA, USA, 2004. Society for Industrial and
Applied Mathematics.

[34] Daniel K. Blandford, Guy E. Blelloch, and Ian A. Kash. Compact rep-
resentations of separable graphs. In Proceedings of the Fourteenth An-
nual ACM–SIAM Symposium on Discrete Algorithms (SODA), pages
579–688, New York, NY, USA, 2003. ACM Press.

144 BIBLIOGRAPHY

[35] Vincent D. Blondel, Anahí Gajardo, Maureen Heymans, Pierre
Senellart, and Paul Van Dooren. A measure of similarity between
graph vertices. with applications to synonym extraction and web
searching. SIAM Review, 46(4):647–666, 2004.

[36] Vincent D. Blondel and Paul Van Dooren. Similarity matrices for
pairs of graphs. In Jos C. M. Baeten, Jan Karel Lenstra, Joachim Par-
row, and Gerhard J. Woeginger, editors, Automata, Languages and
Programming (The Thirtieth International Colloquium, ICALP), vol-
ume 2719 of Lecture Notes in Computer Science, pages 739–750,
Heidelberg, Germany, 2003. Springer-Verlag GmbH.

[37] Marián Boguñá and Romualdo Pastor-Satorras. Class of corre-
lated random networks with hidden variables. Physical Review E,
68(3):036112, September 2003.

[38] Marián Boguñá, Romualdo Pastor-Satorras, and Alessandro Vespig-
nani. Epidemic spreading in complex networks with degree corre-
lations. In Romualdo Pastor-Satorras, Miguel Rubi, and Albert Diaz-
Guilera, editors, Statistical Mechanics of Complex Networks, volume
625 of Lecture Notes in Physics, pages 127–147, Berlin, Germany,
2003. Springer-Verlag GmbH.

[39] Béla Bollobás. Random Graphs. Number 73 in Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge,
UK, second edition, 2001.

[40] Béla Bollobás and Oliver Riordan. Robustness and vulnerability of
scale-free random graphs. Internet Mathematics, 1(1):1–35, 2004.

[41] Béla Bollobás and Oliver M. Riordan. The diameter of a scale-free
random graph. Combinatorica, 24(1):5–34, January 2004.

[42] James G. Booth, George Casella, and James P. Hobert. Clustering
using objective functions and stochastic search, August 2004. Sub-
mitted to Biometrika, available at

���� ������ �� �	� �	������ ����
�

��
������
���
������ ������� ���
 �.

[43] Stephen P. Boyd, Persi Diaconis, and Lin Xiao. Fastest mixing Markov
chain on a graph. SIAM Review, 46(4):667–689, December 2004.

[44] P. Bradley, U. Fayyad, and C. Reina. Scaling clustering algorithms
to large databases. In Proceedings of the Fourth ACM International
Conference on Knowledge Discovery and Data Mining, pages 9–15,
New York, NY, USA, 1998. ACM.

[45] Ulrik Brandes, Marco Gaertler, and Dorothea Wagner. Experiments
on graph clustering algorithms. In Giuseppe Di Battista and Uri
Zwick, editors, Proceedings of the Eleventh European Symposium
on Algorithms, volume 2832 of Lecture Notes in Computer Science,
pages 568–579, Heidelberg, Germany, September 2003. Springer-
Verlag GmbH.

BIBLIOGRAPHY 145

[46] Dan Brickley and R. D. Guha. RDF vocabulary description language
1.0: RDF schema. Technical Report W3C Recommendation 10,
The World-Wide Web Consortium,

���� ������ ��� ����
�
, February

2004.
���� ������ ��� ����

����
��

� ��	��
�
�
.

[47] Sergey Brin and Lawrence Page. The anatomy of a large-scale hyper-
textual Web search engine. Computer Networks and ISDN Systems,
30(1–7):107–117, 1998.

[48] Andrei Z. Broder, S. Ravi Kumar, Farzin Maghoul, Prabhakar Ragha-
van, Sridhar Rajagopalan, Raymie Stata, Andrew Tomkins, and Janet
Wiener. Graph structure in the web. Computer Networks, 33(1–
6):309–320, June 2000.

[49] Steve P. Brooks, Petros Dellaportas, and Gareth O. Roberts. An
approach to diagnosing total variation convergence of mCMC algo-
rithms. Journal of Computational and Graphical Statistics, 6:251–
265, 1997.

[50] Thang Nguyen Bui, F. Thomson Leighton, Soma Chaudhuri, and
Michael Sipser. Graph bisection algorithms with good average case
behavior. Combinatorica, 7(2):171–191, 1987.

[51] Horst Bunke. Error correcting graph matching: on the influence of
the underlying cost function. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 21(9):917–922, 1999.

[52] Horst Bunke. Developments in graph matching. In Proceedings of the
Fifteenth International Conference on Pattern Recognition, volume 2,
pages 117–124, Washington, DC, USA, 2000. IEEE Computer Society
Press.

[53] Horst Bunke, Pasquale Foggia, C. Guidobaldi, Carlo Sansone, and
Mario Vento. A comparison of algorithms for maximum common sub-
graph on randomly connected graphs. In Terry Caelli, Adnan Amin,
Robert P. W. Duin, Mohamed S. Kamel, and Dick de Ridder, editors,
Structural, Syntactic, and Statistical Pattern Recognition in Proceed-
ings of Joint IAPR International Workshops SSPR 2002 and SPR 2002,
volume 2396 of Lecture Notes in Computer Science, pages 123–132,
New York, NY, USA, 2002. Springer-Verlag GmbH.

[54] Horst Bunke, Xiaoyi Jiang, and Abraham Kandel. On the minimum
common supergraph of two graphs. Computing, 65(1):13–25, July
2000.

[55] Horst Bunke and Kim Shearer. A graph distance metric based on
the maximal common subgraph. Pattern Recognition Letters, 19(3–
4):255–259, May 1998.

[56] Diego Calvanese, Giuseppe de Giacomo, Maurizio Lenzerini, and
Moshe Y. Vardi. Answering regular path queries using views. In

146 BIBLIOGRAPHY

Proceedings of the Sixteenth International Conference on Data En-
gineering (ICDE’00), pages 389–398, Washington, DC, USA, 2000.
IEEE Computer Society Press.

[57] Tracy Camp, Jeff Boleng, and Vanessa A. Davies. A survey of mobility
models for ad hoc network research. Wireless Communication and
Mobile Computing, 2(5):483–502, September 2002.

[58] George Casella, Michael Lavine, and Christian P. Robert. Explaining
the Gibbs sampler. The American Statistician, 55(4):299–305, 2001.

[59] Deepayan Chakrabarti, Yiping Zhan, Daniel Blandford, Christos
Faloutsos, and Guy Blelloch. Netmine: New mining tools for large
graphs. In Proceedings of the SIAM International Conference on Data
Mining 2004 Workshop on Link Analysis, Counter-terrorism and Pri-
vacy, 2004.

[60] Anantha P. Chandrakasan, Rex K. Min, Manish Bhardwaj, Seong-
Hwan Cho, and Alice Wang. Power aware wireless microsensor sys-
tems. In Proceedings of the European Conference on Solid-State Cir-
cuit Design (ESSCIRC 2002), pages 47–54, New York, NY, USA, 2002.
IEEE.

[61] Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Mot-
wani. Incremental clustering and dynamic information retrieval. In
Proceedings of the Twenty-ninth Annual ACM Symposium on Theory
of Computing (STOC), pages 626–635, New York, NY, USA, 1997.
ACM Press.

[62] David Cheng, Ravi Kannan, Santosh Vempala, and Grant Wang. On
a recursive spectral algorithm for clustering from pairwise similari-
ties. Technical Report MIT-LCS-TR-906, Laboratory of Computer
Science, Massachusetts Institute of Technology, Boston, MA, USA,
2003.

[63] Marco Chiarandini. Stochastic local search methods for highly con-
strained combinatorial optimisation problems: Graph coloring, gener-
alisations, and applications. PhD thesis, Technische Universität Darm-
stadt, Darmstadt, Germany, In preparation.

[64] Marco Chiarandini and Thomas Stützle. An application of iterated
local search to graph coloring. In D. S. Johnson, A. Mehrotra, and
M. Trick, editors, Proceedings of the Computational Symposium on
Graph Coloring and its Generalizations, pages 112–125, September
2002.

[65] Siddhartha Chib and Ivan Jeliazkov. Accept-reject Metropolis-
Hastings sampling and marginal likelihood estimation. Statistica
Neerlandica, 59(1):30–44, 2005.

[66] Paul-Alexandru Chirita, Wolfgang Nejdl, and Oana Scurtu. Know-
ing where to search: Personalized search strategies for peers in P2P

BIBLIOGRAPHY 147

networks. In Jamie Callan, Norbert Fuhr, and Wolfgang Nejdl, edi-
tors, Proceedings of the SIGIR Workshop on Peer-to-Peer Information
Retrieval, The Twenty-seventh Annual International ACM SIGIR Con-
ference. Electronic publication, July 2004.

[67] Tham Yoke Chun. World Wide Web robots: an overview. Online
Information Review, 23(3):135–142, 1999.

[68] Fan R. K. Chung. Spectral Graph Theory. American Mathematical
Society, Providence, RI, USA, 1997.

[69] Fan R. K. Chung and R. B. Ellis. A chip-firing game and Dirichlet
eigenvalues. Discrete Mathematics, 257:341–355, 2002.

[70] Fan R. K. Chung and Linyuan Lu. The average distances in a random
graph with given expected degrees. Internet Mathematics, 1(1):91–
114, 2005.

[71] Fan R. K. Chung, Linyuan Lu, and Van Vu. The spectra of random
graphs with given expected degrees. Internet Mathematics, 1(3):257–
275, 2004.

[72] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong.
Freenet: A distributed anonymous information storage and retrieval
system. In Designing Privacy Enhancing Technologies: Proceedings
of the International Workshop on Design Issues in Anonymity and Un-
observability 2000, volume 2009 of Lecture Notes in Computer Sci-
ence, pages 46–66. Springer-Verlag GmbH, 2001.

[73] I. Vaughan L. Clarkson, Edwin D. El-Mahassni, and Stephen D.
Howard. Sensor scheduling in electronic support using Markov
chains. IEE Proceedings: Radar, Sonar, and Navigation, June 2005.
Submitted for publication.

[74] Kenneth L. Clarkson. Further applications of random sampling to
computational geometry. In Proceedings of the Eighteenth Annual
ACM symposium on Theory of Computing (STOC), pages 414–423,
New York, NY, USA, 1986. ACM Press.

[75] Kenneth L. Clarkson. Applications of random sampling in computa-
tional geometry, II. In Proceedings of the Fourth Annual Symposium
on Computational Geometry, pages 1–11, New York, NY, USA, 1998.
ACM Press.

[76] Thomas H. Clausen and Philippe Jacquet. Optimized link state rout-
ing protocol (OLSR). Technical Report RFC 3626, Internet Engineer-
ing Task Force, Reston, VA, USA, 2003.

[77] Aaron Clauset and Cristopher Moore. Accuracy and scaling phenom-
ena in Internet mapping. Physical Review Letters, 94(1):018701, Jan-
uary 2005.

148 BIBLIOGRAPHY

[78] Aaron Clauset, Mark E. J. Newman, and Cristopher Moore. Find-
ing community structure in very large networks. Physical Review E,
70(6):066111, 2004.

[79] Reuven Cohen, Shlomo Havlin, and Daniel ben Avraham. Efficient
immunization strategies for computer networks and populations. Phys-
ical Review Letters, 91(24):247901, December 2003.

[80] Sara Cohen and Yehoshua Sagiv. Generating all maximal in-
duced subgraphs for hereditary, connected-hereditary and rooted-
hereditary properties. Technical Report cs.DS/0410039, arXiv.org e-
Print archive,

���� ������ �� ����
�
, 2004.

[81] Brian F. Cooper. Quickly routing searches without having to move
content. In Proceedings of the Fourth International Workshop on
Peer-to-Peer Systems (IPTPS), 2005.

[82] Colin Cooper and Alan Frieze. Crawling on simple models of web
graphs. Internet Mathematics, 1(1):57–90, 2004.

[83] Colin Cooper, Alan Frieze, and Juan Vera. Random deletion in a
scale-free random graph process. Internet Mathematics, 1(4):463–483,
2004.

[84] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Francesco
Tortorella. Graph matching: a fast algorithm and its evaluation. In
Anil K. Jain, Svetha Venkatesh, and Brian C. Lovell, editors, Proceed-
ings of the Fourteenth International Conference on Pattern Recog-
nition, volume 2, pages 1582–1584, Brisbane, CA, USA, 1998. IEEE
Computer Society Press.

[85] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento.
Subgraph transformations for the inexact matching of attributed rela-
tional graphs. Computing, 12:43–52, 1998.

[86] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento.
An improved algorithm for matching large graphs. In Proceedings of
the Third IAPR TC-15 International Workshop on Graph-based Rep-
resentation in Pattern Recognition, pages 149–159, 2001.

[87] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. McGraw-Hill Book Co.,
Boston, MA, USA, second edition, 2001.

[88] M. Scott Corson and Anthony Ephremides. A distributed routing al-
gorithm for mobile wireless networks. Wireless Networks, 1(1):61–81,
February 1995.

[89] G. A. Croes. A method for solving traveling salesman problems. Op-
erations Research, 6:791–812, 1958.

BIBLIOGRAPHY 149

[90] Luciano da F. Costa, Francisco A. Rodrigues, Gonzalo Travieso, and
P. R. Villas Boas. Characterization of complex networks: A survey of
measurements. Technical Report cond-mat/0505185, arXiv.org e-Print
archive,

���� ������ �� ����
�
, 2005.

[91] Elias Dahlhaus, Peter Dankelmann, Wayne Goddard, and Henda C.
Swart. MAD trees and distance-hereditary graphs. Discrete Applied
Mathematics, 131(1):151–167, September 2003.

[92] Luca Dall’Asta, Ignacio Alvarez-Hamelin, Alain Barrat, Alexei
Vázquez, and Alessandro Vespignani. Exploring networks with
traceroute-like probes: Theory and simulations. Theoretical Com-
puter Science, 355(1):6–24, April 2006.

[93] David L. Davies and Donald W. Bouldin. A cluster separation mea-
sure. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 1(4):224–227, 1979.

[94] Alessandro P. S. de Moura, Adilson E. Motter, and Celso Grebogi.
Searching in small-world networks. Physical Review E, 68(3):036106,
September 2003.

[95] Narsingh Deo and Pankaj Gupta. Sampling the Web graph with ran-
dom walks. Congressus Numerantium, 149:65–73, December 2001.

[96] Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in
Mathematics. Springer-Verlag GmbH, New York, NY, USA, third edi-
tion, July 2005.

[97] Edsger W. Dijkstra. Self stabilizing systems in spite of distributed con-
trol. Communications of the Association of the Computing Machin-
ery, 17:643–644, 1974.

[98] Stephen Dill, S. Ravi Kumar, Kevin S. McCurley, Sridhar Ra-
jagopalan, D. Sivakumar, and Andrew Tomkins. Self-similarity in the
web. ACM Transactions on Internet Technology, 2(3):205–223, Au-
gust 2002.

[99] Chris Ding and Xiaofeng He. Linearized cluster assignment via spec-
tral ordering. In Proceedings of the Twenty-First International Confer-
ence on Machine Learning, pages 30–37, New York, NY, USA, 2004.
ACM Press.

[100] Shlomi Dolev. Self-Stabilization. The MIT Press, Cambridge, MA,
USA, 2000.

[101] Sergey N. Dorogovtsev, A. V. Goltsev, and José Ferreira F. Mendes.
Pseudofractal scale-free web. Physical Review E, 65(6):066122, June
2002.

[102] Sergey N. Dorogovtsev and José Ferreira F. Mendes. Evolution of
networks. Advances in Physics, 51(4):1079–1187, 2002.

150 BIBLIOGRAPHY

[103] Sergey N. Dorogovtsev and José Ferreira F. Mendes. Evolution of
Networks: From Biological Nets to the Internet and WWW. Oxford
University Press, Oxford, UK, January 2003.

[104] Peter G. Doyle and J. Laurie Snell. Random Walks and Electric Net-
works. Mathematical Association of America, Washington, DC, USA,
1984.

[105] Philippe Duchon, Nicolas Hanusse, Emmanuelle Lebhar, and Nico-
las Schabanel. Could any graph be turned into a small-world? Theo-
retical Computer Science, 355(1):96–103, April 2006.

[106] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classifi-
cation. John Wiley & Sons, Inc., New York, NY, USA, second edition,
2001.

[107] Michael Elkin. A faster distributed protocol for constructing a min-
imum spanning tree. In J. Ian Munro, editor, Proceedings of the
Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), Philadelphia, PA, USA, 2004. Society for Industrial and Ap-
plied Mathematics.

[108] David Eppstein. Subgraph isomorphism in planar graphs and related
problems. Journal of Graph Algorithms and Applications, 3(3):1–27,
1999.

[109] Pál Erdős and Alfréd Rényi. On random graphs i. In Selected Papers of
Alfréd Rényi, volume 2, pages 308–315. Akadémiai Kiadó, Budapest,
Hungary, 1976. First publication in Publ. Math. Debrecen 1959.

[110] Pál Erdős and Alfréd Rényi. On the evolution of random graphs. In
Selected Papers of Alfréd Rényi, volume 2, pages 482–525. Akadémiai
Kiadó, Budapest, Hungary, 1976. First publication in MTA Mat. Kut.
Int. Közl. 1960.

[111] Deborah Estrin, Ramesh Govindan, John Heidemann, and Satish Ku-
mar. Next century challenges: Scalable coordination in sensor net-
works. In Harel Kodesh, Victor Bahl, Tomasz Imielinski, and Martha
Steenstrup, editors, MOBICOM’99: Proceedings of the Fifth Annual
ACM/IEEE International Conference on Mobile Computing and Net-
working, pages 263–270, New York, NY, USA, August 1999. ACM
Press.

[112] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On
power-law relationships of the Internet topology. In Proceedings of the
ACM SIGCOMM’99 Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication, pages 251–
262, New York, NY, USA, 1999. ACM Press.

[113] Michalis Faloutsos and Mart Molle. What features really make dis-
tributed minimum spanning tree algorithms efficient? In Interna-
tional Conference on Parallel and Distributed Systems, pages 106–
114, Washington, DC, USA, 1996. IEEE.

BIBLIOGRAPHY 151

[114] Laura Marie Feeney and Martin Nilsson. Investigating the energy
consumption of a wireless network interface in ad hoc networking en-
vironment. In Proceedings of the Twentieth Annual Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM),
pages 1548–1557, 2001.

[115] Mirtha-Lina Fernández and Gabriel Valiente. A graph distance mea-
sure combining maximum common subgraph and minimum com-
mon supergraph. Pattern Recognition Letters, 22(6–7):753–758, 2001.

[116] Ramon Ferrer i Cancho and Ricard V. Solé. Optimization in complex
networks. In Romualdo Pastor-Satorras, Miguel Rubi, and Albert Diaz-
Guilera, editors, Statistical Mechanics of Complex Networks, volume
625 of Lecture Notes in Physics, pages 114–126, Berlin, Germany,
2003. Springer-Verlag GmbH.

[117] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak
Mathematical Journal, 23:298–305, 1973.

[118] Miroslav Fiedler. A property of eigenvectors of nonnegative symmetric
matrices and its application to graph theory. Czechoslovak Mathemat-
ical Journal, 25:619–633, 1975.

[119] James Allen Fill. An interruptible algorithm for perfect sampling via
Markov chains. Annals of Applied Probability, 8:131–162, 1998.

[120] Gary William Flake, Steve Lawrence, and C. Lee Giles. Efficient
identification of Web communities. In Proceedings of the Sixth
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 150–160, New York, NY, USA, 2000. ACM
Press.

[121] Gary William Flake, Steve Lawrence, C. Lee Giles, and Frans M.
Coetzee. Self-organization and identification of Web communities.
IEEE Computer, 35(3):66–71, 2002.

[122] Pasquale Foggia, Carlo Sansone, and Mario Vento. A performance
comparison of five algorithms for graph isomorphism. In Proceed-
ings of the Third IAPR TC-15 International Workshop on Graph-based
Representation in Pattern Recognition, pages 188–199, 2001.

[123] Chris Fraley and Adrian E. Raftery. How many clusters? Which clus-
tering method? Answers via model-based cluster analysis. The Com-
puter Journal, 41(8):578–588, 1998.

[124] Jeremy Frank, Ian P. Gent, and Toby Walsh. Asymptotic and finite size
parameters for phase transitions: Hamiltonian circuit as a case study.
Information Processing Letters, 65(5), 1998.

[125] Jeremy Frank and Charles U. Martel. Phase transitions in the proper-
ties of random graphs. In Studying and Solving Really Hard Problems
Workshop, in association with the First International Conference on
Principles and Practice of Constraint Programming, 1995.

152 BIBLIOGRAPHY

[126] Felix C. Gaertner. A survey of self-stabilizing spanning-tree con-
struction algorithms. Technical Report 200338, School of Computer
and Communication Sciences, École Polytechnique Fédérale de Lau-
sanne, Lausanne, Switzerland, June 2003.

[127] Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A dis-
tributed algorithm for minimum-weight spanning trees. ACM Trans-
actions Programming Languages and Systems, 5:66–77, January 1983.

[128] Niloy Ganguly, Geo Canright, and Andreas Deutsch. Design of an ef-
ficient search algorithm for P2P networks using concepts from natural
immune systems. In Özalp Babaoglu, Márk Jelasity, Alberto Mon-
tresor, Christof Fetzer, Stefano Leonardi, Aad P. A. van Moorsel, and
Maarten van Steen, editors, Self-star Properties in Complex Informa-
tion Systems, Conceptual and Practical Foundations, volume 3460
of Lecture Notes in Computer Science, pages 358–372, Berlin, Ger-
many, 2005. Springer-Verlag GmbH.

[129] Juan A. Garay, Shay Kutten, and David Peleg. A sublinear time dis-
tributed algorithm for minimum-weight spanning trees. SIAM Journal
on Computing, 27(1):302–316, February 1998.

[130] Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity A Guide to the Theory of NP-Completeness. W. H. Freeman, San
Francisco, CA, USA, 1979.

[131] Bernd Gärtner and Emo Welzl. Random sampling in geometric op-
timization: new insights and applications. In Proceedings of the Six-
teenth Annual Symposium on Computational Geometry, pages 91–
99, New York, NY, USA, 2000. ACM Press.

[132] Ian P. Gent, Holger H. Hoos, Patrick Prosser, and Toby Walsh. Morph-
ing: Combining structure and randomness. In AAAI/IAAI 99: Proceed-
ings of the Sixteenth National Conference on Artificial Intelligence
and Eleventh Conference on on Innovative Applications of Artificial
Intelligence, pages 654–660, Menlo Park, CA, USA, 1999. AAAI Press/
The MIT Press.

[133] E. N. Gilbert. Random graphs. Annals of Mathematical Statistics,
30(4):1141–1144, December 1959.

[134] Christos Gkantsidis, Milena Mihail, and Amin Saberi. Hybrid search
schemes for unstructured peer-to-peer networks. In Proceedings of the
Twenty-fourth Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), volume 3, pages 1526–1537,
Los Alamitos, CA, USA, 2005. IEEE Computer Society Press.

[135] Christos Gkantsidis, Milena Mihail, and Ellen Zegura. Spectral analy-
sis of Internet topologies. In Proceedings of the Twenty-second Annual
Joint Conference of the IEEE Computer and Communications Soci-
eties (INFOCOM), pages 364–374, New York, NY, USA, 2003. IEEE.

BIBLIOGRAPHY 153

[136] Fred Glover. Tabu search — part I. ORSA Journal on Computing,
1(3):190–206, 1989.

[137] Kwang-Il Goh, B. Kahng, and D. Kim. Spectra and eigenvectors of
scale-free networks. Physical Review E, 64(5):051903, 2001.

[138] Geoffrey R. Grimmett and David R. Stirzaker. Probability and Ran-
dom Processes. Oxford University Press, Oxford, UK, third edition,
June 2001.

[139] Stephen Guattery and Gary L. Miller. On the quality of spectral sepa-
rators. SIAM Journal on Matrix Analysis and Applications, 19(3):701–
719, 1998.

[140] Sudipto Guha, Nina Mishra, Rajeev Motwani, and Liadan
O’Callaghan. Clustering data streams. In Proceedings of the
Fourty-first Annual Symposium on Foundations of Computer Science
(FOCS), pages 359–366, Los Alamitos, CA, USA, 2000. IEEE Com-
puter Society Press.

[141] Gaurav Gupta and Mohamed Younis. Performance evaluation of
load-balanced clustering in wireless sensor networks. In Proceedings
of Tenth International Conference on Telecommunications. IEEE,
February 2003.

[142] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Com-
puter Science and Computational Biology. Cambridge University
Press, Cambridge, UK, 1997.

[143] Jiawei Han and Micheline Kamber. Data Mining: Concepts and
Techniques. The Morgan Kaufmann Series in Data Management Sys-
tems. Morgan Kaufmann Publishers, 2000.

[144] J. A. Hartigan and M. A. Wong. Algorithm AS 136: A k-means cluster-
ing algorithm. Applied Statistics, 28:100–108, 1979.

[145] Erez Hartuv and Ron Shamir. A clustering algorithm based on graph
connectivity. Information Processing Letters, 76(4–6):175–181, De-
cember 2000.

[146] Refael Hassin and Arie Tamir. On the minimum diameter spanning
tree problem. Information Processing Letters, 53(2):109–111, 1995.

[147] Xiaofeng He, Hongyuan Zha, Chris H. Q. Ding, and Horst D. Simon.
Web document clustering using hyperlink structures. Computational
Statistics & Data Analysis, 41(1):19–45, 2002.

[148] Monika R. Henzinger. Algorithmic challenges in web search engines.
Internet Mathematics, 1(1):115–126, 2004.

[149] Monika R. Henzinger, Allan Heydon, Michael Mitzenmacher, and
Marc Najork. On near-uniform URL sampling. In Proceedings of the
Ninth International World-Wide Web Conference, pages 295–308. El-
sevier Science, 2000.

154 BIBLIOGRAPHY

[150] Carlos P. Herrero. Self-avoiding walks on scale-free networks. Physical
Review E, 71(1):016103, 2005.

[151] Dz̆ena Hidović and Marcello Pelillo. Metrics for attributed graphs
based on the maximal similarity common subgraph. International
Journal on Pattern Recognition and Artificial Intelligence, 18(3):299–
313, 2004.

[152] Adel Hlaoui and Shengrui Wang. A new algorithm for inexact graph
matching. In Proceedings of the Sixteenth International Conference
on Pattern Recognition, volume 4, pages 180–183, Washington, DC,
USA, 2002. IEEE Computer Society Press.

[153] Lawrence B. Holder, Diane J. Cook, and Surnjani Djoko. Substruc-
ture discovery in the SUBDUE system. In Usama M. Fayyad and Ra-
masamy Uthurusamy, editors, Knowledge Discovery in Databases: Pa-
pers from the 1994 AAAI Workshop, Seattle, Washington, July 1994,
pages 169–180, Menlo Park, CA, USA, 1994. AAAI Press.

[154] Petter Holme and Beom Jun Kim. Growing scale-free networks with
tunable clustering. Physical Review E, 65(2):026107, February 2002.

[155] Klaus Holzapfel, Sven Kosub, Moritz G. Maaß, and Hanjo Täubig.
The complexity of detecting fixed-density clusters. In R. Petreschi,
G. Persiano, and R. Silvestri, editors, Proceedings of the Fifth Italian
Conference on Algorithms and Complexity (CIAC’03), volume 2653
of Lecture Notes in Computer Science, pages 201–212, Berlin, Ger-
many, May 2003. Springer-Verlag GmbH.

[156] John E. Hopcroft, Omar Khan, Brian Kulis, and Bart Selman. Nat-
ural communities in large linked networks. In Proceedings of the
ninth ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 541–546, New York, NY, USA, 2003.
ACM.

[157] John E. Hopcroft and Robert Endre Tarjan. Algorithm 447: efficient
algorithms for graph manipulation. Communications of the Associa-
tion of the Computing Machinery, 16(6):372–378, June 1973.

[158] M. Impett, M. S. Corson, and V. Park. A receiver-oriented approach to
reliable broadcast ad hoc networks. In Proceedings of Wireless Com-
munications and Networking Conference (WCNC 2000), volume 1,
pages 117–122, September 2000.

[159] Internet Movie Databse Inc. The Internet movie database.
���� �

����� ��
�� �	�
 �.

[160] Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. An apriori-
based algorithm for mining frequent substructures from graph data.
In Proceedings of the Fourth European Conference on Principles
of Data Mining and Knowledge Discovery, volume 1910 of Lec-
ture Notes in Computer Science, pages 13–23, London, UK, 2000.
Springer-Verlag GmbH.

BIBLIOGRAPHY 155

[161] Anil K. Jain, M. Narasimha Murty, and Patrick J. Flynn. Data cluster-
ing: a review. ACM Computing Surveys, 31(3):264–323, September
1999.

[162] Vojtech Jarník. O jistem problemu minimalnim. Praca Moravske
Prirodovedecke Spolecnosti, 6:57–63, 1930.

[163] Glen Jeh and Jennifer Widom. SimRank: a measure of structural-
context similarity. In Proceedings of the Eighth ACM SIGKDD In-
ternational Conference, pages 538–543, New York, NY, USA, 2002.
ACM Press.

[164] Glen Jeh and Jennifer Widom. Mining the space of graph properties.
In Proceedings of the Tenth ACM SIGKDD International Conference,
pages 187–196, New York, NY, USA, 2004. ACM Press.

[165] Birgit Jenner, Johannes Köbler, Pierre McKenzie, and Jacobo Torán.
Completeness results for graph isomorphism. Journal of Computer
and System Sciences, 66(3):549–566, May 2003.

[166] Minseok Jeong and Bomson Lee. Comparison between path-loss pre-
diction models for wireless telecommunication system design. In Pro-
ceedings of the IEEE International Symposium of Antennas & Propa-
gation Society, volume 2, pages 186–189, New York, NY, USA, 2001.
IEEE.

[167] Mark Jerrum and Alistair Sinclair. The Markov chain Monte Carlo
method: An approach to approximate counting and integration.
In Dorit Hochbaum, editor, Approximations for NP-hard Problems,
chapter 12, pages 482–520. PWS Publishing, Boston, MA, USA, 1996.

[168] David Johnson, Anuj Mehrotra, and Michael Trick. COLOR02/03/04:
Graph coloring and its generalizations. At

���� ���
�� ����� �	
� �

���
���������, accessed May 11, 2005.

[169] David S. Johnson, Jan Karel Lenstra, and A. H. G. Rinnooy Kan. The
complexity of the network design problem. Networks, 8:279–285,
1978.

[170] Ellis J. L. Johnson, Anuj Mehrotra, and George L. Nemhauser. Min-
cut clustering. Mathematical Programming, 62(1):133–151, October
1993.

[171] Valen E. Johnson. Studying convergence of Markov Chain Monte
Carlo algorithms using coupled sample paths. Journal of the American
Statistical Association, 91(433):154–166, 1996.

[172] Christine E. Jones, Krishna M. Sivalingam, Prathima Agrawal, and
Jyh Cheng Chen. A survey of energy efficient network protocols for
wireless networks. Wireless Networks, 7(4):343–358, August 2001.

[173] Nabil Kahale. A semidefinite bound for mixing rates of Markov chains.
Random Structures and Algorithms, 11(4):299–313, 1998.

156 BIBLIOGRAPHY

[174] Farouk Kamoun and Leonard Kleinrock. Stochastic performance eval-
uation of hierarchical routing for large networks. Computer Networks,
3:337–353, November 1979.

[175] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings —
good, bad and spectral. Journal of the ACM, 51(3):497–515, 2004.

[176] Yaron Kanza, Werner Nutt, and Yehoshua Sagiv. Querying incom-
plete information in semistructured data. Journal of Computer and
System Sciences, 64(3):655–693, 2002.

[177] David R. Karger. Random sampling in cut, flow, and network design
problems. In Proceedings of the Twenty-sixth Annual ACM Sympo-
sium on Theory of Computing (STOC), pages 648–657, New York,
NY, USA, 1994. ACM Press.

[178] David R. Karger. Random Sampling in Graph Optimization Prob-
lems. PhD thesis, Stanford University, Stanford, CA, USA, 1995.

[179] David R. Karger, Philip N. Klein, and Robert E. Tarjan. A randomized
linear-time algorithm to find minimum spanning trees. Journal of the
ACM, 42(2):321–328, March 1995.

[180] Ismo Kärkkäinen and Pasi Fränti. Minimization of the value of Davies-
Bouldin index. In Juan J. Villanueva, editor, Proceedings of the
IASTED International Conference on Signal Processing and Commu-
nications (SPC’00), pages 426–432, Calgary, AB, Canada, 2000. Acta
Press.

[181] Richard M. Karp. Reducibility among combinatorial problems. In
Raymond E. Miller and James W. Thatcher, editors, Proceedings of
a Symposium on the Complexity of Computer Computations, pages
85–103, New York, NY, USA, 1972. Plenum Press.

[182] Rajesh Kasturirangan. Multiple scales in small-world networks. Tech-
nical Report AIM-1663, Massachusetts Institute of Technology, Artifi-
cial Intelligence Laboratory, Cambridge, MA, USA, December 1999.

[183] David Kempe and F. McSherry. A decentralized algorithm for spec-
tral analysis. In Proceedings of the Thirty-sixth ACM Symposium on
Theory of Computing (STOC), New York, NY, USA, 2004. ACM.

[184] Beom Jun Kim, Chang No Yoon, Seung Kee Han, and Hawoong
Jeong. Path finding strategies in scale-free networks. Physical Review
E, 65(2):027103, 2002.

[185] Sun Kim. Graph theoretic sequence clustering algorithms and their
applications to genome comparison. In Computational Biology and
Genome Informatics, chapter 4. World Scientific Publishing Com-
pany, Singapore, 2003.

[186] Scott Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671–680, May 1983.

BIBLIOGRAPHY 157

[187] Raymond W. Klein and Richard C. Dubes. Experiments in pro-
jection and clustering by simulated annealing. Pattern Recognition,
22(2):213–220, 1989.

[188] Jon M. Kleinberg. Authoritative sources in a hyperlinked environ-
ment. Journal of the ACM, 46(5):604–632, September 1999.

[189] Jon M. Kleinberg. The small-world phenomenon: an algorithmic per-
spective. In Proceedings of the Thirty-second Annual ACM Sympo-
sium on Theory of Computing (STOC), pages 163–170, New York,
NY, USA, 2000. ACM Press.

[190] Jon M. Kleinberg, S. Ravi Kumar, Prabhakar Raghavan, Sridhar Ra-
jagopalan, and Andrew S. Tomkins. The Web as a graph: Measure-
ments, models, and methods. In T. Asano, H. Imai, D.T. Lee, S.
Nakano, and T. Tokuyama, editors, Proceedings of the Fifth Annual
International Conference on Computing and Combinatorics, volume
1627 of Lecture Notes in Computer Science, Berlin, Germany, 1999.
Springer-Verlag GmbH.

[191] Jon M. Kleinberg and Steve Lawrence. The structure of the web. Sci-
ence, 294(5548):1849–1850, November 2001.

[192] Leonard Kleinrock and Farouk Kamoun. Hierarchical routing for
large networks: Performance evaluation and optimization. Computer
Networks, 1(3):155–174, 1977.

[193] Donald L. Kreher and Douglar R. Stinson. Combinatorial Algorithms:
Generation, Enumeration, and Search. CRC Press, Boca Raton, FL,
USA, 1998.

[194] P. Krishna, Nitin H. Vaidya, Mainak Chatterjee, and Dhiraj K. Prad-
han. A cluster-based approach for routing in dynamic networks. ACM
SIGCOMM Computer Communication Review, 27(2):49–64, April
1997.

[195] Balachander Krishnamurthy and Jia Wang. On network-aware cluster-
ing of web clients. In Proceeings of SIGCOMM, pages 97–110, 2000.

[196] Vaishnavi Krishnamurty, Junhong Sun, Michalis Faloutsos, and Sud-
hir Tauro. Sampling Internet topologies: How small can we go? In
Hamid R. Arabnia and Youngsong Mun, editors, International Con-
ference on Internet Computing, pages 577–580, Las Vegas, NV, USA,
2003. CSREA Press.

[197] Florent Krza̧kała, Andrea Pagnani, and Martin Weigt. Threshold val-
ues, stability analysis and high-q asymptotics for the coloring problem
on random graphs. Physical Review E, 70(4):046705, October 2004.

[198] S. Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, D. Sivaku-
mar, Andrew Tomkins, and Eli Upfal. Stochastic models for the Web
graph. In Proceedings of the Fourty-first Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 57–65, Los Alamitos, CA,
USA, 2000. IEEE Computer Society Press.

158 BIBLIOGRAPHY

[199] Michihiro Kuramochi and George Karypis. Freqent subgraph discov-
ery. In Proceedings of the IEEE International Conference on Data
Mining, pages 313–320, Washington, DC, USA, 2001. IEEE Com-
puter Society Press.

[200] Michihiro Kuramochi and George Karypis. Finding frequent patterns
in a large sparse graph. Technical Report 03-039, Department of Com-
puter Science and Engineering / Digital Technology Center / Army
HPC Research Center, University of Minnesota, Minneapolis, MN,
USA, September 2003.

[201] Kim S. Larsen. Amortized constant relaxed rebalancing using stan-
dard rotations. Acta Informatica, 35(10):859–874, 1998.

[202] Gregory S. Lauer. Hierarchical routing design for SURAN. In Pro-
ceedings of the IEEE International Conference on Communications
(ICC), pages 93–102, Los Alamitos, CA, USA, 1986. IEEE Computer
Society Press.

[203] Steve Lawrence and C. Lee Giles. Accessibility of information on the
web. Nature, 400:117–119, July 1999.

[204] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over
time: Densification laws, shrinking diameters and possible explana-
tions. In Robert Grossman, Roberto Bayardo, and Kristin Bennett, ed-
itors, Proceedings of the Eleventh ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages 251–262,
New York, NY, USA, 2005. ACM Press.

[205] Mark Levene, Trevor Fenner, George Loizou, and Richard Wheel-
don. A stochastic model for the evolution of the web. Computer
Networks, 39(3):277–287, 2002.

[206] Michael Ley. Computer science bibliography. Universität Trier,
���� ������ ������
 �� �� ��� ���� ��� ���

�����
��� �.

[207] Ning Li, Jennifer C. Hou, and Lui Sha. Design and analysis of an
MST-based topology control algorithm. In Proceedings of the Twenty-
second Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (INFOCOM), volume 3, pages 1702–1712, New
York, NY, USA, April 2003. IEEE.

[208] Hyojun Lim and Chongkwon Kim. Flooding in wireless ad hoc net-
works. Computer Communications Journal, 24(3–4):353–363, 2001.

[209] Chunhung Richard Lin and Mario Gerla. Adaptive clustering for mo-
bile wireless networks. IEEE Journal on Selected Areas in Communi-
cations, 15(7):1265–1275, September 1997.

[210] S. Lin. Computer solutions of the traveling salesman problem. Bell
Systems Technical Journal, 44:2245–2269, 1965.

BIBLIOGRAPHY 159

[211] Wei Lou and Jie Wu. On reducing broadcast redundancy in ad
hoc wireless networks. IEEE Transactions on Mobile Computing,
1(2):111–123, April 2002.

[212] Wei Lou and Jie Wu. Double-covered broadcast (DCB): A simple
reliable broadcast algorithm in manets. In Proceedings of the Twenty-
third Annual Joint Conference of the IEEE Communications Society
(INFOCOM), volume 3, pages 2084–2095, Los Alamitos, CA, USA,
2004. IEEE Computer Society Press.

[213] László Lovász and Ravi Kannan. Faster mixing via average conduc-
tance. In Proceedings of the Thirty-first Annual ACM Symposium on
Theory of Computing (STOC), pages 282–287, New York, NY, USA,
1999. ACM Press.

[214] Ricard Lowry. Concepts and Applications of Inferential Statistics. Vas-
sar College, Poughkeepsie, NY, USA, 1999–2005. Online publication;
available at

���� �����	� ��� ������� ����
������

��
������ ���
 �.

[215] Gin Lv, Pei Cao, Edith Cohan, Kai Li, and Scott Shenker. Search and
replication in unstructured peer-to-peer networks. In Proceedings of
the Sixteenth Annual ACM International Conference on Supercom-
puting, pages 84–95, New York, NY, USA, 2002. ACM.

[216] Gurmeet Singh Manku, Moni Naor, and Udi Wieder. Know thy
neighbor’s neighbor: The power of lookahead in randomized P2P net-
works. In Proceedings of the Thirty-Sixth Annual ACM Symposium
on Theory of Computing (STOC), pages 54–63, New York, NY, USA,
2004. ACM Press.

[217] Olivier C. Martin, Rémi Monasson, and Riccardo Zecchina. Statis-
tical mechanics methods and phase transitions in optimization prob-
lems. Theoretical Computer Science, 265(1–2):3–67, August 2001.

[218] Hideo Matsuda, Tatsuya Ishihara, and Akihiro Hashimoto. Classifying
molecular sequences using a linkage graph with their pairwise similar-
ities. Theoretical Computer Science, 210(2):305–325, January 1999.

[219] Steven McCanne, Sally Floyd, Kevin Fall, and Kannan Varadhan.
The network simulator � ���. The VINT project, available for down-
load at

���� ������ ���� ����
�� ���
 �� ��.

[220] Sally McClean, Bryan Scotney, and Kieran Greer. A scalable ap-
proach to integrating heterogeneous aggregate views of distributed
databases. IEEE Transactions on Knowledge and Data Engineering,
15(1):232–235, Jan./Feb. 2003.

[221] José Ferreira F. Mendes. Effect of accelerated growth on networks dy-
namics. In Romualdo Pastor-Satorras, Miguel Rubi, and Albert Diaz-
Guilera, editors, Statistical Mechanics of Complex Networks, volume
625 of Lecture Notes in Physics, pages 88–113, Berlin, Germany,
2003. Springer-Verlag GmbH.

160 BIBLIOGRAPHY

[222] Bruno T. Messmer and Horst Bunke. Subgraph isomorphism in poly-
nomial time. Technical Report TR-IAM-95-003, Institute of Computer
Science and Applied Mathematics, University of Bern, Bern, Switzer-
land, 1995.

[223] Milena Mihail, Christos Gkantsidis, Amin Saberi, and Ellen Zegura.
On the semantics of Internet topologies. Technical Report GIT-CC-
02-07, College of Computing, Georgia Institute of Technology, At-
lanta, GA, USA, 2002.

[224] George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek
Gross, and Katherine J. Miller. Introduction to wordnet: An on-line
lexical database. International Journal of Lexicography, 3(4):235–244,
1990.

[225] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri
Chklovskii, and Uri Alon. Network motifs: Simple building blocks of
complex networks. Science, 298(5594):824–827, October 2002.

[226] Jan ming Ho, D. T. Lee, Chia-Hsiang Chang, and C. K. Wong.
Bounded diameter minimum spanning trees and related problems. In
Proceedings of the Fifth Annual Symposium on Computational Ge-
ometry, pages 276–282, New York, NY, USA, June 1989. ACM Press.

[227] Jan ming Ho, D. T. Lee, Chia-Hsiang Chang, and C. K. Wong. Mini-
mum diameter spanning trees and related problems. SIAM Journal on
Computing, 20(5):987–997, 1991.

[228] David Mitchell, Bart Selman, and Hector Levesque. Hard and easy
distributions of SAT problems. In Proceedings of the Tenth National
Conference on Artificial Intelligence (AAAI-92), pages 459–465, Cam-
bridge, MA, USA, 1992. AAAI Press / The MIT Press.

[229] Michael Mitzenmacher. A brief history of generative models for power
law and lognormal distributions. Internet Mathematics, 1(2):226–251,
2004.

[230] Mike Molloy and Bruce Reed. A critical point for random graphs with
a given degree sequence. Random Structures and Algorithms, 6:161–
180, 1995.

[231] Cristopher Moore and Mark E. J. Newman. Epidemics and percola-
tion in small-world networks. Physical Review E, 61(5):5678–5682,
May 2000.

[232] Harsha Nagesh, Sanjay Goil, and Alok Choudhary. Parallel algorithms
for clustering high-dimensional large-scale datasets. In Robert L.
Grossman, Chandrika Kamath, W. Philip Kegelmeyer, Vipin Kumar,
and Raju R. Namburu, editors, Data Mining for Scientific and En-
gineering Applications, volume 2 of Massive Computing, chapter 19.
Kluwer Academic Publishers, Boston, MA, USA, September 2001.

BIBLIOGRAPHY 161

[233] Michel Neuhaus and Horst Bunke. Self-organizing graph edit dis-
tance. In Edwin Hancock and Mario Vento, editors, Proceedings
of the Fourth IAPR International Workshop on Graph Based Repre-
sentations in Pattern Recognition, volume 2726 of Lecture Notes in
Computer Science, pages 83–94, New York, NY, USA, 2003. Springer-
Verlag GmbH.

[234] Mark E. J. Newman. The structure of scientific collaboration net-
works. Proceedings of the National Academy of Sciences, USA,
98(2):404–409, January 2001.

[235] Mark E. J. Newman. A measure of betweenness centrality based on
random walks. Technical Report cond-mat/0309045, arXiv.org e-Print
archive,

���� ������ �� ����
�
, 2003.

[236] Mark E. J. Newman. Properties of highly clustered networks. Physical
Review E, 68(2):026121, August 2003.

[237] Mark E. J. Newman. The structure and function of complex networks.
SIAM Review, 45(2):167–256, 2003.

[238] Mark E. J. Newman. Detecting community structure in networks.
European Physical Journal B, 38(2):321–330, 2004.

[239] Mark E. J. Newman. Fast algorithm for detecting community structure
in networks. Physical Review E, 69(6):066133, 2004.

[240] Mark E. J. Newman and Michelle Girvan. Finding and evalu-
ating community structure in networks. Technical Report cond-
mat/0308217, arXiv.org e-Print archive,

���� ������ �� ����
�
, August

2003.

[241] Mark E. J. Newman and Michelle Girvan. Mixing patterns and com-
munity structure in networks. In Romualdo Pastor-Satorras, Miguel
Rubi, and Albert Diaz-Guilera, editors, Statistical Mechanics of Com-
plex Networks, volume 625 of Lecture Notes in Physics, pages 66–87,
Berlin, Germany, 2003. Springer-Verlag GmbH.

[242] Mark E. J. Newman, Cristopher Moore, and Duncan J. Watts. Mean-
field solution of the small-world network model. Physical Review Let-
ters, 84(14):3201–3204, April 2000.

[243] Mark E. J. Newman and Duncan J. Watts. Scaling and percolation in
the small-world network model. Physical Review E, 60(6):7332–7342,
1999.

[244] Phu Chien Nguyen, Takashi Washio, Kouzou Ohara, and Hiroshi
Motoda. Using a hash-based method for apriori-based graph mining.
In Jean-François Boulicaut, Floriana Esposito, Fosca Giannotti, and
Dino Pedreschi, editors, Proceedings of the Eighth European Confer-
ence on Principles and Practice of Knowledge Discovery in Databases,
volume 3202 of Lecture Notes in Computer Science, pages 349–361,
Berlin, Germany, 2004. Springer-Verlag GmbH.

162 BIBLIOGRAPHY

[245] Sze-Yao Ni, Yu-Chee Tseng, Yuh-Shyan Chen, and Jang-Ping Sheuu.
The broadcast storm problem in a mobile ad hoc network. In Harel
Kodesh, Victor Bahl, Tomasz Imielinski, and Martha Steenstrup, ed-
itors, MOBICOM’99: Proceedings of the Fifth Annual ACM/IEEE In-
ternational Conference on Mobile Computing and Networking, pages
151–162, New York, NY, USA, August 1999. ACM Press.

[246] Jorge Nuevo. Mobility generator program for NS-2, 2002. Available
for download at

���� ���������� �������
� �������	 �	��� ��� �
�

�����
���
 ����������� ���
 .

[247] Liadan O’Callaghan, Nina Mishra, Adam Meyerson, Sudipto Guha,
and Rajeev Motwani. Streaming-data algorithms for high-quality clus-
tering. In Proceedings of 18th IEEE International Conference on Data
Engineering, pages 685–694, Los Alamitos, CA, USA, 2002. IEEE
Computer Society Press.

[248] Tomoyuki Ohta, Shinji Inoue, and Yoshiaki Kakuda. An adaptive mul-
tihop clustering scheme for highly mobile Ad Hoc networks. In Pro-
ceedings of the Sixth International Symposium on Autonomous De-
centralized Systems (ISADS), pages 293–302, Washington, DC, USA,
2003. IEEE Computer Society Press.

[249] Pekka Orponen and Satu Elisa Schaeffer. Efficient algorithms for sam-
pling and clustering of large nonuniform networks. Technical Report
cond-mat/0406048, arXiv.org e-Print archive,

���� ������ �� ����
�
,

June 2004.

[250] Pekka Orponen and Satu Elisa Schaeffer. Local clustering of large
graphs by approximate Fiedler vectors. In Sotiris Nikoletseas, editor,
Proceedings of the Fourth International Workshop on Efficient and
Experimental Algorithms (WEA’05), volume 3505 of Lecture Notes
in Computer Science, pages 524–533, Berlin/Heidelberg, Germany,
2005. Springer-Verlag GmbH.

[251] Sagar A. Pandit and Ravindra E. Amritkar. Characterization and con-
trol of small-world networks. Physical Review E, 60(2):R1119–R1122,
August 1999.

[252] Vinayaka Pandit and Dhananjay M. Dhamdhere. Self-stabilizing max-
ima finding on general graphs. Technical report, IBM Research Divi-
sion, April 2002.

[253] Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal. Building
low-diameter P2P networks. In Proceedings of the 42nd Annual Sym-
posium on Foundations of Computer Science (FOCS), pages 492–
499, Los Alamitos, CA, USA, 2001. IEEE Computer Society Press.

[254] Romualdo Pastor-Satorras, Alexei Vazquez, and Alessandro Vespig-
nani. Dynamical and correlation properties of the Internet. Physical
Review Letters, 87(25):258701, December 2001.

BIBLIOGRAPHY 163

[255] Romualdo Pastor-Satorras and Alessandro Vespignani. Epidemic
spreading in scale-free networks. Physical Review Letters,
86(14):3200–3203, April 2001.

[256] Vern Paxson and Sally Floyd. Why we don’t know how to simulate the
Internet. In Proceedings of the 1997 Winter Simulation Conference,
pages 1037–1044, New York, NY, USA, 1997. ACM Press.

[257] Wei Peng and Xicheng Lu. Efficient broadcast in mobile ad
hoc networks using connected dominating sets. Journal of Software,
12(4):529–536, 2001.

[258] Charles E. Perkins, editor. Ad Hoc Networking. Addison Wesley,
Reading, MA, USA, 2001.

[259] Alex Pothen, Horst D. Simon, and Kan-Pu Liou. Partitioning sparse
matrices with eigenvectors of graphs. SIAM Journal of Matrix Analysis
and Applications, 11(3):430–452, 1990.

[260] Robert C. Prim. Shortest connection networks and some generaliza-
tions. Bell Systems Technical Journal, 36(6):1389–1401, November
1957.

[261] James Gary Propp and David Bruce Wilson. How to get a perfectly
random sample from a generic Markov chain and generate a random
spanning tree of a directed graph. Journal of Algorithms, 27(2):170–
217, 1988.

[262] James Gary Propp and David Bruce Wilson. Exact sampling with cou-
pled Markov chains and applications to statistical mechanics. Random
Structures and Algorithms, 9(1&2):223–252, 1996.

[263] Janez Puhan, Tadej Tuma, and Iztok Fajfar. SPICE for Windows 95/
98/NT. Elektrotehnišski vestnik, 65(5):267–271, 1998. (Electrotech-
nical review, Ljubljana, Slovenia.).

[264] Jan M. Rabaey. The SPICE circuit simulator. EECS Department of the
University of California at Berkeley,

���� ������	 ���	� ��������� �

���
��������

���������� ����.

[265] Siddheswar Ray and Rose H. Turi. Determination of number of clus-
ters in k-means clustering and application in colour image segmenta-
tion. In N. R. Pal, A. K. De, and J. Das, editors, Proceedings of the
Fourth International Conference on Advances in Pattern Recognition
and Digital Techniques (ICAPRDT’99), pages 137–143, New Delhi,
India, 1999. Narosa Publishing House.

[266] D. G. Rees. Essential Statistics, volume 50 of Texts in Statistical Sci-
ence Series. CRC Press, Boca Raton, FL, USA, fourth edition, 2000.

[267] Matei Ripeanu. Peer-to-peer architecture case study: Gnutella net-
work. In Proceedings of the First International Conference on Peer-
to-Peer Computing (P2P’01), pages 99–100, Washington, DC, USA,
2001. IEEE Computer Society Press.

164 BIBLIOGRAPHY

[268] Matei Ripeanu, Ian Foster, and Adriana Iamnitchi. Mapping the
Gnutella network: Properties of large-scale peer-to-peer systems and
implications for system design. IEEE Internet Computing Journal,
6(1):50–57, 2002.

[269] Christian P. Robert and George Casella. Monte Carlo Statistical
Methods. Springer-Verlag GmbH, Heidelberg, Germany, 2004.

[270] Gabriel Robins and Jeffrey S. Salowe. On the maximum degree of
minimum spanning trees. In Kurt Mehlhorn, editor, Proceedings of
the Tenth Annual Symposium on Computational Geometry, pages
250–258, New York, NY, USA, June 1994. ACM Press.

[271] Martin Rosvall, Ala Trusina, Petter Minnhagen, and Kim Sneppen.
Networks and cities: An information perspective. Physical Review
Letters, 94(2):028701, January 2005.

[272] Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. Nearest
neighbor queries. ACM SIGMOD Record, 24(2):71–79, 1995.

[273] Cesar A. Santivanez, Ram Ramanathan, and Ioannis Stavrakakis.
Making link-state routing scale for ad hoc networks. In Proceedings
of the Second ACM International Symposium on Mobile ad hoc Net-
working & Computing, pages 22–32, Long Beach, CA, USA, 2001.
ACM Press.

[274] Tapan K. Sarkar, Zhong Ji, Kyungjung Kim, Abdellatif Medouri, and
Magdalena Salazar-Palma. A survey of various propagation models for
mobile communication. IEEE Antennas and Propagation Magazine,
45(3):51–82, June 2003.

[275] Nima Sarshar, Oscar Boykin, and Vwani Roychowdhury. Scalable per-
colation search on complex networks. Theoretical Computer Science,
355(1):48–64, April 2006.

[276] Nima Sarshar, P. Oscar Boykin, and Vwani P. Roychowdhury. Per-
colation search in power law networks: Making unstructured peer-to-
peer networks scalable. In Proceedings of Fourth IEEE International
Conference on Peer-to-Peer Computing, pages 2–9, Washington, DC,
USA, 2004. IEEE Computer Society Press.

[277] Satu Elisa Schaeffer. Stochastic local clustering for massive graphs. In
T. B. Ho, D. Cheung, and H. Liu, editors, Proceedings of the Ninth
Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD-05), volume 3518 of Lecture Notes in Computer Science,
pages 354–360, Berlin/Heidelberg, Germany, 2005. Springer-Verlag
GmbH.

[278] Satu Elisa Schaeffer. Query-friendly storage for graphs, 2006. In prepa-
ration.

[279] Satu Elisa Schaeffer. Spanning trees with small average hop count,
2006. In preparation.

BIBLIOGRAPHY 165

[280] Satu Elisa Schaeffer, Stefano Marinoni, Pekka Nikander, and Mikko
Särelä. Dynamic local clustering for ad hoc networks, 2006. Submit-
ted for publication.

[281] Frank J. Seinstra. Time optimal uniform self-stabilizing spanning tree.
Technical report, Intelligent Sensory Information Systems, Faculty
of Science, University of Amsterdam, Amsterdam, The Netherlands,
March 2001.

[282] Bart Selman, Henry A. Kautz, and Bram Cohen. Local search strate-
gies for satisfiability testing. In David S. Johnson and Michael A. Trick,
editors, Cliques, Coloring and Satisfiability: Second DIMACS Imple-
mentation Challenge, volume 26 of DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, pages 521–532, Provi-
dence, RI, USA, 1996. American Mathematical Society Press.

[283] Claude E. Shannon. A mathematical theory of communication. Bell
System Technical Journal, 27:379–423 & 623–656, July & Oct. 1948.

[284] Jiří Šíma and Satu Elisa Schaeffer. On the NP-completeness of some
graph cluster measures. In Jiří Wiedermann, Gerard Tel, Jarslav
Pokorný, Mária Bieliková, and Július Štuller, editors, Proceedings of
the Thirty-second International Conference on Current Trends in
Theory and Practice of Computer Science (SOFSEM 06), volume
3831 of Lecture Notes in Computer Science, pages 530–537, Berlin/
Heidelberg, Germany, 2006. Springer-Verlag GmbH.

[285] Herbert A. Simon. On a class of skew distribution functions.
Biometrika, 42(3/4):425–440, December 1955.

[286] Alistair Sinclair. Algorithms for Random Generation & Counting: A
Markov Chain Approach. Birkhäuser, Boston, MA, USA, 1993.

[287] Kim Sneppen, Ala Trusina, and Martin Rosvall. Hide-and-seek on
complex networks. Europhysics Letters, 69(5):853–859, 2005.

[288] Daniel A. Spielman and Shang-Hua Teng. Spectral partitioning
works: planar graphs and finite element meshes. In Proceedings of
the Thirty-seventh IEEE Symposium on Foundations of Computing
(FOCS), pages 96–105, Los Alamitos, CA, USA, 1996. IEEE Com-
puter Society Press.

[289] Alexandre O. Stauffer and Valmir C. Barbosa. Local heuristics and the
emergence of spanning subgraphs in complex networks. Theoretical
Computer Science, 355(1):80–95, April 2006.

[290] Martha Steenstrup. Cluster-Based Networks, chapter 4. Addison Wes-
ley, Reading, MA, USA, 2001.

[291] Ivan Stojmenovic and Xu Lin. Power-aware localized routing in wire-
less networks. IEEE Transactions on Parallel and Distributed Systems,
12(10), 2001.

166 BIBLIOGRAPHY

[292] John Sucec and Ivan Marsic. Clustering overhead for hierarchical
routing in mobile ad hoc networks. In Proceedings of the Twenty-first
Annual Joint Conference of the IEEE Computer and Communica-
tions Societies, volume 3, pages 1698–1706, Los Alamitos, CA, USA,
2002. IEEE Computer Society Press.

[293] Csaba Szepesvári. Shortest path discovery problems: A framework,
algorithms and experimental results. In Deborah L. McGuinness
and George Ferguson, editors, Proceedings of the Nineteenth Na-
tional Conference on Artificial Intelligence and Sixteenth Conference
on Innovative Applications of Artificial Intelligence, pages 550–555,
Menlo Park, CA, USA, 2004. AAAI Press/The MIT Press.

[294] Bosiljka Tadić. Adaptive random walks on the class of Web graphs.
European Physical Journal B, 23(2):221–228, 2001.

[295] Bosiljka Tadić. Dynamics of directed graphs: the World-Wide Web.
Physica A, 293(1–2):273–284, 2001.

[296] Bosiljka Tadić. Growth and structure of the World-Wide Web: To-
wards realistic modeling. Computer Physics Communications, 147(1–
2):586–589, August 2002.

[297] Gerard Tel. Introduction to Distributed Algorithms. Cambridge Uni-
versity Press, Cambridge, UK, second edition, 2000.

[298] Mike Thelwall. A web crawler design for data mining. Journal of
Information Science, 27(5):319–325, 2001.

[299] Luke Tierney. Markov chains for exploring posterior distributions. An-
nals of Statistics, 22:1701–1762, 1994.

[300] Ming-Shin Tsai and Shing-Tsaan Huang. A self-stabilizing algorithm
for the shortest paths problem with a fully distributed daemon. Parallel
Processing Letters, 4(1):65–72, 1994.

[301] J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of
the ACM, 23(1):31–42, 1976.

[302] Stijn Marinus van Dongen. Graph Clustering by Flow Simulation.
PhD thesis, Universiteit Utrecht, Utrecht, The Netherlands, 2000.

[303] Basil Vandegriend and Joseph Culberson. The Gn,m phase transition
is not hard for the hamiltonian cycle problem. Journal of Artificial
Intelligence Research, 9:219–245, November 1998.

[304] Alexei Vázquez and Martin Weigt. Computational complexity aris-
ing from degree correlations in networks. Physical Review E,
67(2):027101, February 2003.

[305] Satu Elisa Virtanen. Clustering the Chilean web. In Proceedings of
the First Latin American Web Congress, pages 229–231, Los Alamitos,
CA, USA, November 2003. IEEE Computer Society.

BIBLIOGRAPHY 167

[306] Satu Elisa Virtanen. Properties of nonuniform random graph models.
Research Report A77, Helsinki University of Technology, Laboratory
for Theoretical Computer Science, Espoo, Finland, May 2003.

[307] Satu Elisa Virtanen and Pekka Nikander. Local clustering for hier-
archical ad hoc networks. In Proceedings of WIOPT’04: Modeling
and Optimization in Mobile, Ad Hoc and Wireless Networks, pages
404–405, Los Alamitos, CA, USA, 2004. IEEE Computer Society.

[308] Danica Vukadinović, Polly Huang, and Thomas Erlebach. On the
spectrum and structure of Internet topology graphs. In H. Unger,
T Böhme, and A. Mikler, editors, Proceedings of Second International
Workshop on Innovative Internet Computing Systems (IICS 2002),
volume 2346 of Lecture Notes in Computer Science, pages 83–95,
Berlin, Germany, 2002. Springer-Verlag GmbH.

[309] W3C. Wordnet in RDFS and OWL. Technical report,
The World-Wide Web Consortium,

���� ������ ��� ����
�
, Au-

gust 2004.
���� ������ ��� ����

���� ���������
�
��	� �	��

����� �
������� ��

� ������� �� ���
 �.

[310] Toby Walsh. Search in a small world. In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence (IJCAI), vol-
ume 2, pages 1172–1177, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers.

[311] Hsinping Wang, Tsungnan Lin, Chia Hung Chen, and Yennan Shen.
Dynamic search in peer-to-peer networks. In Proceedings of the Thir-
teenth International World-Wide Web Conference, New York, NY,
USA, 2004. ACM.

[312] Takashi Washio and Hiroshi Motoda. Multi relational data mining
(MRDM): State of the art of graph-based data mining. ACM SIGKDD
Explorations Newsletter, 5(1):59–68, July 2003.

[313] Duncan J. Watts. Small Worlds. Princeton University Press, Prince-
ton, NJ, USA, 1999.

[314] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small
world’ networks. Nature, 393(6684):440–442, June 1998.

[315] Bernard M. Waxman. Routing of multipoint connections. IEEE Jour-
nal on Selected Areas in Communications, 6(9):1617–1622, 1988.

[316] Wei Wei, Jordan Erenrich, and Bart Selman. Towards efficient sam-
pling: Exploiting random walk strategies. In Deborah L. McGuin-
ness and George Ferguson, editors, Proceedings of the Nineteenth Na-
tional Conference on Artificial Intelligence and Sixteenth Conference
on Innovative Applications of Artificial Intelligence, pages 670–676,
Menlo Park, CA, USA, 2004. AAAI Press/The MIT Press.

168 BIBLIOGRAPHY

[317] Jeffrey E. Wieselthier, Gam D. Nguyen, and Anthony Ephremides. Al-
gorithms for energy-efficient multicasting in static ad hoc wireless net-
works. Mobile Networks and Applications, 6(3):251–263, June 2001.

[318] Jeffrey E. Wieselthier, Gam D. Nguyen, and Anthony Ephremides.
On the construction of energy-efficient broadcast and multicast trees
in wireless networks. In Proceedings of the Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies
(INFOCOM), pages 585–594, March 2002.

[319] Wai-Chiu Wong and Ada Wai-chee Fu. Incremental document clus-
tering for web page classification. In J. Qun, editor, International
Conference on Information Society in the 21st century: Emerg-
ing Technologies and New Challenges (IS2000), Aizu-Wakamatsu,
Fukushima, Japan, 2000. The University of Aizu.

[320] Andrew Y. Wu, Michael Garland, and Jiawei Han. Mining scale-free
networks using geodesic clustering. In Won Kim, Ron Kohavi, Jo-
hannes Gehrke, and William DuMouchel, editors, Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, New York, NY, USA, 2004. ACM Press.

[321] Bang Ye Wu, Giuseppe Lancia, Vineet Bafna, Kun-Mao Chao, R.
Ravi, and Chuan Yi Tang. A polynomial time approximation scheme
for minimum routing cost spanning trees. In Proceedings of the Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 21–32,
Philadelphia, PA, USA, 1998. Society for Industrial and Applied Math-
ematics.

[322] F. Wu and Bernardo A. Huberman. Finding communities in lin-
ear time: a physics approach. The European Physical Journal B,
38(2):331–338, 2004.

[323] Xifeng Yan and Jiawei Han. gSpan: Graph-based substructure pat-
tern mining. In Proceedings of the IEEE International Conference
on Data Mining, pages 721–724, Washington, DC, USA, 2002. IEEE
Computer Society Press.

[324] Xifeng Yan and Jiawei Han. CloseGraph: mining closed frequent
graph patterns. In Lise Getoor, Ted E. Senator, Pedro Domingos, and
Christos Faloutsos, editors, Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pages 286–295, New York, NY, USA, 2003. ACM Press.

[325] Shi-Jie Yang. Exploring complex networks by walking on them. Phys-
ical Review E, 71(1):016107, 2005.

[326] Wayne W. Zachary. An information flow model for conflict and fission
in small groups. Journal of Anthropological Research, 33:452–473,
1977.

BIBLIOGRAPHY 169

[327] Hui Zhang, Ashish Goel, and Ramesh Govindan. Using the small
world model to improve Freenet performance. In Proceedings of
the Twenty-first Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM), Los Alamitos, CA, USA,
2002. IEEE Computer Society Press.

[328] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: an
efficient data clustering method for very large databases. In Proceed-
ings of the ACM SIGMOD 1996, pages 103–114, New York, NY, USA,
1996. ACM Press.

[329] Han Zhu and Zhuang-Xiong Huang. Navigation in a small world with
local information. Physical Review E, 70(3):036117, September 2004.

170 BIBLIOGRAPHY

APPENDICES

MATLAB CODE FOR FIEDLER VECTOR CALCULATIONS

Exact Fiedler vectors

��� 	� ��� � ������ �
� ����������	� �� ��� � � ��� �

� ���� �� �� �� �� �� ��� �� � ��
���
��� � ��� ��� ������

���
�� �	� ��� 	��	� ��� ��� ��
��� �� � ��

� ������ ���
�
��
 � �� � �

��� ���
� ����� � ������ ��	��� �� ������

�� �� � ��� �
��� ���

� �� ��� ��� ����� ���� ����� ��
� ���� �

� ���� ��� ����� ����
���� � ���� �� ���� �

� ��	�	�� 	�
��� ��

� �� 	������ ������ �

�
������ 	����

� � ��
�� �

� �� �

��� ���
� ����� ����� ��� �� ���� �	�� �

�� �� � � �

� ������ ��	���
��� � ��
 �
 � �

� ������
 ��� ��
�

� ������ �� ��� ���� �� �

� ��� ����������� ������
 ��� ��
� �� � ���� �� � �

� ����� ���
��� ��
� � ����� �� � �

� ���� ��� ��� ������ ���� ����
� � �

��� � � �� �� �
�� ���� ��� � ��

� �� �� �� � � �� ������ �����
 �� �� �� � �

��� �

���

APPENDICES 171

�
�� ��� ����� � �� �� ���� ������ � �
� �

��� � � � ��
� � � ������ �����

��� �� �� ��� ��� �������� � �� �� � �� �
� �� �

���� ������ ����� � ��� ���� ��� �� ����� � ��
��� � �� �� � � ��� � � �� �

� � ������� ����������� �� ��� �
�
��	� � � ��� � ���� �

��� � � � � ��
 �� �

�
�������	� �� ������� �� ��� ��	��� ������� �����������
� ��	� � ����� �

� � ��
 ������ ����
� � � �� � �� � �

�
� � �

�
� �

�
�� ��� �� �

� �� �����
��� ��
��� �	� ��� ��� ��� ��
 � ��	���

�
�

� ������ ����� �� ��� �

� ��� �
������ ���������� ��� ��� ������� �������	� ����� ���� � �� � ���� �
�
� � � ��
 �� �

� � ��� �� �� ���� ���� ����� �

� � ��
 ������ ����
�� � �� � �� � �

�
�� �

�
��

�
�� ����� �

�
�� ��� ��� ���� ��� ��� 	�
� �� ��� ���
��� ��� �� 	����

�� �
�� ��� � ��� � � �
���� � � ��� ��

��� ���
� ������� � ���� �� �	��� � ������� 	� ��	��� ��� �� �

� ������ �
�
�� �

������ �

��� �

� ������ �
�
� � �

������ �

172 APPENDICES

Approximate Fiedler vectors

��� 	� ��� � ������ �
� ���������	��� �� ��� � � ��� �

� ���� �� �� �� �� �� ��� �� � ��
���
��� � ��� ��� ������

���
�� �	� ��� 	��	� ��� ��� ��
��� �� � ��

� ������ ���
�
��
 � �� � �

��� ���
� ��
� ������ �
��� � ������ ��	��� �� ������

�� �� � ��� �
��� ���

� �� ��� ��� ����� ���� ����� ��
� ���� �

� ���� ��� ����� ����
���� � ���� �� ���� �

� ��	�	�� 	�
��� ��

� �� 	������ ������ �

�
������ 	����

� � ��
�� �

� �� �

� ���������� ���
� ����� ������� ���

�� �� �
��� � ��
 �
 �
�

� ������ �� ��� ���� �� �

� ��� ����������� ������
 ��� ��
� �� � ���� �� � �

� ���� ��� ��� ������ ���� ���
� � ����� �� � ��

� � �
��� � � �� �� �

�� ���� ��� � ��
� �� �� �� � � �� ������ �����
 �� �� �� � �

��� �

���

�
�� ��� ����� � �� �� ���� ������ � �
� �

��� � � � ��
��� � �� �� � �� �

� �� �

������ � �� �� � � ��� � � �� �

APPENDICES 173

� � ������� ����������� �� ��� �
�
��	� � � ��� � ���� �

��� � � �� �

�
�������	� �� ������� �� ��� ��	��� ������� ������������� ���

� �����
� ������ ��	��� ���� �� �

�
� ��	� � ����� ��
� �� � �� ��
�� ��� � �� ��

� �����
��� ��
�

�
� ������ ����� �� ��� �

� ������� ���������� �� � ��� ��� ������� �������	� ����� ���� � �� � ���� �
�
� �� �

� � ������ ��	� ����� ���
� �����

� ������ ��	��� �������� �� �� �����
��� �� ���� �� �
� � ��� �� �� ���� ���� ����� �
� � �� � �� ��
�� ��� � �� ��

� 	�
��� ���� ���� ��� ��� ��� ����� �	��

�� �
�� ��� � �� � � �� � � ��� ��
��� ���

� ������� � ���� �� �	��� � ������� 	� ��	��� ��� �� �

���

� ������ �
� �

������ �

174 APPENDICES

URN MODEL FOR BIT-STRING SIMILARITY MEASURES

We consider the following urn model to derive the probability that two bit
strings differ at a certain position. In urn U1 there are W white balls and B
black balls. We denote the total number of balls by T = W + B. Another
urn U2 has equally W white balls and B black balls.

Assume that a sequence of k draws in pairs has been made from the two
urns and all pairs have been of equal color. Denote the number of white
balls drawn from urn Ui at time k by wk, fixing the number of blacks drawn
to k−wk. There are in total

(

W
wk

)

ways to choose those white balls and
(

B
k−wk

)

ways to choose the black ones. Hence the probability of choosing a certain
color-configuration with wk white balls in a total of k balls is

Pr [wk = w] =

(

W
w

)(

B
k−w

)

(

W+B
k

) =

(

W
w

)(

B
k−w

)

(

T
k

) , (1)

and hence follows the hypergeometric distribution. The number of ways to
order these balls in a unique color sequence1 is

(

wk + k − wk + 1 − 1

wk

)

=

(

k

wk

)

, (2)

and hence the probability of a given k-sequence with x white balls is

peq (x, k) =







1
(

k
x

) , k > 0

1 k = 0.
(3)

where we additionally define that the probability of drawing an equal empty
prefix is one. This is the probability of drawing a unique k-sequence with
wk whites from a single urn. The probability for drawing a pre-specified
sequence from a single urn at random is the same than the probability of
drawing the same sequence from two urns independently.

Using the identity for conditional probability, we have

Pr [difference at time k + 1 | equal sequences at time k]

=
Pr [first difference at time k + 1]

Pr [equal sequences at time k]
,

(4)

which is actually the probability that a draw gives a different-colored pair
when the number of blacks balls and white balls in the urns are still the
same. The probability of a differing pair when W is known is

p (W, T) =
2W(T −W)

T 2
, (5)

1Consider the problem of placing x identical balls into y distinct urns, allowing some
of the urns to remain empty. There are

(

x+y−1
x

)

ways to distribute the balls. Now take all
the black balls and place them in a row. Consider each slot before, after or between the
black balls an urn and distribute the white balls in these slots, obtaining each possible color
configuration exactly once.

APPENDICES 175

and from Equation 1 we get the probability that a specific number of white
balls remain in the two urns; it is the same as probability than that of re-
moving the balls that in were removed. For two urns that hold the same
configuration, the probability for drawing a pair of balls with different colors
at draw number (k + 1) when wk whites have been previously drawn from
each urn is

Pr [difference for k + 1 | equal for k draws, wk of which whites]

=
2(W − wk)(B − k + wk)

(T − k)2
.

(6)

Applying total probability theorem over the color configurations, we get the
probability that the two sequences first differ at position k ∈ [1, N] as

q (W, T , k) =

t
∑

x=s

(

peq (x, k − 1) ·
2(W − x)(B − k + x)

(T − k)2
·

(

W
x

)(

B
k−x

)

(

T
k

)

)

,
(7)

where s = max{0,W + k−T }, t = min{W, k}, and B = T −W . Treating
the ones as the black balls and the zeroes as the white balls or vice versa,
we now have an expression for the probability that two strings first differ at
position k.

176 APPENDICES

INDEX

C. Elegans, 98
3SAT, 10

accelerated growth, 9
acquaintance strategy, 11
adjacency

list, 3, 59
matrix, 3

AGM, 117
algorithm

decentralized, 93
heat-bath, 27
leader-election

distributed, 111
link-state, 72
Metropolis, 27
minimum spanning tree, 106

distributed, 110
online, 43, 47
Prim-Jarnik, 112
self-stabilizing, 110
tree-construction

centralized, 106
distributed, 110

approximate counting, 26
Apriori, 117
attack tolerance, 11

beacon signal, 96, 97
betweenness, 45, 104

vertex, 105
bijection, 119
BIRCH, 48
bisection, 58
bit

most significant, 120
bit string

canonical, 119
representation, 119
weight, 119

broadcast, 103
Brownian motion, 25
buffer

lookahead, 97

cardinality, xix

cave, 64, 65, 67
chain

balanced, 29
combined, 30
Markov, 19
minimal-balanced, 29

Cheeger ratio, 52, 66
chromatic number, 12
circuit

electrical, 48
classification, 41
clause, 10
clique, 5, 121
CLOSEGRAPH, 117
cluster, 41

head, 73
initial, 88
introversion, 56
overlap, 65, 67
root, 42
singleton, 42
split, 73

clustering
agglomerative, 42
bottom-up, 42
circuit, 48
coefficient, 6
conductance-based, 46
flat, 42
geometric MST, 65
global, 44, 46, 58, 65, 88
hierarchical, 42

divisive, 42
incremental, 43
iterative, 42
protocol, 72
quality, 61
spectral, 45, 50
stochastic, 88
text-document, 41
top-down, 42, 80
voltage-based, 49

communication
cost, 103

INDEX 177

range, 111
relation, 21

community, 44
structure, 44

complement, 3
component

connected, 4, 66
strongly connected, 4
strongly connected, 87

compression, 38
computation

local, 54
condition

detailed balance, 22, 27, 32
Markov, 20

conductance, 23, 46
iterative cutting, 65

configuration
legal, 110

conjunction, xix
connection, 1
connectivity, 44, 46

matrix, 43
correlation, 13

assortative, 9
disassortative, 9
Pearson, 13
Spearman rank, 13, 138

cost
communication, 103
receive, 103

initial, 103, 108
transmission, 103

initial, 103, 108
coupling, 27
cover, 41
coverage, 35, 36
crawler, 39, 46
cut, 5, 23, 46

capacity, 23, 56
normalized, 46
size, 5, 46

CWG, 63, 87–88
cycle, 4

data mining, 41
database

relational, 79
Davies-Bouldin index, 48, 62

deficit, 136
degree, 4

average, 4
distribution, 4
expected, 111
external, 56
in-degree, 5
internal, 55
out-degree, 5

dendrogram, 42
density, 3

expected, 112
local, 55, 57, 58, 72
maximum, 58
relative, 56, 57
threshold, 56

DGM, 98
diameter, xx, 4, 79, 91, 104, 113
disjunction, xix
distance, 43, 79, 91, 102, 103, 113

average, 4, 62
edit distance, 48, 118, 138, 139

normalized, 138
Euclidean, 48, 103, 108
Hamming, 119

normalized, 120
Levenshtein, 118
relative point-wise, 22
script distance, 118
sum-of-squares, 44, 62
total variation, 22, 23

estimator, 24
threshold, 26

distribution
cluster, 88–89
degree, 4
hypergeometric, 175
initial, 21
load, 105
scale-free, 8
stationary, 21–22, 27

domain, 79, 80
center, 80
radius, 80

edge, 3
betweenness, 45, 104
directed, 5
endpoint, 5

178 INDEX

external, 54
inter-cluster, 44
internal, 54
intra-cluster, 44
reflexive, 3, 28
weight, 3, 102

total, 106
eigenvalue, 22, 35, 49, 50

decomposition, 23
primary, 23
spectrum, 23, 35

eigenvector, 22, 23, 45
energy consumption, 103
entropy

information, 92
epidemic spreading, 95
epidemic spreading, 11
ER, 6
exclusive or, 119
expected

degree
average, 112

F-Miner, 135
Fiedler value, 50, 67–68
FIFO, 91
fitness

function, 46
fitness function, 54–58, 61
flooding, 73, 95

probabilistic, 95
shallow, 95, 96

forest, 4
Freenet, 94
FSG, 117
function

difference, 120
indicator, 120
similarity, 135

geodesics
distortion, 62

Gibbs sampler, 27
girth, xx, 4
GMC, 65
Gnutella, 94
graph, 3

Erdős-Rényi, 6
acyclic, 4
bipartite, 136

weighted, 137
caveman, 63

generalized, 64–65, 83
collaboration, 35, 63, 98
complete, 3
conductance, 46, 56
connected, 4
cubic, 4, 58
cyclic, 4
Delaunay, 43
dense, 3
directed, 5
disconnected, 4, 107
geodesics, 5
initial, 89
isomorphic, 5
isomorphism, 5, 117
multigraph, 133
neural, 98
order, 3
partite, 4

bipartite, 4
planar, 10
power-law, 8
pseudo-fractal, 34
random, 6

nonuniform, 9
uniform, 6

regular, 4
relabeling, 119
searchability, 92
simple, 3
size, 3
sparse, 3
theory, 6
undirected, 3
weighted, 3, 103

graph data mining, 117
GSPAN, 117

heuristic
hop-based, 81

hop count, 80
average, 105, 106

hub, 8, 27, 29, 79, 96, 107

ICC, 65
independent set, 3, 121
information

access, 92

INDEX 179

entropy, 92
incomplete, 96
local, 54, 91, 93, 94

instance
hard, 10

Internet, 38, 45
isomorphic, 119, 121
isomorphism

graph, 117

joint event, 20

k-means clustering, 48

label
canonical, 117
edge, 133
vertex, 133

LCS, 120
leader election, 11
learning

supervised, 41
unsupervised, 41

LHT, 107
line, 105
load, 104
logical formula, 10
longest common subsequence, 120
lookahead

buffer, 97
limited, 97

full, 98
second-neighbor, 97

lookahead buffer, 96

MAC-address, 110
mapping, 118
Markov chain

reversible, 23
Markov chain, 19

aperiodic, 21
ergodic, 21
homogeneous, 20
irreducible, 21
irreversible, 22
periodic, 21
reducible, 21
reversed, 22
reversible, 22

Markov Chain Monte Carlo, 25

matching, 136
maximal, 136

matrix
adjacency, xx, 3, 139
connectivity, 43
doubly stochastic, 20
identity, xix
stochastic, 20, 23
transition, 20, 49

MCMC, 25
MDST, 104
mean, see expectation
mean vector, 48
method

gradient-descent, 50–51
stability, 65

MHT, 104
mixing, 22
mobility

model, 75
model

Barabási-Albert, 8, 89
BA, 8, 89
communication-cost, 104
cost, 103
Gilbert, 6
Gn,m, 6, 7, 89
Gn,p, 6, 7
path-loss, 103
Watts-Strogatz, 7, 94
WS, 7

modularity, 61
MST, 11, 102

Napster, 94
neighbor, 3

Voronoi, 43
neighborhood, 3, 59
NetMine, 40
network, 1

ad hoc, 71, 97
congestion, 91
nonuniform, 1, 9
P2P, 94
peer-to-peer, 12, 94
radio-channel, 96
random

uniform, 111
robustness, 11

180 INDEX

scale-free, 8, 94, 96, 107
sensor, 110
small-world, 7, 91
topology, 11, 91

node, 1
range, 103

� ���, 73

ontology, 133
optimization

local, 65
multi-goal, 109

optimum
global, 57
local, 47

order, xix

P2P, 12
PageRank, 39, 95, 135
partition, 41
path, 4

canonical, 23
length, 4, 95

average, 7, 106
shortest, 6

shortest, 4
simple, 4
straightening, 96

path length
average, 4
characteristic, 5

pattern, 117, 121
frequent, 117

period, 21
phase transition

combinatorial, 10
PMAFIA, 48
power law, 8, 93
preferential attachment, 8, 88
probability

conditional, 20
rewiring, 7
transition, 20, 25, 27

problem
Dirichlet

discrete, 49
graph coloring, 12
graph isomorphism, 10
Hamiltonian cycle, 10
local density, 58

maximum clique, 44
maximum density, 58
maximum-flow, 45
path

extremal, 79
relative density, 58
satisfiability, 10
shortest path, 91

all-pairs, 91
single-source, 91

shortest-path, 79
process

discrete, 20
Wiener, 25

proximity, 50

query
navigational, 79
neighbor, 79

queue, 91

random walk
adaptive, 93

random walk, 12, 92
blind, 27, 92, 96, 97
combined, 30
degree-balanced, 28
naïve, 27
neighbor-avoiding, 93
regular, 25, 27, 93
self-avoiding, 92, 94, 95
simple, 25
uniform, 56

range, 103
transmission, 102

Rayleigh quotient, 50
RDF, 133
relabeling, 119
relation

adjacency, 5
communication, 21
equivalence, 21

Resource Description Framework,
133

robustness, 11
routing

inter-cluster, 72
intra-cluster, 72

routing table, 71

INDEX 181

sample
uniform, 27

sampling
coin-flip, 28
rejection, 26, 27

SAT, 10
SCC, 4
schema, 133
search, 91

BFS, 91
breath-first, 91
decentralized, 96
distributed, 96
greedy, 47
local, 46, 59, 88, 92
locality, 65
path, 79
stochastic, 54
tabu search, 92

search engine, 39
searchability, 92
self-loop, 3, 30
Semantic Web, 133
sensor, 110
separator, 9
side

mixing, 30
sampling, 30

similarity, 41, 43, 48–52, 118
expected, 125
function, 135
graph, 121

SimRank, 135
simulated annealing, 47
spectra, see spectrum
spectrum, 23, 35, 45
SPICE, 49
state

absorbing, 20
ergodic, 21
period, 21
recurrent, 20, 21

positive recurrent, 20
transient, 20, 21

state set
closed, 21
irreducible, 21

stopping condition, 42
string, 48

subgraph, 5
complete, 10

p-quasi, 56
induced, 5
maximum common, 118

supergraph, 5
minimum common, 118

support, 117
minimum, 117

theorem
Perron-Frobenius, 23

time
absorption, 21, 52, 53
first-passage, 20, 52
mixing, 22–23
recurrence, 22
saturation, 25
search, 91

time-to-live, 95
tolerance, 11
topology

change, 110
network, 91
star, 30, 105, 107, 113

transition, 20
transmission

power, 103
tree, 4

MAD, 104
minimum-hop, 104
spanning, 91

low-hop, 107
minimum, 102, 104
minimum routing-cost, 104
minimum-diameter, 104
weight, 113

spanning tree, 4
minimum, 11

truth assignment, 10
TTL, 95
TVD, 22

union-find, 107
unique resource identifier, 133
update

lazy, 74
URI, 133
urn model, 175

transfer model, 88

182 INDEX

vaccination scheme, 11
value

Fiedler, 50
variable

random
discrete, 20

vector
Fiedler, 50–52, 66

vertex, 3
access information, 92
current, 91
deficit, 24
end, 5
initial, 91
introversion, 55
load, 104
mirror, 29
neighborhood, 3
potential, 48
seed, 46, 49, 50, 88
sink, 49
source, 5
start, 5
target, 5, 91
variable, 135
visited, 91

voltage, 53
Voronoi cell, 43

Walk-SAT, 40
Web Graph, 39, 87–88, 93

Chilean, 63, 87
WordNet, 15
World-Wide Web, 39, 46, 133
WWW, 39

XOR, 119

INDEX 183

HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY FOR THEORETICAL COMPUTER SCIENCE

RESEARCH REPORTS

HUT-TCS-A89 Harri Haanpää

Constructing Certain Combinatorial Structures by Computational Methods. February 2004.

HUT-TCS-A90 Matti Järvisalo

Proof Complexity of Cut-Based Tableaux for Boolean Circuit Satisfiability Checking.

March 2004.

HUT-TCS-A91 Mikko Särelä

Measuring the Effects of Mobility on Reactive Ad Hoc Routing Protocols. May 2004.

HUT-TCS-A92 Timo Latvala, Armin Biere, Keijo Heljanko, Tommi Junttila

Simple Bounded LTL Model Checking. July 2004.

HUT-TCS-A93 Tuomo Pyhälä

Specification-Based Test Selection in Formal Conformance Testing. August 2004.

HUT-TCS-A94 Petteri Kaski

Algorithms for Classification of Combinatorial Objects. June 2005.

HUT-TCS-A95 Timo Latvala

Automata-Theoretic and Bounded Model Checking for Linear Temporal Logic. August 2005.

HUT-TCS-A96 Heikki Tauriainen

A Note on the Worst-Case Memory Requirements of Generalized Nested Depth-First Search.

September 2005.

HUT-TCS-A97 Toni Jussila

On Bounded Model Checking of Asynchronous Systems. October 2005.

HUT-TCS-A98 Antti Autere

Extensions and Applications of the A∗ Algorithm. November 2005.

HUT-TCS-A99 Misa Keinänen

Solving Boolean Equation Systems. November 2005.

HUT-TCS-A100 Antti E. J. Hyvärinen

SATU: A System for Distributed Propositional Satisfiability Checking in Computational

Grids. February 2006.

HUT-TCS-A101 Jori Dubrovin

Jumbala — An Action Language for UML State Machines. March 2006.

HUT-TCS-A102 Satu Elisa Schaeffer

Algorithms for Nonuniform Networks. April 2006.

ISBN 951-22-8118-X

ISSN 1457-7615

