
Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 101

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 101

Espoo 2006 HUT-TCS-A101

JUMBALA — AN ACTION LANGUAGE FOR

UML STATE MACHINES

Jori Dubrovin

AB TEKNILLINEN KORKEAKOULU

TEKNISKA HÖGSKOLAN

HELSINKI UNIVERSITY OF TECHNOLOGY

TECHNISCHE UNIVERSITÄT HELSINKI

UNIVERSITE DE TECHNOLOGIE D’HELSINKI

Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 101

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 101

Espoo 2006 HUT-TCS-A101

JUMBALA — AN ACTION LANGUAGE FOR

UML STATE MACHINES

Jori Dubrovin

Helsinki University of Technology

Department of Computer Science and Engineering

Laboratory for Theoretical Computer Science

Teknillinen korkeakoulu

Tietotekniikan osasto

Tietojenkäsittelyteorian laboratorio

Distribution:

Helsinki University of Technology

Laboratory for Theoretical Computer Science

P.O.Box 5400

FI-02015 TKK

Tel. +358-9-451 1

Fax. +358-9-451 3369

E-mail: lab@tcs.tkk.fi

URL: http://www.tcs.tkk.fi

©c Jori Dubrovin

ISBN 951-22-8102-3

ISSN 1457-7615

Multiprint Oy

Helsinki 2006

ABSTRACT: UML 2.0 is a language for modeling complex software systems.
A UML model may describe the dynamic aspects of software as well as the
static structure. We concentrate on models of reactive systems, such as em-
bedded controllers or telecommunications switches. The behavior of such
systems is modeled using UML state machines. Although UML defines the
structure of state machines, it leaves open the choice of an action language,
which is the language used to specify how the transitions of a state machine
affect the configuration of the underlying model.

A UML action language named Jumbala is introduced. The language has
been designed as part of a project where the goal is to formally analyze be-
havioral UML models. Jumbala is based on the Java programming language.
It has nearly the same syntax and semantics for statements and expressions
as Java. Some new programming constructs have been added to facilitate
state machine modeling. Jumbala also supports object-oriented program-
ming with classes and inheritance.

An interpreter that parses and executes Jumbala programs has been devel-
oped. The interpreter will be part of a prototype tool set for analyzing the
behavior of reactive computer systems modeled in UML.

KEYWORDS: action language, behavioral modeling, interpreter, Java, object-
oriented, UML

CONTENTS

1 Introduction 1

2 UML 4
2.1 Objects and Classes . 5

2.1.1 Attributes and Operations 5
2.1.2 Associations . 6
2.1.3 Generalization and Interfaces 7
2.1.4 Enumerations . 8
2.1.5 Active Objects . 8

2.2 State Machines . 9
2.2.1 States and Transitions 9
2.2.2 Behavior of Active Objects 12

2.3 Global Configuration . 13
2.3.1 Object Diagrams . 13

2.4 Actions and Activities . 14

3 The Jumbala Action Language 16
3.1 Requirements for an Action Language 16
3.2 The SMUML Setup . 17
3.3 Design Choices . 18
3.4 Program Structure . 20

3.4.1 Top-Level Statements 21
3.5 Types . 21

3.5.1 Primitive Types . 21
3.5.2 Reference Types . 22
3.5.3 Subtypes . 22
3.5.4 Strings . 23
3.5.5 Arrays . 23

3.6 Life Cycle of Objects . 24
3.7 Expressions . 24

3.7.1 Evaluation Order . 25
3.7.2 Variables . 25
3.7.3 Arithmetic and Bitwise Operators 25
3.7.4 Comparison Operators 27
3.7.5 Conditional Operators 27
3.7.6 Assignments . 27
3.7.7 Creation of Objects 28
3.7.8 Method Invocations 28
3.7.9 Type Testing . 29

3.8 Statements . 30
3.8.1 Local Variable Declarations 30
3.8.2 Expression Statements 30
3.8.3 If Statements . 31
3.8.4 Iteration Statements 31
3.8.5 Switch Statements 32

iv CONTENTS

3.8.6 Send Statements . 33
3.8.7 Assertions . 33

3.9 Type Declarations . 34
3.9.1 Class Declarations 34
3.9.2 Interface Declarations 38
3.9.3 Enum Declarations 39

3.10 Execution of Programs . 39
3.11 Differences Between Jumbala and Java 40

4 Jumbala in the SMUML Framework 42
4.1 The Contexts of Actions . 42
4.2 The Mapping from UML to Jumbala 43

4.2.1 Execution of UML and Jumbala 43
4.3 Managing Model Elements with Jumbala 45

4.3.1 Associations . 45
4.3.2 Attributes . 45
4.3.3 Creating Objects . 46
4.3.4 Operation Calls . 46
4.3.5 Other Expressions 46
4.3.6 Sending Signals . 46
4.3.7 Local Variables . 47
4.3.8 Other Statements . 47

5 Implementation 48
5.1 Overview . 48
5.2 Parsing . 50

5.2.1 The Abstract Syntax Tree Interface 50
5.3 Translation to Internal Code 51

5.3.1 The Internal Code Language 52
5.4 Run-Time Environment . 53

5.4.1 Native Methods . 54
5.4.2 Predefined Classes 54

5.5 Error Handling . 54
5.5.1 Compile-Time Errors 55
5.5.2 Run-Time Errors . 55
5.5.3 Traceability . 56

6 Related Work 57

7 Discussion and Conclusions 59
7.1 Implications of Following Java 59
7.2 Future Work . 60

Bibliography 62

CONTENTS v

List of Figures

2.1 The CDRW class. 5
2.2 Two classes with an association. 6
2.3 A class diagram that demonstrates generalization. 7
2.4 A class diagram with an enumeration. 8
2.5 A state machine diagram for OverheatProtection. 10
2.6 A state machine diagram for DVDDrive. 11
2.7 An object diagram with two objects. 14
3.1 Declaration of a class in Jumbala. 34
3.2 Declaration of an interface and a class that implements it. . . 39
5.1 Data flow of the interpreter. 49
5.2 A Python script that uses the interpreter to execute a program. 49
5.3 Abstract syntax tree for the program ’while (i > 0) i--;’. . 51

vi LIST OF FIGURES

1 INTRODUCTION

Software systems are among the most complex systems ever built by humans.
Handling that complexity is one of the challenges when aiming to improve
the quality of software products. A proposed solution is not to think in terms
of the software system itself but in terms of a model of the system [18, 28, 30].
A model is a representation that is simpler than the system but still contains
the details that we consider essential. The purpose is to raise the level of ab-
straction and allow thinking in high-level concepts instead of technicalities.

This still leaves open the questions of how to decide what is essential,
and how to represent the model. The last question has one answer that has
been widely adopted: the Unified Modeling Language (UML) [29]. It is
the result of combining the leading development and modeling concepts
of the past decades, backed up by an industrial consortium known as the
Object Management Group (OMG). The current version of the language is
UML 2.0.

UML has a graphical notation that aims to help people think and commu-
nicate about the model. The notation is based on different kinds of diagrams
that are suitable for expressing a variety of aspects such as customer require-
ments, test cases, and collaboration of software units. The overall structure
of modules and the associations between them are represented hierarchically
using package and class diagrams. Besides structural matters, UML can ex-
press dynamic aspects with behavioral diagrams such as state machines and
activity diagrams.

The problem area that we concentrate on is the behavior of reactive, em-
bedded software systems such as those found in medical devices, telecommu-
nications switches, and railway signaling systems [15]. A system is reactive
if it does not have all its input ready when the system is started. Instead,
the system receives input from its environment on the fly during operation.
The inherent characteristics of a reactive system are parallelism and contin-
uous interaction with the environment. The evolution of the system in time
depends not only on the current state of the system but also on the inputs,
which may be unpredictable. This phenomenon is known as nondetermin-
ism. Another source of parallelism, besides the environment, is concurrent
execution within the system. A reactive system often contains several soft-
ware modules that run under a real-time operating system or that may even
be distributed physically. The mutual order of their execution is difficult or
impossible to resolve, so it is effectively nondeterministic. A consequence of
nondeterminism is that the number of possible executions of the system may
be immense [35].

The traditional approaches to analyzing behavior are simulation and test-
ing, which mean running the implementation in a simulated or real environ-
ment and examining the results. However, the presence of nondeterminism
reduces the capacity of these methods. Errors may go undetected because of
the large state space [33], and even if a failing execution is found, it may be
difficult to repeat in a nondeterministic environment.

A more ambitious scheme is to use formal verification [10]. Formal veri-
fication means explicit or implicit mathematical analysis of the possible exe-

1. INTRODUCTION 1

cutions of the system to prove that it satisfies a defined property. The object
under verification must have a well-defined set of executions. It is possible to
derive such an object from the final implementation of a piece of software by
introducing formal semantics for the programming language used. Another
possibility is to verify the properties of an abstraction, the model. The latter
approach has a number of benefits. The model exists before an implemen-
tation is written. An error found in the implementation code can be tens of
times more expensive to fix than an error found at the design phase in the
model, especially in a large project [7]. Verification of the model may be
possible even if the model is incomplete because the missing parts can be
replaced by abstract versions. Also, the chance of successfully verifying prop-
erties of the model is better because the model is mathematically simpler
than the implementation.

UML has elements for modeling reactive behavior, in particular, state ma-
chines that communicate with signals. A behavioral UML model is suitable
for being formally verified. However, there are requirements that the model
must meet: it must be represented formally and its set of executions must
be well defined. UML as such is a loose specification. The language has to
be trimmed and elaborated to create a subset that is still useful for modeling
software behavior and that has unambiguous semantics for execution.

The most fundamental building block of behavior in UML is called an ac-
tion. A single action might, for example, destroy an object instance or assign
a new value to some variable. Actions in a UML state machine define the
effect of firing a transition in the state machine. In state machine diagrams,
actions are expressed in textual form written in a suitable language. The twist
is that UML does not define a language for writing actions; the choice is left
to the user or the manufacturer of a modeling tool. It is legal to describe
actions in an existing programming language such as C++, or a natural lan-
guage such as ancient Greek, or anything the user finds appropriate. This is
one of the conscious choices that the designers of UML have made to keep
the standard as widely applicable as possible, without enforcing the use of
any particular technology.

When the intention is to derive a machine-executable subset of UML,
a formal action language is indispensable. The purpose of this work is to
design a UML action language and an interpreter for it. The language is
named Jumbala. It has been developed in the Laboratory for Theoretical
Computer Science at Helsinki University of Technology in the framework
of a project where the goal is to develop efficient verification techniques for
industrial UML models.

Jumbala has syntax and semantics very close to the Java programming lan-
guage [12]. Jumbala is considerably simpler than the current version of Java,
and it has additional constructs to support state machine models. Java has
been chosen as the baseline because the language is well known in the in-
dustry and because it is based on the same object-oriented philosophy as
UML. Java also has relatively clean and well-defined semantics, which is a
good starting point for formal verification.

The use of an action language that resembles a programming language
makes it possible to analyze models where the level of abstraction varies.
Generally a model describes a system at high level, but we may also be inter-

2 1. INTRODUCTION

ested in verifying models that have some components close to the implemen-
tation level. Assuming that Java is used as the implementation language, an
action language like Jumbala makes it more straightforward to obtain such
models.

In our framework, actions in state machines are specified using Jumbala
statements and expressions. The idea is that the user should feel like writing
actions in Java. Therefore we support almost all statements and expressions
of Java, including dynamic allocation of objects. We have omitted some fea-
tures, for example implicit type conversions and exceptions, because they are
not required in the framework and they would have involved heavy imple-
mentation efforts. A new construct, the send statement for sending signals,
has been added to support asynchronous communication between objects.
Jumbala is a statically typed language with integer and Boolean primitive
types, strings, arrays, and user-defined classes and interfaces. The type system
has direct support for fundamental object-oriented concepts such as fields,
methods, and polymorphism. If a UML model contains non-reactive classes
or class hierarchies, their behavior can be implemented as Jumbala meth-
ods. Certain advanced features of the Java type system, e.g. inner classes and
generic types, have been left out.

The Jumbala interpreter has been implemented in Python and it is inte-
grated as a functional part of a UML simulator and model checker. The inter-
preter performs syntax and type checking, and produces human-readable er-
ror messages. Internally, Jumbala source programs are translated to a simple
code language, which is then executed in a virtual machine that is a part of
the interpreter. This feature is currently used for simulating executable UML
models. To aid verification, the interpreter provides an interface for accessing
the data structures representing the Jumbala statements given as input. The
interface is being used by a preliminary version of a model checker that can
verify UML models using a subset of Jumbala as the action language.

The report is organized as follows. In Chapter 2 we present the parts of
UML that are necessary for being able to see where an action language is used
and what it does. In Chapter 3 we describe the Jumbala action language, its
features, and the design decisions behind them. The model designer who
specifies actions uses only a subset of the features of Jumbala, most notably
statements and expressions. Other features, such as class declarations, are
needed for building the tools that interface the interpreter. Chapter 4 com-
bines the topics of the previous chapters to explain at a general level how the
statements and expressions of Jumbala relate to UML model elements.

Our implementation of the Jumbala interpreter and the programmatic
interfaces it offers are covered in Chapter 5. Chapter 6 contains a quick
survey of other existing UML action languages besides Jumbala. Chapter 7
concludes the report with some final remarks.

1. INTRODUCTION 3

2 UML

The Unified Modeling Language (UML) is a visual language for specify-
ing, constructing, and documenting the artifacts of a software-intensive sys-
tem [29].

UML defines a model as a set of interconnected model elements, which
are abstractions drawn from the system. What the user normally sees is a
UML diagram, which is a graphical view to the model and shows a subset
of the model elements. Different diagrams provide different perspectives to
the model with various levels of accuracy. The diagrams are largely indepen-
dent and complement each other to form a general view that can be easily
understood. Modeling tools are responsible for ensuring that these views
consistently represent the same model.

UML is a vast language. Anyone who wishes to write a model in UML
must decide which parts of the modeling language are the best for expressing
the essential aspects of the particular type of system. UML, by itself, does not
give an answer. It gives the specification of a model but it does not tell how
to build one.

In this chapter we describe a set of UML constructs that can be used as
a basis for modeling reactive, distributed software. The focus is on complex
discrete-event systems such as communication networks. It is not our purpose
to establish a complete design framework but to allow us to see the context
and requirements of an action language, which is the language for specifying
the low-level dynamics of models. The presented subset of UML is rather
minimal but contains the basic elements for modeling reactive behavior. We
have omitted some types of model elements that are well suited to the prob-
lem domain, not because we consider them unimportant but because they
would not have much impact on the role of an action language.

For a more comprehensive view of UML, consult the abundance of liter-
ature, e.g. [8, 11, 32].

UML takes an object-oriented view on the partitioning of the system. The
static structure and relationships of objects are modeled with classes (Sec-
tion 2.1). A UML class diagram shows a graphical view of the class structure.

The objects that are capable of initiating execution without an explicit
request from another object are called active objects. Active objects com-
municate asynchronously using signals. The dynamic behavior of active ob-
jects is modeled with UML state machines, which are based on Harel State-
charts [14]. State machines are a natural formalism for modeling reactive,
event-driven software, where the focus is on handling unpredictable exter-
nal events rather than on heavy computation. We discuss state machines in
Section 2.2.

A state machine specifies the behavior of a single object. When we exam-
ine an execution of the system as a whole, we need to consider the states of
all objects. A global configuration is a collection of all the information that
an instance of a model contains at a point of execution. It is the subject of
Section 2.3. An object diagram, a special case of the class diagram, shows
the relationships and attributes of object instances, giving a snapshot of the
global configuration of the system.

4 2. UML

CDRW

data : Integer [1..*]
capacity : Integer

write(position : Integer, value : Integer)
read(position : Integer) : Integer

erase()

Figure 2.1: The CDRW class.

A transition in a state machine may have an associated activity that is exe-
cuted when the transition is fired. Statements written in the action language
appear at this level to specify activities. In UML, activities are decomposed
into atomic pieces of behavior called actions. Activities and actions are cov-
ered in Section 2.4.

2.1 OBJECTS AND CLASSES

As UML is a language for object-oriented modeling, our abstraction of the
system is based on the concept of an object. An object is an identifiable,
bounded entity that encapsulates state and behavior. An object may represent
an abstract or a concrete thing. A classifier describes a set of objects that have
features in common. There are several kinds of classifiers in UML, including
classes, interfaces, and signals.

2.1.1 Attributes and Operations

The most general kind of a classifier is class. It defines a set of objects with
two kinds of features: attributes and operations. For example, a class named
CDRW, representing a rewritable compact disc, might have the attributes ca-
pacity and data, and operations read, write, and erase. Figure 2.1 shows
the class graphically as a rectangle subdivided in three compartments. The
topmost compartment contains the name of the class, the middle compart-
ment shows the attributes, and the lowest compartment lists the operations.

Additional information about the features of the class is shown in the
figure. The attribute capacity has type Integer, expressed by the colon
and type name after the name of the attribute. The square bracket notation
[1..*] on the next line denotes multiplicity, in this case a range from one to
infinity. Multiplicity declares the minimum and maximum number of values
assigned to the attribute. If omitted, multiplicity defaults to [1..1]. Thus,
the attribute capacity always has exactly one Integer value, and data con-
sists of one or more Integers. The chosen representation of data stands for
a low-level view of the contents of a compact disc. In the end, the data stored
on a disc is a sequence of numbers, maybe just ones and zeros.

The attribute capacity is a class attribute, which means that at run time
there exists only one value for capacity that is shared by all objects of class

2. UML 5

OpticalDisc

DVDDrive

insertedDisc 0..1

containingDrive 0..1

Figure 2.2: Two classes with an association.

CDRW. Class attributes are tagged in the diagram by underlining them. The
other attribute, data, is not underlined, so it is an instance attribute. Every
CDRW object has its own value for data, and these values are generally distinct
between objects. Conceptually, objects of a class have slots corresponding to
all instance attributes defined by the class, and these slots must be filled with
values that match the types and multiplicities of the attributes. An object
that has no value associated with the attribute named data cannot be a well-
formed CDRW instance. Neither can an object whose data slot is filled with
the string “backup”, which is not a sequence of Integers.

An operation specifies a service offered by an object. As the CDRW class
declares the operation erase, anyone who has access to a CDRW instance at
run time can call the operation on that instance to invoke a behavior. The
declaration of an operation places a requirement that such a behavior ex-
ists, but it does not specify the behavior itself. A procedural implementation
for the behavior may be given in a programming language. Such an imple-
mentation is called a method. Operations may involve parameters, expressed
in parentheses after the name of the operation (see the operation write in
Figure 2.1). Parameters have types, and each call to the operation must be
accompanied by values for all parameters. An operation may have one or
more return values that the behavior must supply back to the caller at run
time. Textually, return values are specified by listing their types after a colon
following the parenthesized parameter list. The operation read of the CDRW

class returns an Integer. The three operations declared in the example are
all instance operations. The behavior of an instance operation is associated
with a particular object that is determined when the operation is called. It
would also be possible to declare class operations by underlining them in the
diagram. Class operations are called without an instance of the class.

2.1.2 Associations

A picture of a class in isolation does not give a holistic view of a system. A class
diagram usually contains several classes, and associations between them. Se-
mantically an association means that objects of the classes are somehow con-
nected. If there is no association between two classes, say, DVDDrive and

6 2. UML

CDRW

OpticalDisc

DVD

Figure 2.3: A class diagram that demonstrates generalization.

OpticalDisc, then there is no way a DVD drive (an instance of DVDDrive)
can access an optical disc (an instance of OpticalDisc) directly, without the
intervention of a third class acting as a bridge.

In its simplest form, an association is drawn as a solid line between two
classes in a class diagram. By default, an association is bidirectional. An open
arrowhead in one end of the line denotes navigability only in that direction.
For example, the class DVDDrive in Figure 2.2 can access an associated Op-

ticalDisc, but not vice versa.

An association has two association ends. An end is often labeled by a
role name, which tells the role played by the class attached to that end. An
end also has multiplicity, which indicates how many objects participate in
the relationship. If omitted, the multiplicity defaults to 1. As shown in the
figure, a DVDDrive instance can contain zero or one optical discs, and an
OpticalDisc instance can be inserted in zero or one DVD drives at a time.

A run-time instance of an association is called a link. A link is a connec-
tion between objects, which must be instances of the classes corresponding
to the ends of the association.

2.1.3 Generalization and Interfaces

Another kind of a relationship between classifiers is generalization, which
captures the concept of inheritance in object-oriented design. Generaliza-
tion relates a specific classifier to a general classifier. Each instance of the
specific classifier is also an instance of the generic classifier, and features
specified for the general classifier are implicitly present in the specific classi-
fier.

A generalization is visualized by a solid line that ends in a hollow triangle
at the end of the general classifier. The class OpticalDisc in the class di-
agram of Figure 2.3 is a generalization of CDRW and also a generalization of
DVD. This captures the fact that every rewritable CD is an optical disc, and
every DVD is also an optical disc. The name of the class OpticalDisc is
printed in italics, which means that the class is abstract. Such a class cannot
be directly instantiated. To create an optical disc, one must be more specific
and choose which kind of a disc to create: a CDRW, a DVD, or perhaps some
other concrete specialization of OpticalDisc not shown in the diagram.

An interface is a classifier that is similar in concept to an abstract class.

2. UML 7

<<enumeration>>

DayOfTheWeek

wednesday
thursday

saturday

monday
tuesday

sunday

friday

Figure 2.4: A class diagram with an enumeration.

Neither can have direct instances but the difference is that an abstract class
can have an implementation for some of its operations. An interface is purely
a specification of services provided by an object. A class whose objects fulfill
the specification is said to realize the interface.

2.1.4 Enumerations

An enumeration is a classifier that has a finite, predefined set of instances.
The instances, or enumeration literals, have no internal structure or data, but
they can be compared for equivalence. The graphical representation of an
enumeration is similar to a class. The topmost compartment is marked with
the keyword «enumeration» above the name, and the second compartment
contains a list of enumeration literal names. Figure 2.4 shows a class diagram
with an enumeration whose literals denote the seven days of the week.

2.1.5 Active Objects

Active objects model concurrent execution. An active object has its own
thread of execution. An object that is not active is passive. A passive object
executes behavior only in the scope of another object, and only when re-
quested to do so by that object. All actions are ultimately initiated by active
objects. An active class is a class whose instances are active objects. In a class
diagram, double vertical lines on the sides of a class emphasize the fact that
it is active. In Figure 2.2, DVDDrive is an active class.

Active objects support asynchronous communication using signals. Either
an active or a passive object can send a signal instance to an active object.
Sending a signal is like mailing a postcard. The sender does not have to
stand still while the signal or its consequences are being processed, and it is
not specified exactly when the recipient will receive the signal or react to it.

We make the assumption that if an active object has instance operations,
they can only be called by the object itself. This is because we do not want
to allow bypassing the signal mechanism by synchronous operation calls.
To perform synchronous communication between active objects, two signals
have to be used, one in each direction.

8 2. UML

Signals cannot be sent to passive objects because they are not able to re-
act asynchronously. However, a passive object can have operations that may
be called by any active or passive object. The execution of the caller is sus-
pended for the duration of the operation. The behavior associated with the
operation may call further operations or send signals.

2.2 STATE MACHINES

A state machine is a mechanism for specifying behavior using a finite state-
transition system. UML defines two kinds of state machines. Behavioral
state machines are used to specify behavior of model elements such as class
instances. We assume that the behavior of all active objects is modeled us-
ing behavioral state machines. Protocol state machines are used to express
the allowed usage protocols of ports and interfaces. A protocol state machine
defines the legal sequences of events that may occur in the context of a classi-
fier. For example, an interface could define two operations, open and read,
and a protocol state machine could be used to define that read must not
be called before open has been called. As protocol state machines do not
contain actions, they are not discussed further here.

2.2.1 States and Transitions

A state machine is a graph of states and transitions. At any moment during
run time, one or more of the states are active in an active object. The set of
active states is called the active state configuration, and the object is said to
be in those states. The states that are not active are inactive. The active state
configuration is changed by firing transitions. When a transition is fired, the
source state becomes inactive and the target state becomes active.

We restrict our treatment to flat state machines, where no state is nested
in another state. Exactly one state is active at a time in a flat state machine.
UML also defines hierarchical state machines [32] that allow states to con-
tain substates. Several substates may be active at the same time.

Figure 2.5 contains a simple state machine that specifies the behavior
of an active class, call it OverheatProtection. The state machine contains
three states (a rounded rectangle), five transitions (an arrow from source state
to target state) and an initial pseudostate (a filled circle). Transitions have
text labels of the form trigger [guard] /effect. Any of the three parts may be
omitted.

The initial pseudostate indicates the starting conditions of the state ma-
chine. When an object of class OverheatProtection has been created, its
active state configuration consists of state Operating.

Transition Triggers

The trigger of a transition specifies an event. The transition may only fire if
the event occurs. In Figure 2.5, the trigger of the transition leaving from state
Operating is a signal event, denoting the reception of the signal measured.
The signal comes when a new temperature measurement is ready. When
that happens, the object switches from state Operating to state Checking.

2. UML 9

Overheated

Checking

Operating

[heatsink.temp >= 95]
 / send off() to output;

userAck [heatsink.temp < 80]
 / send on() to output;

measured

 [heatsink.temp < 100]

Figure 2.5: A state machine diagram for OverheatProtection.

Other kinds of events, which we do not consider, are time events for real-
time modeling (e.g. after (2 s)), change events that occur when a condi-
tion changes (e.g. when (altitude < 100)), and call events that represent
incoming operation calls.

The transitions leaving state Checking have no explicit triggers. Such
a transition is called a completion transition and it is triggered by an im-
plicit completion event that is generated as soon as all internal activity in
the source state is finished. In our simple framework there are no states with
any internal activities. Therefore a completion event is generated whenever
a state becomes active.

If an event occurs that is not the trigger of any transition leaving an active
state, the event is implicitly consumed. For instance, if the signal measured
is received in state Overheated, it is simply discarded.

Guards

Three transitions in Figure 2.5 have guards enclosed in square brackets. A
guard is a Boolean expression acting as a precondition for firing the transition.
When the trigger event occurs, the expression is evaluated. If the result is
true, the transition may be fired. If the result is false, the transition is not
fired and the guard is not evaluated again until a new trigger event occurs.
If the guard is omitted, it is the same as having a guard that always evaluates
to true. The language for writing guards is not fixed in UML, but we use
Boolean expressions of the action language. A guard must not have side
effects. In other words, the model is ill-formed if evaluating a guard changes
the global configuration.

The transition from Overheated to Operating has both a a trigger, the
signal event userAck, and a guard, heatsink.temp < 80. The signal ar-
rives when the user presses a button to acknowledge the overheat alarm, but
the transition fires only if the heatsink temperature is below 80 degrees. In
particular, if the user presses the button while the temperature is still over 80,

10 2. UML

NoDisc

DiscInserted

entry / startMotor();
readData / insertedDisc.read(...);
exit / stopMotor();

insert(disc)
 / insertedDisc = disc;

eject
 / insertedDisc = null;

 / insertedDisc = null;

Figure 2.6: A state machine diagram for DVDDrive.

it has no effect. Generally, if a guard prevents a transition from being fired,
the triggering event is discarded, and a new trigger event has to occur before
the transition is considered again.

Both transitions leaving state Checking have guards. If the temperature
of the heatsink is less than 100 degrees, the active object may return to state
Operating. If the temperature is 95 degrees or more, the transition to Over-

heated may be fired. Because one of these conditions is always true, the
object cannot deadlock in state Checking. But what if the temperature is,
say, 96 degrees? Either transition may fired, and the choice may be arbi-
trary. A concrete system might always choose one transition in favor of the
other, or it might make the choice depending on the time derivative of the
temperature. Thus, there are many possible systems, and the state machine
is a model of all of them. When we execute the model, we are faced with
nondeterminism, i.e. choices that could go one way or the other.

Effects

Two transitions in Figure 2.5 have an effect. The effects are ’send off()

to output;’ and ’send on() to output;’. An effect is an activity that is
executed when the transition is fired. In this case, the activities send a signal
named off or on with no parameters to an active object output. Activities
are expressed in the action language. In our approach, activities are lists of
action language statements.

Signal Parameters

The state machine for class DVDDrive is shown in Figure 2.6. The trigger of
the transition leaving NoDisc is insert(disc), which denotes a signal event
with a parameter. In UML, signals are classifiers that are allowed to have
typed parameters, and we assume that insert has one parameter of type
OpticalDisc. Parameter values can be accessed from transition effects. The
purpose of the effect ’insertedDisc = disc;’ is to establish a link between

2. UML 11

the DVDDrive object and the OpticalDisc received as a parameter. The
link is an instance of the association shown in Figure 2.2.

Entry and Exit Activities and Internal Transitions

State DiscInserted in Figure 2.6 has internal structure. The line that be-
gins with entry specifies an entry activity for the state. The activity calls
the operation startMotor, which we assume is an instance operation of
DVDDrive. The entry activity is executed at the moment the state becomes
active, after the effect of the incoming transition has been executed. Cor-
respondingly, the exit activity ’stopMotor();’ is executed when the state
becomes inactive, before executing the effect of the outgoing transition.

The second line, beginning with readData, denotes an internal transition
in state DiscInserted, triggered by an ordinary signal event. Internal tran-
sitions may have guards and effects like ordinary (external) transitions, but
they do not affect the active state configuration. Notice that entry and exit

are UML keywords but readData is just a signal name. There is a difference
between an internal transition and an external transition whose source and
target states are the same. An internal transition does not leave the state, and
therefore any exit or entry activities are not executed.

UML defines still another kind of an activity associated with a state. A do
activity of a state is continuous behavior that is executed all the time when
the state is active. We omit do activities because our approach only supports
execution in discrete steps.

2.2.2 Behavior of Active Objects

Active objects communicate asynchronously by sending signals. The sending
object creates an instance of a signal and sends it to another, explicitly iden-
tified object. The reception of a signal produces an occurrence of a signal
event. Signals may have associated parameters, whose values are passed to
the receiving object together with the signal event occurrence.

An active object stores all event occurrences in a temporary storage, the
event pool. Every active object has its own event pool. The process of han-
dling one event occurrence is called a run-to-completion step. First the event
occurrence is removed from the event pool. The order in which events are
removed is not specified by UML. However, completion events have priority
over other events. All transitions in the state machine of the object are then
examined to find those that are eligible for firing. A transition is eligible if
its source state is currently active, its trigger matches the chosen event occur-
rence, and its guard condition is true. If no transition is eligible, the event
occurrence is simply discarded and the run-to-completion step ends. Other-
wise one of the eligible transitions is fired. The choice is nondeterministic.

The firing of a transition consists of removing the source state from the ac-
tive state configuration, executing sequentially the exit activity of the source
state, the effect of the transition, and the entry activity of the target state, and
adding the target state to the active state configuration. If the target state has
no do activity and no substates, a completion event is placed in the event
pool.

If an event occurs during a run-to-completion step, the occurrence has no

12 2. UML

immediate effect and it is placed in the event pool. No event occurrences
are removed from the event pool of the object until the step has finished and
the object is in the target state.

UML guarantees that a run-to-completion step of an active object can-
not be interrupted by an external event. We make further assumptions by
demanding that only a single active object in the system executes a run-to-
completion step at a time. Therefore a run-to-completion step is not only
uninterruptible in the scope of an active object but it is an atomic step in the
entire system. This assumption simplifies the definition of global configura-
tion and reduces the set of possible interleaving executions, making it easier
to analyze the behavior of a model.

2.3 GLOBAL CONFIGURATION

At a given moment in time, the system is in a state that, as a whole, is an
instance of the model. We call this state the global configuration of the
system. With the framework presented so far, we can conclude that a global
configuration consists of the following items.

• A list of active and passive objects that exist.

• The values of all class attributes.

• All the links between objects.

• For each active or passive object, the values of its instance attributes.

• For each active object, the active state configuration of its state ma-
chine.

• For each active object, the contents of its event pool.

Because of the assumptions of Section 2.2.2, we can say that an execu-
tion step from one global configuration to the next is exactly one run-to-
completion step of one of the active objects that exist. We do not need to
consider the possibility of several active objects executing at the same time.
In a global configuration, no activity is being executed. Consequently, there
is no need to bundle the global configuration with information such as call
stacks or local variables of operation calls.

2.3.1 Object Diagrams

An important part of the global configuration is the knowledge of what ob-
jects exist, what their attribute values are and how the objects are linked to
each other. This information can be visualized using an object diagram,
which shows a snapshot of objects. An object diagram is similar to an ordi-
nary class diagram. Objects are represented as rectangles, like classes. The
difference is that the string in the name compartment is underlined. The
string is of the form objectname : classname, where the object name is op-
tional. The attribute compartment contains values for instance attributes,

2. UML 13

data = {242, 85, 162, 76, 142}

: CDRWbackup

: DVDDrive

insertedDisc

containingDrive

Figure 2.7: An object diagram with two objects.

and the solid lines between objects denote links. A simple example is shown
in Figure 2.7. The figure depicts a global configuration where a disc named
backup is inserted in an unnamed DVD drive.

An object diagram does not capture all the information contained in the
global configuration. Nevertheless, an object diagram is useful, for instance,
for specifying the initial configuration of the system.

2.4 ACTIONS AND ACTIVITIES

As we saw in Section 2.2, activities are expressed in UML diagrams as strings
of text written in an action language. This is a practical perspective to ex-
posing the details of object behavior. The action language typically has con-
structs that make it easy for humans to read and write. The implementation
source-level language may be used as an action language to enable straight-
forward code generation from the model.

The current version of UML also offers a way to define activities using
pure model elements, without resorting to external languages. An activity
can be decomposed into a set of activity nodes that are connected with flows.
An activity node can represent a point of flow control, e.g. a branch, a nested
activity, or an action. Actions are the fundamental building blocks of behav-
ior, similar to the machine instructions of a microprocessor. An action has
input and output pins that can hold values at run time. When all the input
pins hold a value, the action may be executed. The action performs some
computation and places the result in the output pins. The output pins of
actions are connected to the input pins of other actions by flows to form a
network that is capable of complex computation.

The semantics for executing actions and activities is given informally in
the UML specification [29]. The semantics is not complete, so there are
points where UML does not dictate precisely what an action does. One rea-
son for the existence of action semantics is to allow exchanging models be-
tween different tools that use different action languages, without losing the
execution semantics. This part of UML also defines what input data is avail-
able to an activity, and what is possible or not possible to do by an activity.

14 2. UML

Action class Purpose
CallOperation Invokes an operation of an object.
SendSignal Sends a signal instance to an object.
CreateObject Creates an instance of a classifier.
DestroyObject Destroys an object.
ReclassifyObject Changes the classifiers of an object.
ReadLink Gets the object that a link points to.
ReadStructuralFeature Reads the value of an attribute.
AddStructuralFeatureValue Sets the value of an attribute.
CreateLink Adds a link between objects.
DestroyLink Removes a link.
RemoveStructuralFeatureValue Removes a value of an attribute.

Table 2.1: Examples of different kinds of actions.

To make the idea more concrete, Table 2.1 lists some examples of the
kinds of actions defined in UML. As can be seen, the list contains no control
flow constructs, like “if” or “goto” statements in programming languages.
This is because control flow is handled at a higher level in the context of
activities using control nodes. Also, one would expect to see actions for prim-
itive numerical operations such as addition, subtraction and comparison of
numbers. There are none. By design, UML does not define primitive func-
tions for handling numbers, strings, or Boolean values because it would be
impossible to fix the semantics without being inconsistent with some existing
programming languages. Nevertheless, there is a mechanism that allows tool
manufacturers to provide primitive functions as specialized kind of actions.

UML offers a graphical notation for actions and activities, namely activity
diagrams. However, the notation is too low-level to be concise or human-
friendly if it is applied to programming language constructs. Unlike textual
descriptions of activities, activity diagrams cannot be embedded in state ma-
chine diagrams. For these reasons, we do not see the actions and activities
defined in UML as a replacement for an action language, but as a comple-
ment.

2. UML 15

3 THE JUMBALA ACTION LANGUAGE

As we saw in Chapter 2, defining an action language is a crucial prerequisite
of modeling behavior rigorously in UML. In this chapter we introduce an
action language named Jumbala. It has been developed for the needs of an
industrial project called SMUML, whose goal is to formally analyze behav-
ioral aspects of reactive computer systems modeled in UML.

The requirements for Jumbala come from two sources. First, the design
of an UML action language must meet the general requirements placed by
the UML framework. Second, the tool architecture in the SMUML project
dictates further capabilities that the language must have. We discuss these
points in Sections 3.1 and 3.2.

Sections 3.3 through 3.9 describe the features of Jumbala and the design
rationale behind them. The key design principle has been to make Jumbala
resemble the Java programming language [12]. Java is a widely used language
with relatively clean and well-defined semantics, and it has features that map
well to our requirements. Most of the elements in Jumbala are taken di-
rectly from Java. In fact, Jumbala is almost “simplified Java”, with only a few
features added to better fit the problem domain.

The execution of Jumbala programs is discussed in Section 3.10. We con-
clude the chapter by listing the most notable differences between Jumbala
and Java in Section 3.11.

3.1 REQUIREMENTS FOR AN ACTION LANGUAGE

UML does not define an action language or specify explicitly what features
an action language must have. However, the various model elements, such
as classes, attributes, and signals, and the UML action semantics imply a set
of minimum requirements that a practical action language must meet.

First of all, we require that the language is precise enough to be executed.
This rules out solutions like natural languages or pseudocode. The language
must be effectively a programming language with precise syntax and seman-
tics.

There are several places in a UML diagram where the action language
may turn up. The most apparent are the effects of internal and external tran-
sitions and the entry and exit activities of states. Guard conditions of tran-
sitions are specified in the action language. We would also like to write the
methods of classes using the same language. It is not an absolute requirement
that a single language is used for all these purposes but it is an assumption we
make to avoid unnecessary complexity. It follows that the language must be
capable of expressing Boolean constraints to be usable in guard conditions,
and it must be possible to access parameter values and pass back return values
in method definitions.

Various kinds of actions, as discussed in Section 2.4, need to be supported.
Namely, it must be possible

• to read and write the values of attributes of objects,

16 3. THE JUMBALA ACTION LANGUAGE

• to navigate and modify links between objects,

• to send signal instances, possibly with parameters, to active objects,

• to call the operations of objects,

• to create and destroy objects.

We also require that the language has a basic set of capabilities found in
almost every programming language. These include arithmetic operations
and comparison of integers, which correspond to UML actions that perform
primitive functions, and flow control constructs for branching and looping,
corresponding to control nodes in UML activities.

Finally, because one purpose of an action language is to serve as a tool that
helps people design and understand complex systems, we want the language
to be simple and easy to learn and to support rapid development.

3.2 THE SMUML SETUP

The Jumbala language has been developed in the framework of a project
named SMUML (Symbolic Methods for UML Behavioral Diagrams) at the
Laboratory for Theoretical Computer Science in Helsinki University of Tech-
nology. The aim of the project is to build a prototype tool set for analyzing
the behavior of industrial UML models using state-of-the-art symbolic model
checking techniques [6, 9, 25, 26]. From the design perspective of the action
language, the tool set contains the following three entities.

• A UML simulator. The function of the simulator is to execute a UML
model, i.e. to produce an instance of the behavior of the model in
order to examine the space of possible executions. The simulator must
somehow fix nondeterministic choices during execution, for example
by asking the user interactively every time a choice has to be made. The
goal is that the user learns something from the model or the particular
execution, e.g. by discovering a path that reveals a bug in the system.

• An action language interpreter. Whenever the simulator takes a step
that requires executing a user-defined activity, it invokes the interpreter.
Thus, the simulator needs not be aware of the syntax or semantics of
the action language. The interface between the simulator and the in-
terpreter must be rich enough to let the simulator know the effects of
activities on the instances of UML model elements. In the case of a
logical error in one of the activities, the interpreter gives back an error
message that the simulator shows to the user.

• A UML model checker. The model checker performs formal verifica-
tion by examining the set of possible executions of the model. The aim
is to prove or disprove that the model has a predefined property. The
interpreter is not used as an execution engine during verification be-
cause that would be too ineffective. Instead, the model checker forms
an efficient internal representation for the activities in the model and

3. THE JUMBALA ACTION LANGUAGE 17

therefore needs to know the semantics of the action language. The
model checker may support only a part of the range of language con-
structs.

The design of the interpreter is influenced by the observation that even
though the simulator depends on the services of the interpreter, the inter-
preter does not necessarily need the simulator. The interpreter is designed
to be a self-contained module whose input is a text string called the program
and outputs are invocations of callback functions and possibly an error mes-
sage if the program contains errors. The callback functions and their param-
eters are declared in the input program. When a callback function is invoked
at run time, its implementation, which exists in the simulator, is called with
the given parameter values. This allows transferring data from the interpreter
to the simulator.

The simulator maps the UML elements defined in the model, such as
classes and attributes, to action language constructs that are embedded in the
input program given to the interpreter. When the interpreter executes user-
defined activities, it manipulates these action language constructs without
knowing anything about their origin, the UML model.

This has implications on the action language. It must have enough fea-
tures to support the various UML model elements, at least the most com-
monly used ones. In effect, the action language must be an object-oriented
programming language. It must support execution in parts because the sim-
ulator invokes the interpreter with unforeseeable inputs according to the
choices made along the execution. The language must have a callback mech-
anism to reflect the changes in action language constructs in the interpreter
back to the model constructs in the simulator. To support formal verification,
it must be possible to derive a formal semantics for at least some parts of the
language.

The precise way in which the simulator maps model elements to the ac-
tion language is part of the design of the simulator and outside the scope of
this work. However, the fundamental points in this subject are brought out
in Chapter 4.

It turns out that there are two different views of the language. The simula-
tor sees a complete object-oriented language and takes advantage of Jumbala
classes and inheritance to map a UML model into a Jumbala program. The
person who constructs the model sees a language of statements that send
signals or change the values of an object’s attributes. The semantics of the
language from the modeler’s point of view, i.e. how the action language state-
ments eventually relate to the model elements, depends on how the simulator
maps UML to the action language.

3.3 DESIGN CHOICES

A Subset of Java
A decision has been made from the beginning to make the Jumbala action
language have the look and feel of the Java programming language. A pro-
grammer who is familiar with Java should immediately feel comfortable writ-
ing activities in UML diagrams. The choice also makes it possible, although

18 3. THE JUMBALA ACTION LANGUAGE

not necessary, to have models with low-level parts that closely resemble the
implementation of the software system, assuming that Java is used as the im-
plementation language.

Jumbala is roughly a subset of Java. Our baseline is version 5.0 of the Java
language, as defined in [12]. Basic flow control constructs, integer arithmetic
operations, and handling of types and variables have been incorporated with
minimal changes. Other features have been adopted if they were considered
crucial from modeling or verification point of view. Features that would have
required heavy specification or implementation efforts without much gain
have been excluded. New features have been introduced sparingly where it
was required to have a capability that is absent in Java.

Static Typing

One of the key features of Java is type safety. It means that a program cannot
treat a value as a type to which it does not belong. The language is statically
typed, meaning that variables are annotated with types in the source code and
violations of type safety are caught at compile time before execution. These
aspects are also included in Jumbala.

From formal verification point of view, static typing is almost a necessity.
Performing verification is extremely complicated, especially using symbolic
model checking techniques, if the system operates on objects whose types are
not known until run time.

Compile-Time and Run-Time Checks

As a consequence of static typing, a Jumbala interpreter has to perform a
sophisticated analysis of the entire program before execution. Errors found
at this stage are called compile-time errors and they include syntax errors,
type violations and references to undefined entities. A program that con-
forms to the language specification (that has no compile-time errors) may be
executed. Errors encountered during execution, such as division by zero or
following a null reference, are called run-time errors. Execution halts im-
mediately after a run-time error occurs. There is no way to catch or recover
from a run-time error within a program (cf. exceptions in Java).

Incremental Programs

The simulator-interpreter interface requires that Jumbala programs can be
executed in parts. The language has been designed so that when a valid pro-
gram has been executed, the state of execution is saved. The program can
later be incremented by a new program that has access to the entities defined
in the original program (we discuss incremental execution in Section 3.10).
This is a simplified version of dynamic class loading found in Java. To sup-
port incrementality, the notion of a top-level statement (Section 3.4.1) is
introduced.

Features Left Out

Although Jumbala and Java share a similar structure, they have very distinct
sets of design goals. Java is directed at a wide audience and it has been de-
signed to support writing large-scale applications, to run on multiple com-
puter platforms with sufficient performance, and to offer security in a net-

3. THE JUMBALA ACTION LANGUAGE 19

worked environment. Jumbala has a much more restricted range of use.
Consequently, Jumbala lacks a number of features that are an integral part of
Java.

• Generic types. A new feature in Java 5.0 improves type safety but at
the same time adds to the complexity of the type system.

• Annotations. This is another new feature that offers a unified way to
attach metadata to Java source code. Annotations provide information
for various Java-related tools but do not contribute to the language se-
mantics.

• Access modifiers. The modifiers public, protected and private

play an important role in Java by restricting access to implementation
details. We assume that the simulator is responsible for prohibiting
UML models that access data illegally. In Jumbala, everything is im-
plicitly public.

• Exceptions. Although UML defines exceptions and exception han-
dlers in the level of activities, it is unclear what the state of an active
object should be if an exception is thrown in the middle of firing a
transition. We could have allowed throwing exceptions in activities
under the constraint that they are all caught and handled inside the
context of a transition. The feature was not considered useful enough
to compensate for added complexity in the language. We assume that
exceptional conditions are modeled using higher-level elements such
as signals. Many situations that would throw an exception in Java are
considered run-time errors in Jumbala.

• Reflection. The ability of a program to observe or modify its own struc-
ture was not considered a desirable feature in the context of UML mod-
els or verification.

• Threading. We assume that there is only a single point of execution
control at a time in a program. To achieve the effect of multiple ac-
tive objects running concurrently, their executions have to be explic-
itly interleaved. Thus, the simulator has total control over the order of
execution.

• Class libraries. The Java API contains hundreds of classes for solving
more or less generic programming tasks. Jumbala, by default, only
supplies the classes that are necessary for the operation of the language
itself, such as Object and String. The architecture makes it possible
for the simulator to define a class library and place it at the modeler’s
disposal.

3.4 PROGRAM STRUCTURE

A Jumbala program is a string of text with a structure similar to a Java source
file. The program resides in a single string and may not be split into several
compilation units. There is no notion of package in Jumbala.

20 3. THE JUMBALA ACTION LANGUAGE

A program consists of identifiers, keywords, literals, separators, operators,
comments, and white space. Apart from the slightly different set of keywords
and simplifications due to the restricted character set and type system, the
program elements are the same as in Java. The amount of white space (in-
dentation, line breaks and space between words) is not significant. Com-
ments can be enclosed between character sequences /* and */, or they can
be placed at the end of a line after the characters //.

Existing conventions for names and program layout in Java can be directly
applied to Jumbala.

The structure of a program is hierarchical. The top level contains state-
ments and type declarations. Type declarations are used to add user-defined
class, interface, and enum types to the type system. They may contain nested
type declarations and declarations of fields, methods, and constructors for the
type. The declaration of a method includes the method body, which contains
statements that define the behavior of the method.

3.4.1 Top-Level Statements

The statements that appear on the top level, not within type declarations,
are the first to be executed. They are meant to be used to set up an initial
configuration of objects and to invoke more dedicated behavior that is imple-
mented in classes. Top-level statements are effectively a replacement for the
main method in Java programs, whose purpose is to act as a point of entry.
Simple programs can be written using top-level statements alone, without
declaring types.

Top-level statements are particularly useful with incremental execution.
An incremental part might consist of just a single statement that relies on
definitions in preceding parts. Without top-level statements, every increment
would need to have a main method or a similar construct of its own, making
the language interpreter very cumbersome to use.

3.5 TYPES

The type system in Jumbala is a simplified version of the type system in Java.
Jumbala has two primitive types, user-definable class and interface types with
inheritance, simple enumerated types (enums) and arrays. Generic types
are not supported by Jumbala. The language is strongly and statically typed.
Every variable and expression has a type that is determined at compile time.
A variable cannot hold a value that is in conflict with the type of the variable.

Types fall into three categories. Primitive types represent Boolean or in-
teger values. Reference types include classes, interfaces, enums, and arrays.
The third category contains only the special null type, which is the type of
the null expression. A programmer rarely needs to think about the null type.

3.5.1 Primitive Types

In Jumbala there are two simple primitive types. The int type represents
signed 32-bit integers, i.e. the numbers −2147483648 to 2147483647. The

3. THE JUMBALA ACTION LANGUAGE 21

boolean type represents the Boolean values false and true. The values of
primitive types are all disjoint (e.g. 0 is not false) and they are not objects.

Floating point types are not supported. It would not be too difficult to
implement them in an interpreter, but accurate specification of floating point
arithmetic and operations is troublesome. There is also no character type as
the language is not intended for low-level manipulation of text. Characters
may be simulated using strings of length 1 or integers.

As usual, integer values can be represented in the source code as literals
using decimal, hexadecimal or octal notation. The boolean values can be
represented using the reserved words false and true.

A variable of a primitive type can only hold a value of that exact type.
Java provides boxed types, such as Integer and Boolean. They are classes

that encapsulate primitive types. In some situations a Java compiler performs
implicit conversions between primitive and boxed types. In Jumbala the def-
inition of boxed types is up to the user, and implicit conversions are not
supported.

3.5.2 Reference Types

All class, interface, enum, and array types are called reference types. Every
object has exactly one type that is a concrete class, an enum, or an array type.

The most common kind of a reference type is class. A class specifies the
state and behavior of a set of objects by declaring fields and methods. Fields
are variables associated with a class or an object, and methods are procedural
descriptions of behavior that can be invoked at run time. While a class both
specifies objects and describes their implementation, an interface is purely
an abstract specification. Classes and interfaces are discussed in more detail
in Sections 3.9.1 and 3.9.2.

An enum denotes a type that has only a finite set of values that are named
at compile time. Enum types are covered in Section 3.9.3.

New reference types can be added by writing class, interface, or enum
declarations. Most reference types are defined by the user. In the context of
the UML simulator, the user defines classifiers in UML class diagrams, and
the simulator automatically translates the classifiers to declarations of types
in Jumbala.

A variable of a reference type holds either a reference to an object of that
exact type or one of its subtypes, or the special value null. Note that the
value of a variable is never an object but a reference. Creating a variable
does not create an object. Two or more variables can hold a reference to
the same object. If no variable refers to an object, it is unreachable from the
program and, effectively, does not exist.

3.5.3 Subtypes

Reference types form a hierarchy induced by the subtype relationship. Every
reference type is a subtype of the primordial class Object. A class type may
extend at most one other class type and implement any number of interface
types. An interface type may extend zero or more interfaces. The class or
interface is a subtype of the reference types it extends or implements. An

22 3. THE JUMBALA ACTION LANGUAGE

enum type has no subtypes besides itself.
Subtyping stands for substitutability. If S is a subtype of T and an object

of type T is required somewhere, then an object of type S can be supplied
instead.

3.5.4 Strings

Objects of the class String represent strings of text. Strings exist in the lan-
guage mainly to make testing and debugging tasks easier. For example, it
might be useful to periodically print the value of a variable as a string during
the simulation of a model. Strings are not expected to have much signifi-
cance in actually modeling the behavior of reactive systems.

The String type resembles primitive types in that it is a built-in type and
its values can be represented using literals in the source code. String literals
are strings of text enclosed in double quotes. However, String is a class type,
not a primitive type. For example, a variable of type String can hold the
value null.

As in Java, strings in Jumbala are immutable, i.e. their contents do not
change after creation.

3.5.5 Arrays

An array represents a sequence of values. An object of an array type consists
of an ordered sequence of variables known as components. All components
have the same type, which is the component type of the array. The compo-
nent type may be a primitive type or a reference type, even an array type. The
number of components is determined when the array object is created and
cannot be changed afterwards.

Array types are not explicitly declared. If T is any type except the null type,
it implies the existence of type T[], which is an array type whose component
type is T. Multidimensional arrays can be simulated using arrays of arrays.

The components of an array are not named but they can be accessed using
the square bracket notation also found in Java. If arr is a variable whose
value is a reference to an array that has at least five components, then the
expression arr[4] refers to the fifth component of the array. Array indexing
is zero-based.

Array Subtyping

An array type may be a subtype of another array type. If S and T are reference
types and S is a subtype of T, then also S[] is a subtype of T[].

Strictly speaking, this violates the notions of type safety and substitutabil-
ity. Assume that arr is a variable whose type is T[]. Now it is legal to execute
the assignment arr = new S[12] because arr can hold a reference to an
object of type S[], a subtype of T[]. It is also reasonable to allow the expres-
sion arr[4] = new T(), which assigns the fifth component of arr a value
that is a reference to an object of type T. However, the component happens
to be a variable whose type is S, and a variable of type S cannot hold a refer-
ence to an object of type T. The anomaly depends on the run-time type of the
object referred by arr and cannot be detected at compile time. At this point,

3. THE JUMBALA ACTION LANGUAGE 23

Java would raise an ArrayStoreException to prevent the illegal assignment.
Jumbala does not have exceptions, so the situation causes a run-time error.

The cause of the problem is that an array of S is not a kind of array of T
in every respect even if S is a kind of T. The problem can only arise when
assigning to a component of an array, not when reading the value of a com-
ponent.

3.6 LIFE CYCLE OF OBJECTS

Objects may be dynamically created during program execution using new

expressions. The expression returns a reference to a fresh object of a given
type. Classes may declare constructors to ensure that a newly created object
is in a valid state when the execution of a new expression completes.

A program manipulates objects through references, so it is often not pos-
sible to determine the scope of existence of an object at compile-time. An
object has to exist at least as long as it is reachable by following the refer-
ences. An object may become unreachable if, for example, a variable that
holds a reference to the object is assigned a new value or falls out of scope.
An unreachable object cannot affect the execution of a program, so it can
be removed. The process of removing unreachable data is called garbage
collection. We do not define when or how it happens. The language has
no mechanism for observing garbage collection via measuring time or the
amount of free memory, for example, and there are no destructors or finaliza-
tion methods for objects like in Java. Therefore garbage collection is purely
an implementation concern.

Along similar lines, out-of-memory situations are outside the scope of the
language. Specifically, execution of a new expression always succeeds. In
practice, an implementation might run out of memory at any point during
execution. It is always an exceptional situation that most probably terminates
the execution. In contrast, Java allows an OutOfMemoryError to occur only
at certain points in the program, and the error may be caught and handled
within the program.

3.7 EXPRESSIONS

Expressions denote computation of values. Expressions are evaluated at run
time to perform primitive operations, such as integer arithmetic, or more
demanding operations, such as creating new objects. The requirement of
basic arithmetic and comparison operations is fulfilled by expressions.

Evaluation results in a value. For example, the value of the expression
24 * 60 is the integer 1440. A more complex example is the assignment ex-
pression minutes = 24 * 60, where 24 * 60 appears as a subexpression.
When evaluated, the assignment expression results in the value 1440, and
more importantly, it produces a side effect : the value is assigned to the vari-
able minutes.

The decomposition of expressions that contain multiple operators, such as
100 + 2 * 2, is governed by operator precedence rules. The rules are the

24 3. THE JUMBALA ACTION LANGUAGE

same as in the Java language and follow mathematical conventions. There-
fore, the value of 100 + 2 * 2 is 104, not 204.

Expressions have types at compile-time and they are subject to static type
checking. Illegal type combinations, such as 100 + false * 2, are reported
as compile-time errors.

Guard conditions in UML state machines can be written as Jumbala ex-
pressions of boolean type. UML states that a model is ill-formed if the eval-
uation of a guard can produce side effects. It is straightforward to use the
interpreter to statically check that a guard indeed produces a boolean value,
but it is not easy to determine statically whether a guard is free from side ef-
fects if it invokes methods. However, it is possible to instrument the simulator
to perform checks at run time by comparing the global configuration before
and after guard evaluation.

3.7.1 Evaluation Order

When expressions are assembled from simpler subexpressions, the evaluation
order of subexpressions is fully specified in Jumbala, like in Java. Generally,
the order is from left to right.

Evaluation order is a distinct concept from precedence. Consider the
expression x + y * z. Operator precedence rules state that y times z is
added to x because multiplication precedes addition. Evaluation ordering
rules state that subexpression x is to be evaluated first, then y, and finally z.

The order of evaluation makes a difference when the subexpressions have
side effects. Because we have fixed the evaluation order, the semantics of
complex expressions is well defined. This prepares the ground for defining
formal semantics. Even insane expressions, such as i += ++i + (i = 7),
have a well-defined meaning. The example assigns to the variable i three
times and reads its value twice. A more subtle setting might involve calling
several methods in one expression, each method having access to the same
object.

3.7.2 Variables

Variables are accessed by their names. A name can be a single identifier or a
qualified name consisting of identifiers separated by periods.

A single identifier can refer to a local variable, a method or constructor
parameter, or a field in an enclosing type. A qualified name always denotes
a field. For example, the expression system.version means either the field
version in the object referred to by the variable system, or a class variable
named version in a class or an interface type system, or an enum constant
version declared in an enum type system. The disambiguation process is
the same as in Java.

The components of an array are variables that are accessed using the no-
tation array[index].

3.7.3 Arithmetic and Bitwise Operators

The set of arithmetic and bitwise operators is copied directly from Java.

3. THE JUMBALA ACTION LANGUAGE 25

The arithmetic operators are unary plus (+) and minus (-), multiplica-
tion (*), division (/), remainder (%), addition (+), and subtraction (-). They
operate on integer operands using 32-bit modulo arithmetics just like in Java.
Bitwise operators on integers, namely bitwise complement (~), shift left (<<),
signed shift right (>>), unsigned shift right (>>>), AND (&), XOR (^), and
OR (|), work as in Java except when using the shift operators with unusual
shift distances (see below).

The AND, XOR, and OR operators work as logical operators when their
operands are of the boolean type. The unary logical complement opera-
tor (!) inverts the truth value of its boolean operand.

The prefix and postfix increment (++) and decrement (--) operators offer
shorthand notation for adding or subtracting 1 from an integer variable. The
prefix expressions ++x and --x modify the value of x and yield the new value,
while the postfix expressions x++ and x-- modify x and return the original
value of x.

Shift Operators

The shift operators are binary operators with two integer operands. The left
operand is the value to be shifted, and the right operand is the shift dis-
tance. The value of n << s is n shifted left by s bit positions. The value
of n >> s or n >>> s is n right-shifted s bit positions with sign-extension or
zero-extension, respectively. In each case, the bits that flow over the 32-bit
boundary are discarded.

Shift operators, often combined with bitwise AND and OR operators, can
be viewed as a low level mechanism that allows quick but restricted multi-
plication and division of integers, as well as packing of several pieces of data
into the different bits of a single integer. They are valuable for efficient direct
handling of hardware registers, and shift operators have direct counterparts
in the instruction set of many microprocessors. Perhaps for this reason the
Java language allows an efficient implementation by not specifying run-time
checks for the amount of shift distance. Instead, when the value to be shifted
is a 32-bit int, the shift distance is forced in the range 0 to 31 by only taking
its 5 lowest-order bits into account.

The Jumbala specification consciously deviates from this behavior by of-
fering a more intuitive approach. If the shift distance evaluates to a value less
than zero, regardless of which shift operator is used, execution interrupts in
a run-time error. If the shift distance is greater or equal to 32, then, concep-
tually, all bits of the original value are shifted out. Therefore, assuming that
s ≥ 32, the value of n << s or n >>> s is 0. The value of n >> s is 0 if n is
non-negative, and −1 otherwise, because of sign-extension.

String Concatenation

The binary + operator is used not only for adding integers but also for concate-
nating Strings. The latter functionality is invoked when the compile-time
type of the left and right operand are both String. This is a more restricting
condition than in Java, where only one of the operands needs to be a String
and the other is implicitly converted by string conversion. Thus, the handy
notation "" + x sometimes used in Java for converting an arbitrary value x

to a String is useless in Jumbala and will result in a compile-time error.

26 3. THE JUMBALA ACTION LANGUAGE

3.7.4 Comparison Operators

The numerical comparison operators less than (<), less or equal (<=), greater
than (>), greater or equal (>=), equal (==), and not equal (!=) compare two
integer values with the obvious semantics.

The equal and not equal operators can also be used to compare boolean

values or references. Two references are considered equal if they are both
null or refer to the same object. References are not equal if they refer to
different objects with the same contents. This coincides with the semantics
in Java.

All comparisons result in a boolean value.

3.7.5 Conditional Operators

The conditional AND (&&) and conditional OR (||) operators differ from
their logical counterparts (Section 3.7.3) by having short-circuit evaluation
rules. If the value of the left-hand operand determines the outcome of the
operator, the right-hand operand is not evaluated at all. As a practical exam-
ple, the expression (y != 0 && x / y > 100) never results in division by
zero. If y equals 0, the subexpression x / y is not evaluated. In contrast, if
the conditional AND (&&) is replaced by a logical AND (&), a run-time error
occurs if y is zero.

The ternary conditional operator (? :) is used to define a conditional
branch inside an expression. It can be viewed as a short-hand replacement
for an if statement (Section 3.8.3). For example, the statement

sign = (x >= 0) ? 1 : -1;

is equivalent to the more verbose form

if (x >= 0) sign = 1; else sign = -1;

3.7.6 Assignments

A simple assignment expression has the form variable = expression. It as-
signs the value of the expression to the variable, which must have a compati-
ble type.

A compound assignment expression variable op= expression is equiva-
lent to the expression variable = variable op expression, except that vari-
able is evaluated only once. The operator op may be any binary arithmetic,
bitwise, or logical operator or the string concatenation operator.

Assignment never makes copies of objects. Assigning to a variable of a
reference type only makes a new reference to an existing object.

An assignment is an expression, not a statement, so it may appear as a
subexpression in a more complex expression. The result of an assignment is
the value assigned to the variable. For example, the expression x = y = 0

assigns the value 0 first to y, then to x.

3. THE JUMBALA ACTION LANGUAGE 27

3.7.7 Creation of Objects

A new expression is used to create new instances of a class type or new arrays.
The resulting value is a reference to the new object. In the UML framework,
a new expression is suitable for creating active as well as passive objects.

The form new classname(arguments) creates a new class instance. The
class must have a constructor (Section 3.9.1) whose parameters match the
given arguments. The expression invokes the constructor and returns with a
reference to the new object. For example, new String() creates an empty
string.

Array creation is illustrated below.

// Create an array of 3 integers, initially zeros.

int[] arr = new int[3];

// Create an array with the given initial values.

arr = new int[] { 1, 4, 9, 16 };

Java has a short-hand form for creating multidimensional arrays in one
step, e.g. arr = new int[2][3]. We do not support such an implicit form
for implementation reasons. In Jumbala, one must write the following to
achieve the same effect.

// Create an array of array of int.

arr = new int[2][];

// Assign an array of int to each component.

arr[0] = new int[3];

arr[1] = new int[3];

3.7.8 Method Invocations

A method invocation, when evaluated, performs a synchronous call to a
method declared in a program. It corresponds to CallOperationAction in
UML (Section 2.4).

Resolving an invocation is a potentially complicated process that involves,
at compile time, selecting a method that best matches the given name and
arguments and, at run time, evaluating the arguments and executing the
body of the method. Furthermore, if the method is associated with an object
(it is an instance method), a reference to a target object is evaluated at run
time and the actual implementation to call is chosen based on the class of
the object. As a result, method invocations are as powerful and flexible as in
Java. Methods are further discussed in Section 3.9.1.

A method invocation has the basic form methodname(arguments). Argu-
ments are given as a comma-separated list. The value of a method invocation
expression is the value returned by the method.

A class name may appear before the name of the method, separated by
a period, to invoke a specific class method. In the following example, we
assume that abs is a class method in class Math. The method is invoked with
the argument value −5.

int x = -5;

x = Math.abs(x);

28 3. THE JUMBALA ACTION LANGUAGE

Another form of invocation has an expression before the name of the
method. The following example first invokes toString on the object that
obj refers to. The return value is a reference to a String, whose method
length is invoked to obtain an integer.

int len = obj.toString().length();

3.7.9 Type Testing

The instanceof operator may be used to test if an object is an instance of a
given reference type. The run-time value of the expression expr instanceof
reftype is true if expr is a reference to an object whose type is (a subtype of)
reftype, and false otherwise. A related expression is a cast, which has the
form (reftype) expr. A cast is used to assure the interpreter that expr refers
to an object of whose type is reftype or its subtype. If the presumption proves
wrong, execution terminates in a run-time error. Otherwise the value of the
cast expression is a reference to the same object. These expressions function
in the same way as in Java.

Below is an example of a common pattern, where a variable obj is cast to
a type Device after checking that obj indeed refers to an instance of Device.

if (obj instanceof Device) {

// It is safe to cast obj to Device.

Device d = (Device) obj;

// Use d as a Device reference.

// ...

}

Another context in which casting is indispensable is when extracting ele-
ments out of a generic container. Assume that List is a container class for
holding a list of generic references, i.e. references to Object. In the example
below, we use a List for storing strings.

List messages = new List();

// No cast is needed here because

// a string is also an Object.

messages.add("Hello!");

String s;

// A cast is necessary because get returns an Object.

s = (String) messages.get(0);

Without casting we would need a separate class for a list of strings. The
current version of Java offers a more elegant solution based on generic types.
Jumbala does not support generic types due to their complexity.

3. THE JUMBALA ACTION LANGUAGE 29

3.8 STATEMENTS

The implementation of methods and constructors is defined by statements.
When a method or constructor is invoked at run time, the statements are
executed sequentially. Statements may also appear outside type declarations
as top-level statements.

Statements in Jumbala have roughly the same role as activities in UML.
An activity in a UML state machine (say, the entry activity of a state) might
be expressed as a Jumbala statement such as ’powerLed = Led.on;’ or as
a sequence of statements. Like activities, statements can be nested in each
other. The kinds of statements that may contain substatements are branching
statements (if, switch) and iteration statements (while, do, for). They are
used to control the flow of execution, as required in Section 3.1.

The most frequently used statements, including expression statements, if
statements, and iteration statements, have the same syntax and semantics as
in Java. Local type declarations within methods are not allowed in Jumbala.
There are no try, throw, or synchronized statements due to the lack of
exceptions and threading. A send statement has been added to allow a clean
syntax for sending signals defined in a UML model.

Statements can be grouped together into a block by surrounding them by
a pair of curly braces. Blocks are mainly useful as substatements in branching
and iteration statements.

3.8.1 Local Variable Declarations

Local variables can be declared wherever statements may occur, i.e. in the
body of a method or on the top level. The scope of a local variable begins
at its declaration and extends to the end of the innermost block or method
body in which the declaration appears. Local variables declared on the top
level can be accessed from top-level statements but not from methods or
expressions that are enclosed in type declarations.

A local variable declared in an activity in a state machine diagram denotes
a temporary storage location that exists only for the duration of that activity.

As a simple example, the following line declares two integer variables x
and y. Variable x is initialized to 12.

int x = 12, y;

If an expression tries to read the value of an uninitialized variable as in
x = y, a run-time error occurs. A Java compiler prevents the situation by
examining the program flow statically and reporting possible problems as
compile-time errors. We postpone the check until run time to make the
implementation simpler.

3.8.2 Expression Statements

An expression statement evaluates an expression for its side effects. Examples
include ’x = 4;’, ’x++;’, and ’list.append(x);’. The terminating semi-
colon is part of the statement. The kinds of expressions whose purpose is
to produce a value without a side effect cannot be used in an expression

30 3. THE JUMBALA ACTION LANGUAGE

statement. For example, ’width() * height();’ or ’this;’ are not valid
statements.

3.8.3 If Statements

An if statement makes a conditional choice based on a boolean test expres-
sion, precisely as in Java. In the example below, the assignment sign = +1

is evaluated if variable x is greater than or equal to zero. The block enclosed
in braces is executed if x is less than zero.

if (x >= 0)

sign = +1;

else {

x = -x;

sign = -1;

}

The else part of an if statement may be omitted.

3.8.4 Iteration Statements

The iteration statements include while, do, and for statements. They have
the same functionality as in Java, with one omission: Jumbala does not sup-
port the enhanced for statements introduced in Java 5.0.

A while statement repeatedly executes a contained substatement, the
body. The body is often a block of statements, sometimes just a single state-
ment. Before each repetition, including the first one, a boolean condition
expression is tested. The condition appears after the keyword while. If the
result of the expression is true, the body is executed and the condition is
tested again. If the result is false, the body is not executed and the while

statement completes.
A do statement is similar to a while statement, but the condition is tested

after each iteration. Syntactically, the condition is placed at the end of the
statement. The body of a do statement is executed at least once.

A third variation is the for statement. It differs from while in that it has
an initialization part, a condition, and an update part in its header. The ini-
tialization part is executed once before the iteration. It may declare local
variables or it may be a comma-separated list of expressions with side effects.
The condition is tested before each iteration. The update part, a list of ex-
pressions, is executed at the end of each iteration.

Break and Continue

There are two special statements for eliciting abnormal flow of control. A
break statement breaks out of an iteration by immediately transferring con-
trol to the next statement following the iteration statement. A continue

statement prevents further execution of the current iteration, transferring
control to the beginning of the next iteration. A break or continue state-
ment may only appear in the body of an iteration statement. A break is also
allowed in a switch statement (Section 3.8.5).

3. THE JUMBALA ACTION LANGUAGE 31

The Java language allows a break or continue to have a labeled iteration
statement as a target, making it possible to cut off several nested iterations
at once. This cannot be done in Jumbala. A break or continue statement
only affects the innermost iteration statement. Consequently, there are no
labeled statements in Jumbala. A programmer who wants to break out of
several levels of iteration has to make the modest effort of introducing a flag
variable to simulate the effect. Apart from this restriction, the behavior of
break and continue statements is identical in Jumbala and Java.

3.8.5 Switch Statements

A switch statement represents a choice with multiple, predetermined possi-
bilities. It consists of the keyword switch followed by a parenthesized switch
expression and a switch body. The switch body contains case labels (of the
form case expression:), at most one default label (of the form default:),
and statements following the labels, all enclosed in a pair of curly braces.

At run time, the switch expression is evaluated and its value is compared to
each case expression in turn. Case expressions are the expressions contained
in case labels. If a match is found, the statements following the case label are
executed. If no match is found, the statements following the default label are
executed. Below is an example.

switch (time) {

case 12:

haveLunch();

break;

case meeting.time:

attend(meeting);

break;

default:

haveCoffee();

}

If time is equal to 12, the method haveLunch is invoked. Otherwise if
time is equal to the field meeting.time, the method attend is invoked
with meeting as the argument. If neither condition holds, haveCoffee is
invoked. The break statements before case and default labels prevent execu-
tion from falling through past the label to the following statements.

Java restricts case expressions to have distinct constant values. This makes
it possible for a Java compiler to implement the selection procedure as an
efficient table lookup. Because Jumbala lacks the notion of compile-time
constant expressions, this rule has been relaxed so that any expression of ap-
propriate type is accepted as a case expression. As a result, the execution
semantics of switch statements is slightly more general than in Java. Many
case expressions may evaluate to the same value. A case expression may have
side effects, and it may evaluate to null. A switch in Jumbala resembles
a chain of if statements that compare the previously evaluated switch ex-
pression to each case expression in turn. When the first match is found, no
further case expressions are evaluated.

32 3. THE JUMBALA ACTION LANGUAGE

In the example above, if the value of time is 12 and meeting.time

also happens to be 12, only the first case expression is examined. The line
’attend(meeting);’ will not be executed. To avoid confusion, the program-
mer is encouraged only to write case expressions that have constant, distinct,
non-null values and no side effects. Under these assumptions, the semantics
in Java and Jumbala are equivalent.

3.8.6 Send Statements

The send statement is a construct that does not exist in Java at all. Its purpose
is to model the transmission of a signal instance within an activity. Because
the transmission of signals has a vital role even in the simplest state machine
models, it is given a specialized syntax that is easily recognized. A send

statement has the form

send name(arguments) to object;

The name of a signal is simply an identifier. The signal may have zero or
more arguments whose values are specified as a comma-separated list. The
expression object evaluates to a reference to the object that receives the sig-
nal.

Internally, a send statement is equivalent to the statement

(object).$$signal_name(arguments);

i.e. the invocation of a method whose name is the concatenation of the string
’$$signal_’ and the name of the signal. (Dollar signs are valid characters in
identifiers.) This form also reveals the semantics of a send statement. It is
verified at compile-time that the expression object evaluates to a reference to
an object that has a method with the aforementioned name. Therefore the
set of possible signals cannot be changed dynamically. The number and types
of parameters for each signal are also fixed at compile-time. At run time, the
value of each argument is evaluated to yield either a value of a primitive type,
a reference to an object, or null.

A simulator that generates the Jumbala source code must ensure that the
implementation of an active class has the appropriate methods to support
sending signals to the object. The body of a signal method places an instance
of the signal in the event pool of the object and performs other bookkeeping
activities. The details depend on the implementation of the simulator.

3.8.7 Assertions

An assertion is a statement of the form assert expression;. At run time the
expression is evaluated, and it is a run-time error if the result is false. This
is a simplified version of assertions in Java, where an error message can be at-
tached to an assert statement, and assertions may be disabled dynamically.

Assertions can be used in a model to explicitly define configurations that
must not be reachable during execution. A verification tool may be able to
automatically prove the validity of an assertion.

3. THE JUMBALA ACTION LANGUAGE 33

class CDRW extends OpticalDisc {

static int capacity = 650;

IntList data;

CDRW() {

// Initialize data with an IntList of length 1.

data = new IntList(1);

}

int read(int position) {

return data.get(position);

}

void write(int position, int value) {

// ...

}

void erase() {

// ...

}

}

Figure 3.1: Declaration of a class in Jumbala.

3.9 TYPE DECLARATIONS

New reference types are introduced by adding a type declaration to the pro-
gram. Class, interface, and enum types all have their own kinds of declara-
tions. Array types are not declared since they exist implicitly.

All information about a type is localized in the declaration of the type and
its supertypes. It is not possible to add later, for example, new methods to a
class or new enum constants to an enum type.

A type declaration may be placed on the top level in a program to declare
a top-level type, or inside a class or interface declaration to declare a member
type. Type declarations may not be placed inside methods or expressions, so
there are no local or anonymous classes like in Java.

3.9.1 Class Declarations

A class is a specification for objects that have similar properties. The decla-
ration of a class defines the name, supertypes, members, and constructors of
the class.

Classes in Jumbala are much like in UML. One use for Jumbala classes
is to implement a passive UML class in a straightforward way. An example
is given in Figure 3.1. The declared Jumbala class CDRW shows a sketch of a
possible implementation of the UML class with the same name, shown as a
class diagram in Figure 2.1.

Supertypes of a Class

The first line of the class declaration in Figure 3.1 says that CDRW extends (is a
direct subclass of) class OpticalDisc, reflecting the generalization relation-
ship between the corresponding UML classes (Section 2.1.3). If the extends

34 3. THE JUMBALA ACTION LANGUAGE

part is omitted in a declaration, then class Object is implicitly extended.
An aspect of the language is that a class must be completely declared be-

fore it is extended. It is an error if the declaration of CDRW appears textually
before or inside the declaration of OpticalDisc. The restriction also ap-
plies if a class implements an interface (using the syntax class classname
implements interfacename) or if an interface extends another interface. The
supertype must be declared before the subtype. In all other situations it is per-
mitted to refer to types, fields, or methods before they are declared, as long
as they are declared at some point in the program.

Java allows the declarations of a subtype and a supertype to appear in any
order. The restriction is included in Jumbala to simplify implementation.

If a class is declared using the keyword final, it may not be extended. For
example, the class String is final to prevent declaring a subclass that breaks
the assumption that strings are immutable.

Members of a Class

The members of a class are types, fields, and methods. Members are declared
in the body of the class declaration using the Java syntax. Members may also
be inherited from a supertype of the class. The rules for inheritance are the
same as in Java.

A member type can be a class, interface, or enum type. A class and its
member type have no special relationship other than the former acting as a
namespace for the latter, affecting the syntax to access the member type. In
Java terms, all member types are implicitly static.

There is no way to restrict access to a member. Java has three access modi-
fiers, “public”, “protected”, and “private”, which do not add to the semantics
of the language but are used to hide information from a client using the
class. Access modifiers cannot be used in Jumbala as we do not consider it
important to implement information hiding in the action language.

Field Declarations

A field can be either a class variable or an instance variable. They correspond
to class and instance attributes in UML. A class variable is global in the sense
that there exists only one copy of the variable at run time. For an instance
variable, every object of the class has its own copy.

The second and third lines of Figure 3.1 declare two fields, capacity
and data. The type of capacity is int and it is a class variable, hence
the modifier static. The declaration of capacity ends with an initializer,
which sets the variable to the value 650. Field initializers are optional. The
field data is an instance variable and its type is IntList. We assume that
IntList is a class representing a list of integers, declared somewhere in the
program. A list is one way of implementing an UML attribute that has a
variable multiplicity, in this case [1..*].

It is also possible to declare a field using the modifier final. Final fields
are used to denote constant values. A final field must have an initializer,
and its value may not be changed after initialization. Java allows final fields
without initializers provided that they are assigned exactly once in every con-
structor. To avoid complexity, we require that all declarations of final vari-
ables contain an initializer.

3. THE JUMBALA ACTION LANGUAGE 35

Method Declarations

A method specifies behavior that can be invoked at run time. A method has
a fixed number of parameters and at most one return value. The example
class declares three methods. The declaration of method read is duplicated
below.

int read(int position) {

return data.get(position);

}

The method takes one parameter, namely position, of type int and
returns a value of type int. The body of the method contains just one state-
ment, a return statement, which is used to return a value from the method.
The value is obtained by invoking a method named get of the object referred
to by the field data. We assume that get is a member of the class IntList
and returns the value of an element of the list.

If a method is declared to return a value, all execution paths should end in
an appropriate return statement. Consider an alternative implementation
of read:

int read(int position) {

if (position < data.length())

return data.get(position);

}

The new implementation attempts to defend against illegal access by check-
ing the validity of the parameter position. However, if the check fails,
execution falls off the end of the method body without reaching a return

statement. Such an execution causes a run-time error in Jumbala. The sit-
uation cannot occur in Java because a Java compiler is required to analyze
the flow of execution and reject methods that may lack a return statement.
Because of its implementation overhead, compile-time flow analysis is not
part of Jumbala.

The problem does not turn up with void methods, such as erase in Fig-
ure 3.1, which do not return a value.

All the methods in the figure are instance methods. An instance method
is always invoked for a specific object. The method body has access to a
reference to the object using the keyword this and to instance variables of
the object, such as data in the example. Analogously to fields, a class method
is not associated with a specific object at run time. The this reference or any
instance variables may not be accessed in the body of a class method. A class
method is declared with the modifier static.

Constructor Declarations

A class has one or more constructors, which are used to initialize objects of
the class. When an object is created, one of the constructors is invoked. The
object cannot be accessed from outside until the execution of the construc-
tor has finished and the object is in a well-defined state. The example of

36 3. THE JUMBALA ACTION LANGUAGE

Figure 3.1 contains one constructor declaration:

CDRW() {

// Initialize data with an IntList of length 1.

data = new IntList(1);

}

Unlike a method, a constructor has no return type and it has the same
name as the class. The sole constructor of CDRW takes no parameters. When
an instance of the class is created, using the expression new CDRW(), the
body of the constructor is executed. In the example, a reference to a new
IntList object is assigned to the field data. Thus, when the new expression
returns a reference to a CDRW object, the field data already contains a list of
1 integer, in accordance with the multiplicity of the attribute.

A class may have several constructors, which are distinguished by the num-
ber and types of parameters. In the beginning of a constructor, any superclass
constructors are properly invoked explicitly or implicitly in the same way as
in Java.

Abstract Classes and Polymorphism
An abstract class is a class that cannot be instantiated. It may have member
types, fields, methods, and constructors like any class, and in addition, it may
have abstract methods, i.e. methods without an implementation. Below is an
example.

abstract class OpticalDisc {

abstract int read(int position);

}

Notice that the body of the abstract method read is replaced by a single
semicolon.

It is a compile-time error to try to create an instance of the class with the
expression new OpticalDisc(). The point of an abstract class is that it may
have a concrete (non-abstract) subclass that can be instantiated and that has
implementations for all methods.

A concrete class that has an abstract superclass must override all abstract
methods declared in the superclass. A method is overridden in a subclass
by declaring another method with the same name and the same number
and types of parameters. For example, the class CDRW in Figure 3.1 correctly
overrides the abstract method read in OpticalDisc.

A variable of type OpticalDisc may be used to invoke the method read.
The implementation to call is chosen at run time according to the class of
the object that the variable refers to, as in the following example. The effect
is known as polymorphism.

OpticalDisc d = new CDRW();

value = d.read(0); // Invokes the method read in CDRW.

A method may be overridden even if it is not abstract. Overriding and
polymorphism automatically applies to all instance methods, but not class
methods. A method may be declared final, in which case it cannot be
overridden. The semantics comes from Java.

3. THE JUMBALA ACTION LANGUAGE 37

An abstract class in Jumbala is like an abstract class in UML, and an ab-
stract method is like an operation without implementation. Notice the in-
coherence in terminology: in UML, a method cannot be abstract because it
is an implementation of an operation. In Java or Jumbala, the word method
refers to both a specification and its implementation. UML does not define
how an operation call resolves to a method. The resolution rules of Java are
just one possibility.

Native Methods
An interpreter is not very useful if it just takes a program, computes a while
and then halts, perhaps producing a run-time error. What is needed is a
way to produce output from the program. Thus, the language has a call-
back mechanism, as outlined in Section 3.2, for supplying values back to the
module that invoked the interpreter.

As in Java, the callback system is implemented using native methods. Any
non-abstract method of a class may be declared native. Below is a declaration
of a native method that prints an integer to the screen.

class PrintWriter {
static native void print(int n);

}

Again, the method body is replaced by a semicolon. The method is not
implemented in Jumbala but in a platform-specific language. When an invo-
cation of PrintWriter.print in a Jumbala program is executed, the inter-
preter calls the native implementation. When the implementation returns,
the interpreter resumes the execution of the program. The details depend on
the implementation of the interpreter.

Native methods may also have a return value, so they can be used for input
as well as output.

In the UML context the simulator invokes the interpreter to step into a
new global configuration. After that the simulator may need to update its
own data structures to reflect the new configuration. The simulator does this
by invoking the appropriate native methods for all relevant data elements,
retrieving the information piece by piece.

3.9.2 Interface Declarations

An interface is like an abstract class that has no implementation. All meth-
ods of an interface are abstract, and all fields of an interface are final class
variables. An interface may not have constructors. Therefore an interface is
merely a specification of a set of methods, possibly completed with related
constant values. A concrete class that implements the interface must have
non-abstract methods whose names, parameter types and return types match
those of the abstract methods in the interface. Figure 3.2 shows a simple
example.

Interfaces add to the power of the language by enabling a limited form of
multiple inheritance. While a class may only extend one superclass, it may
implement any number of interfaces. Interfaces may also extend other inter-
faces. Thus, the class hierarchy forms a tree rooted at Object, and classes
and interfaces together form a directed acyclic graph.

38 3. THE JUMBALA ACTION LANGUAGE

interface Shape {

int getArea(); // The method is implicitly abstract.

}

class Rectangle implements Shape {

int getArea() {

return width * height;

}

int width, height;

// ...

}

Figure 3.2: Declaration of an interface and a class that implements it.

3.9.3 Enum Declarations

An enumerated type or enum has a finite set of values that is fixed at compile
time. The values are called enum constants and they are listed in the decla-
ration of the enum type. Below is a common example, the declaration of a
type whose enum constants are the seven days of the week.

enum DayOfTheWeek {

monday, tuesday, wednesday, thursday, friday,

saturday, sunday

}

For simplicity, enums in Jumbala are less powerful than in Java. Enum
constants are not allowed to have fields or methods. In fact, the only proper-
ties of an enum constant are its name and identity. Even as such, enums are
expected to be useful in many cases, and they are much cleaner and more
type safe than using fixed integer values to denote enumerated constants.

A variable whose type is an enum may hold a reference to an enum con-
stant of that type or the value null. Values may be compared for identity
using the operators == and !=. Below is a declaration of an enum variable,
which is initialized to a reference to one of the enum constants.

DayOfTheWeek today = DayOfTheWeek.thursday;

An enum type may not explicitly extend classes or other enums or im-
plement interfaces. All enum types implicitly extend a common superclass
Enum.

3.10 EXECUTION OF PROGRAMS

A Jumbala program that contains no compile-time errors can be executed.
Execution begins with the creation of all class variables declared in the pro-
gram. After that, the initializers of class variables are evaluated and the results
are assigned to the variables. Then the top-level statements are executed.

3. THE JUMBALA ACTION LANGUAGE 39

During execution, new variables and objects may be created, and methods
may be invoked. The run-time environment must keep track of the values of
variables, plus all the objects that are being referred to by variables of a ref-
erence type. For each method or constructor invocation, a stack frame must
be created that contains the program counter and values of local variables for
the invocation.

Unless a run-time error occurs, the execution of a program finishes when
the last top-level statement has been executed. At this point all methods and
constructors have returned and there are no stack frames. The variables that
still exist are the class variables and the top-level local variables. The values
of these variables are contained in what we call the Jumbala configuration.
If any of the values are references to objects, those objects and their instance
variables and any objects reachable from them are also included in the Jum-
bala configuration.

The Jumbala configuration contains exactly the information that is passed
on when an incremental program is executed. When a new increment be-
gins executing, the values of the class variables and top-level local variables
that were declared in the original program are determined by the Jumbala
configuration. The class variables declared in the new program are then cre-
ated and initialized and the top-level statements executed. This leads to a
new Jumbala configuration that contains values for all the class and top-level
local variables declared so far.

The process may be repeated indefinitely. New incremental programs
can be executed to make changes to the Jumbala configuration or to extract
information from it using native methods.

3.11 DIFFERENCES BETWEEN JUMBALA AND JAVA

Jumbala is close to Java in many respects. The general handling of types,
classes, and variables, the iteration and branching constructs, and integer
arithmetic and other kinds of expressions are almost identical. However,
there are points in Jumbala where the intuition of a Java programmer may be
misleading. In the following we highlight some potential sources of confu-
sion.

Excluded Features

The list of features is more modest in Jumbala than in Java. Most notably,
primitive types are limited to int and boolean, there are no exceptions and
there are no access modifiers. Consequently, Java keywords such as float,
throw, and public have no special meaning. The interpreter treats them as
ordinary identifiers, which may be confusing to an unaware programmer.

Java has a number of short-hand notations, such as one-step allocation of
multidimensional arrays, that are not present in Jumbala. In many places
a modern Java compiler performs implicit conversions between types, for
example, from an int to a String or from an instance of Integer to an
int. In Jumbala one must write all conversions explicitly using method or
constructor invocations.

40 3. THE JUMBALA ACTION LANGUAGE

Added Features
Jumbala introduces two significant new features. The send statement (Sec-
tion 3.8.6) is used to model the transmission of UML signals. A side effect is
that send and to are keywords and may not be used as identifiers.

Another new construct is top-level statements (Section 3.4.1), which allow
program code to be placed outside any class declarations. Variables may
also be declared on the top level but they are only visible to other top-level
statements. Thus, there are still no global variables and no global functions.
Class variables and class methods may be used instead.

Less Compile-Time Checks
A Java compiler is required to perform a sophisticated analysis on the program
to determine, for example, which expressions are compile-time constants,
which statements are definitely unreachable, and which local variables might
go around uninitialized. The standard has been relaxed in Jumbala to allow
a simpler implementation.

As a consequence, certain problems that are caught at compile time in
Java are not checked until run time in Jumbala. Reading an uninitialized
local variable or forgetting a return statement cause run-time errors in Jum-
bala. The initializers of fields, i.e. class variables and instance variables, are
evaluated in the order in which they appear in the program. No checks are
made, not even at run time, to prevent an initializer from accessing a field
that has not yet been initialized. This does not lead to a run-time error be-
cause uninitialized fields, unlike local variables, have a default value of 0,
false, or null depending on the type.

The switch statement (Section 3.8.5) in Jumbala is more general than
in Java. The case expressions are not checked to be constants but they may
be any expressions with a proper type. Some caution is needed from the
programmer to avoid problems following from too complicated case expres-
sions.

3. THE JUMBALA ACTION LANGUAGE 41

4 JUMBALA IN THE SMUML FRAMEWORK

In Chapter 2 we outlined the execution semantics for a restricted subset of
UML, assuming that the behavior of all active objects is specified using state
machines. Chapter 3 described Jumbala as an object-oriented programming
language whose semantics does not depend on a UML model. The purpose
of this chapter is to connect the execution of Jumbala to the execution of
UML.

The presented ideas are based on the implementation of the UML simula-
tor in the SMUML project. As discussed in Section 3.2, the simulator maps
a UML model to a Jumbala program to enable accessing model elements
from state machine activities. The semantics of Jumbala actions are defined
through that mapping. Because all details of the mapping have not yet been
fixed in the simulator, we omit the more subtle parts of the semantics.

In Section 4.1 below we tell what Jumbala expressions in different parts of
the model can do with respect to the UML model. In Section 4.2 we discuss
the mapping from UML to Jumbala and illustrate how the simulator uses the
Jumbala interpreter to execute models. Section 4.3 describes how the various
UML model elements appear in Jumbala.

4.1 THE CONTEXTS OF ACTIONS

We identify three different contexts in a model where action language state-
ments and expressions may appear. First, the activities in state machines are
lists of Jumbala statements. These include the effects of transitions and the
entry and exit activities of states. Second, the guards of transitions are written
in the action language. Guards are not statements but Jumbala expressions
because they must evaluate to true or false. It is the user’s responsibility to
make sure that guards have no side effects. Third, methods, i.e. implemen-
tations of operations, are specified as lists of Jumbala statements.

In accordance with the basic requirements for an action language, the
following bullets describe what Jumbala actions can do and what effects they
can have on the instances of UML elements.

• Guards, methods, and activities can perform basic computations, such
as integer arithmetic.

• Guards, methods, and activities can call operations.

• Methods and activities can navigate, add, and remove links between
objects. Guards can only navigate links.

• Methods and activities can read and write attribute values of objects
reachable by navigating links. Guards can read attributes but must not
change them.

• Methods and activities can send signals.

• Methods and activities can create new active and passive objects.

42 4. JUMBALA IN THE SMUML FRAMEWORK

Naturally, there are things that cannot be done by executing actions. In
the following we list some nontrivial restrictions that are placed on Jumbala
actions either by the SMUML framework or by UML itself.

• The active state configuration of any state machine cannot be exam-
ined or modified.

• The event pool of any active object cannot be examined and event
occurrences cannot be removed. Event occurrences can be added by
sending signals.

• Objects can be accessed only if they are reachable by following links
and attributes.

• It is not possible to multicast or broadcast signals without individually
naming each target object.

4.2 THE MAPPING FROM UML TO JUMBALA

The simulator generates a Jumbala program based on the UML model. Ev-
ery UML class is mapped to a Jumbala class. Attributes and associations are
mapped to fields, and operations are mapped to methods. At run-time, the
simulator keeps track of the correspondence between UML objects and Jum-
bala objects. Attribute values and links in UML are then equivalent to the
values of fields in Jumbala.

Active classes require special attention because the action language ex-
pressions in their state machines must be included in the program. The
Jumbala implementation of an active class has a method for every activity
defined in the state machine of the class. The body of the method is just a
copy of the activity text in the state machine diagram. A UML editor treats
the activity as an uninterpreted string with no meaning. When the string be-
comes part of a Jumbala program, it gets a meaning with respect to the other
entities defined in the program, and it can be executed by the interpreter.
When those other entities are mapped back to UML objects and attributes
by the simulator, the meaning of an activity is defined in the UML model.

Like activities, guards of transitions are also mapped to methods of active
classes. The return type of such a method is boolean and the method body
consists of a single return statement that contains the text of the guard as
an expression. A guard can be an arbitrary boolean expression that has a
meaning in the context of the active class. The user must make sure that
guards are free from side effects.

The special methods representing guards and activities must not be in-
voked from Jumbala code written by the user.

4.2.1 Execution of UML and Jumbala

In Section 2.3 we defined the global configuration in UML as the collection
of all the state information from the objects that exist in a system. In one
execution step between global configurations, one state machine makes a

4. JUMBALA IN THE SMUML FRAMEWORK 43

run-to-completion step. The simulator keeps track of the global configuration
and makes the choices regarding the scheduling of active objects.

In the beginning of a step, the simulator picks, possibly nondeterminis-
tically, one active object whose event pool is not empty. One event occur-
rence is chosen and removed from the event pool. The simulator examines
the event and the active state configuration to find a transition that can be
fired. A transition can only be eligible for firing if its guard condition is true.
At this point, the simulator evaluates guards using the interpreter. If one or
more eligible transitions are found, the simulator fires one of them. If there
are exit activities, transition effects, or entry activities associated with the tran-
sition, the simulator executes them sequentially by invoking the interpreter.
The run-to-completion step does not end until execution of all the activities
has finished.

Guards and activities can access parts of the global configuration, namely
objects, links, and attribute values. This information must be made known
to the interpreter at run time. The Jumbala program that the simulator gen-
erates from the model defines a special array that contains references to all
active objects. The array must not be accessed from the code written by the
user. When the program is executed, the array is initialized according to
the initial conditions specified in the model. The array is implemented as
a class variable (a static field), so it is part of the Jumbala configuration
(Section 3.10) that remains after the program has been executed. The array
contains references to active objects, which contain fields that may in turn be
references to other objects. The effect is that the Jumbala configuration con-
tains all the objects that exist in the global configuration, and their attribute
values and the links between objects.

The simulator uses incremental programs to execute run-to-completion
steps. An incremental program can refer to the class definitions of the orig-
inal program, and it may read and modify the Jumbala configuration. The
simulator generates and executes three kinds of incremental programs.

• Evaluating guards. To evaluate a guard, the simulator executes a pro-
gram that picks an active object from the array and invokes the instance
method representing the guard. The simulator obtains the resulting
boolean value by a native method. This process must not change the
Jumbala configuration, or the model is ill-formed.

• Executing activities. Using the results of guard evaluation, the simu-
lator may choose to fire a transition that has associated activities. To
execute an activity in an active object, the simulator invokes the corre-
sponding method for the object. This time, the Jumbala configuration
may change because activities are allowed to modify objects. The con-
structors of active objects are instrumented so that if new active objects
are created, they are automatically added to the array.

• Updating the global configuration. When all the activities of a run-
to-completion step have been executed, a Jumbala configuration has
been reached that reflects the new global configuration. The simulator
is not yet aware of all the changes, so it makes a program to read all
attributes and links into its own data structures.

44 4. JUMBALA IN THE SMUML FRAMEWORK

4.3 MANAGING MODEL ELEMENTS WITH JUMBALA

A UML model contains model elements such as associations and opera-
tions, whereas a Jumbala program contains elements from a different realm,
e.g. fields and methods. The following sections describe how the various
kinds of model elements appear in Jumbala and how they must be handled
in guards, methods, and activities to achieve a desired effect.

4.3.1 Associations

To obtain a reference to the object executing a guard, activity, or method,
the expression this may be used. This is not allowed in a method that im-
plements a class operation.

Links are run-time instances of associations. Because UML associations
are mapped to fields in Jumbala, links are handled by field access expres-
sions. We only consider associations whose ends have either multiplicity 1

or [0..1].

An expression of the form obj.rolename navigates a link starting from
obj, which must be an expression evaluating to an object reference. The obj
part may be omitted if it is a self-reference, thus this.rolename is equiva-
lent to rolename. The association end opposite to obj must be labeled with
rolename, and the association must be navigable in that direction. The value
of the expression is a reference to the object at the other end of the link.

The expression may be used as the left-hand side of an assignment to mod-
ify a link. The right-hand side must be a reference to an object whose type is
compatible with the association. If the right-hand side is null, the link is re-
moved. Guards must not modify links, neither directly nor indirectly through
operation calls.

It is the user’s responsibility to make sure that links respect the multiplic-
ities of association ends. Associations that are navigable in both directions
are mapped to two fields, one in both end. The user must keep the fields
consistent with each other.

4.3.2 Attributes

Like links, attribute values are accessed with field access expressions of the
form obj.attribute, where attribute is the name of the attribute. Again, obj
and the period may be omitted when accessing an attribute of this. For class
attributes, the form classname.attribute can be used as well.

To change the value of an attribute, the expression may be used as the left-
hand side of an assignment or as the operand of an increment or decrement
(++ or --) expression. Guards must not modify attribute values.

Because Jumbala uses reference semantics for objects like Java, attribute
values are never objects but references to objects. It means that if the type
of attribute attr is a reference type, statements such as ’attr2 = attr;’ or
’operation(attr);’ do not make copies of the object referred to by attr

but only make new references to the same object. The primitive types int
and boolean act differently. They are always passed by value.

4. JUMBALA IN THE SMUML FRAMEWORK 45

4.3.3 Creating Objects

A new expression creates an object of a given class and returns a reference to
the new object. The reference can be stored in an attribute or assigned to an
end of a link.

If the class in a new expression is an active class, the new active object starts
its behavior automatically. However, we assume that two run-to-completion
steps cannot be executing simultaneously. The step that created the object
is first finished before the new object begins to dispatch events from its event
pool.

Guards must not create objects.

4.3.4 Operation Calls

Guards, methods, and activities can call operations using method invocation
expressions. However, there are restrictions that models must obey. First, the
operations called by guards are not allowed to change the global configura-
tion.

Second, to prevent interference between operation calls and the event
mechanism as discussed in Section 2.1.5, any method of a passive class must
not call an instance operation of an active class. Also, a guard, method, or
activity of an active class must not call an instance operation for any active
object other than the one referred to by this. Calls to class operations or
operations of passive classes are not forbidden.

UML does not define a way to select the implementation to execute upon
an operation call. The question is non-trivial when there are several meth-
ods with the same name or when inheritance is involved. In Jumbala, the
selection procedure is based on the name of the method and the types of
arguments, following the rules of Java.

Argument values passed to operations are either primitive values (integers
or Booleans), references to objects, or the special value null. Objects cannot
be passed as arguments. The use of Jumbala restricts operations to have at
most one return value.

4.3.5 Other Expressions

The Jumbala expressions not discussed above are arithmetic and bitwise op-
erators, comparison and conditional operators, and type testing expressions.
These are side-effect free expressions with no semantics related to UML.
They can be used freely in guards, methods, and expressions.

4.3.6 Sending Signals

A send statement sends a signal instance to an active object. In other words,
it adds an occurrence of a signal event to the event pool of that object. The
object can react to the event in a subsequent run-to-completion step.

The name of the signal is determined statically, but the expression denot-
ing the target object can be any expression evaluating to an active object,
including this. Both active and passive objects can send signals. Several

46 4. JUMBALA IN THE SMUML FRAMEWORK

signal instances can be sent to the same object during a run-to-completion
step.

Jumbala allows signals to have associated parameter values. However, the
details of the semantics of signal parameters have not been fixed yet in the
simulator.

4.3.7 Local Variables

A local variable declaration statement may appear in a method or an activity.
A local variable declared in the effect of a transition or in the exit or entry
activity of a state only exists for the duration of the activity. Thus, the values
of local variables are never preserved across run-to-completion steps and they
are not part of the global configuration.

A guard cannot declare local variables because Boolean expressions can-
not contain statements. However, a guard can call operations that use local
variables for computation, as long as the operations do not change the global
configuration.

4.3.8 Other Statements

A return statement is used to return a value from a method. State machine
activities must not contain return statements.

Other Jumbala statements such as if, while, and assert can be used in
methods and activities. Blocks of statements are also allowed. The execution
of a complex statement is confined to one run-to-completion step. No active
object is able to react to new events until the step has finished.

For this reason, nonterminating behavior must not be modeled with an
infinite while loop. Instead, the loop must be converted to a cycle in a
state machine, effectively splitting the execution to several run-to-completion
steps.

4. JUMBALA IN THE SMUML FRAMEWORK 47

5 IMPLEMENTATION

A programming language has little value unless there exists a tool that in-
terprets and executes the language. In Section 3.2 we introduced the Jum-
bala action language interpreter and its place in the tool set of the SMUML
project. The interpreter is a self-contained module that executes Jumbala
programs without knowledge of the UML model that the programs originate
from. All connections to UML are made in the tools that interface with the
interpreter.

Consequently, the interpreter resembles a programming language com-
piler augmented with a simple run-time environment. The interpreter has
been implemented in the Python programming language [4], which is a nat-
ural choice since the other tools in the SMUML project are also written in
Python. It is clear that an interpreter running on top of a high-level inter-
preted language like Python cannot compete in efficiency with industrial-
strength compilers. However, since speed is not expected to be an issue in
running UML simulations, we believe that the increased ease of develop-
ment more than compensates the reduced run-time performance.

5.1 OVERVIEW

A modern compiler divides its task into phases [1], and we follow the tradi-
tion. The first phase is to parse the syntax. The program text is translated
into an abstract syntax tree, which captures the hierarchical structure of the
program together with the details that are relevant to the later phases. The
abstract syntax tree is translated into an internal code language to obtain
a simple and effective representation of the program code. A full-fledged
compiler typically has several additional phases, such as optimizations, flow
analysis, and machine code generation. Our implementation does not make
further conversions but executes the internal code directly in a virtual ma-
chine that is part of the interpreter. Figure 5.1 illustrates the process.

A complete usage example is displayed in Figure 5.2. The Python script
in the figure uses the interpreter to execute a Jumbala program that prints
the string “Hello, world!”. It should be noted that there is no such thing as a
Jumbala source file. The interpreter only supports a programmatic interface
that requires calling several Python functions to achieve any effect. The solu-
tion allows great flexibility, e.g. incremental programming and direct access
to the abstract syntax tree (Section 5.2.1).

As shown in the code listing, the program is passed to the interpreter as
a Python string. The phases of syntax parsing (parse) and translation to in-
ternal code (translate) are followed by execution (initialize and run).
The variable env is used to store the static environment, which functions as a
symbol table that maps names to types and variables during translation. The
variable vm holds a reference to the virtual machine. To achieve incremen-
tality (Section 3.3), the user of the interpreter needs to define an incremental
program as a string and repeat the parsing, translation, and execution phases
reusing the env and vm variables.

48 5. IMPLEMENTATION

abstract syntax tree

internal code

Jumbala program

parse

translate

execute

Figure 5.1: Data flow of the interpreter.

Import the action language interpreter package.
import actlang

Obtain a static environment and a virtual machine.
env = actlang.basetypes.getInitialEnvironment()

vm = actlang.basetypes.getInitialMachine()

Make an input program.
prog = ’System.out.println("Hello, world!");’

Parse the program into an abstract syntax tree.
tree = actlang.grammar.parse(prog)

Translate the tree into internal code.
main = tree.translate(env)

Load the code into the virtual machine.
vm.initialize(main)

Execute the top-level statements.
vm.run()

Figure 5.2: A Python script that uses the interpreter to execute a program.

5. IMPLEMENTATION 49

5.2 PARSING

A common way to implement the parsing phase is to use an automatic parser
generator. We chose a parser generator named PLY (Python Lex-Yacc) [3],
which is a lightweight parsing tool implemented in Python. The parser gen-
erator produces a lexical analyzer, which breaks the input into tokens using
regular expressions, and an SLR [2] parse table, which is derived from a
context-free grammar. The grammar rules are based on the Java grammar
in [12], with simplifications due to reduced features. Some redundant gram-
mar rules have been added to work around limitations of SLR parsing. PLY
also claims to support LALR parse tables but the LALR generation crashes
on our input.

Given an input program, the parser generates an abstract syntax tree whose
structure agrees with the semantic structure of the program. Because the
grammar describes a language that is a superset of Jumbala, an abstract syn-
tax tree may be derived even from a program that contains errors, e.g. type
violations. At a later phase, the abstract syntax tree is subjected to semantic
checks.

As an example, the abstract syntax tree of the program

while (i > 0)

i--;

is shown in Figure 5.3. Syntax nodes (nodes of the abstract syntax tree) are
represented as framed rectangles, with child nodes drawn inside their par-
ents. The class of a syntax node, such as WhileStatement or SimpleName, is
shown in the upper part of the rectangle.

A node may have different kinds of children depending on its class. For
example, the root node has a list of top-level statements as its children, the
first and only one of which is topStatements[0]. A WhileStatement always
has a condition, which is an expression, and a body, which is a statement,
and so on. There is a Python class for each class of syntax nodes, with data
attributes for representing the children.

The leaf node SimpleName has a data attribute identifier that contains
a string, in this case i. Similarly, the IntLiteralExpr has an attribute value,
which is an integer. The nodes GreaterThan and Minus contain no data
because all the information is in the class itself. The symbols > and -- are
included in the figure only to illustrate the correspondence between the ab-
stract syntax tree and the original concrete syntax.

The abstract syntax tree contains all the relevant information of the pro-
gram source, with all the syntactic issues resolved, providing a clean starting
point for the next phase of analysis.

5.2.1 The Abstract Syntax Tree Interface

As explained in Section 3.2, the interpreter is not the only tool that needs to
understand the action language. We also need to support translation from
Jumbala to a model checker. Because the parsing phase remains the same
regardless of the target of translation, it seems reasonable to be able to reuse
the parser.

50 5. IMPLEMENTATION

SyntaxRoot
topStatements[0]

WhileStatement

while (

condition
InfixExpr

leftOperand

SimpleName

identifier: i

operator

GreaterThan
>

rightOperand

IntLiteralExpr

value: 0)

body

ExprStatement
expr

PostfixExpr
operand

SimpleName

identifier: i

operator

Minus
-- ;

Figure 5.3: Abstract syntax tree for the program ’while (i > 0) i--;’.

For this reason, the abstract syntax tree returned by the parser offers in-
terface functions for examining the tree structure. It is thus possible to write
an external tree traversal routine that checks the class of each syntax node
and calls the appropriate interface functions to obtain the children and other
data associated with the node. In practice, the interface consists mostly of
one-line functions that return a data attribute of the node object. The inter-
face has only been implemented for the classes of nodes that are expected to
have relevance in formal verification.

5.3 TRANSLATION TO INTERNAL CODE

One way to execute a program is to traverse its abstract syntax tree. The
program counter is a pointer to a syntax node, and a step of execution involves
evaluating the statement or expression that the syntax node represents and
moving the program counter to another node.

There are a number of reasons why we did not take this approach. The
abstract syntax tree contains redundant structures due to the user-friendly
features of Jumbala. For example, the expression i++ is equivalent to i += 1,
and the iteration constructs while and for are similar in nature. The Python
function that executes a while statement would be very close to the one that
executes a for statement.

Furthermore, if we want static typing or any compile-time checks at all,
we would have to traverse the abstract syntax tree twice, first to make sure
the program is valid and then to execute it. Both traversals need to analyze
the types of expressions, causing redundant work unless the type information

5. IMPLEMENTATION 51

is attached to the syntax nodes during the first round. Also, if performance
becomes an issue in the future, any automatic optimizations would require
rewriting parts of the syntax tree.

Instead of executing the syntax tree directly, we introduce another level
of indirection and translate the abstract syntax tree into an internal code lan-
guage. The translation is done during the same phase as semantic checking,
which is convenient because they both use the same information of types
of expressions. The internal code language is much simpler than Jumbala,
resembling the assembly language of a microprocessor. The code is rep-
resented as a data structure that can be executed without knowledge of the
abstract syntax tree. Compilers use similar languages as an intermediate form
before generating machine code [1].

Each syntax node class has a translation function that calls the transla-
tion functions of the child nodes, performs semantic checks, and generates
the necessary data structures, such as a list of internal code instructions or
a Python object representing a Jumbala reference type. The abstract syntax
tree itself is left intact by the translation phase.

5.3.1 The Internal Code Language

The internal code language is an abstraction used privately in the interpreter.
It is generally not written or read by humans, and it is not meant to be stored
on disc or distributed among computers, so it does not have to meet the same
standards as a programming language. Instead, the language should be small
and fast to execute with a virtual machine, while still being powerful enough
to allow a reasonably succinct translation from Jumbala.

The code language is unstructured in the sense that the only branching
and iteration constructs are unconditional and conditional jumps to labels.
The language is weakly typed. The only types are a 32-bit integer and a
reference to an object. Boolean values are represented as the integers 0 and 1.
The language is unsafe but, as long as it is only generated from valid Jumbala
programs, this should never be a problem.

One difficulty in interpreting a high-level language such as Jumbala is
storing temporary data values. Consider the expression area = width() *

height(). To keep the internal code instructions simple, we want to divide
the expression to at least three parts: one that invokes width, one the invokes
height, and one that performs multiplication. The problem is that the re-
turn value of the method width has to be stored somewhere for the duration
of the invocation of height.

A possible resolution is to use temporary variables to hold intermediate
results. This leads to a three-address code [1] instruction language, where
instructions have the form x := y op z. Another possibility is to use a last-in-
first-out operand stack instead of explicitly named temporaries. During the
implementation, the stack based approach was found to be a more elegant
solution. Using a stack eliminates the need to keep track of the names and
scopes of temporary variables. The suitability of an operand stack was not a
surprise. For the most part, the semantics of Jumbala is equivalent to Java,
and the Java Virtual Machine [24] itself uses operand stacks.

As a result, the internal code is similar to Java bytecode. A difference is

52 5. IMPLEMENTATION

that instructions of the internal code language are stored as Python objects,
one graph of objects for each method or constructor, instead of bytes. Also,
the internal code language is tuned for simplicity, not performance.

Below are examples of the nearly 50 different kinds of internal code in-
structions.

• IntMultiply removes two integers from top of the operand stack, mul-
tiplies them, and pushes the result on top of the operand stack.

• CallDynamic invokes an instance method. The method is chosen
based on the class of an object whose reference is taken from the
operand stack.

• StoreAuto reads the value of a local variable and pushes it on top of
the operand stack.

• IfGoto removes an integer from top of the operand stack, and if it is
nonzero, jumps to a given label.

Currently the translation produces rather naive and inefficient code. If
performance becomes a bottleneck later, optimization patterns may be ap-
plied to the generated internal code.

5.4 RUN-TIME ENVIRONMENT

The run-time environment is a part of the interpreter, consisting of a sim-
ple virtual machine and the objects representing the user-defined Jumbala
reference types.

The virtual machine (VM) is an object that executes internal code instruc-
tions in a loop until the program finishes. The VM also supports execution
in steps, one instruction at a time, although there is no support for debug-
ging other than printing the state of the VM. Before execution, the VM is
initialized with a reference to the instructions that represent the top-level
statements of the program.

The state of the virtual machine consists of the operand stack, the values
of all class variables, and a call stack. The call stack has one stack frame for
the top-level statements plus one for each nested method or constructor invo-
cation. A stack frame contains a program counter, which is a reference to an
instruction, and values for local variables, method or constructor parameters,
and the this reference. When a program has finished executing, the state
of the VM consists of the Jumbala configuration discussed in Section 3.10,
acting as an initial state for executing incremental programs.

Jumbala objects are represented as Python objects of the class Instance,
with data attributes for holding the values of instance variables. If the value
of a Jumbala variable is a reference to an object, it is represented in the im-
plementation as a reference to an Instance. The operand stack may also
contain references to Instances. As a result, there is no need for an explicit
heap of Jumbala objects. This simple design is possible because Python has
a reference semantics similar to Jumbala, and it has a great advantage: there
is absolutely no implementation trouble regarding the destruction of objects.

5. IMPLEMENTATION 53

When an Instance becomes unreachable from the VM, the garbage collector
of the Python interpreter automatically disposes of the object.

5.4.1 Native Methods

The interpreter has an interface to support user-defined native methods (Sec-
tion 3.9.1). A native method is declared in a Jumbala program but its im-
plementation is given in Python. If a program declares native methods, the
user has to provide a mapping from native method declarations to Python
functions before the translation phase.

When a native method is invoked, the interpreter calls the associated
Python function. The method may take parameters of any type. Arguments
of the primitive types int and boolean are converted to their Python coun-
terparts. Objects, including strings, are passed as references to Instance ob-
jects. Conversely, the implementation may return a value back to the Jum-
bala program.

5.4.2 Predefined Classes

The Jumbala language itself is dependent on a set of primordial classes such
as Object and String, which must exist when a translation of a program
begins. In addition, the current implementation defines a class containing
print and println methods similar to those in Java. Therefore it is legal
to write simple test programs such as ’System.out.println(12+7);’ that
print text to the standard output. Internally, the printing methods are imple-
mented using the native interface described above.

Since the action language interpreter is not a general-purpose program-
ming tool but a part of a UML tool set, a comprehensive standard library
is not included in the implementation. When needed, such a library may
be defined externally by writing a Jumbala program that declares the neces-
sary classes and methods, possibly using native implementations for low-level
functionality. The “linking” of the library to a main program is done using
incrementality. The library program is first translated and executed using the
interpreter, and only then the main program that uses the library is translated
and executed as an incremental program.

5.5 ERROR HANDLING

Large portion of the implementation of any programming language inter-
preter concerns detecting and reporting errors in the input program. Detect-
ing errors is laborious but, in principle, straightforward, since the interpreter
only needs to compare the input to the language specification. However,
producing useful error messages for the user is more intricate. Ideally, when
an interpreter finds a compile-time error, it should not only point out the
location of error but also guess the original intention of the programmer and
give an error message that guides the programmer to the right direction.

The Jumbala interpreter returns error messages by raising Python excep-
tions. Separate exception classes are defined for compile-time errors and

54 5. IMPLEMENTATION

run-time errors. The quality of error messages is adequate for small programs
but falls behind industrial-strength compilers.

5.5.1 Compile-Time Errors

Raising an exception during parsing or translation phase immediately aborts
the analysis and returns control to the point where the interpreter was in-
voked. This is perfect for reporting an error. Exceptions eliminate the need
to pass special error values from functions.

However, since we want to be able to catch several compile-time errors at
the same time, the scheme has to be extended. A class named ErrorProxy is
used internally to accumulate error messages from several parts of the pro-
gram. When further progress is obstructed because of errors, the ErrorProxy
raises an exception with all the error messages attached.

Syntax Errors
Syntax errors occur when the program does not comply with the rules of the
context-free grammar. They are detected by the parser generated by PLY.
Although PLY supports recovery and resynchronization using special error
rules, these features have not been employed. Instead, when an unexpected
input element is encountered, a simple message is added to an ErrorProxy.
Parsing continues with the default recovery rules defined in PLY. At the end
of the parsing phase, the ErrorProxy reports the errors to the user and no
abstract syntax tree is generated.

The simple method of just reporting unexpected input tokens is sufficient
as long as the user is familiar with the language syntax. More sophisticated
techniques may be adopted in the future.

Semantic Errors
The translation phase checks the semantic meaning of a program. Errors
caught at this phase include type violations, usage of undeclared names, at-
tempts to instantiate an abstract class, and so on.

Semantic errors are usually localized at a branch of the abstract syntax
tree. If two unrelated branches contain an error, the ErrorProxy mechanism
makes it possible to detect both of them. Consider the following program.

int a = b;
int c = "three";

Even though the translation of the first statement raises an exception because
b is undeclared, the implementation catches the exception and tries to trans-
late the second statement to find out if it contains errors too (it does, "three"
is not an int). At the end, an exception is raised and the user gets a message
for both errors.

The current implementation makes no effort to remove duplicate mes-
sages originating from the same error.

5.5.2 Run-Time Errors

Run-time errors are caught by the virtual machine. The internal code pro-
duced at the translation phase contains the necessary checks, and if the

5. IMPLEMENTATION 55

checks fail during execution, an exception is raised by executing a dedicated
instruction of the internal code language. The module that invoked the in-
terpreter may catch the exception but it is not possible to resume execution
without resetting the virtual machine.

5.5.3 Traceability

The process of program interpretation contains many phases, and errors may
be found at any stage. A challenge in reporting errors in a useful way is
traceability, i.e. the ability to map the point where an error was found back
to an exact location in the original program.

For this reason every node in the abstract syntax tree is associated with a
range of line numbers in the original program. Thus, all compile-time error
messages have an attached line number that point out at least approximately
the source of the error. Also the internal code produced at the translation
phase contains references to the program, or actually, to the abstract syntax
tree. The run-time error messages do not yet employ this information, but in
principle the virtual machine knows which line of the program it is executing.

In the UML framework the problem of traceability is not completely
solved by tracking down the line numbers. If a UML model has an error that
is detected by the action language interpreter, the author of the model does
not want to see a line number referring to Jumbala program but a specific
spot in the UML diagram that contains the error. Therefore a total solution
to displaying useful error messages will not be found until the UML tool set
has found its final form.

56 5. IMPLEMENTATION

6 RELATED WORK

UML is a widely used language and a lot has been published on the subject.
However, not all modeling applications require having an action language. If
UML is used only to describe structural aspects of a system, there is no need
for specifying actions. Even behavioral modeling is sensible without an ac-
tion language as long as the model is not intended to be machine-executable.
In many situations, e.g. when describing use cases, an informal approach
such as pseudocode or natural language is quite enough.

The use of formal action language becomes unavoidable when the actions
in a model have to be executed or analyzed by a computer. Thus, behind
every UML action language there is a tool (or an idea of a tool) that performs,
for instance, automatic code or test generation or formal verification.

The field can be roughly divided in two. Many industrial modeling tools
support a large number of UML features with an expressive action language
and capability for code generation. On the other hand, academic research
typically concentrates on formal verification of UML models with more em-
phasis on handling concurrency than on interpreting actions.

On the commercial side, the model-driven software development tool Tau
by Telelogic [34] has its own action language. The language has a textual
Java-like syntax, and in addition, some of the actions have a graphical syntax.
Program code can also be written directly in the language targeted for code
generation.

The action language in the context of Executable UML [30] is called
ASL. It is used in Kennedy Carter’s iUML tool [19]. The idea of ASL is to
enable writing implementation-free specifications of actions. ASL has built
in high level expressions with semantics such as “find all instances of Ac-
count where balance < 0.0”. Both ASL and the Tau action language support
a rich set of features, including integer, real, and string data types, loops and
branching, creation of new objects, definition and invocation of methods,
sending signals with parameters, nondeterministic choices, and timer oper-
ations. The extent of these languages is comparable to Jumbala, although
our approach lacks support for real numbers, expressions that return nonde-
terministic values, and real-time models. The difference is explained by the
different sets of goals. Because our aim is to support formal verification, we
have not included some more intricate language features, especially those
not present in our baseline language Java. Other industrial-level action lan-
guages are listed in [30, p. 247].

The idea of applying formal verification on UML-type state machine mod-
els is not new. Latella et al. [22] present a translation from UML state ma-
chines to PROMELA, the input language of the SPIN model checker [17].
They only allow a model to contain a single state machine, which may how-
ever have several orthogonal regions. Another translation to PROMELA is
by Mikk et al. [27]. Their input language is not UML state machines but
Statecharts, which is a similar formalism with slightly different semantics.
Del Bianco et al. [5] have written a program that translates real-time UML
models to timed automata that are verified by the tool Kronos. All these
works have the limitation that no data attributes can be associated with ob-

6. RELATED WORK 57

jects or state machines. The only way to model data is to encode it as the
states of a state machine. Consequently, there is no action language, and the
only effect that a transition may have is to send a signal with no parameters.

The vUML tool by Lilius and Porres [23] also verifies UML state ma-
chine models with SPIN. The tool supports object attributes of integer type,
which can be accessed from guards and effects of transitions. A dedicated
action language is not introduced. Guards and actions are written directly in
PROMELA, and dynamic creation of new objects is not allowed.

Haustein and Pleumann [16] suggest an action language named ASOQ
that has OCL as a subset. OCL (Object Constraint Language) is a side-
effect free query language used in the specification of UML. ASOQ incor-
porates side effects by including assignments and non-query method invoca-
tions. However, the considered problem domain is not the verification of
reactive systems but a run-time environment for web applications. Conse-
quently, there is no support for asynchronous signal transmission in ASOQ.

An action language for reactive systems has been developed in the Omega
project [13], whose aim is to define a development framework for embedded
systems based on UML and formal techniques. The Omega Action Language
OMAL [21] has a minimal syntax and is statically typed. The features include
loops and branches, nondeterministic choices, parallel interleaving, object
creation, and sending of signals with parameters. Integer, real, and string
data types are supported, and a subset of OCL is used for accessing collection
types. Complexity of statements is limited to avoid the need for temporary
variables in implementation. For example, nested operation calls are not
allowed, and the only way to use the result of an operation call is to assign
the return value to an attribute.

The tool Hugo/RT by Knapp et al. [20] verifies UML state machine mod-
els against scenarios specified by UML collaborations. Hugo/RT can trans-
late models to several verification back-ends, including SPIN. The tool uses a
proprietary action language that is similar to OMAL. However, the language
does not support string or real data types, loop constructs, return values of
operators, or creation of objects.

Compared to other action languages designed in a verification framework,
Jumbala has a rich set of expressions, with support for all Java operators, type
hierarchies and polymorphism, and arbitrary nesting of method invocations.
Jumbala also allows declaration of variables local to a block, and dynamic cre-
ation of objects and arrays, which are not possible in most UML verification
tools. Other action languages have features that are not present in Jumbala,
such as parallel composition of statements and nondeterministic choice of
values. We assume that parallelism and nondeterminism are modeled at the
level of state machines, not at the level of actions. This reflects a conscious
choice to favor modeling nondeterministic flow of control instead of non-
deterministic data. Although Jumbala has features that make it possible to
model complex computation, it is possible that the full potential will not be
utilized in the verification process because of technical restrictions.

58 6. RELATED WORK

7 DISCUSSION AND CONCLUSIONS

We have specified a UML action language named Jumbala and implemented
an interpreter for the language in Python. Jumbala is suitable for specify-
ing activities in UML diagrams. At the same time, it is a complete object-
oriented programming language based on Java.

The Jumbala interpreter is utilized by two other tools that have been de-
veloped in the SMUML project. A UML simulator executes UML models
using the interpreter as a back-end, as described in Section 3.2. The currently
supported UML subset is slightly different from that presented in Chapter 2.
The second tool translates executable UML models to the input language of
the SPIN model checker [17]. Action statements are translated from Jumbala
using the abstract syntax tree interface of the interpreter (Section 5.2.1).

7.1 IMPLICATIONS OF FOLLOWING JAVA

The biggest design decision has been to choose Java as the basis of the action
language. We have benefited from the choice during the design phase of
the language. Having an established foundation has saved us from making
(possibly bad) choices regarding the details of syntax and semantics. Java also
has many features that are meaningful in the context of UML and that we
could employ directly, such as classes, interfaces, enumerated types, fields
(attributes in UML), and methods. The coherence between UML and Java
is probably not a coincidence, as both languages evolved during the rise of
object-oriented methods in the 1990’s.

Despite the similarities, UML is not confined to support a single program-
ming language. The class structure in UML is more permissive than in Java,
allowing e.g. multiple inheritance of classes. The choice of a Java-based ac-
tion language restricts the kinds of models that can be handled. For example,
UML specifies an action named ReclassifyObjectAction, which changes the
classifier of an existing object. Such an action severely contradicts the idea of
a statically typed action language. Therefore we do not support models that
rely on reclassifying objects.

At this point we have to remember that the ultimate goal is not to be able
to interpret every conceivable UML construct but to formally verify behav-
ioral aspects of nontrivial models. In this setting the real challenge is not in
defining an action language that is expressive enough but in developing a
verification framework that scales up to industrially relevant problems. The
Jumbala language already has powerful features such as user-definable data
types and dynamically allocated arrays, which must be used with care to avoid
ruining verifiability. Language restrictions such as static typing are a way to
increase the chances of successful verification.

Much of the effort in specifying and implementing Jumbala has gone
into features that are technically redundant but that make life easier for the
programmer. Examples include the increment and decrement operators
(++ and --), the ternary conditional operator (? :), the switch statement,

7. DISCUSSION AND CONCLUSIONS 59

and method overloading (allowing different methods with the same name) 1.
All these constructs can be circumvented in a program with modest effort.
Another feature that complicates the specification but makes the language
appear simpler is that a period between names can denote both field access
and scope resolution. In practice it means that X in the expression X.y can
be either a type or a variable, depending on the context. Disambiguation of
names would have been simpler if we had introduced a dedicated notation
for scope resolution.

The practical value of these features can be debated, especially since the
number of Java programmers in the world is several orders of magnitude
larger than the number of potential Jumbala programmers. We omitted sev-
eral features of Java to make the language simpler but we could have gone
even further without making the language too unwieldy to use. As a down-
side, this would have increased the number of differences between Jumbala
and Java. One of the reasons for replicating much of the syntax of Java is that
existing snippets of Java code can be used without having to convert them
from one syntax to another.

The proper balance between simplicity and user friendliness depends on
how the language is used. We might be inclined to incorporate new shortcut
notations from Java after hearing feedback from programmers.

7.2 FUTURE WORK

The direction of future development depends on the kinds of models that we
are required to support. The set of features that UML allows is huge, but we
are only interested in those that are actually used in industrial models. The
expansion of the supported UML subset mainly affects the simulator, but it
may also affect the requirements for the action language.

A fundamental feature that is not yet supported in the simulator is at-
tributes with multiplicities (Section 2.1.1). Arrays in Jumbala can hold mul-
tiple elements but their length cannot be changed after creation. One way to
represent an attribute with variable multiplicity is to wrap it in a suitable class
such as List that is implemented in Jumbala. This requires no extensions to
the action language but the resulting syntax for accessing the attribute would
become rather verbose. Another solution is to add more built-in container
types to the action language. This would strengthen the connection to UML
but at the same time make the language more complex and take it further
away from Java.

Other possible extensions to the language include support for narrower
than 32-bit integers, unbounded integers, and rational numbers.

The current implementation of the Jumbala interpreter is not fast. This is
expected because the execution of a single instruction of internal code (Sec-
tion 5.3) involves calling several Python functions in the virtual machine.
This is only an issue when simulating models, because the actual formal ver-
ification phase will not be built on top of the interpreter. If simulation of large
models turns out to be painfully slow, performance of the virtual machine

1It is interesting to note that Python – which is considered to be a programming language
that maximizes productivity – does not have a counterpart for any of these shortcut notations.

60 7. DISCUSSION AND CONCLUSIONS

has to be boosted. Perhaps the most straightforward way is to try to speed up
the Python interpreter using a just-in-time compiler such as Psyco [31]. We
could also optimize the implementation of the virtual machine by hand so
that it executes code instructions faster. Furthermore, the number of instruc-
tions to execute could be reduced by applying optimization patterns to the
generated internal code.

The existing implementation for simulating models does not fully enforce
consistency between a UML model and its run-time instances. When exe-
cuting a well-formed model, the evaluation of a guard expression never has
any side effects, and the two ends of a bidirectionally navigable link always
point at each other. In these respects, the simulator relies on the user to make
only well-formed models. To make the system more robust, the simulator-
interpreter interface could be improved by implementing run-time checks
that give an error message if an execution violates the model, or by limiting
write access to links so that illegal configurations could not be reached.

A related future task is to continue the work on defining the semantics of
Jumbala with respect to UML. At present, we have informal execution se-
mantics for Jumbala programs that are treated as self-contained entities with
no connection to UML model elements. The implementation of the sim-
ulator makes the connection by replicating the UML class structure in a
Jumbala program, although not all features of UML are yet supported. This
could be the starting point for defining the full semantics of Jumbala expres-
sions as UML actions.

ACKNOWLEDGEMENTS

This report is a reprint of my Master’s thesis. I want to express my gratitude to
Prof. Ilkka Niemelä, the supervisor of the thesis, for his insight and guidance
and for helping me see what is essential. I also thank my instructor, Dr. Timo
Latvala, who was never too busy to sit down and study my sketches, and who
did not spare efforts in giving valuable comments on the work.

I would like to give special thanks to Dr. Tommi Junttila for the numerous
discussions regarding the subtleties of UML and for offering me the opportu-
nity to work with this subject in the first place.

This work has been funded by Tekes (Finnish Funding Agency for Tech-
nology and Innovation), Nokia Oyj, Conformiq Oy, and Mipro Oy. Their
support is gratefully acknowledged.

ACKNOWLEDGEMENTS 61

BIBLIOGRAPHY

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi-
ples, Techniques, and Tools. Addison-Wesley, 1986.

[2] Andrew W. Appel. Modern Compiler Implementation in Java. Cam-
bridge University Press, second edition, 2002.

[3] David Beazley. PLY (Python Lex-Yacc). Software. http://www.

dabeaz.com/ply/.

[4] David Beazley. Python essential reference. New Riders, second edition,
2001.

[5] Vieri Del Bianco, Luigi Lavazza, Marco Mauri, and Giuseppe Oc-
corso. Towards UML-based formal specifications of component-based
real-time software. In Mauro Pezzè, editor, Fundamental Approaches
to Software Engineering, 6th International Conference (FASE 2003),
volume 2621 of Lecture Notes in Computer Science, pages 118–134.
Springer, 2003.

[6] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan
Zhu. Symbolic model checking without BDDs. In Rance Cleaveland,
editor, Tools and Algorithms for Construction and Analysis of Systems,
5th International Conference (TACAS ’99), volume 1579 of Lecture
Notes in Computer Science, pages 193–207. Springer, 1999.

[7] Barry W. Boehm. Software Engineering Economics. Prentice-Hall,
1981.

[8] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Mod-
eling Language User Guide. Addison-Wesley, second edition, 2005.

[9] Edmund M. Clarke. Counterexample-guided abstraction refinement.
In 10th International Symposium on Temporal Representation and
Reasoning / 4th International Conference on Temporal Logic (TIME-
ICTL 2003), page 7. IEEE Computer Society, 2003.

[10] Edmund M. Clarke and Robert P. Kurshan. Computer-aided verifica-
tion. IEEE Spectrum, 33(6):61–67, 1996.

[11] Bruce Powel Douglass. Real-Time UML. Addison-Wesley, third edi-
tion, 2004.

[12] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Lan-
guage Specification. Addison-Wesley, third edition, 2005.

[13] Susanne Graf and Jozef Hooman. Correct development of embedded
systems. In Flávio Oquendo, Brian Warboys, and Ronald Morrison, ed-
itors, Software Architecture, First European Workshop, (EWSA 2004),
volume 3047 of Lecture Notes in Computer Science, pages 241–249.
Springer, 2004.

62 BIBLIOGRAPHY

http://www.dabeaz.com/ply/
http://www.dabeaz.com/ply/

[14] David Harel. Statecharts: A visual formalism for complex systems. Sci-
ence of Computer Programming, 8(3):231–274, 1987.

[15] David Harel and Amir Pnueli. On the development of reactive systems.
In Krzysztof R. Apt, editor, Logics and Models of Concurrent Systems,
volume 13 of NATO, ASI Series, pages 447–498. Springer, 1985.

[16] Stefan Haustein and Jörg Pleumann. OCL as expression language in an
action semantics surface language. In Octavian Patrascoiu, editor, OCL
and Model Driven Engineering, UML 2004 Conference Workshop,
pages 99–113. University of Kent, 2004.

[17] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on
Software Engineering, 23(5):279–295, 1997.

[18] Jukka Honkola, Sari Leppänen, and Teemu Tynjälä. Modeling the
SpaceWire architecture with Lyra. In Fifth International Conference
on Application of Concurrency to System Design (ACSD 2005), pages
15–24. IEEE Computer Society, 2005.

[19] Kennedy Carter Ltd. iUML. Software. http://www.kc.com/

products/iuml.php.

[20] Alexander Knapp, Stephan Merz, and Christopher Rauh. Model
checking timed UML state machines and collaborations. In Werner
Damm and Ernst-Rüdiger Olderog, editors, Formal Techniques in
Real-Time and Fault-Tolerant Systems, 7th International Symposium
(FTRTFT 2002), volume 2469 of Lecture Notes in Computer Science,
pages 395–416. Springer, 2002.

[21] Marcel Kyas, Joost Jacob, Ileana Ober, Iulian Ober, and Angelika Vot-
intseva. OMEGA syntax for users, January 2005. Omega Deliverable
D2.2.3 Annex 1.

[22] Diego Latella, István Majzik, and Mieke Massink. Automatic verifica-
tion of a behavioural subset of UML statechart diagrams using the SPIN
model-checker. Formal Aspects of Computing, 11(6):637–664, 1999.

[23] Johan Lilius and Ivan Porres Paltor. vUML: a tool for verifying UML
models. Technical Report TUCS-TR-272, Turku Centre for Computer
Science, Finland, May 18, 1999.

[24] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specifica-
tion. Addison-Wesley, second edition, 1999.

[25] Kenneth L. McMillan. Interpolation and SAT-based model checking.
In Warren A. Hunt Jr. and Fabio Somenzi, editors, Computer Aided
Verification, 15th International Conference (CAV 2003), volume 2725
of Lecture Notes in Computer Science, pages 1–13. Springer, 2003.

[26] Kenneth L. McMillan and Nina Amla. Automatic abstraction without
counterexamples. In Hubert Garavel and John Hatcliff, editors, Tools

BIBLIOGRAPHY 63

http://www.kc.com/products/iuml.php
http://www.kc.com/products/iuml.php

and Algorithms for the Construction and Analysis of Systems, 9th Inter-
national Conference (TACAS 2003), volume 2619 of Lecture Notes in
Computer Science, pages 2–17. Springer, 2003.

[27] Erich Mikk, Yassine Lakhnech, Michael Siegel, and Gerard J. Holz-
mann. Implementing statecharts in PROMELA/SPIN. In 2nd
Workshop on Industrial-Strength Formal Specification Techniques
(WIFT ’98), pages 90–101. IEEE Computer Society, 1998.

[28] Object Management Group. MDA Guide Version 1.0.1, 2003.
http://www.omg.org/cgi-bin/doc?omg/03-06-01.

[29] Object Management Group. UML 2.0 Superstructure Specification,
2005. http://www.omg.org/cgi-bin/doc?formal/05-07-04.

[30] Chris Raistrick, Paul Francis, John Wright, Colin Carter, and Ian
Wilkie. Model Driven Architecture with Executable UML. Cambridge
University Press, 2004.

[31] Armin Rigo. The Ultimate Psyco Guide, 2005. http://psyco.

sourceforge.net/psycoguide.ps.gz.

[32] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Mod-
eling Language Reference Manual. Addison-Wesley, second edition,
2004.

[33] Jørgen Staunstrup, Henrik Reif Andersen, Henrik Hulgaard, Jørn Lind-
Nielsen, Kim Guldstrand Larsen, Gerd Behrmann, Kåre J. Kristof-
fersen, Arne Skou, Henrik Leerberg, and Niels Bo Theilgaard. Prac-
tical verification of embedded software. IEEE Computer, 33(5):68–75,
2000.

[34] Telelogic. Telelogic Tau G2. Software. http://www.telelogic.
com/.

[35] Antti Valmari. The state explosion problem. In Wolfgang Reisig and
Grzegorz Rozenberg, editors, Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science, pages 429–528.
Springer, 1998.

64 BIBLIOGRAPHY

http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://psyco.sourceforge.net/psycoguide.ps.gz
http://psyco.sourceforge.net/psycoguide.ps.gz
http://www.telelogic.com/
http://www.telelogic.com/

HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY FOR THEORETICAL COMPUTER SCIENCE

RESEARCH REPORTS

HUT-TCS-A88 Harri Haanpää

Minimum Sum and Difference Covers of Abelian Groups. February 2004.

HUT-TCS-A89 Harri Haanpää

Constructing Certain Combinatorial Structures by Computational Methods. February 2004.

HUT-TCS-A90 Matti Järvisalo

Proof Complexity of Cut-Based Tableaux for Boolean Circuit Satisfiability Checking.

March 2004.

HUT-TCS-A91 Mikko Särelä

Measuring the Effects of Mobility on Reactive Ad Hoc Routing Protocols. May 2004.

HUT-TCS-A92 Timo Latvala, Armin Biere, Keijo Heljanko, Tommi Junttila

Simple Bounded LTL Model Checking. July 2004.

HUT-TCS-A93 Tuomo Pyhälä

Specification-Based Test Selection in Formal Conformance Testing. August 2004.

HUT-TCS-A94 Petteri Kaski

Algorithms for Classification of Combinatorial Objects. June 2005.

HUT-TCS-A95 Timo Latvala

Automata-Theoretic and Bounded Model Checking for Linear Temporal Logic. August 2005.

HUT-TCS-A96 Heikki Tauriainen

A Note on the Worst-Case Memory Requirements of Generalized Nested Depth-First Search.

September 2005.

HUT-TCS-A97 Toni Jussila

On Bounded Model Checking of Asynchronous Systems. October 2005.

HUT-TCS-A98 Antti Autere

Extensions and Applications of the A
∗ Algorithm. November 2005.

HUT-TCS-A99 Misa Keinänen

Solving Boolean Equation Systems. November 2005.

HUT-TCS-A100 Antti E. J. Hyvärinen

SATU: A System for Distributed Propositional Satisfiability Checking in Computational

Grids. February 2006.

HUT-TCS-A101 Jori Dubrovin

Jumbala — An Action Language for UML State Machines. March 2006.

ISBN 951-22-8102-3

ISSN 1457-7615

	Introduction
	UML
	Objects and Classes
	Attributes and Operations
	Associations
	Generalization and Interfaces
	Enumerations
	Active Objects

	State Machines
	States and Transitions
	Behavior of Active Objects

	Global Configuration
	Object Diagrams

	Actions and Activities

	The Jumbala Action Language
	Requirements for an Action Language
	The SMUML Setup
	Design Choices
	Program Structure
	Top-Level Statements

	Types
	Primitive Types
	Reference Types
	Subtypes
	Strings
	Arrays

	Life Cycle of Objects
	Expressions
	Evaluation Order
	Variables
	Arithmetic and Bitwise Operators
	Comparison Operators
	Conditional Operators
	Assignments
	Creation of Objects
	Method Invocations
	Type Testing

	Statements
	Local Variable Declarations
	Expression Statements
	If Statements
	Iteration Statements
	Switch Statements
	Send Statements
	Assertions

	Type Declarations
	Class Declarations
	Interface Declarations
	Enum Declarations

	Execution of Programs
	Differences Between Jumbala and Java

	Jumbala in the SMUML Framework
	The Contexts of Actions
	The Mapping from UML to Jumbala
	Execution of UML and Jumbala

	Managing Model Elements with Jumbala
	Associations
	Attributes
	Creating Objects
	Operation Calls
	Other Expressions
	Sending Signals
	Local Variables
	Other Statements

	Implementation
	Overview
	Parsing
	The Abstract Syntax Tree Interface

	Translation to Internal Code
	The Internal Code Language

	Run-Time Environment
	Native Methods
	Predefined Classes

	Error Handling
	Compile-Time Errors
	Run-Time Errors
	Traceability

	Related Work
	Discussion and Conclusions
	Implications of Following Java
	Future Work

	Bibliography

