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ABSTRACT: In addition to data storage and indexing systems, computational
grids are used for solving computationally demanding tasks. Because of the
inherent communication delays and high failure probabilities of a loosely
coupled and large computational grid, such an environment poses a great
challenge for highly data-dependent algorithms. In this work we present a
distribution scheme for solving propositional satisfiability problem (SAT) in-
stances, called scattering. The key advantages of scattering are that it can
be used in conjunction with any sequential or parallel satisfiability checker,
including industrial black box checkers, and that the distribution heuristic is
strictly separated from the heuristic used in sequential solving. We also give
an implementation of the scheme and benchmark it using a production-
level grid. The benchmarks range from factorization to cryptanalysis and
random 3SAT. Some benchmarks not known to have been solved previously
are solved with the distribution scheme.

Scattering is analysed with respect to the challenges posed by the grid
environment: the long communication delays and the high failure rates of
individual jobs. We study different approaches to coping with the communi-
cation delays and thus maximizing the effective parallelism in the grid. We
give a criterion for the completeness of the scattering in a pure grid environ-
ment with failures.

KEYWORDS: Parallel Search Algorithms, Parallelization of DPLL proce-
dure, Propositional Satisfiability, Computational Grid
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1 INTRODUCTION

After the rise of the Internet and with its ever increasing amount of con-
nected computing and storage resources, new parallel computing models
utilizing the unstable but powerful new environment are being widely stud-
ied. This new, loosely coupled and heterogeneous computing environment
is named after the electric grid, to which it is somewhat analogous, simply as
the grid [29].

Many success stories already exist where grid computing has played a ma-
jor part, SETI@home [53] and GoogleTM [13] search engine to name a few.
Still, there is more to be achieved by distributing computing power in the
Internet in the same way as electricity is distributed in a power grid. The
construction of the electric grid has created a myriad of applications. The
main reason for the success of the electric grid is that it is easy to use, reli-
able, cost effective and available virtually everywhere. If the computational
grid meets these criteria, there is every reason to believe that it will achieve a
similar role amidst the general public. An example of an ambitious work-in-
progress towards this goal is NorduGrid [25], a network of computer clusters
available for general purpose computing to the members of the organization.

The computational grid has also political, economical and ecological as-
pects. As a large scale project with huge implications, it might be the most
interdisciplinary subject ever to have emerged from the field of computer
science. As the location of the nodes in the grid is insignificant, the inter-
national community is free to place the nodes anywhere in the geo-political
map. This includes the developing countries and provinces, wherever the
local climate is not prohibitive for computers. The cost of even a large high-
end cluster is dramatically smaller than the cost of a traditional mainframe
computer and the computational power of the grid is not so much dependent
on the power of its discrete components. This enables small companies and
universities with limited economical capacity to build computing nodes and
join a computational grid. The environmental aspects of the computational
grids are analogous to the electric grid: it is clear that producing electricity
centrally for a large number of clients is more environmentally friendly than
producing it locally assuming that the production is done ecologically in both
cases. Same arguments hold for the computational grid. Most computing
cycles in the world are wasted on idle processes. By sharing the computing
power, higher usage rate can be achieved and thus less computers will be
required to satisfy the same need for computing time.

Since computational grids are becoming an inexpensive way of distribut-
ing computational power over large user base, the work of designing algo-
rithms suitable for the requirements of grids has recently received interest.
A classical computationally demanding problem is the propositional satisfia-
bility problem [42]. The propositional satisfiability problem (SAT), i.e., the
problem of determining whether there is a satisfying assignment to a Boolean
formula belongs to the set of NP-complete problems, as shown by Cook [19].
No deterministic algorithm yielding a guaranteed polynomial-time solution
to a generic NP-complete problem is known; the best current algorithms suf-
fer from worst case exponential run times with respect to the problem size.

1. INTRODUCTION 1



As problems emerging from different areas of research turn out to be com-
putationally difficult, some being NP-complete, it is tempting to try to de-
velop reductions from the original problem to a general form and examine
the problem with an optimized algorithm. These reductions are typically
much simpler to create than writing problem specific optimized algorithms
and thus the time and effort spent in creating an efficient generic algorithm
is definitely worthwhile. Any NP-complete problem solving algorithm would
be fit for the purpose. However, SAT has some advantages, being much stud-
ied, simple to represent and for many problems, a natural target language.

This reasoning leads to an idea of a programming language which is suit-
able for high-level problem descriptions from different fields, such as hard-
ware verification, artificial intelligence and bioinformatics, and which can be
converted to SAT. Then an optimized and efficient SAT checker is used as a
back-end to solve the actual problem and another filter is used to transform
the results to the domain-specific expressions.

A turn-side of the generality of SAT is the unpredictability in comput-
ing time. A typical set of SAT instances from an industrial problem might
have solving times ranging from seconds to days, even though the instance
descriptions might be equally large when measured, say, by the number of
variables in the problem. In fact, the mean of the run time for a certain
problem class and size does not seem to be well-defined in the algorithms
typically used [31]. This empirical observation has to be taken into account
when solving any NP-complete problems, such as SAT.

Many interesting practical and theoretical problems have been formulated
as propositional formulas and solved successfully. To name a few, probably
the most famous application domains of SAT solving are circuit verification
(see, for example [9, 8, 54]) and VLSI-routing problems [1]. The transforma-
tion of a practical problem to a propositional formula has also been success-
fully applied to verifying consistency and completeness of an on-line help sys-
tem [50]. An extension of a SAT solver where it is possible to add constraints
concerning the amount of true literals in a clause has been successful in the
sports tournament scheduling [57]. An early work shows that SAT solvers are
suitable for solving scheduling problems [21], and another one shows how
SAT solving can be used in generating test patterns for single stuck-at faults
in combinational circuits [36]. An experiment in the AI planning field shows
that SAT formulation gives more flexibility compared to traditional deduc-
tion method [35]. Transformations from answer set programming (ASP) [40]
to SAT are increasingly common mainly because of the increased efficiency
of SAT checkers [30]. This opens new application fields, including histori-
cal analysis of natural languages and parasite-host systems [14, 26] and many
others. Due to the advances on the SAT solving technology, SAT solving has
recently been applied to model checking [2], a field previously dominated by
Binary Decision Diagram (BDD) [15] based solvers.

SAT solvers are being actively developed both in the industry and in ac-
ademia. The SAT solver competition [18, 48, 6, 7], organized since 2002,
illustrates the progress of the solvers. The winning solver from previous years
usually perform only moderately when compared to new solvers. The paral-
lel SAT solving has recently received interest with the increasing importance
of SAT-based systems in the industry. The continuous and rapid evolution
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of solvers together with the grid, a loosely coupled parallel executing envi-
ronment, compose an interesting challenge for parallel solvers. The con-
ventional method for parallelization is a solver running in a tightly coupled
multiprocessor architecture with shared memory working on a single prob-
lem instance. While this path leads to efficient programs and delicate pro-
gram structures, our fear is that the inherent complexity of parallel comput-
ing makes it expensive to modify the solvers as the solving techniques evolve.

1.1 THIS WORK

In this work we study how computational grids can be used in solving of chal-
lenging propositional satisfiability problems. For this purpose we develop a
distributed search technique for SAT. The technique is based on dividing the
SAT problem instance in question into more and more constrained subprob-
lems which are then submitted to grid nodes to be solved there.

We use the Davis-Putnam-Logemann-Loveland (DPLL) SAT solving al-
gorithm in an environment where parallel tasks are only able to communi-
cate through a central authority. We want to use existing and unmodified
SAT solvers to be able to benefit from the continuous evolution of sequen-
tial solvers without the need to make expensive modifications to their source
code. This type of solving fits well computational grids, where direct com-
munication between jobs is costly and sometimes impossible due to network
security considerations. Our base model is a master-slave architecture, in
which the master acts as the central authority and the slaves run in the grid.
We propose an approach called scattering, an algorithm for dividing the SAT
problem to subproblems forming a scattering tree and solving the subprob-
lems in the scattering tree until the solution for the original problem can be
deduced from the results of the subproblems by the master. We also give an
implementation of the approach, the SATU (SAT Ubiquitous) distributed
propositional satisfiability solver. The implementation supports clause learn-
ing and implements a limited amount of learning in the master process. Any
SAT solver can be used for solving subproblems in the grid. The implemen-
tation is benchmarked on a production-level computational grid with bench-
marks ranging from random 3SAT to circuit verification and cryptanalysis.
The benchmarks are run on NorduGrid, a computational grid consisting of
mainly PC clusters running the Linux operating system.

Unlike the SAT solver presented in this work, most existing parallel SAT
solvers are either built using shared memory, such as [12, 27], or make
heavy modifications to the solving algorithms, such as the solvers presented
in [56, 16, 34, 49]. Many of the solvers also expect arbitrary jobs to be able
to communicate directly with each other. The existing parallel solvers are
discussed in detail in Chapter 6.

The rest of this work is organized as follows: Chapter 2 introduces the
SAT problem formally, describes the DPLL algorithm, learning in SAT and
non-chronological backtracking. In Chapter 3, we describe the scattering al-
gorithm with pseudo code, give the completeness and soundness proofs for
the algorithm, cover the decision heuristic used by the scattering and de-
scribe the learning approach. In Chapter 4, we describe our implementation

1. INTRODUCTION 3



of scattering with an overview of the architecture and details to some degree.
Chapter 5 describes the benchmarking results for random 3SAT, some fac-
torization problems and DES, as well as results for some previously unsolved
problems from SAT2006 solver competition. Chapter 6 gives an overview
of previous work in distribution of SAT solvers and Chapter 7 concludes the
work.
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2 PRELIMINARIES

We describe the propositional satisfiability problem and the terminology re-
quired for our presentation in Section 2.1. The Davis-Putnam-Logemann-
Loveland algorithm, a widely used complete algorithm for solving the propo-
sitional satisfiability problem is described in its basic form in Section 2.2.
Finally, the concepts and overview of the learning version of the algorithm
are given in Section 2.3.

2.1 PROPOSITIONAL SATISFIABILITY

Let V be a finite set of primitive propositions, or variables. The set L of
literals consists of the variables v and the negated variables v̄, where v ∈ V .
A propositional formula in conjunctive normal form, or a CNF formula, is a
finite set of clauses of the form {v1, . . . , vn, v̄n+1, . . . , v̄m}, where v1, . . . , vm

are members of V and vi 6= vj , when i 6= j.
A truth assignment ν : V → {true, false} is a mapping from the set of

variables V to the set of truth values {true, false}. It is presented as a set
PL consisting of the literals {x | ν(x) = true} ∪ {x̄ | ν(x) = false}. Every
variable of V appears exactly once in the set PL, either as v or as the negated

variable v̄. The symbol l is the same as the literal l. A literal l̄ is called
the negation of the literal l. If a literal l (resp. l̄) is a member of the truth
assignment PL, the literal l̄ (resp. l) is said to be false (resp. true) under PL.

A clause is satisfied by the truth assignment PL, iff (if and only if) it con-
tains a literal l such that l ∈ PL. A CNF formula F is satisfied by the truth
assignment PL iff all its clauses are satisfied by the truth assignment PL. In
this case we write PL |= F and call PL a satisfying truth assignment. Other-
wise we write PL 6|= F .

A partial truth assignment P is a subset of the literals L. The set P is called
a conflicting partial truth assignment if for some literal l, both l, l̄ ∈ P . If
a partial truth assignment is not conflicting, it represents a partial function
ν : V ′ → {true, false}, which is a mapping from the subset V ′ ⊆ V to the
values {true, false} as described above for the total function ν. A literal is
free under P if the corresponding variable does not appear in P .

Definition 1 The Propositional Satisfiability Problem (SAT) is: given a CNF
formula F over the variables V , determine whether there is a truth assign-
ment PL such that F is satisfied by PL. If such PL exists, then the formula F
is satisfiable. Otherwise F is unsatisfiable.

Example 1 Let V = {x1, x2, x3, x4, x5} and a CNF formula

F = {{x2, x̄5}, {x1, x̄5}, {x̄1, x̄3, x̄4}, {x̄2, x̄3, x4}, {x3}, {x5}}. (2.1)

There is no satisfying truth assignment for the formula F , whereas for the
formula F ′ = F \ {{x3}} there are two satisfying truth assignments, one of
which is PL = {x1, x2, x̄3, x̄4, x5}, and the other is PL = {x1, x2, x̄3, x4, x5}.
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If F is a CNF formula and P is a partial truth assignment, we use the
notation F (P ) to denote the simplified CNF formula with respect to P ,

F (P ) = {C ∈ F | (∀l ∈ P : {l, l̄} ∩ C = ∅)}∪
{C | (∃C ′ ∈ F ) and (C = C ′ \

⋃

l∈P{l̄}) and (C ∩ P = ∅)}.
(2.2)

Example 2 For the CNF formula F defined in Equation (2.1), the simpli-
fied CNF formula with respect to the partial truth assignment {x5} is

F ({x5}) = {{x̄1, x̄3, x̄4}, {x̄2, x̄3, x4}, {x3}, {x2}, {x1}} (2.3)

A literal l is implied under P if {l} ∈ F (P ). The implying clauses of the
implied literal l are the members of the set {C ∈ F | C \

⋃

q∈P{q̄} = {l}}.
The unit clauses under P are the clauses of length 1 in the simplified formula
F (P ).

Most of the current satisfiability solvers such as those based on the DPLL
algorithm described in the next section assume that their input is in the CNF
form. However, when discussing the correctness of our distributed algorithm
for SAT we use a slightly more general type of a formula, i.e., a disjunction
of CNF formulas M = F1 ∨ · · · ∨ Fn. The above definitions of satisfiability
extend naturally to the disjunctions; given a disjunction M = F1 ∨ · · · ∨ Fn

of CNF formulas Fi, 1 ≤ i ≤ n, M is satisfied by the truth assignment PL

iff at least one of the formulas Fi is satisfied by the truth assignment PL. In
this case we write PL |= M . Two disjunctions of CNF formulas are logically
equivalent, M1 ≡ M2 if for every truth assignment PL, PL |= M1 iff PL |=
M2. If the disjunction is satisfied by all truth assignments PL, we write |=
M and say that M is a tautology. The concepts of logical equivalence and
tautology can also be extended to other types of propositional formulas, see,
for example [42].

2.2 THE DAVIS-PUTNAM-LOGEMANN-LOVELAND -ALGORITHM

The Davis-Putnam-Logemann-Loveland -algorithm [23, 22] (DPLL) takes as
input a CNF formula F and outputs satisfiable if the formula is satisfiable and
unsatisfiable if the formula is unsatisfiable. The DPLL algorithm is simple to
describe recursively, but is usually implemented as the iterative process we
here describe. The algorithm is essentially a depth-first search of a satisfying
truth assignment to the CNF formula F and is given in Algorithms 1–4.
Initially the partial truth assignment P is set to the empty set. The algorithm
works in two phases; in a call to Propagate(), all unit clauses under P are
identified and the corresponding implied literals are added to the partial truth
assignment iteratively until no unit clauses under P exist in the formula F .
When a literal is added to the partial truth assignment, the decision level
of that literal is recorded. The initial decision level is 0. When no unit
clauses exist, the algorithm calls ChooseLit() and starts the second phase. In
this decision point, given in Algorithm 3, a new literal l is added to P and
is marked as a decision literal. The implying clause of a decision literal is
the unit clause consisting of the decision literal itself. The decision level is
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incremented by one and the decision literal will get the new decision level.
If the unit propagation in Propagate() of Algorithm 1 ends in a conflict, that
is, the partial truth assignment is conflicting, the algorithm backtracks to the
previous decision point in which the literal l was inserted to P and replaces
it with the literal l̄ instead. This is done in a call to Analyse-Conflict, given
in Algorithm 2. If there is no previous decision point, the algorithm returns
unsatisfiable. If all the variables appear in P exactly once, the algorithm has
found a satisfying truth assignment and returns satisfiable.

2.3 DPLL WITH CLAUSE LEARNING

Conflict-driven clause learning and non-chronological backtracking [38] is
based on the idea that by analysing the construction of unit clauses leading
to a conflict, one can obtain additional information about the structure of the
problem. This information, presented as learned clauses, can help to prune
the search space further. The clauses learned from a CNF formula are logical
consequences of the formula, i.e., including the clauses to the formula does
not affect the set of satisfying truth assignments.

Some theoretical results regarding the effect of clause learning in DPLL
are presented in [5]. The speedup provided by clause learning has been
investigated, for example, in [3] and [38]. In addition to shrinking the search
space by adding new clauses, clause learning is a natural way of guiding the
heuristic search [39].

If two literals l and l̄ are implied under a partial truth assignment, the
situation is called a conflict. Assume that the literal l is implied in the cur-
rent decision level. One of the clauses implying the literal l is selected as a
conflicting clause. If the literal l̄ is not a decision literal, one of the clauses
implying the literal l̄ is selected as a reason clause. The learned clause is
constructed from the conflicting clause by replacing the literal l from the
conflicting clause by the literals in the reason clause, excluding the literal
l̄. If l̄ is a decision literal, no changes have been made to the conflicting
clause to this point, and the current learned clause is the conflict clause. A
learned clause can be used to guide the backtracking of a DPLL algorithm
if the clause contains a single literal from the current decision level. If the
learned clause still contains more than one literal from the current decision
level after replacing l, or if the literal l̄ was a decision literal, the negations
of some of the literals in the learned clause must be implied in the current
decision level. Let us assume that one of the implied literals in the current
decision level is q. The literal q̄ from the learned clause can be replaced by
the implying clause of q excluding the literal q. Replacing is applied until
the learned clause contains a single literal from the current decision level.
All literals in the learned clause are false in the current decision level, and to
resolve the conflict, the DPLL algorithm must backtrack to the second high-
est decision level of the literals in the learned clause. Unit propagation will
result in a new assignment for the single literal p previously in the highest
decision level in the learned clause as well as the decrease of the decision
level of p. A more thorough presentation of learning is given, for example,
in [38].
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Global vars: P , the partial truth assignment; dl, decision levels of vari-
ables; C, variables tried both ways; D, decision variables;
d, decision level

function IterativeDPLL(F )
P := {} /∗ Partial truth assignment ∗/
dl := {} /∗ Decision levels of

variables ∗/

C := {} /∗ Variables tried both
ways ∗/

D := {} /∗ Decision variables ∗/
d := 0 /∗ Decision level ∗/
while true

while not Propagate()
if not ResolveConflict()

return unsatisfiable
end if

end while
if not ChooseLit()

return satisfiable
end if

end while.

function Propagate()
UC := unit clauses in F (P )
while UC 6= {}

while UC 6= {}
Select and remove a unit clause {l} from UC

P := P ∪ {l}
x := the variable appearing in {l}
dl := dl ∪ {〈x, d〉}
if P contains both l and l̄

return false /∗ found conflict ∗/
end if
add the unit clauses in F (P ) to UC

end while
UC := unit clauses in F (P )

end while
return true.

Algorithm 1: Iterative DPLL algorithm; main function and propaga-
tion
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Global vars: dl, decision levels of variables; d, current decision level;
D, decision variables; C, variables tried both ways; P ,
partial truth assignment

function ResolveConflict()
for d′ := d downto 1

x := the variable in D having pair 〈x, d′〉 ∈ dl
if not x ∈ C

C := C ∪ {x}
l := the literal corresponding to x in P
P := P \ {l}
P := P ∪ {l̄}
Backtrack(d′)
return true

end if
end for
Backtrack(0)
return false.

Algorithm 2: Naïve conflict analysis

Global vars: d, current decision level; C, literals tried both ways; dl,
decision levels of variables; D, decision variables; P , par-
tial truth assignment

function ChooseLit()
if there are free literals under P

d := d + 1
l := the best free literal according to a heuristic
x := the variable corresponding to l
dl := dl ∪ 〈x, d〉
D := D ∪ {x}
P := P ∪ {l}
return true /∗ A free literal was found ∗/

end if
return false. /∗ All literals have a value ∗/

Algorithm 3: Heuristic for choosing literals
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Global vars: P , the partial truth assignment; dl, decision levels of vari-
ables; C, variables tried both ways; D, decision variables;
d, decision level

function Backtrack(dnew)
foreach x s.t. 〈x, d′〉 ∈ dl and d′ ≥ dnew and (x /∈
D or d′ 6= dnew)

/∗ x is set on a higher decision level but is not the
decision variable of level dnew ∗/

dl := dl \ {〈x, d′〉}
D := D \ {x}
P := P \ {x, x̄}
C := C \ {x}

end foreach
d := dnew

return.

Algorithm 4: Simple backtracking for DPLL

1UIP

Last UIP

Λ

x3

x9

x̄8

x6

x̄7

x5

x2

x1

x4

x̄4

x̄10

Figure 2.1: A conflict graph
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The construction of the clause in ResolveConflict() can be alternatively
explained with an implication graph. Our presentation of the implication
graph follows closely that of [5]. The implication graph is a directed acyclic
graph in which the nodes are labelled with literals from the partial truth as-
signment and the edges are directed from the literals of one implying clause
towards the implied literal. The choice of the implying clause is part of the
heuristic used for constructing the implication graph. Decision literals have
in-degree zero. When a partial truth assignment causes a conflict after prop-
agation, the graph will contain some variable twice, negated (l̄), and as such
(l). In this case, the nodes having a path to either of the variables are of inter-
est to the conflict analysis in constructing the learned clause. This relevant
subgraph is the conflict graph of the implication graph. For the literals l and
l̄, a special node Λ is inserted to the graph and directed edges from literals l
and l̄ to Λ are added to the conflict graph.

The conflict graph is cut into two parts. The other part, called the conflict
side, contains at least the implied literal l and the node Λ, and the rest of the
nodes in the graph having at least one edge to the conflict graph is called the
reason side. The learned clause is the clause formed by taking the negation
of the literals having an edge from the reason side to the conflict side. This
cut, or the corresponding clause, is not uniquely defined. The results in [59]
suggest that by choosing the cut so that the only literal of the learned clause
in the current decision level is nearest to the conflicting literals, yields on
average the best speedup. This cut is called the 1UIP-cut. The 1UIP-cut and
another cut used by the rel_sat satisfiability solver [4], named Last UIP, are
demonstrated in Figure 2.1. The corresponding formula is

F = { {x̄2, x̄3, x4},
{x̄1, x̄3, x̄4},
{x2, x̄5},
{x1, x̄5},
{x5, x̄6, x7},
{x6, x8, x10},
{x̄7, x8, x̄9} }.

(2.4)

In Figure 2.1 the literals in white nodes are from the current decision level
and the gray nodes are from previous decision levels. Literal x̄8 is a decision
literal and conflicting literals x4 and x̄4 are marked with dashed circles. The
learned clauses are {x̄3, x̄5} for 1UIP and {x̄3, x8, x̄9, x10} for Last UIP.

For a learning implementation of the DPLL algorithm, functions Resolve-
Conflict() and Backtrack() in Algorithms 2 and 4 are replaced with corre-
sponding functions from Algorithm 5. The call to Backtrack() does not need
to handle the decision variable of the highest decision level differently be-
cause the new search space is discovered by the propagation.

2. PRELIMINARIES 11



function ResolveConflict()
if d = 0

return false
end if
learned := Construct a clause from the conflict
C := C ∪ {learned} /∗ add the clause to

learned clauses ∗/

d′ := Find the second highest decision level from
learned

Backtrack(d′)
return true.

function Backtrack(dnew)
foreach x s.t. 〈x, d′〉 ∈ dl and d′ > dnew

dl := dl \ {〈x, d′〉}
D := D \ {x}
P := P \ {x, x̄}

end foreach
d := dnew

return.

Algorithm 5: ResolveConflict() and Backtrack() in DPLL with learn-
ing

3 PARALLELIZATION

Our model of the parallel execution environment, or simply the environ-
ment, offers a simple interface between the client sending executions, i.e.,
executable programs together with their inputs, and the environment receiv-
ing and running the executions. The only functionality available to the client
are

1. Send, which sends an execution to the environment,

2. Monitor, which reports the state of the execution, and

3. Receive, which returns the result of an execution.

The interface is depicted in Figure 3.1. During the execution, the environ-
ment does not support any communication from the client to the environ-
ment, apart from the capability of monitoring the state of the executions. We
do not either assume that the executions are able to communicate directly
with each other. In addition to defining the interface, we also assume that
the parallel execution environment has some maximum amount of simul-
taneous executions it can hold. If this limit is reached, the environment is
saturated and any new executions sent to the environment when it is satu-
rated might fail without a result.

Any computer program in this environment requires the executions to be
autonomous in the sense that once the execution has been constructed by the
client and sent to the environment, the execution cannot be further guided.
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Receive Send Monitor

Parallel execution environment

Client

Figure 3.1: The interface between the client and the parallel executing envi-
ronment

The execution must finish when some condition given at its construction
time is triggered.

For this environment, we propose a distribution scheme called scattering
for solving propositional satisfiability problems. Scattering constructs from a
CNF formula F a given number of scattered CNF formulas by using a scat-
tering rule and applies the scattering rule recursively to these resulting CNF
formulas. Conceptually this leads to a scattering tree T . In our implemen-
tation, scattering aims at adding constraints (new clauses) to the formula so
that the propagation and learning of a DPLL algorithm can efficiently prune
the search.

The scattering rule constructs a set of scattered CNF formulas from a for-
mula F by conjuncting F with a set of clauses, called scattering assumptions.
Scattering assumptions of the formula must satisfy three conditions.

(i) The disjunction of the scattered CNF formulas must be logically equiv-
alent to the formula F , so that

F ≡
n

∨

i=1

Fi

for the n scattered formulas Fi = F ∧ Si.

(ii) Every scattering assumption Si must have at least one clause that is not
in F .

(iii) All variables in scattering assumptions must appear in the formula F .

The condition (i) is related to the completeness and soundness of the algo-
rithm, whereas the conditions (ii–iii) guarantee that the resulting scattering
tree is finite.

The number n of scattered CNF formulas in (i) from one application of
the scattering rule is the scattering factor sf . The scattering factor depends,
for example, on the probability of failures in the parallel execution environ-
ment as presented in Section 4.2.1.

In a scattering tree T the nodes are labelled with scattered formulas. The
root of the tree is labelled with a CNF formula Fr and given a node labelled
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F

F ∧ ((x1) ∧ (x̄2)) F ∧ ((x̄1 ∨ x2) ∧ (x̄3) ∧ (x4)) F ∧ ((x̄1 ∨ x2) ∧ (x3 ∨ x̄4) ∧ (x1)) F ∧ ((x̄1 ∨ x2) ∧ (x3 ∨ x̄4) ∧ (x̄1))

F ∧ ((x1) ∧ (x̄2) ∧ (x3) ∧ (x̄6)) F ∧ ((x1) ∧ (x̄2) ∧ (x̄3 ∨ x6) ∧ (x4) ∧ (x6)) F ∧ ((x1) ∧ (x̄2) ∧ (x̄3 ∨ x6) ∧ (x̄4 ∨ x̄6) ∧ (x3)) F ∧ ((x1) ∧ (x̄2) ∧ (x̄3 ∨ x6) ∧ (x̄4 ∨ x̄6) ∧ (x̄3))

Figure 3.2: A part of a scattering tree for formula (2.4)

with F , the children are the scattered formulas F1, . . . Fsf of the formula
F given by the scattering rule. A part of a possible scattering tree for For-
mula (2.4) is given in Figure 3.2. The tree will extend from the root until no
more CNF formulas can be added to any of the nodes by the scattering rule.

Due to the large size of the scattering tree, it is usually not practical to
construct the full tree explicitly. A CNF formula F in the root of the scatter-
ing tree is unsatisfiable if the path from every leaf to the root of the tree passes
through at least one CNF formula which is unsatisfiable. On the other hand,
the formula F is satisfiable if at least one of the scattered formulas is satisfi-
able. These follow directly from the equivalence of the scattered problems
in (i). The scattering tree T can be arbitrarily cut horizontally by removing
all edges extending from a set of nodes F having the property that none of
the nodes are in ancestor relation with each other and every path from the
root to the leaves of the tree go through exactly one of the nodes from F .1

Due to the equivalence property of the scattering rule and the associativity of
disjunction, it holds for the cut F that

F ≡
∨

Fi∈F

Fi. (3.1)

Thus showing that every formula in the set F is unsatisfiable is sufficient to
show that the formula F is unsatisfiable, and showing that at least one of the
problems is satisfiable is sufficient to show that the formula F is satisfiable.

In Section 3.2 we will give a method for constructing the scattered CNF
formulas which complies to the conditions (i–iii) given above. In Section 3.3
we give a method for organizing the construction of the scattering tree which
will eventually give us a cut F .

3.1 THE SCATTERING RULE

The application of the scattering rule to a CNF formula F results in a set of
formulas F1, . . . , Fsf , where sf is the scattering factor, a variable depending
on the scattering process. The formulas Fi are of form F ∧ Si where Si is
a scattering assumption and Si 6⊆ F . Assuming no more than syntactical
knowledge of the formula F (e.g., the satisfiability or unsatisfiability of the
formula F is not known a priori), it is tempting to ease the condition (i)
above by stating for the scattering assumptions Si that

(i′) |= S1 ∨ · · · ∨ Ssf .

1This could be expressed as ∀Fi, Fj ∈ F it holds that Fi 6≺ Fj and Fj 6≺ Fi, and
∀Fi ∈ T ∃Fj ∈ F such that Fi ≺ Fj or Fj ≺ Fi where ≺ is the usual ancestor relation
imposed by the scattering tree
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Note that (i′) implies (i). To avoid duplicating work for the solving of scat-
tered formulas F1, . . . , Fsf of a formula F , we add an extra condition,

(iv) ∀i 6= j : for all truth assignments PL, PL |= Si implies PL 6|= Sj .

We can give the following definition for the scattering formulas Fi of the
formula F :

Fi =







F ∧ T1 if i = 1
F ∧ ¬T1 ∧ · · · ∧ ¬Ti−1 ∧ Ti if 1 < i < sf

F ∧ ¬T1 ∧ · · · ∧ ¬Tsf −1 if i = sf ,
(3.2)

where the CNF formulas Ti are sets of clauses ((li1) ∧ · · · ∧ (lidi
)), and the

negated formulas ¬Ti consist of a single clause, specifically (l̄i1,∨ · · · ∨ l̄idi
),

and di > 0 for all i = 1, 2, . . . , sf − 1.

Theorem 1 Equation (3.2) guarantees that |=
∨sf

i=1 Si, where Si are the scat-
tering assumptions, and thus complies to condition (i′) of the scattering rule.
Furthermore, the formulas Fi comply to condition (iv) of the scattering rule.

Proof In order to prove the condition (i′), we must show that

|= T1 ∨ · · · ∨ (¬T1 ∧ · · · ∧ ¬Ti−1 ∧ Ti) ∨ · · · ∨
∨(¬T1 ∧ · · · ∧ ¬Tsf −2 ∧ Tsf −1) ∨ (¬T1 ∧ · · · ∧ ¬Tsf −1),

(3.3)

The expression when the two last disjuncts are combined, is logically equiv-
alent to

T1 ∨ · · · ∨ (¬T1 ∧ · · · ∧ ¬Ti−1 ∧ Ti) ∨ · · · ∨
∨(¬T1 ∧ · · · ∧ ¬Tsf −2 ∧ (Tsf−1 ∨ ¬Tsf −1)).

(3.4)

The last conjunct of the last disjunct is now a tautology, so we can rewrite
the above expression as

T1 ∨ · · · ∨ (¬T1 ∧ · · · ∧ ¬Ti−1 ∧ Ti) ∨ · · · ∨ (¬T1 ∧ · · · ∧ ¬Tsf −2). (3.5)

Continuing as above, removing the terms from the right, we finally get the
tautology

T1 ∨ ¬T1 (3.6)

which shows that Equation (3.3) does indeed hold.
We can see that the process in Equation (3.2) complies to the condition

(iv). Suppose first that i < j in (iv). If Ti is satisfied by PL, then since ¬Ti

must hold in Sj, PL 6|= Sj . If i > j in (iv), we know that ¬Tj is satisfied by
PL. By definition, PL 6|= Tj and thus PL 6|= Sj . 2

Note that the proof does not depend on the formulas Ti to consist of unit
literals.

3.2 IMPLEMENTING THE SCATTERING RULE

The method we use to construct the scattered formulas of the form given in
(3.2) is based on the DPLL algorithm. The algorithm, given the formula
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F and the maximum scattering factor sf m as input, starts propagating and
choosing literals similarly to the DPLL algorithm. After reaching for the first
time a certain decision level d1, the algorithm outputs the first scattered for-
mula F1. The formula F1 consists of the clauses of F and the d1 decision
literals as unit clauses. The algorithm modifies the formula F by inserting a
clause consisting of the negated decision literals and backtracks to the deci-
sion level 0, starting to construct the scattered formula F2 in the same way. If
the formula at some point becomes unsatisfiable on the decision level 0, the
algorithm returns the formulas constructed so far. Otherwise the algorithm
continues until sf m − 1 scattered formulas have been constructed. Then the
final formula is created, which is the formula F with clauses consisting of the
negated previous decision literals and no new decision literals.

The scattering algorithm is presented in Algorithms 6, 7, 8 and 9, and
it uses the implementations of Propagate(), ChooseLit(), ResolveConflict()
and Backtrack(), previously given in Algorithms 1, 3 and 5.

The function ScatterProblem() in Algorithm 6 is a slight modification of
basic DPLL algorithm IterativeDPLL() in Algorithm 1. It takes a CNF for-
mula F and a maximum scattering factor sf as input and returns a list of
scattered CNF formulas constructed from the formula F , or a solution to the
formula. First, an initialization of the heuristic function is performed in a call
to Preprocess(). This is called the tuning of the heuristic function. A possible
implementation for Preprocess() would be to run the DPLL algorithm until
some predefined condition is triggered, and then use the heuristic function
and learned clauses thus obtained in the rest of the algorithm. We will as-
sume this approach in the rest of the work. The outer loop is repeated until
the amount of scattered instances is one less than the scattering factor. If the
call to ResolveConflict() does not succeed, the function returns the scattered
formulas it has constructed to that point. This corresponds to the situation
where the working formula, after the insertion of the scattering assumptions,
becomes unsatisfiable on decision level 0.

The main difference when compared to IterativeDPLL() is the block start-
ing with the call to ScatterLevel(). The function ScatterLevel() returns true
if the current decision level is deep enough for producing a scattered in-
stance. A possible implementation given in Algorithm 7 is explained in Sec-
tion 3.4. The call to CreateFormula() returns a scattered instance F ′ which
is appended to the list of scattered instances. The call to ExcludeAssump-
tions() modifies the formula F to exclude the assumptions of F ′, after which
the DPLL algorithm backtracks to the lowest decision level.

The function CreateFormula(), as given in Algorithm 9, creates the scat-
tered instance containing the current decision literals as unit clauses. After
the construction of the scattered CNF formula, ExcludeAssumptions() in Al-
gorithm 8 inserts the current decision literals negated as a clause.

Theorem 2 The method of constructing the scattered formulas Fi described
above complies to the conditions (ii) and (iii).

Proof The condition (ii) follows from the fact that the unit clauses inserted
to the formula F are inserted after the initial unit propagation, and since
the decision level di > 0, some new unit clauses are always inserted to the
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Global vars: P , the partial truth assignment; dl, decision levels of vari-
ables; C, learned clauses; D, decision vars; d, decision
level; I , instances created so far

Input: F , the problem instance; sf , the maximum number of parallel
instances to produce.

Output: I , a list containing at most sf scattering instances; or if a
solution was found, a CNF consisting of the literals in P as
unit clauses.

function ScatterProblem(F , sf )
P := {} /∗ Partial truth assignment ∗/
dl := {} /∗ Decision levels of vars ∗/
C := {} /∗ Vars tried both ways ∗/
D := {} /∗ Decision vars ∗/
d := 0 /∗ Decision level ∗/
I := [] /∗ List of instances cre-

ated so far ∗/

Preprocess() /∗ Tune the heuristic ∗/
while |I| < sf − 1

while not Propagate()
if not ResolveConflict()

return 〈"scatter", I〉
end if

end while
if ScatterLevel ()

F ′ := CreateFormula()
append [F ′] to the end of I
ExcludeAssumptions()
Backtrack(0)

else if not ChooseLit()
return 〈"solution", the literals of P 〉

end if
end while
F ′ := CreateFormula()
append F ′ to the end of I
return 〈"scatter", I〉.

Algorithm 6: The Scattering algorithm
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Global vars: d, the decision level; sf , scattering factor; |I|, the num-
ber of instances created so far

function ScatterLevel ()
if 1

2d ≤ 1
sf−|I|+1

< 1
2d−1

return true
end if
return false.

Algorithm 7: Determine whether the current decision level is deep
enough so that the scattering assumptions lead to equal partition of
the solution space.

Global vars: P , the partial truth assignment; D, decision vars; F , the
problem instance

function ExcludeAssumptions()
cls := {}
foreach l ∈ P appearing in D

cls := cls ∪ {l̄}
end foreach
F := F ∪ {cls}
return F ′.

Algorithm 8: Exclusion of the previous decisions from the formula

Global vars: C, learned clauses; F ; the problem instance; D, deci-
sion vars; P , the partial truth assignment

function CreateFormula()
foreach l ∈ P appearing in D

F ′ := F ′ ∪ {{l}}
end foreach
return F ′.

Algorithm 9: Construction of a scattered formula
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scattered instance Fi. The formula ¬Ti, on the other hand, cannot be al-
ready present in the formula F , since this would mean that the unit clauses
{li1}, . . . , {l

i
n} of Ti would have been added to the instance F which contains

the clause {l̄i1, . . . , l̄
i
n}. This is not possible due to the unit propagation of the

DPLL algorithm.

The condition (iii) follows trivially from the fact that the choosing of lit-
erals in Ti is done by a DPLL algorithm and the algorithm will never insert
literals that do not appear in the clauses of F to the partial truth assignment.
2

The corollary follows now directly from the Theorems 1 and 2.

Corollary 1 The method described above complies to the conditions (i–iv)
and is a scattering rule.

3.3 THE SEARCH

Section 3.2 gives us a method for constructing the scattering tree of a CNF
formula F , by using the scattering rule first to the CNF formula F and then
recursively to all the resulting scattered formulas. The remaining question
of choosing the extent to which the scattering tree is constructed, or equiva-
lently choosing the cut in Equation (3.1), is called the search process. One
possible approach, constructing the scattering tree as a breadth-first-search
guided partially by the results from the previous scattered formulas, is given
in this section.

Remembering the assumptions on the parallel execution environment,
we know that we are able to send executions to the environment and receive
the results after the finishing of an execution. The executions sent to this en-
vironment will be SAT solvers with a scattered CNF formula as input. The
results from the executions can be used to solve Equation (3.1), and when
a sufficient amount of scattered formulas are solved, we can determine the
satisfiability of the root CNF formula F . The search will be dynamic in the
sense that the results of executions will arrive in an order which is not known
in advance, hence the set of formulas sent to the environment will be a su-
perset of the actual set F used in determining the satisfiability of the formula
F in Equation (3.1). A scattered formula F is known to be unsatisfiable if the
scattering tree rooted at the formula F is shown to be unsatisfiable by Equa-
tion 3.1, an ancestor of the formula F in the full scattering tree is unsatisfiable
or the formula F itself is unsatisfiable. A factor largely affecting the design
of the search algorithm is the assumption that the amount of executions the
parallel executing environment can hold before saturating is limited. The
time spent in waiting for the environment to become non-saturated should
be used in tuning the heuristic of ScatterProblem() to yield more balanced
subproblems.

The search, given in Algorithm 10, operates as a standard breadth-first-
search with a queue of unscattered formulas. Initially the queue contains
only the formula F of which satisfiability we are solving. The formulas in
branches of the scattering tree known to be unsatisfiable are removed from
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the queue. When the queue becomes empty, the search terminates indicat-
ing an unsatisfiable result.

Since the environment is assumed to hold a limited amount of executions,
the function ScatterProblem() implementing the scattering rule is called to
run while the search is waiting for the environment to become non-saturated.
As the first step in the while-loop of Algorithm 10, the scattering rule and
tuning of the heuristic function is set to run in the background. Then Search
waits for the environment to become non-saturated. Finally, an execution
is prepared for the environment. This is repeated until all formulas in the
queue have been sent, and new scattered formulas must be generated.

The new scattered formulas are collected from the function ScatterProb-
lem() and the corresponding formula from which the scattered formulas are
scattered is removed from the breadth-first-search queue. In the special case
where ScatterProblem() has found a satisfying truth assignment for the for-
mula, the search terminates reporting the satisfiable result. Otherwise the
scattered formulas are appended to the breadth-first-search queue. An un-
satisfiable result from the function ScatterProblem() results in an empty list,
which, when appended to the queue effectively removes the corresponding
branch from the breadth-first-search. The new scattered formulas are also
placed in the scattering tree T .

The last part of the search algorithm updates the scattering tree T ac-
cording to the available results from the parallel execution environment. All
ancestors of the formulas in the queue are checked for unsatisfiable results,
and if the formula is thus known to be unsatisfiable, it is removed from the
breadth-first-search queue. If a satisfiable result is found in T , the search
terminates and reports satisfiable.

3.4 HEURISTIC FOR THE SCATTERING

In solving of any non-trivial CNF formula, a DPLL type algorithm will choose
a decision literal in a decision point. While in principle a legal variable for
the selected literal is any variable appearing in the CNF formula and not ap-
pearing in the current partial truth assignment of the algorithm, the selected
literal has great impact on the run time of the solver. A random heuristic for a
DPLL type algorithm selects the literal randomly so that the selection of any
literal constructed from a legal variable is equally probable. It is well known
that in most cases the random heuristic performs poorly when compared to
other heuristics used with DPLL type algorithms.

A widely used heuristic in learning propositional satisfiability solvers based
on the DPLL algorithm is the VSIDS-heuristic, originally introduced in [39].
The heuristic maintains a weight VSIDS(l), initially 0, for each literal l. The
weight is incremented each time a clause containing the literal is added to
the formula. Periodically all the weights are divided by some constant greater
than one. The heaviest free literal is chosen in decision points. This heuristic
has shown to be effective and its variants are widely used in modern SAT
solvers [45, 24].

We propose a variant of the VSIDS heuristic to be used while constructing
the scattered instances (in Algorithm 3). The heuristic first calculates the
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function Search(F, sf )
queue := [F ]
T := a tree consisting of the root F
while queue is not empty

Fscatter := the first formula in queue

initiate ScatterProblem(Fscatter, sf )
while there are unsent formulas in queue

Fsend := an unsent formula from queue

wait for the environment to become non-
saturated
make the formula Fsend available for the en-
vironment

end while
〈result , list〉 := the results from ScatterProb-
lem()
remove the first formula in queue

if result = "solution"
return satisfiable

else if result = "scatter"
append list to the end of queue

make formulas in list as children of Fscatter

in T
end if
receive any results available from the environ-
ment
update T to contain the new results
foreach Fs in queue

if ancestor of Fs in T is unsatisfiable
remove Fs from queue

else if ancestor of Fs in T is satisfiable
return satisfiable

end if
end foreach

end while
return unsatisfiable.

Algorithm 10: Search algorithm
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minimum VSIDS() heuristic value vmin = min{VSIDS(v), VSIDS(v̄)} for
every free variable v. A variable v with highest vmin is then selected as the
literal v or v̄, depending on which of the two has the highest VSIDS()-score.
Ties are broken randomly. The modified heuristic is called MINMAX. The
reasoning behind the choice of MINMAX is that we try to find the variables
splitting the solution space into equally sized subspaces. Whereas VSIDS
always chooses the most promising literal, MINMAX also considers the turn-
sides of the choices, with the aim of better balancing of the CNF formulas
F ({v}) and F ({v̄}).

The heuristic used in the scattering algorithm is very similar to the VSIDS
heuristic widely used in contemporary implementations of the DPLL type al-
gorithms. The heuristic gives high scores to literals that appear in the recently
learned clauses. The goals of a DPLL splitting heuristic are [58]

1. for satisfiable instances,

(a) force conflicts quickly to prune search space where solution does
not exist and

(b) satisfy as many clauses as possible to find the satisfying assign-
ment.

2. For unsatisfiable instances

(a) construct short refutation by quickly propagating conflicts,

whereas the goal for a scattering heuristic is

1. identify the variables dividing the problem space into parts with equally
large solution spaces (taking into account the effect of propagation).

The more greedy splitting heuristic of a DPLL type algorithm is not ideal for
scattering. A specific heuristic tuned for the needs of the scattering algorithm
should concentrate on creating as uniformly difficult problems as possible
while still diminishing the solution space.

The set of possible truth assignments for a formula with |V | variables
consists of 2|V | different truth assignments. A DPLL algorithm will not go
through all of them even if the formula is unsatisfiable, due to unit propaga-
tion and possibly non-chronological backtracking. We may still approximate
the number of searched truth assignments and the run time of a DPLL type
algorithm to be on the order O(2|V |). Fixing one literal from all the truth
assignment to true will half the set of possible truth assignments explored by
a DPLL type algorithm to O(2|V |−1).

Returning to the Formula (3.2), where the number of fixed literals in scat-
tered formulas is di, the decision levels di are selected so that the formula is
heuristically divided into scattered formulas for which the DPLL algorithm
will explore equally many different truth assignments. In dividing the for-
mula F to sf scattered formulas with the same run time, the run time of a
single scattered instance should be t(F )

sf
, where t(F ) is a function from the

CNF formula F to the solving time of F . We can write this in the form

t(F )

sf
=

(

t(F ) − (i − 1)
t(F )

sf

)

ri i ∈ {1, 2, . . . , sf }, (3.7)
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Table 3.1: Scattering using over- and under-constraining approximations

Over-constraining

Fraction Numeric Dec. level

1
4

0.25 2
1
4

0.19 2
1
2

0.28 1
1 0.28 0

Under-constraining

Fraction Numeric Dec. level

1
4

0.25 2
1
2

0.38 1
1
2

0.19 1
1 0.19 0

since the run times of the already constructed i − 1 problems must be sub-
tracted from the total run time and ri is the run time ratio the scattering
assumption should lead to. When solved for ri, we get

ri =
1

sf − i + 1
i ∈ {1, 2, . . . , sf }. (3.8)

The scattered CNF formulas are constructed by adding literals, and as a
result, ri must be approximated with 1

2di
, where di is the decision level, or the

amount of literals in Ti on Equation (3.2).

Example 3 When scattering 4 formulas from a formula, Equation (3.8) gives
fractions r1 = 1/4, r2 = 1/3, r3 = 1/2, r4 = 1. Assuming that selecting one
literal will half the solving time, we get 1

22 ≤ 1
4
≤ 1

22 ,
1
22 ≤ 1

3
≤ 1

21 ,
1
21 ≤ 1

2
≤

1
21 and 1

20 ≤ 1 ≤ 1
20 . From this we get that the first decision level (or equiva-

lently, the number of unit clauses in T1) is 2, the second is 1 or 2, for the the
third formula a single literal must be chosen and for the fourth we need no
literals. In Table 3.1, two alternative approaches are presented for the given
example. On both tables, the left column represents the absolute fraction
given by the decision level on the right column. The middle column is the
actual fraction of the total problem given by the selections. If the fractioning
were optimal, all values should be equal to 1

4
. The rows are ordered by in-

creasing scattered formula index, so that the first scattered formula is on the
top row and the last is on the bottom row. The partial scattering tree given in
Figure 3.2 is constructed by applying the over-constraining approximation.

An implementation of an over-constraining ScatterLevel() is given in the
Algorithm 7.

3.5 LEARNING IN SCATTERING

As a side effect of the tuning of the heuristic function in the call to Prepro-
cess() in Algorithm 6, the scattering rule also produces learned clauses. Since
learned clauses are known to speed up solving of CNF formulas, it is tempt-
ing to include the clauses learned from one application of the scattering rule
to other formulas.

Learned clauses are logical consequences of the set of clauses from which
they are learned, hence on one application of the scattering rule, previously
learned clauses are also logical consequences of the next scattered instance.
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However, learned clauses from one application of the scattering rule to a
formula F are not necessary logical consequences of another formula F ′,
unless the formula F ⊆ F ′. Whereas the clauses from which the learned
clauses are derived could be recorded, the effort might overweight the profit
gained from the learned clauses.

In order to use the learned clauses in other formulas, we propose a scheme
based on the scattering tree. The learned clauses from formula F are in-
cluded to the formula F ′ iff F is ancestor of F ′ in the scattering tree.
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Figure 4.1: The Program Architecture

4 ARCHITECTURE

We have implemented the scattering algorithm presented in the Chapter 3
and the additional components required to apply the parallelization scheme
in a computational grid. The implementation is named the SATU (SAT
Ubiquitous) distributed SAT solver. SATU takes as input a CNF formula F ,
called the original formula and outputs a satisfying truth assignment for F if
the formula is shown to be satisfiable, an indication that the formula has no
satisfying truth assignment if the formula is unsatisfiable, or a timeout if the
result could not be determined before a given time limit.

The distributed SAT solver SATU consists of five distinct processes com-
municating with each other through network and Unix domain sockets. The
overview of the architecture is presented in Figure 4.1. In the context of the
architecture, the executions consisting of a SAT solver and a scattered for-
mula are called jobs. The original formula is given to Search, which sends
the formula to SATqueue and constructs the scattered formulas from it with
Scatter. When a formula arrives at SATqueue, Filter tries to solve it until it is
sent to GRIDJM which will finally deliver it to the grid. The process Search

receives the results and uses them to guide the further search.

The main functionality of the parallelization scheme described in Chap-
ter 3 is implemented in Search and Scatter. In addition to the functionality
described in Chapter 3, the implementation also includes the interface to the
grid, GRIDJM, and a local satisfiability solver, Filter, acting as a preprocessor
which aims at filtering easy jobs from being sent to the grid.

The processes communicate with a simple protocol, exchanging the CNF
formulas, or jobs and results, as indicated by the arcs in Figure 4.1. Sockets
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are used for communication to obtain portability and to facilitate experimen-
tation with different designs. Implementing the communication via network
sockets gives us the additional advantage of being able to run the processes of
SATU in distinct computers.

The scattering formulas are passed to Filter where a satisfiability solver
gets them as input. The formulas are solved for some time, until GRIDJM

initiates a solving process in the grid. If the satisfiability of the formula is
determined in Filter, the formula is not sent to the grid, and the result is
communicated to Search. Results coming from GRIDJM are also passed
to Search, which based on the results determines where the search should
continue in the scattering tree, if the result of the original instance is not
known so far.

In Section 4.1 we describe the implementation choices related to the con-
struction of the scattering tree. The interface to the computing environment
and the optimizations related to the sending of jobs is covered in Section 4.2.

4.1 SCATTERING FUNCTIONALITY

The scattering described in Chapter 3 is implemented in Search and Scat-

ter. The main architectural difference is that in addition to constructing the
scattering tree, the implementation must also adapt to the delays of a parallel
computing environment.

Search calls Scatter as a subroutine, and expects as a return value a list of
scattered instances. We assume that the construction of scattered instances
is a heuristic process, which, on average, gives better results in terms of even
distribution of the run time when more time is given for the calculations
relating to the heuristic. Since it is realistic to assume that the initiation
of executions in the parallel computing environment takes some amount of
time, this time should be used for heuristical calculations in Scatter. The
architecture is designed so that a CNF formula is sent early for scattering
and the scattered instances are collected only when resources for parallel
execution become available.

4.1.1 Scatter

The process Scatter is an implementation of ScatterProblem() (Algorithm 6
in Chapter 3). It receives a CNF formula, constructs sf scattered formulas
from the formula and sends them back to Search after receiving a signal
indicating that Search requires more jobs. The implementation is designed
to use the time between receiving the instance and producing the scattered
formulas for two intermixed purposes. The most significant part from the
point of view of the scattering is the tuning of the heuristic function, which
is used to select the most promising literals for the scattering assumptions.
The tuning is done in the call to Preprocess() in Algorithm 6. In SATU,
the tuning is implemented by running a learning DPLL algorithm on the
formula with the MINMAX heuristic. The heuristic values of literals are
then passed to the actual scattering. As a side effect, Scatter also learns new
clauses, and the clauses can be passed on to the scattered instances. If Scatter
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finds the formula satisfiable or unsatisfiable during this preprocessing stage,
it immediately reports the result to Search. This is an optimization, since
the result would be reported by the time Search queries for the scattered
formulas. However, it was noted early on the testing that on some problems,
the time lost in waiting for the query was significant.

4.1.2 Search

The process Search corresponds to the Search()-function (Algorithm 10 in
Chapter 3). It initiates the solving when the original CNF formula is set. The
process maintains the scattered formulas in three data structures. The search
queue is the queue for the breadth-first-search of the scattering tree. The
formula pool is a buffer from which the computing environment is served
the scattered instances. The scattering tree is the actual structure from which
the satisfiability of the original formula can finally be deduced.

The formulas are organized as a scattering tree, so that every result of an
ancestor formula also applies to child formulas. This optimizes the repre-
sentation of the scattering assumptions as well as implements the learning
scheme outlined in Section 3.5. Most importantly, if a formula is in the
search queue and an ancestor of the formula is found to be unsatisfiable, the
formula can be removed from the queue, which prunes the search signifi-
cantly.

After receiving a CNF formula, Search sends the formula to Scatter for
scattering and places it to the formula pool of Search. When the computing
environment indicates that resources are available, the process Search sends
a formula for which the result is not known from the pool to the parallel
environment. If the size of the pool goes below a given limit, the minimum
pool threshold, Scatter is signalled to stop the scattering and new scattered
instances are read from it.

In addition to placing the formulas into the formula pool, Search also
places them to the search queue. The first formula for which the satisfiability
is not known in the search queue is sent to Scatter and the process starts
again, working effectively as a breadth first search where the neighbouring
nodes are determined by Scatter.

The process Search works as a server listening to results. Possible results
are a satisfying truth assignment to the formula, result that a scattered formula
has no satisfying truth assignment or that the solving of some formula has
timed out. It is also possible that a component below Search has learned
new clauses from some formula. The learned clauses can then be inserted
to the formula in Search through the server and included in some of the
scattered formulas. However, current implementations of the components
below Search do not produce learned clauses.

The satisfiability of some formula F in the scattering tree is determined
from the satisfiability of the formulas in the tree rooted at the formula F
and the ancestors of F . In the implementation, the satisfiability is checked
periodically by a depth-first-search of the scattering tree.
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4.2 INTERFACE TO THE COMPUTING ENVIRONMENT

The rest of the components, SATqueue, Filter and GRIDJM, are mainly con-
cerned with the interface towards the parallel execution environment. Main
problems in the interface are the communication delays related to sending
the executions to the environment, and the recovery from the inevitable er-
rors occurring in the environment. The delays make it costly to send exe-
cutions which only run for a short period of time, and for this purpose the
shortest jobs are filtered by the satisfiability solver running in Filter. The er-
rors relating to the parallel environment affect significantly the run time and,
if the error rate is sufficiently high with respect to the scattering factor, also
the completeness of some possible implementations. The errors are handled
in GRIDJM with a resubmission scheme described in Subsection 4.2.1. The
communication between GRIDJM, Filter and Search passes through the in-
termediate process SATqueue.

4.2.1 GRIDJM

SATU is designed to be minimalistic in what comes to the requirements from
the underlying computing environment. We expect that the parallel execu-
tion environment has some upper limit on how many executions it can si-
multaneously hold before saturating. The only operations required from the
environment are

jobid send(job) Send a job to the parallel computing environment. The
argument job is a description of the job to be sent. The return value is
jobid , a reference uniquely identifying the job in the environment.

state query(jobid ) Query the status of the job specified by jobid . The return
value state is a job state. Possible job states are running , the job is run-
ning in a node in the environment; finished , job has finished correctly
and the result can be received; queued , the job has been queued be-
cause of some congestion in the environment and will possibly enter
the running state in some time; and failed , the job has permanently
failed in the environment and there are no results to be received.

output receive(jobid ) Get the output of the job from the parallel environ-
ment to the local computing environment. The argument jobid is the
identity of the job as returned by send().

The environment does not need to support any kind of interaction during
the execution of the job, nor there has to be any direct communication be-
tween the jobs. The requirements are designed to suit most of the currently
available computational grids.

The jobs sent to the grid consist of a satisfiability solver and the problem
instance to be solved. The solver will terminate in the grid after a certain
timeout if it has not been able to show the instance satisfiable or unsatisfiable.
The same type of a limit also exists for the memory consumption of the solver.

GRIDJM requests jobs from Search until the number of jobs in the paral-
lel computing environment reaches the saturation limit, maximum parallel
job limit, given as a parameter to GRIDJM. Jobs arriving as replies to these
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requests are first placed in an incoming job queue. This queue is checked
periodically for new jobs, which are then sent to the environment one at a
time.

The resubmission scheme implemented in SATU tries to minimize the
amount of jobs for which no result is eventually received. To detect the fail-
ures and finishings of jobs, the status of jobs in the environment is monitored
periodically. If the status of a job has not changed for a configurable period
of time and the job is not running, or the job has finished reporting an error,
it is considered failed and is sent to the environment again. The number of
resubmission attempts can be limited. If the job has finished correctly, the
results are received and sent upwards through SATqueue.

When the job status update finds a correctly finished job, GRIDJM forks
a new process for receiving the results of the finished job. The receiving is
done in the background and parallelly. In the beginning of the solving of a
difficult formula, it is common that most of the scattered formulas run in the
parallel execution environment until the timeout. As a result, the jobs finish
approximately at the same time. To avoid this congestion, the timeout value
is randomized.

The handling of failed jobs is motivated by the fact that the scattering tree
might grow to be very large (infinite by all practical means) if the scattering
factor and the failure probability are sufficiently large.

Because of the large number of components in a grid environment, the
probability of failure is much higher when compared to a simpler computing
environment. Run times of solvers tend to be high, which further increases
the amount of failures encountered during the solving of a CNF formula.
Such failures could be related to service breaks, network downtimes or any
other problems which usually do not affect computer programs with short
run times and a single computing node.

If the implementation recovers from failures in the parallel computing en-
vironment by simply ignoring the computations that do not finish correctly,
the algorithm might not find the solution at all. A scattered formula is further
scattered in this case. Since the full scattering tree is usually very large, the
scattering will not proceed observably. However, assuming a small enough
failure rate and a reasonable scattering factor, the probability of a formula not
getting solved eventually is very small.

We may study the behaviour of the scattering in a parallel computing en-
vironment in which the probability of the result of a job sent never being
received is p. For this purpose we construct an abstract model where the
scattered formulas are sent to the environment as oracles immediately re-
plying with an answer to the problem unless the transaction fails. In this
abstraction, let us assume that the scattering algorithm in Algorithm 6 (Sec-
tion 3.2) never gives a satisfiable or unsatisfiable result and always returns sf

scattered instances. This idealization is realistic if the problem is difficult for
the scattering algorithm but easy for the satisfiability solvers, which, when the
scattering is proceeding normally, should be the case.

Now consider an unsatisfiable problem instance to be solved in a parallel
computing environment with the error probability p. The scattering, seen as
a stochastic process, can be modelled with a Galton-Watson Branching Pro-
cess [32, pages 91–95]. In a Galton-Watson Branching Process, a population
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evolves in generations, and each member of a generation g produces a family
of X children of generation g + 1. The number X is a random variable with
the following properties:

1. The family sizes of the individuals of the branching process form a
collection of independent random variables, and

2. all family sizes have the same probability measure P and generating
function G.

In our application, we are interested in the probability of the ultimate ex-
tinction, that is, what is the probability that a generation g is empty, when
g → ∞.

The number of scattered instances is the number of children in the branch-
ing process. When the formula is successfully sent to the computing environ-
ment and the result is received, the number of children is 0. If the result is
lost, the number of children for the lost formula is equal to the scattering
factor sf . Hence, the probability measure for the number of children X is

P(X = k) =







1 − p if k = 0,
p if k = sf ,
0 otherwise.

(4.1)

Adhering to the Galton-Watson process, we assume that the number of
scattered formulas is independent and the probability measure and the gen-
erating functions of the numbers of children are the same for all formulas in
the scattering tree. The problem of termination of the scattering algorithm
in this setting is essentially the problem of ultimate extinction in the branch-
ing process. The probability of extinction is 1 almost surely whenever the
expectation for the number of children X is less than or equal to 1, or

EX = p · sf ≤ 1. (4.2)

If the expected number of children is greater than 1, the probability of extinc-
tion is the smallest positive root for the equation s = G(s), where G(s) =
1 − p + p · ssf is the generating function of the probability measure (4.1).
For failure probability p = 0.2 and scattering factor sf = 7, the probability of
termination is approximately 0.8851.

Another question of interest, which is related to the efficiency of the scat-
tering algorithm in the presence of grid failures is the height of the scattering
tree. The probability of the scattering tree in the above setting to be of height
less than or equal to some i ∈ N can be expressed as a non-linear recurrence
equation. Assume again that the probability of failure of a job is p. Then the
probability of a job not failing is 1 − p. For a certain scattered formula, the
probability of the corresponding scattering tree being solved is the probability
of the root formula being solved together with the probability of the root for-
mula failing to be solved and all its subtrees being solved. Now we can build
a recurrence equation for the probability of an unsatisfying formula getting
solved at latest on the scattering level i (i ≥ 1):

R[i] =

{

1 − p if i = 1,
pR[i − 1]sf + 1 − p if i ≥ 1.

(4.3)
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Theoretically the behaviour of the algorithm with respect to completeness
is very sensitive to the failure rate but in practice this does not pose a problem.
The algorithm will eventually terminate in either Scatter or Filter giving
the result, when enough scattering assumptions and restrictions have been
inserted to the problem to make it trivial to solve. However, the effect on the
run time of the solving is significant.

Due to the sensitivity to transmission errors of the scattering, it is impor-
tant that GRIDJM minimises the probability of disappearing job results.

4.2.2 Filter

The motivation of the local solving comes from the fact that the communi-
cation delays in sending jobs to the parallel computing environment impose
certain constraints on whether sending a job to the environment is in fact
more efficient than solving the job locally. To justify this argument and to
give some weak lower limit for the run times of jobs which should be sent to
the grid, we construct a model from our interface to the parallel computing
environment.

In our implementation of GRIDJM, the interface to the parallel environ-
ment is designed so that sending is always done sequentially and receiving is
done parallelly. Assume that the communication delay associated with send-
ing a job to the parallel computing environment is d1, and the receiving delay
is d2. If we have n jobs of run time r, the jobs can be locally solved in time rn.
If the job is sent to a parallel computing environment, however, we expect
to get the job solved in time less than this. The additional communication
delays make the total solving time when using the parallel environment to
be nd1 + r + d2, since the last job is sent to the environment after n delays,
completes in time r and has to be received. We can derive the lower limit for
the run time r from the equation nd1 + r + d2 < rn. When solved for r and
letting n tend to infinity, we get

r > lim
n→∞

( n

n − 1
d1 +

1

n − 1
d2

)

, (4.4)

which gives

r > d1, (4.5)

that is, the run time must be greater than the sending delay. Since Filter

solves the jobs with low run time locally, the jobs sent to the grid should have
run times r that are more likely greater than the sending delay d1.

4.2.3 SATqueue

The process SATqueue requests jobs from Search. It places the jobs to a
queue, from which the first job is always available to GRIDJM. If the envi-
ronment is currently saturated, a copy of the first job is handed to Filter for
solving until the environment is no longer saturated. Only if Filter does not
succeed in determining the satisfiability of the formula before the environ-
ment becomes non-saturated, Filter is signalled to stop and the formula is
sent to GRIDJM. If the instance is solved before it gets sent to GRIDJM, it
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is removed from the queue and the result is sent to Search. Solutions ar-
riving from GRIDJM and Filter are collected and sent to Search as a batch
periodically.

4.3 THE PARAMETERS OF SATU

As a conclusion, we list here the parameters of SATU.

Scatter Scattering factor sf ; the number of scattered instances to produce.

Search Minimum pool threshold; when the size of the formula pool goes be-
low this limit, Scatter is signalled to produce the scattered formulas.
Scattering tree monitor delay; the delay between periodical monitor-
ing of the scattering tree.

GRIDJM Maximum parallel job limit; the number of executions the environ-
ment can simultaneously hold. Inactivity time; the time a job can
be in a non-running state before it is considered failed. Resubmission
attempts; the number of times a failed job is resubmitted to the envi-
ronment. Monitor delay; the delay between periodical monitoring of
the states of the jobs in the environment. Job timeout; the maximum
time a job can run in the environment.

Filter No parameters.

SATqueue Size of formula queue; the number of formulas in the queue. Result
sending delay; the delay between periodical result sending to Search.
Result receiving delay; the delay between periodical result receiving
from GRIDJM.
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5 EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the presented ideas in checking the satis-
fiability of propositional formulas, we test SATU in a production-level com-
putational grid. The tests concentrate on two aspects of the solver, the effi-
ciency of MINMAX heuristic in scattering, and the scalability of the solver
with respect to the available resources. The MINMAX heuristic described
in Chapter 3 is tested against a random heuristic. In MINMAX heuristic
we implement the heuristic tuning and learning. When using the random
heuristic, the heuristic tuning is meaningless and learning is slow, hence it
was decided that in this case scattering is done immediately after receiving
the formula. The scalability of the solving is tested by increasing the upper
limit of simultaneous jobs in the grid. All the tests are run with the maximum
parallel job limits of 4, 8, 16, 32 and 64.

The results are obtained by running Search, Scatter, SATqueue and GRID-

JM in a 500 MHz Pentium III with 500 MB of memory, running Linux ker-
nel 2.4.26. To measure the effect of the heuristic in Scatter separately from
Filter, Filter is run on a different computer than Scatter. If both processes
are run on the same single processor machine, they compete for the same
processor resources, which gives advantage to the computationally less de-
manding random heuristic, compared to MINMAX heuristic. In the tests,
we run Filter on an AMD AthlonTM XP 2800+ with 512 KB of L2 cache and
1 GB of memory. As the computational grid, we use the Linux-clusters of
NorduGrid [25], a grid running the ARC grid middleware [51] developed
by the NorduGrid collaboration [41]. The cluster node types, that is, the
different types of computers we were able to submit jobs during the bench-
marking are characterized in Table 5.1.1 Due to the dynamic nature of the
grid, the list changes during the testing. To give an overview of the perceiv-
able configuration of the grid, the number of jobs sent to each node type is
also provided.

The scattering factor sf of the scattering algorithm is set to 7 after some
initial testing. Minimum pool threshold in Search is chosen to be 8 so that
it is sufficiently large and is not equal to the scattering factor. The size of the
formula queue in SATqueue is 3. The monitor delay of GRIDJM is set to 60
seconds and the result receiving delay of SATqueue is 5 seconds. The result
sending delay is 2 seconds. The scattering tree monitor delay is one second.
Note that even though the grid state is monitored only every minute, the
results might come at a more rapid pace depending on the progress of the
receiving processes and results coming from Scatter and Filter. For com-
pleteness, we repeat here that the maximum parallel job limit is used for
demonstrating the scalability of the solving. Inactivity time is 300 seconds
and a single resubmission attempt is made for a failed job. Except in Sec-
tion 5.2, the job timeout is randomized and gets values from the interval
between 50 and 70 minutes.

Learning is implemented so that only the clauses learned in Scatter are
passed further to the scattered formulas, as described in Chapter 3. Clauses

1If the computing node has more than one processor, the properties of one of them is
displayed.
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Table 5.1: Grid nodes used in benchmarks

Type CPUs MHz L2 Cache Jobs

Intel(R) Pentium(R) 4 CPU 2.80GHz 2 2790 512 KB 21740
Pentium III (Coppermine) 2 730 256 KB 5054
Pentium III (Coppermine) 2 800 256 KB 3808
Intel(R) XEON(TM) CPU 2.20GHz 2 2200 512 KB 3459
Pentium III (Katmai) 2 450 512 KB 2077
Pentium III (Katmai) 2 600 512 KB 1771
AMD Athlon(tm) XP 1600+ 1 1400 256 KB 937
Intel(R) Xeon(TM) CPU 2.40GHz 2 2390 512 KB 854
Pentium III (Coppermine) 1 1000 256 KB 628
Intel(R) Pentium(R) 4 CPU 3.20GHz 2 3200 1024 KB 620
Intel(R) Pentium(R) 4 CPU 2.80GHz 2 2790 1024 KB 610
Intel(R) Pentium(R) 4 CPU 2.80GHz 1 2790 512 KB 263
Pentium III (Coppermine) 2 870 256 KB 129
Intel(R) Pentium(R) 4 CPU 2.66GHz 1 2660 512 KB 97
Intel(R) Pentium(R) 4 CPU 3.00GHz 1 2990 1024 KB 75

42122

learned in the grid nodes are used only in solving that particular scattered
formula they are learned from, and are not sent back to SATU.

The back-end solver is zChaff version Chaff 2004.11.15 simplified [39],
and when sent to the grid it has a timeout of 60±10 minutes, the distribution
being uniform. Memory limit for each job is set to 500 MB in the grid. It
is unlikely that the solver uses an amount of memory exceeding that in its
running time with the test instances used in the benchmarks. Note that this
might not be the case with some other benchmarks. The same solver is used
as the locally running Filter, but without the job timeout or memory limit.

5.1 THE EFFECT OF THE GRID ERRORS

Even though the fault tolerance mechanisms in SATU assure the complete-
ness of the algorithm under reasonable assumptions on the scattering factor
and failure rate in the grid, the failed jobs can have significant effect on the
run time of the solver. Typical failures in the grid are due to jobs not get-
ting to run in a reasonable amount of time or failing to execute as a result of
low level operating system problems.2 The great number of heterogeneous
clusters in the grid make these problems to some extent inevitable.

The two fault tolerance mechanisms presented in Section 4.2.1 both have
their downsides. The limited resubmission uses resources from the sequential
job submission in GRIDJM, lowering the overall degree of parallelism. The
scattering, on the other hand, increases the number of jobs to be solved in
order to close an unsatisfiable branch of the scattering tree, which in a grid
with a high failure rate further increases the probability of future scatterings.

2A known problem in current NorduGrid is that program files occasionally fail to get
execute permissions as a result of an NFS server bug.
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Typical failures manifest themselves as a badly working single cluster,
where the failure rate is much higher than normally. The other clusters
might be working fine during the single failure or it might happen that the
increased load in these clusters cause problems as well. The problems are
temporally localized. The grid might provide many days of nearly failure free
service and suddenly behave badly for a couple of hours. With SATU run
times ranging from tens of minutes to 12 hour, this usually means that a sin-
gle run from a test suite for a certain CNF formula will experience the faults
whereas the rest of the runs will run in a nearly perfectly working grid. The
effects of a failed cluster are difficult to tell from the highly non-deterministic
run times typical to the propositional satisfiability problem itself. This addi-
tional uncertainty needs to be taken into account when considering the error
limits in the results.

5.2 BENCHMARKING GRIDJM

The interface to the grid is troublesome due to the relatively high upload and
download latencies. The effects of two design choices, the parallel download
and the random job timeout, to the parallelism are shown in the four di-
agrams of Figure 5.1. The diagrams illustrate the parallelism observed by
the process SATqueue. Each diagram is constructed from a single run, and
should be considered as a typical example of the behaviour of the grid.

The small rectangles represent jobs sent to the grid, starting and stopping
at some point in time, which advances towards right in the diagrams. The
jobs are added to the imaginary parallel tracks starting from the bottom and
advancing upwards in each diagram. Two jobs may overlap for at most 5
seconds on each track. Since the sending and receiving is partially done
in parallel, this apparent overlapping of tracks should make the picture to
more closely conform to the actual parallelism. If the first track has already
a running job, the job is added to the second track above it and so on, until
a track with free space is found or a new track has to be added above the top
track. The level of parallelism can be approximately read from the diagrams.
The time is shown on the bottom of each diagram as a line with a small
vertical stick every 60 minutes. The maximum parallel job limit in the grid is
set to 64 jobs. The submission, which is done serially, causes the small delays
showing at the beginning of the tracks. The sending delay for one job is
around 25 seconds. The delay depends on the load on the computing nodes
and network delays, the job status checks which take place approximately
every minute and the occasional failures of jobs resulting in resubmissions.
The receiving of the result also causes a delay which can be clearly seen in
the diagrams where the receiving is done serially. All the jobs in the tracks
are shown to stop simultaneously at the end of the benchmark on the right
of the diagrams, and are run for approximately 6 hours. The individual jobs
consist of an idle job not consuming processor time but running in the grid
for a period of 50 to 70 minutes, depending on the parameters.

It should be noted that in real-world problems, the solving times of single
jobs tend to vary throughout the total solving process and the almost simulta-
neous ending of all jobs illustrates in some sense the worst-case behaviour of
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GRIDJM.

The effect of job timeout of 60 minutes and the serial implementation
of the job handling loop in GRIDJM is visualized in upper left diagram of
Figure 5.1. The results show a sudden drop of the degree of parallelism in
the grid after the timeout, when all jobs sent to the grid finish approximately
at the same time. The cumulating download delays together with the upload
delays result in an increasing gap after the first timeout. The inherent ran-
dom delays of the grid blur the gap after the first timeout, but it still shows
clearly after the second timeout in the upper tracks. The first jobs sent after
the first timeout are sent at the timeout rate, which can be seen as the im-
mediate resubmission after the second timeout. After all the timeouting jobs
after the first timeout are collected, the submission again proceeds at a faster
pace which can be seen in the increasing gap of the upper tracks after the
second timeout. Sending of jobs is faster than receiving and the jobs running
until the job timeout cannot be replaced in time to keep the gap small.

The delay caused by the sequential downloading and subsequent loss of
parallelism can be diminished by randomizing the job timeout. When the
job timeouts occur at different times, the overheads associated with the re-
ceiving span a wider time period and the accumulation of the delays is not as
dominating. The loss of parallelism can still be seen on upper right diagram
of Figure 5.1 however, although the effect of accumulated downloads is no-
ticeable only after enough timeouts have occurred. The effect can be further
diminished by adding more random behaviour to the timeouts. After the first
timeout, the tracks are completely mixed. The timeout used in Figure 5.1 is
60 ± 10 minutes.

The loss of parallelism may also be tackled by parallelizing the receiving
of results in GRIDJM. New jobs can then be sent to grid while the results
from old jobs are being downloaded. In this implementation the download
delay affects also uploading to some degree and in fact hides some of the
delay in the job run time. In practice the downloading parallelizes quite
well and although the downloading time of n jobs does not quite drop to
n:th fraction, it is approximately n/2:th fraction when performed parallelly as
opposed to serial downloading. The effects are shown in bottom left diagram
in Figure 5.1. The gap is noticeable after the first timeout although much
less significant than on the top left diagram.

When the two approaches are combined, we get the implementation used
in the following benchmarks. The parallelism remains high from the begin-
ning of the run to the end, as is illustrated in bottom right diagram of Fig-
ure 5.1. The gap can still be seen after the first job timeouts, but is small and
disappears completely on the second job timeouts.

Another phenomenon clearly visible from Figure 5.1 is the error rates in
the grid. The failed jobs are shown as rectangles of run times significantly
longer than one hour, starting from some point and advancing right to the
end of the benchmark. The fraction of failed jobs range from approximately
2% of the bottom left diagram to the maximum of almost 25%:th of the top
right diagram. The failure probability has a positive autocorrelation, so that
a recent failure makes further failures more probable. The benchmarks re-
sulting in the rightmost diagrams in Figure 5.1 were run subsequently with
little time between the runs, whereas the leftmost diagram in which the grid
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Figure 5.1: Parallelism and time. The horizontal axis shows the time; the
scale on the bottom of the diagram shows a small vertical mark every hour.
The vertical axis shows the parallelism in the grid. Maximum degree of par-
allelism is set to 64 and the jobs are placed on imaginary “tracks”. On the
top diagrams, the implementation of GRIDJM is serial and on the bottom
diagrams parallel. On the left column the timeout is fixed to 60 minutes. On
right column the timeout is randomized, with uniform distribution in the
range 60 ± 10 minutes
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behaviour was more reliable were run first and last with some 36 hours be-
tween the starts. Since the failed jobs are indicated as jobs with infinite run
time in the diagrams, they each occupy one track and the total number of
tracks increases as more jobs fail.

5.3 BENCHMARKING SATU

The actual benchmarks were conducted using the implementation of GRID-

JM with randomized job timeouts and parallel downloading. This setup cor-
responds to the bottom right diagram of Figure 5.1.

All run times reported are wall clock times measured from the time the
CNF formula was given to SATU to the time SATU reported the result. The
speedup is calculated for each individual propositional formula from the wall
clock time, using as a reference the time required for solving the formula
with maximum parallel job limit of 4 in the grid. The decision of using the
reference run time from maximum parallel job limit of 4 was taken due to the
high run times of some interesting benchmarks on lower maximum parallel
job limits. We also report the speedups of minimum, average, median and
maximum jobs for each job type and size. The comparison between the two
heuristics (random and MINMAX) is done for the wall clock run times with
the maximum parallel job limit of 64 in the grid. Each benchmark runs at
most until the timeout of 12 hours, and the benchmarks not finishing until
the timeout get the timeout value as the run time. On some occasions, the
process GRIDJM runs out of memory due to a large amount of jobs sent to
grid. This is assumed to be caused by a memory leak. Also these runs get the
maximum run time.

The average speedup over all formulas is given in Figure 5.2. The figure
shows that on the benchmarks we used, we get a superlinear speedup when
using maximum parallel job limit of 8, when compared to maximum parallel
job limit of 4. The average wall clock time available for the process Filter at
maximum parallel job limit of 4 is 787.503 seconds, whereas for maximum
parallel job limit of 8 it is 309.698 seconds. The numbers are separately
calculated from the instrumentation output of Filter. If more time is used
in constructing the scattered formulas, the formulas should be more equal
in difficulty. However, since unsatisfiable results from the grid prune the
scattering tree, the aggressive parallelization is more effective. When the
maximum parallel job limit is further increased, the speedup increases more
slowly.

We can see a slight decrease in median and average speedups when the
maximum parallel job limit is raised from 32 to 64. At the same time,
the speedup of average increases. The average run times, from which the
speedup of average is deduced, are dominated by the high run times of cer-
tain formulas. The solving of these difficult formulas can benefit better from
the increase of parallelism, whereas the easier formulas suffer from the con-
stant overheads related to communication to the grid. Since easy formulas
do not profit from high level of parallelism and more jobs which would have
been solvable locally get sent to grid, the run time will slightly increase, as is
indicated by the speedup of average.
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Figure 5.3: Median and average run times for all formulas

The median and average run time of all jobs with respect to the maximum
parallel job limit is given in Figure 5.3. The median run time is just slightly
more than one hour with maximum parallel job limit of 4, but the average
run time is approximately twice the median, more than 2 hours.

5.3.1 Unsatisfiable and Satisfiable Random 3SAT

The random 3SAT instances, CNF formulas with exactly three literals in
every clause, are generated with the formula generator makewff by Bart Sel-
man [47]. The amount of variables in the instances ranges from 350 to 400
and the clause to variable ratio is set to 4.258 + 58.26|V |−5/3, where |V | is
the number of variables. This is the ratio that produces particularly difficult
3SAT formulas for DPLL type algorithms [20]. The formula size is mea-
sured in the number of variables. For each formula size, 10 formulas were
generated. Approximately half of them were satisfiable and half were unsatis-
fiable. The results are shown in Figures 5.4–5.11, where Figures 5.4 and 5.8
compare the two heuristics and Figures 5.5–5.7 and 5.9–5.11 illustrate the
speedup of unsatisfiable and satisfiable instances, respectively.

In Figure 5.4, presenting results for the unsatisfiable formulas, the effect
of the heuristic is almost an order of magnitude on the run time, favouring
MINMAX heuristic. Since the timeout value of 12 hours stops the growth
of the run times for random heuristic, we expect the actual difference in
problems having 370 or more variables to be larger than what is suggested by
the graph.
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Figure 5.5 shows the minimum, average, median and maximum run times
for the unsatisfiable problems. The times range at maximum parallel job
limit of 4 from over 30 minutes to the timeout value of 12 hours. The general
tendency is that the run times decrease as more resources are employed from
the grid. Only the maximum run time for formulas with 400 variables does
not show a clear decrease. The maximum run time of maximum parallel
job limit of 4 is set to the timeout value and as a result we do not get a real
reference value for the scalability.

From Figure 5.6 we see that the formula solving scales well up to maxi-
mum parallel limit of 16, after which the speedup grows more slowly. The
behaviour is explained by the observation that the actual parallelism in the
grid does not increase as much as the maximum parallelism. The effect of
increasing parallelism is more profound in the more difficult jobs. Especially
the minimum speedup at problems with 350 variables is low compared to the
speedups of formulas of greater size. This behaviour is expected, given that
the longer run times of formulas will give more actual parallelism when the
sending delays of the grid are taken into account. The minimum speedups
are low both on problems with 350 and 400 variables. This results from the
fact that easy formulas with low number of variables do not get the benefit
from the grid, or, in fact, might suffer from the penalty of long communi-
cation delays. The difficult formulas, on the other hand, do not get a good
reference point due to the enforced timeout value of 12 hours. The difficult
formulas do not suffer from the long communication delays, as can be seen
from the constantly increasing speedup as more resources are employed.

Figure 5.7 is constructed from Figure 5.5 by calculating the speedups
of minimum, average, median and maximum. We see that the speedup of
maximum for formulas of 400 variables is quite low. This is consistent with
the previous observation that the maximum run time is close to the timeout
value, and we cannot get a reliable speedup.

The satisfiable random 3SAT problems are characterized by a much more
varying run times, which are usually lower than those of same sized unsatis-
fiable problems. Figure 5.8 shows the difference between the two heuristics.
We can see that the random heuristic performs quite well on shorter run
times, but loses to the MINMAX heuristic especially when the run times are
higher. The overall impression is that the random heuristic does not perform
as well as the MINMAX heuristic.

The run time scales better on larger formula sizes, whereas the additional
parallel resources are mostly wasted on formulas of smaller size, yielding no
speedup in Figure 5.9.

The variation in run times is evident from Figure 5.10. Solving of satis-
fiable 3SAT formulas can greatly profit from the simultaneous slightly dif-
ferent searches resulting from the scattering, and yields good, but somewhat
volatile, speedups. Since the formulas with 400 variables are already quite
hard, the solving with 4 parallel jobs is set to the timeout value. As a result,
the speedup is not as good as for the formulas with 390 variables.

A slightly more consistent view of the speedups is given by Figure 5.11,
where the speedups are collected from the more stable data of Figure 5.9.
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Figure 5.4: Unsatisfiable random 3SAT, random and minmax heuristic, du-
ration in seconds
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Figure 5.5: Scalability for some unsatisfiable random 3SAT formula sizes,
duration in seconds

42 5. EXPERIMENTAL RESULTS



0 10 20 30 40 50 60 70
2

4

6

8

10

12

14

maximum parallel job limit

sp
ee

du
p

Unsatisfiable random 3SAT minimum speedup

 

 
350
360
380
390
400

0 10 20 30 40 50 60 70
0

5

10

15

20

sp
ee

du
p

maximum parallel job limit

Unsatisfiable random 3SAT average speedup

0 10 20 30 40 50 60 70
4

6

8

10

12

14

16

sp
ee

du
p

maximum parallel job limit

Unsatisfiable random 3SAT median speedup

0 10 20 30 40 50 60 70
0

5

10

15

20

sp
ee

du
p

maximum parallel job limit

Unsatisfiable random 3SAT maximum speedup

Figure 5.6: Speedup for some unsatisfiable random 3SAT formula sizes,
speedup compared to smallest maximum grid jobs
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Figure 5.7: Speedup of minimum, average, median and maximum for some
unsatisfiable random 3SAT formula sizes. Speedup compared to minimum,
average, median or maximum at smallest maximum simultaneous grid jobs
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Figure 5.8: Satisfiable random 3SAT, random and minmax heuristic, dura-
tion in seconds
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Figure 5.9: Scalability for some satisfiable random 3SAT formula sizes, du-
ration in seconds
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Figure 5.10: Speedup for some satisfiable random 3SAT formula sizes,
speedup compared to smallest maximum grid jobs
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Figure 5.11: Speedup of minimum, average, median and maximum for some
satisfiable random 3SAT formula sizes. Speedup compared to minimum,
average, median or maximum at smallest maximum simultaneous grid jobs
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5.3.2 Even Bit Composite Number Factorization

The satisfiable factorization formulas are generated by the computer program
genfacbm by Tuomo Pyhälä [43]. An instance consists of a Braun multiplier
circuit description in which the multiplicands are left free and the product is
fixed to a product of two primes. The satisfying truth assignments to the for-
mula are the valid inputs to the circuit when the output is the fixed product.
The truth assignments corresponding to inputs 1 and the product itself are
explicitly excluded, resulting in a formula with at most two satisfying truth
assignments. This means that finding such a truth assignment amounts to
factoring the binary number given as output of the circuit, i.e., finding the
two primes whose product the output is. The benchmark simulates a struc-
tured and satisfiable circuit verification problem. The reported formula size
is the width of the product in bits. For each size, total of nine formulas were
created.

In Figure 5.12 the difference between the efficiencies of the two heuristics
start to show clearly only at the larger formulas, and it seems to get more
significant as the formula size increases. Whereas the run times with random
heuristic seem to grow exponentially, the run times with MINMAX heuristic
does not show clear signs of growth.

The run time of the formulas is surprisingly constant on the scalability plot
of Figure 5.13. Only on the maximum run times can we observe somewhat
consistent decrease when more grid jobs are employed.

The run times of the formulas of size 38 and 40 from Figure 5.12 suggest
that the selected instances are approximately equally difficult. It is surprising
that the speedups of the formulas in Figures 5.14 and 5.15 show such a dif-
ferent behaviour. The averages and maximums show that certain formulas
benefit greatly from the added resources, but median and minimum indicate
that for most formulas, there is no significant advantage of using maximum
parallel job limit greater than four on certain formulas.

5.3.3 Prime Number Factorization

The benchmarks are generated by the same computer program genfacbm as
the composite number factorizations, but the product is fixed to be a prime.
As the only factors of any prime are the prime itself and 1, and these values are
prohibited from the constructed circuit, there are no values that would make
the propositional formula describing the circuit evaluate to true. We use a
set of fixed prime numbers of widths between 35 and 38 in the benchmarks.

Difference between the MINMAX and the random heuristic is clear from
Figure 5.16. On the selected formula sizes, the run times with MINMAX
heuristic do not noticeably grow when compared to the run times with ran-
dom heuristic.

As the unsatisfiable benchmarks are usually less prone to run time vari-
ations, the speedup can be observed clearly from the prime number factor-
ization formulas. Even though the differences between the run times of the
formulas of different sizes are quite small, the run times show a clear differ-
ence between the behaviour of the formulas when the maximum parallel job
limit is increased, in Figure 5.17.
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Figure 5.12: Even bit composite number factorization, duration in seconds
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Figure 5.13: Scalability for some even bit composite factorization formula
sizes, duration in seconds
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Figure 5.14: Speedup for some even bit composite factorization formula
sizes, speedup compared to smallest maximum grid jobs
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Figure 5.15: Speedup of minimum, average, median and maximum for some
even bit composite factorization formula sizes. Speedup compared to mini-
mum, average, median or maximum at smallest maximum simultaneous grid
jobs
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Table 5.2: Heuristic comparison for Four round one block DES

minmax random

min 493.10 423.07
avg 4720.68 17396.40
median 3418.45 10919.36
max 15264.62 43204.03

Since the differences in the problem sizes are rather small especially be-
tween the formulas of width 36 and 37, the speedups behave very similarly
in Figure 5.18. A clear difference can though be seen when observing the
behaviour of the formulas of width 35. On the easy problems, the resources
cannot be fully utilized. This results in an almost constant speedup after cer-
tain limit. The more difficult formulas can benefit from the parallelism and
the saturation point is reached somewhat later. Figure 5.19 is almost identi-
cal to Figure 5.18, which is due to the very stable behaviour of the run times
in the unsatisfiable factorization formulas.

5.3.4 Four-round One-block DES

We test the scattering with circuits constructed from a known-plain-text attack
to a four round DES. The benchmarks are constructed with the computer
program des2bc by Tommi Junttila [33]. Total of 20 formulas are generated,
all of which are satisfiable.

The role of the heuristic in solving is again very clear in the DES bench-
marks. The solving times for the two heuristics is presented in Table 5.2. As
is usual in satisfiable formulas, the random heuristic might occasionally find
the solution approximately as fast as the MINMAX heuristic. It is noteworthy
that whereas all formulas are solved using MINMAX heuristic and maximum
parallel job limit of 64, for 6 of them computation reached the timeout of 12
hours when using the random heuristic.

The scattered formulas constructed using the random heuristic are rela-
tively difficult and GRIDJM is able to effectively utilize approximately 40
of the parallel resources available for solving. A comparison between typical
scattering trees of random and MINMAX heuristics in Figure 5.20 shows that
the run times of scattered formulas are significantly more evenly distributed
in the tree formed by the MINMAX heuristic. Only the formulas sent to grid
are shown in the figures.

The solving times for the formulas have significant variation from run to
run, depending on what kind of formulas are scattered using the MINMAX
heuristic. For only 6 formulas, none of the solving attempts were successful in
solving the formula in less than one hour. Figure 5.21 shows the scalability of
the solving. The minimum run times seem to suffer from the communication
delays of the grid. The average run time shows a steady decrease when the
maximum parallel job limit is increased, even though the median run time
seems to suffer slightly when the maximum parallel job limit is more than
16. The behaviour can be explained by the maximum run time; the solution
to a difficult formula cannot be found until the timeout while the maximum
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Figure 5.16: Prime number factorization, duration in seconds
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Figure 5.20: Scattering tree for random (top) and MINMAX (bottom) heuris-
tics for a four-round one-block DES formula. Darker shades indicate longer
run times

parallel job limit is 32. When the maximum parallel job limit is increased to
64, the solution is finally found in slightly more than 4 hours.

Figure 5.22 shows a superlinear speedup when the maximum parallel job
limit is increased from 4 to 8 in the average and median speedups. The
growth of speedup decreases dramatically when the maximum parallel job
limit is increased from 8 to 16 and the speedup decreases especially in the
median when the maximum parallel job limit is increased to 32. Finally,
due to the timeouted solving on lower maximum parallel jobs, the speedup
again increases when maximum parallel job limit is 64. Somewhat similar
behaviour can be seen on Figure 5.23. The average is again dominated by
the good speedup with difficult formulas, whereas the easy formulas suffer
from the overheads.
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Figure 5.21: Scalability for four-round one-block DES, duration in seconds
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Figure 5.22: Speedup for four-round one-block DES, speedup compared to
smallest maximum grid jobs
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round one-block DES. Speedup compared to minimum, average, median or
maximum at smallest maximum simultaneous grid jobs
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Table 5.3: Selected unsolved formulas from SAT2005 solver competition

Industrial

Name Time (s) result

vmpc_32 108 satisfiable
vmpc_36 43200 timeout

Generated

Name Time (s) result

eulcbip-7-UNSAT 43200 timeout
eulcbip-8-UNSAT 43200 timeout
eulcbip-9-UNSAT 43200 timeout
gensys-ukn007 19192 unsatisfiable
gensys-ukn008 13217 unsatisfiable
linvrinv6 43200 timeout
linvrinv7 43200 timeout
linvrinv8 43200 timeout
linvrinv9 43200 timeout
mod2c-rand3bip-sat-230-1 3208 satisfiable
mod2c-rand3bip-sat-230-3 1302 satisfiable
mod2c-rand3bip-sat-240-2 17900 satisfiable
mod2c-rand3bip-sat-240-3 43200 timeout
mod2c-rand3bip-sat-250-1 1692 satisfiable

5.3.5 The Unsolved problems from SAT2005

The satisfiability solver competition organized in 2005 [18] consists of a set of
benchmarks which are solved using state-of-the-art satisfiability solvers. Dur-
ing the competition, certain formulas were not solved by any of the partici-
pating solvers. These formulas, which are not known to have been solved by
any solver previously, provide a challenging benchmark for new solvers.

From the set of unsolved formulas, we select certain small formulas which
during the competition were tried to solve with at least ten of the participating
solvers but were solved by none. The results are given in Table 5.3. When
solving these problems, the maximum parallel job limit is set to 32. Total of
seven problems from the 16 for which the solving is tried are solved before
the timeout of 12 hours.
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6 RELATED WORK

In this work we present an algorithm for parallel SAT solving and use a com-
putational grid as a platform for experimentations. Several other parallel SAT
solvers exist where the benchmarks are either run in a grid or in a conven-
tional multiprocessor environment. We will discuss both grid and multipro-
cessor solvers, as the distinction is not clear.

The idea of parallelizing the execution of declarative languages, which
subsumes the parallelizing of SAT, has been extensively studied [44]. Much
of the problems emerging from the parallelization of more expressive lan-
guages, such as Prolog [52], come from the preservation of the semantics of
the underlying language. The results have mostly been moderate, the expen-
sive co-ordination of variable binding being the key source of overhead, al-
though promising results have lately been achieved [44]. SAT, however, has
no such burden, due to its inherent nondeterminism. The underlying mech-
anism in both SAT solving and logic programming, the backtrack search, is
similar. We believe that the interaction of the fields can be very profitable.

To the best of our knowledge, all parallel solvers use a DPLL type algo-
rithm and all other parallel solvers except the GridSAT and SATU use the
guiding path, introduced in [56], to construct the subproblems. Intuitively,
the guiding path is the truth assignment indicating some unsolved branch
in the search tree. The branch originally belonging to some solver is given
to an idle solver and the initial owner of the branch does not backtrack to
that branch. More formally, a guiding path is a finite ordered list of pairs
〈(l1, b1), . . . , (ln, bn)〉, where li is a literal and bi is either true or false for
each 1 ≤ i ≤ n. When the DPLL algorithm chooses a literal, say lj, the pair
(lj , false) is added to the guiding path of the subproblem. If the algorithm
backtracks to the point where lj was chosen, the pair (lj, false) is changed to
the pair (lj, true) in the guiding path. A subproblem can only be generated
in the choice point l such that the corresponding entry in the guiding path is
the first pair of the form (l, false). The solving of the new subproblem starts
with a guiding path 〈(l1, false), . . . , (lj−1, false), (l̄j, true)〉, whereas the orig-
inal guiding path becomes

〈(l1, false), . . . , (lj−1, false), (lj , true), (lj+1, bj+1), . . . , (ln, bn)〉.

Example 4 Given a guiding path 〈(l1, true), (l2, false), (l3, true)〉, the single
possible split yields a guiding path 〈(l1, true), (l̄2, true)〉, whereas the original
guiding path becomes 〈(l1, true), (l2, true), (l3, true)〉.

One of the earliest parallel solvers is a solver by Böhm and Specken-
meyer [12]. It is designed for a special parallel machine with up to 256
processors. The architecture is limited so that a processor can communicate
with at most 4 other processors. The solver has a workload balancing algo-
rithm that is designed to work efficiently with limited communication. The
solver does not implement learning.

PSATO [56] is one of the first gridified SAT solvers. It is based on master-
slave -model and is designed for a typical small network of workstations which
are idle especially during out-of-office hours. The communication between
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master and slaves is implemented with a parallel C-library. PSATO is based
on the SAT solver SATO [55]. Each slave runs until it finds a satisfying as-
signment or discovers that the subproblem is unsatisfiable. If one of the slaves
reports a solution to the master or predetermined timeout has occurred, the
master sends a halt message to the slaves. Based on the results from slaves, the
master manages a list of subproblems which are sent to idle slaves. PSATO
has good fault tolerance based on a separate subproblem storage from which
the master can recover previous results in case of a client or master crash.
PSATO does not implement learning.

GridSAT [16, 17] is a Chaff-based SAT solver running in a computational
grid. The architecture supports clause learning and sharing between comput-
ing nodes. GridSAT has a client-server architecture but implements direct
communication between the clients. The solver splits only when the mem-
ory usage of a node exceeds a node-dependent threshold. The shared clause
database is typically large, 100 MB on average. The new version of Grid-
SAT implements a checkpoint-based fault recovery system for failures of grid
nodes. The GridSAT parallelization model is based on exhausting processes.
When a process runs out of resources, it divides the problem in two by copy-
ing the literals in the partial truth assignment on the decision level 0 and
the negation of the decision literal of the decision level 1 of the exhausting
process to the decision level 0 of the new process. The learned clauses are
transfered to the new process and of these clauses, the new process stores the
clauses not initially satisfied by the decision level 0 to its clause database.

PSatz [34] is a parallel solver implemented with a Remote Procedure Call
library and Posix threads. It is based on Satz [37] and thus does not imple-
ment clause learning. The amount of computing nodes is fixed for every run.
Whenever a node has no job, it steals one from a busy node. The computing
nodes communicate always through the master node. The computing nodes
send their state to the master every hour and every time a load balancing
occurs between two nodes. If a computing node fails, the previous state of
the failed node is sent by the master to another node, which continues the
computation. At most one hour of computing time per node failure is lost.

PaSAT [49, 11] is a parallel SAT-solver designed to run in a grid environ-
ment. It is implemented in C++ and uses a platform-independent parallel
programming API named DOTS [10]. The solver is based on SATO and it
incorporates clause learning and sharing via queues. PaSAT is able to learn
clauses and share them using a mobile agent approach. A mobile agent is
sent from each computing process to collect short learned clauses that are
not already satisfied by the partial truth assignment of the sender. The search
forms a tree-like structure of subprocesses. Problem splitting occurs when
a computing process runs out of jobs. The parent process in the subpro-
cess arborescent makes a new split of its (sub)problem and shares it with the
computing process demanding the new job. In order to avoid the ping-pong
-effect, that is, the scenario where most of the solving time is spent on con-
structing easy formulas which do not contribute to the solving of the full
problem noticeably, a certain time interval has to elapse before a new split
can occur.

NAGSAT [28] is a proof-of-concept parallel satisfiability prover. It uses a
parallel programming paradigm called nagging [46] in which a master pro-
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cess does a normal sequential search. Clients request parts of the search
tree and do a possibly redundant search on subproblems. If a client com-
pletes a subtree search (finds a solution or proof of unsatisfiability), the result
is reported to the master which reports the solution or backtracks accord-
ingly. NAGSAT implements only random branching heuristic in its sequen-
tial search and does not include clause learning. Nagging is inherently toler-
ant to client failures.

A low-level optimized Parallel Multithreaded Satisfiability Solver [27], im-
plemented for Intel processors, shows increased solving time with respect to
number of processors on a certain SAT-problem. The implementation runs
on a single machine and uses clause learning techniques. Parallelization of
the solver is implemented using guiding path. The test problem is solved in
relatively short time (from 7 to 195 seconds) and the results show that the
positive effect of a cache is not easily ported to parallel implementations.

To summarize the main differences between SATU and other solvers, we
emphasize the separate heuristic for constructing the executions, modest re-
quirements for communication, the pruning of the easy formulas before send-
ing them to parallel execution environment, possibility of using third party
SAT solvers and the idea of dividing the problem to possibly more than two
parts when the executions are constructed.
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7 CONCLUSIONS

The main contribution of this work is the introduction of a (to the best of
our knowledge) new parallelization scheme for DPLL type solvers. The key
advantages of the scheme are the clear separation of the distribution heuristic
and the actual solving heuristic, the modest requirements from the underly-
ing parallel architecture and the ability to easily run any propositional satisfi-
ability solvers on the problems, including the industrial black box solvers.

The scheme divides a SAT problem instance in question, a CNF formula,
into more and more constrained subproblems using a technique called scat-
tering. The subformulas, called scattered formulas, form a scattering tree
from which the formulas are then submitted to grid nodes for solving. The
constraints inserted to the subproblems are represented as clauses, which are
carefully selected by the scattering heuristic.

We have shown that the proposed parallelization scheme is effective and
scalable. The scheme is used to solve SAT problems in NorduGrid, a pro-
duction level computational grid. Using the implementation of the scheme,
we are able to get linear speedup, assuming that run times needed to solve
resulting subproblems (scattered formulas) are on average of certain length
which depends on the communication delays of the grid.

The new scattering scheme requires significantly less from the underlying
grid architecture than the schemes based on the guiding path approach (see
Chapter 6), where the communication delays between processes play a more
central role and a key issue in distributing is to communicate to the running
processes the changes in their solution space.

The solving of problems for which DPLL type algorithms do not require
much time on average does not suffer from greater overhead than what is
imposed by the communication delays of the underlying computing envi-
ronment, as the subproblem solving proceeds in the same way as the sequen-
tial solving. However, the addition of computing resources when solving a
problem with short run time does not shorten the run time further.

7.1 FURTHER WORK

The effect of sophisticated clause learning in speeding up propositional satis-
fiability checkers is undeniable. In this work the learned clauses only come
from the basic DPLL algorithm of the scattering. Especially as the imple-
mentation of the algorithm is not optimized, the effect of learning in solving
time is probably small. The learned clauses from the jobs that have timed out
would be especially useful, as they usually appear quite high on the scattering
tree and affect many problems.

The development of different scattering heuristics and systematically com-
paring the performances of such heuristics is a new challenge. A better
heuristic is presumably possible to construct when information from the up-
per layers of the solving process is available, say, from some high level lan-
guage which is converted to a SAT problem.

The run times of SATU tend to slowly grow after a certain maximum par-
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allel job limit has been reached. This might partly results from the shorter
CPU time available for Scatter, the implementation of the scattering heuris-
tics. In current implementation of SATU, Scatter does not save its state
between the runs, and the heuristic function has to start from scratch with
every scattering. In future, this becomes a significant threat to the system scal-
ability as the communication delays are expected to become less significant
when the grid technologies become more stable. In addition to optimizing
Scatter, a completely different model with a heuristic function storing the
heuristic values between the scatterings should be considered.

The test cases are missing a comparison for a commonly used scenario,
where no scattering is used but the same formula is submitted to a number of
grid nodes to be solved there using a randomized solver. The results from this
trivial approach to the parallelization would serve as an interesting reference
implementation to scattering.
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