
HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
Laboratory for Theoretical Computer Science

Billy Bob Brumley

Efficient Elliptic Curve Algorithms for

Compact Digital Signatures

Master’s Thesis submitted in partial fulfillment of the requirements for the degree
of Master of Science in Technology.

Espoo, November 27, 2006

Supervisor: Prof. Kaisa Nyberg

Instructor: Prof. Kaisa Nyberg

HELSINKI UNIVERSITY ABSTRACT OF THE
OF TECHNOLOGY MASTER’S THESIS

Author: Billy Bob Brumley

Name of the thesis: Efficient Elliptic Curve Algorithms

for Compact Digital Signatures

Date: November 27, 2006 Number of pages: 53

Department: Department of Computer Professorship: T-79

Science and Engineering

Supervisor: Prof. Kaisa Nyberg

Instructor: Prof. Kaisa Nyberg

Elliptic curves are attractive due to the reduced size of keys and signatures. Improving
the verification speed of such signatures has been the subject of much research. This
thesis explores compact digital signatures using elliptic curves. A survey of normal basis
field multiplication methods is done, as well as memory requirement and performance
analysis for software implementation. An easily implementable alternative to τ -adic
Joint Sparse Form is presented, as well as an algorithm for generating low-weight joint
τ -adic representations of an arbitrary number of integers. A computationally efficient
method for carrying out self-certified, identity-based signature verifications is given, as
well as a more secure key issuing protocol.

Keywords: Packet Level Authentication, elliptic curve cryptography, identity-based
cryptography, self-certified keys, small digital signatures, Koblitz curves, joint sparse
form, simultaneous elliptic scalar multiplication

ii

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ

Tekijä: Billy Bob Brumley

Työn nimi: Tehokkaita Elliptisten Käyrien Algoritmeja

Kompakteille Digitaalisille Allekirjoituksille

Päivämäärä: November 27, 2006 Sivuja: 53

Osasto: Tietotekniikan osasto Professuuri: T-79

Työn valvoja: Prof. Kaisa Nyberg

Työn ohjaaja: Prof. Kaisa Nyberg

Elliptiset käyrillä toteutettuina digitaalisten allekirjoitusten ja niiden luomiseen tarvit-
tavien avainten pituudet ovat lyhyitä muihin tunnettuihin allekirjoitusmenetelmiin ver-
rattuna. Mutta allekirjoitusten tarkistaminen on hitaampaa ja sen vuoksi mahdollisuuk-
sia tehokkaampaan tarkistamiseen on paljon tutkittu. Tässä diplomityössä tarkastellaan
erityisen kompakteja digitaalisia allekirjoituksia elliptisillä käyrillä. Työssä luodaan
katsaus normaalikantoja käyttäviin äärellisten kuntien kertolaskualgoritmeihin, sekä
niiden ja ohjelmallisten toteutusten tilakompleksisuuteen ja laskennalliseen tehokku-
uteen. Työssä on kaksi uutta tulosta. Ensimmäinen on helposti toteutettavissa oleva
vaihtoehtoinen algoritmi τ -kantaisen yhteisen harvan esityksen laskemiseen kahdelle
kokonaisluvulle. Toinen ja merkittävämpi tulos on algoritmi, jolla voidaan generoida
harva yhteisesitys mielivaltaisen monelle kokonaisluvulle.

Näitä tuloksia on sovellettu itsestään varmentuvien allekirjoitusten tarkistamiseen. It-
sestään varmentuvissa allekirjoituksissa julkisen avaimen menetelmän tarvitsemat var-
menteet on integroitu osaksi allekirjoitusta, mutta toisaalta ne vaativat salaisten avain-
ten muodostamiseen varmenneviranomaisen apua. Työssä on näytetty että erityises-
ti elliptisillä käyrillä salaisten avainten muodostaminen näitä allekirjoituksia varten
voidaan toteuttaa turvallisemmin. Näin työssä on kehitetty ja toteutettu ohjelmallises-
ti käytännöllinen ja tehokas digitaalinen allekirjoitusmenetelmä, joka täyttää paketti-
tason autentikoinnin asettamat tehokkuus- ja tilavaatimukset.

Avainsanat: pakettitason autentikointi, elliptisten käyrien salaustekniikka, identiteet-
tiin perustuvat digitaaliset allekirjoitukset, itsestään varmentuvat avaimet, kompak-
tit digitaaliset allekirjoitukset, Koblitz käyrät, kokonaislukujen harva yhteisesitys,
yhtäaikainen elliptinen skalaarilla kertominen

iii

Acknowledgements

This work was supported by the project “Packet Level Authentication” funded by
TEKES.

To acknowledge those directly involved with this work, thanks goes to:

� Prof. Kaisa Nyberg for suggestions, comments, and extremely generous sup-
port throughout not only this thesis, but my articles and studies as well.

� Kimmo Järvinen for useful comments and suggestions.

� others involved in the PLA project.

In addition, personal thanks goes to:

� my fiancée Hanna Miettinen for everything.

� my family (the one in Finland, too) for support.

� Dr. Laurie Champion (I call her Mom), San Diego State University, for being
my role model and mentor.

� my former instructor and adviser Mr. Peter Chase, Sul Ross State University,
for guiding me though my BSc studies.

� my former instructor Dr. Raymond Beaulieu, NSA (formerly at SRSU), for
sparking my interest in cryptography.

Otaniemi, November 27, 2006

Billy Bob Brumley, <billy.brumley at hut.fi>

iv

Contents

List of Tables vii

List of Figures viii

List of Algorithms ix

1 Introduction 1

1.1 Insecurity of the Internet . 1

1.2 Packet Level Authentication . 1

1.3 Digital Signatures and Level of Security 3

1.4 Contributions . 4

1.5 Outline . 5

2 Binary Fields 7

2.1 Binary Field Element Representations 7

2.1.1 Polynomial Basis . 7

2.1.2 Normal Basis . 8

2.2 Normal Basis Multiplication . 9

2.2.1 Bit-Level GNB Multiplication 9

2.2.2 Vector-Level GNB Multiplication 11

2.2.3 The Ning-Yin Method . 11

2.2.4 The Improved Ning-Yin Method 13

2.2.5 Normal Basis Multiplication Costs 13

2.3 Normal Basis Inversion . 15

3 Elliptic Curves 17

3.1 Point Addition and Doubling on E(F2m) 18

v

3.2 Projective Coordinates . 18

3.2.1 LD Coordinates . 19

3.3 Elliptic Scalar Multiplication . 19

3.3.1 NAF, Addition-Subtraction Method 20

3.3.2 Combing . 22

3.4 Simultaneous Elliptic Scalar Multiplication 24

3.4.1 Joint Sparse Form . 25

3.4.2 Generalization of Joint Sparse Form 26

3.5 Koblitz Curves . 27

3.5.1 Reduced τ -adic NAF . 28

3.5.2 Koblitz Curves and Combing 29

3.5.3 Joint Sparse Form, τ -adic . 30

3.5.4 An Efficient Alternative to τ -adic Joint Sparse Form 30

3.5.5 Generalizing τ -adic Signed-Bit Joint Representations 31

3.5.6 Joint τ -adic Representations of n Integers 34

4 Digital Signatures 36

4.1 The Nyberg-Rueppel Signature Scheme Using Elliptic Curves 37

4.2 Self-Certified Keys and Signatures 38

4.3 Improving the Performance of SCID Signatures 40

4.4 Improving the Security of SCID Signatures 42

4.4.1 The Threat of Impersonation Attacks 43

5 Conclusions 47

Bibliography 48

vi

List of Tables

1.1 Comparable key sizes (in bits). 4

1.2 Recommended minimum key sizes (in bits). 4

2.1 Example F (k) sequence for m = 7, T = 4, p = 29. 10

2.2 Estimated field multiplication costs. 15

2.3 Normal basis inversion costs for different binary field sizes (F2m). . . 16

3.1 Binary signed digit joint representations. 26

3.2 Examples of Koblitz curves. 27

3.3 τ -adic joint representations. 30

3.4 Probabilities of a non-zero column given n terms. 34

4.1 Multiplicative and elliptic curve group analogues. 36

4.2 Elliptic curve operations needed for common curves. 41

4.3 A small elliptic curve. 45

4.4 Distribution of difference frequencies. 46

vii

List of Figures

1.1 IPv6 header with PLA fields. 2

2.1 Data structure for a binary field element. 10

2.2 Multiplication matrix M for F27 . 12

2.3 Storing m = 163 rotations of A. 12

2.4 Matrix R for F27 . 14

3.1 Computation of 1262P using binary and NAF. 22

3.2 Combing example. 23

3.3 Small example of Shamir’s Trick, computing 13P + 7Q (1̄ = −1). . . 25

3.4 Generating τ -adic NAF for k = 9. 29

viii

List of Algorithms

1 Bit-level GNB multiplication. 10

2 Vector-level GNB multiplication. 11

3 Ning-Yin vector-level normal basis multiplication. 13

4 Improved Ning-Yin vector-level GNB multiplication. 14

5 Normal basis inversion by exponentiation. 15

6 Right-to-left elliptic scalar multiplication. 20

7 Right-to-left elliptic scalar multiplication using NAF. 21

8 Left-to-right elliptic scalar multiplication by combing. 23

9 Left-to-right simultaneous elliptic scalar multiplication. 25

10 Right-to-left elliptic scalar multiplication using τ -adic NAF. 28

11 left to right τ -adic simultaneous elliptic scalar multiplication 31

12 Generating a τ -adic joint representation of n integers. 35

13 Three-Term τ -adic simultaneous scalar multiplication. 41

ix

Chapter 1

Introduction

1.1 Insecurity of the Internet

As Hardin noted [Har68] in “The Tragedy of the Commons,” a large, shared re-
source will inevitably be exploited by its users. This idea is timeless and has been
documented as far back as Aristotle (350 BC) [Ari43]:

For that which is common to the greatest number has the least care
bestowed upon it. Every one thinks chiefly of his own, hardly at all
of the common interest; and only when he is himself concerned as an
individual.

The same is true of the Internet. Attacks such as denial-of-service, distributed
denial-of-service, packet spoofing, etc. are widespread. Therefore, new and more ef-
ficient protection methods are required. One vision known as Packet Level Authenti-
cation (PLA) [CC05] is that more protection is needed at the network infrastructure
level. The sender should include a digital signature and some addition data in every
packet so that other nodes can verify the integrity, timeliness, and uniqueness of
packets without previous communication with the sender.

1.2 Packet Level Authentication

As mentioned, PLA seeks to provide protection at the network infrastructure level.
More specifically, a digital signature is attached to every packet to allow every hop
along the route to verify the authenticity of the packet. This is different from other

1

CHAPTER 1. INTRODUCTION 2

end-to-end solutions, such as IPSec, where authenticity can only be verified once
the packet has reached the final destination. A sample IPv6 PLA packet header is
shown in Figure 1.1.

+-+

|Version| Traffic Class | Flow Label |

+-+

| Payload Length | Next Header | Hop Limit |

+-+

| |

+ +

| |

+ Source Address +

| |

+ +

| |

+-+

| |

+ +

| |

+ Destination Address +

| |

+ +

| |

+-+

+ <hop-by-hop header> | TTP ID |

+-+

| Seqnum 32 most significant bytes |

| Seqnum 32 least significant bytes |

+-+

| Certificate (N bits) |

+-+

| Signature (M bits) |

+-+

| Packet creation time (32 bits) |

+-+

| |

| Payload (up to about 1400 bytes) |

| |

Figure 1.1: IPv6 header with PLA fields.

Currently, the Signature field contains an RSA signature on the packet. The Certifi-
cate field contains the sender’s public key as well as a trusted third party’s signature
on the public key. Table 1.1 shows that ECC can greatly reduce the size of these
fields.

The informal requirements that PLA needs from a digital signature algorithm are
summarized in the following criteria.

Criterion 1 The signature scheme must be secure. Although this requirement is
quite broad, in practice it means that the signature scheme should be built on
those that exist in the standards. The threat of attacks such as impersonation,

CHAPTER 1. INTRODUCTION 3

hash function collisions, existential forgery, etc. must be minimal.

Criterion 2 The signatures and public keys must be compact. Since a digital sig-
nature and certificate (containing the signer’s public key and trusted third
party’s signature) is attached to every packet, it is important to keep the
components as small as possible to avoid excess overhead in the packet.

Criterion 3 The signatures must be able to be generated and verified quickly. Since
the authenticity of every packet needs to be verified, the selected signature
scheme must perform in a manner as to not cause excess latency in the network.

Criterion 4 The solution must be viable. The goal is to obtain a practical solution
that is useable in the real world. Therefore, the solution must be scalable and
practical for a software and/or hardware implementation.

1.3 Digital Signatures and Level of Security

Digital signatures provide a means for authentication of many types of digital data.
There are many different signature schemes in existence and still more being de-
veloped from year to year. Digital signatures are based on some type of difficult
mathematical problem. Therefore, it is important to have different types of signa-
ture schemes to provide alternatives in the event that any of these given problems
becomes easier to solve. There are three categories outlined in [IEE99]; these are
briefly stated below.

Integer Factorization (IF). Given a composite number n = pq, p, q sufficiently
large primes, it is difficult to find p, q given only n. Example: RSA [RSA78].

Discrete Log (DLP). Given an integer a relatively prime to n and g a primitive
root of n, it is difficult to find b such that a = gb (mod n). Examples: Digital
Signature Algorithm (DSA) [Kra93], Schnorr [Sch91], Nyberg-Rueppel [NR93].

Elliptic Curve Discrete Log (ECDLP). Given a generator G and the point
P = kG, it is difficult to find the scalar k. Examples: those from DLP,
but using elliptic curve groups.

The difficulty of solving these problems varies. Table 1.1 from [BW05] shows an
equivalent level of security (in bits) against attacks using current methods. Note
that the elliptic curve schemes have much lower key sizes than other public key

CHAPTER 1. INTRODUCTION 4

primitives; this is the main advantage of using elliptic curves, and the reason that
elliptic curve cryptography (ECC) is the focus of this thesis.

Strength ECC DSA/RSA

80 163 1024

112 233 2048

128 283 3072

192 409 7680

256 571 15360

Table 1.1: Comparable key sizes (in bits).

As computing power increases, so does the level of security. Table 1.2 lists the key
sizes that are currently recommended by NIST [BBB+05].

Years Strength dsa rsa EC

now-2010 80 1024/160 1024 160

2011-2030 112 2048/224 2048 224

2030+ 128 3072/256 3072 256

Table 1.2: Recommended minimum key sizes (in bits).

1.4 Contributions

The solution herein for PLA combines the use of Koblitz curves, elliptic curve digital
signatures, self-certified keys, and simultaneous scalar multiplication. The Nyberg-
Rueppel signature scheme is used, which is present in many common standards.
A secure self-certified key issuing protocol is also used. This satisfies Criterion 1.
Criteria 2 and 3 are a tradeoff. While RSA signature verifications can be much
faster than those using elliptic curves [Sco06], Table 1.2 shows that RSA signatures
are much larger than signature schemes that use elliptic curves. This difference will
be even greater in the future. Therefore, the use of elliptic curves is imperative.
The size and computational efficiency is further improved by the use of self-certified
keys, Koblitz curves, and simultaneous scalar multiplication. These methods were
selected and designed with software and hardware implementation in mind, and

CHAPTER 1. INTRODUCTION 5

hence Criterion 4 is satisfied.

PLA is just one example of a security problem in which digital signatures, if imple-
mented efficiently, can provide a solution. PLA provides the motivation; however,
the results and contributions are applicable to many areas of elliptic curve cryp-
tography. The focus is on software implementation, but many of the presented
algorithms will perform well in hardware, too. The tangible contributions of this
thesis are listed below.

Low-Weight Joint τ-adic Representations. An algorithm for generating low-
weight, signed-bit τ -adic representations of an arbitrary number of integers is
presented. This combines and extends the ideas of τ -adic Joint Sparse Form
[CLSQ03] and the Binary Signed Digit representation [RK04].

Fast Signature Verifications Using Self-Certified Keys. A method for com-
bining self-certified key extraction and signature verifications is presented.
This is accomplished using Shamir’s Trick [ElG85] combined with the above
algorithm to reduce the joint weight.

Secure Self-Certified Key Issuing Protocol. A modification to the blind key
issuing protocol in [AdM04] is presented, in which the use of elliptic curves
allows for the elimination of the proof of knowledge step. Eliminating this
step reduces the complexity of the protocol, as one roundtrip communication
is saved.

Software Implementation. The solution herein has been implemented in the C
programming language. Although there has been some optimization for speed,
this software should mostly be considered as proof-of-concept, as the crypto-
graphic settings have been selected with hardware performance in mind. In
the PLA project, most of this software will eventually be replaced by hard-
ware. The PLA software (including the crypto implementation described) can
be found at http://www.tcs.hut.fi/Software/PLA/ .

1.5 Outline

Binary fields are covered in Chapter 2. A survey of normal basis field multiplica-
tion methods is done, as well as efficiency analysis for software implementation.

Elliptic curves are covered in Chapter 3. The basics of elliptic curve arithmetic
are described, such as elliptic scalar multiplication. An efficient alternative to

http://www.tcs.hut.fi/Software/PLA/

CHAPTER 1. INTRODUCTION 6

τ -adic Joint Sparse Form is presented, as well as an algorithm for low-weight
joint τ -adic representations of an arbitrary number of integers.

Digital signatures are covered in Chapter 4. A review of the Nyberg-Rueppel
signature scheme is given, as well as a similar self-certified identity-based sig-
nature scheme. A computationally efficient method for carrying out these
signature verifications is presented, using the contributions from Chapter 3.
A more secure self-certified key issuing protocol is also provided.

Chapter 2

Binary Fields

“What a wealth, what a grandeur of thought may spring from what

slight beginnings.” (referring to groups) Henry F. Baker, [Caj91]

Given a positive integer m known as the degree, the binary finite field F2m is made
up of the 2m possible strings of bits of length m. For software and hardware imple-
mentations, binary field arithmetic can be very efficient as it typically involves lots
of bitwise operations..

Addition. To compute the sum c of two elements a, b ∈ F2m , a, b are added bitwise
modulo 2. Therefore, c = a⊕ b, where ⊕ denotes the bitwise XOR operation.

The definition of other more complex operations (e.g., multiplication, inversion,
squaring, etc.) depends on the representation of the binary field elements.

2.1 Binary Field Element Representations

A representation of a binary field element determines how a bit string is to be
interpreted. There are two popular methods that are described below.

2.1.1 Polynomial Basis

A polynomial basis representation uses each bit as a coefficient of a polynomial
having degree of at most m−1. Formally, the bit string 〈am−1 . . . a1a0〉 is interpreted
as the polynomial

am−1x
m−1 + am−2x

m−2 + · · ·+ a2x
2 + a1x + a0 .

7

CHAPTER 2. BINARY FIELDS 8

A field polynomial is an irreducible polynomial of degree m. When the product of
two field elements is computed, the result is then reduced modulo the field polyno-
mial.

2.1.2 Normal Basis

Given a root β of a field polynomial, a normal basis representation for the elements
of the binary field F2m makes use of the set of m linearly independent elements

{β, β2, β22
, . . . , β2m−2

, β2m−1} .

A set is said to be linearly independent if no subset adds to zero. Formally, the bit
string 〈a0, a1, . . . , am−1〉 is interpreted as the element

a0β + a1β
2 + a2β

22
+ · · ·+ am−2β

2m−1
+ am−1β

2m−1
.

Multiplication using normal bases is not as straight-forward as the polynomial basis
case. However, a Gaussian normal basis (GNB) exists when m is not divisible by
eight. Multiplication using a GNB is much more efficient than arbitrary normal
bases. Therefore, only GNBs will be considered here.

Each GNB has a type1 T associated with it which describes the complexity of
multiplication; the lower the value of T , the easier multiplication is. A GNB with
T = 1, 2 is known as a type I or type II optimal normal basis (ONB), respectively.
Multiplication is most efficient when an ONB is used. Only values of m for which
T is even will be considered here.

Squaring. When using a normal basis, one advantage is that squaring is virtually
free. Given an element a = 〈a0, a1, . . . , am−2, am−1〉 ∈ F2m , the computation a2

involves only a right rotation2 of the bits, denoted �. More formally,

a2 = 〈am−1, a0, a1, . . . , am−3, am−2〉 .

Note that this is a bijection. Given an integer k, the notation a � k (k right
rotations) is the computation of a2k

. It follows that the computation
√

a involves
only a left rotation of the bits, denoted �:

√
a = 〈a1, a2, . . . , am−2, am−1, a0〉 .

1More details on the type of a GNB can be found in [IEE99]
2This is also known as a barrel shift or circular shift operation (CSO).

CHAPTER 2. BINARY FIELDS 9

2.2 Normal Basis Multiplication

The main disadvantage of normal basis representation over polynomial basis repre-
sentation is the speed of multiplication. Normal basis representation has tradition-
ally been shunned in software implementations due to lack of efficient multiplication
algorithms. Many standards and references omit normal basis representation en-
tirely [SEC00, HMV04].

Most software packages fail to include support for normal basis representation as
well. Crypto++ [Dai06], LiDIA [LG06], and MIRACL [Sco06] are common cryp-
tographic libraries that include elliptic curve cryptography. However, none of them
support normal basis representation, only polynomial basis. The implementation in
[Ros99] is the one notable exception, which includes support for ONBs, but not for
other GNBs.

The cryptographic software implementation for the PLA project is intended as a
“proof-of-concept”. Most, if not all of the cryptographic software will eventually
be replaced by hardware components. Therefore, the software has been written to
model a system that will be computationally efficient in hardware, but not necessar-
ily in software. For this reason, only GNB representations are considered. However,
given these restraints the software should still perform as well as possible, meaning
efficient methods for GNB arithmetic are still important.

2.2.1 Bit-Level GNB Multiplication

Only one method for multiplication when using a GNB in presented in [IEE99]. The
sequence F (1), F (2), . . . , F (p− 1) defines the multiplication rule for a GNB. Given
integers p = mT + 1 and u of order T (mod p), F (k) is generated by

F (2iuj mod p) = i , where 0 ≤ i ≤ m− 1 , 0 ≤ j < T . (2.1)

It should only be generated once, offline at initialization (not at each iteration of a
field multiplication) as it is fixed for a given value of m. An example F (k) sequence
for m = 7, T = 4, p = 29 is presented in Table 2.1.

For the product c = ab, the coefficient c0 is computed as

c0 =
p−2∑
k=1

aF (k+1)bF (k) , (2.2)

CHAPTER 2. BINARY FIELDS 10

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14

F (k) 0 1 5 2 1 6 5 3 3 2 4 0 4 6

k 15 16 17 18 19 20 21 22 23 24 25 26 27 28

F (k) 6 4 0 4 2 3 3 5 6 1 2 5 1 0

Table 2.1: Example F (k) sequence for m = 7, T = 4, p = 29.

The other coefficients are calculated by left rotations on the formula for c0. The
result is Algorithm 1.

Algorithm 1: Bit-level GNB multiplication.
Input: Field elements a, b ∈ F2m

Output: The product c = ab ∈ F2m

c← 0
for i← 0 to m− 1 do

for k ← 1 to p− 2 do ci ← ci ⊕ (aF (k+1)bF (k))
a← a� 1, b← b� 1

end
return c

For a practical software implementation, the normal basis multiplication method
in Algorithm 1 is virtually unusable. Accessing arbitrary bits is not a trivial task
in software (as opposed to hardware). A typical software implementation of field
elements for elliptic curve cryptography uses the following structure [DHH+04] pre-
sented as Figure 2.1, where W is the computer word size and Abm/W c is padded on
the right with zeros.

A0 : a0a1 . . . aW−1 A1 : aW aW+1 . . . a2W−1 . . . Abm/W c : . . . am−1

Figure 2.1: Data structure for a binary field element.

Therefore, accessing an arbitrary bit of a field element requires division, modular
reduction, shifting, and some bitwise operations. At each iteration of the inner loop
in Algorithm 1, up to three bits need to be accessed, as well as two table lookups.
For one field multiplication, O(m2T) executions of the inner loop are needed, so the
algorithm does not perform well in software.

CHAPTER 2. BINARY FIELDS 11

2.2.2 Vector-Level GNB Multiplication

Recently, however, much progress has been made in the development of normal
basis multiplication algorithms that are more software-oriented [NY01, RMH01,
RMH03, FD04, DHH+04, RM06]. These algorithms operate at the vector-level
instead of the bit-level. In practice, this means that operations are done on the W -
bit words of a field element instead of accessing arbitrary bits. Bitwise operations on
computer words are generally very efficient. Algorithm 2 (modified from [RMH03])
demonstrates vector-level GNB multiplication. Bitwise AND is denoted by �.

Algorithm 2: Vector-level GNB multiplication.
Input: Field elements A,B ∈ F2m

Output: The product C = AB ∈ F2m

SA ← A,SB ← B,C ← 0
for k ← 1 to p− 2 do

SA � F (k)
C ← C ⊕ (SA � SB)
SB � F (k)

end
return C

As the values SA, SB are not being modified (they are just rotations of A,B re-
spectively), these rotations can be precomputed. This idea was first introduced
in [NY01]. While their approach was for general normal bases and extended to
ONBs, the idea has led to multiple enhancements for field multiplication for GNBs
[DHH+04, RM06].

2.2.3 The Ning-Yin Method

Using general normal bases, multiplication is normally carried out using an m×m

matrix M known as the multiplication matrix. In the GNB case, M can be easily
computed using the sequence F (k) from Equation 2.1 as

for i← 1 to p− 2 do MF (p−i),F (i+1) ←MF (p−i),F (i+1) + 1 (mod 2) . (2.3)

Since F (k) is fixed for a given m and generated offline, it follows that M is also
fixed and should be generated offline. An example of M for F27 is shown in Figure
2.2.

CHAPTER 2. BINARY FIELDS 12

0 1 0 0 0 0 0

1 0 1 0 0 1 1

0 1 0 1 1 1 0

0 0 1 0 0 1 0

0 0 1 0 0 0 1

0 1 1 1 0 0 1

0 1 0 0 1 1 1

Figure 2.2: Multiplication matrix M for F27 .

The approach in the Ning-Yin method [NY01] is to store3 m rotations of A,B. Let
Ai = A2m−i

(sequential left rotations of A) and consider the example of naively
storing m = 163 rotations of A when W = 32 presented in Figure 2.3.

TA

A2163
= A0 = a0 . . . a31 a32 . . . a63 . . . a160 . . . a162

A2162
= A1 = a1 . . . a32 a33 . . . a64 . . . a161 . . . a0

...
...

...
...

...

A2131
= A32 = a32 . . . a63 a64 . . . a95 . . . a29 . . . a31

...
...

...
...

...

A21
= A162 = a162 . . . a30 a31 . . . a62 . . . a159 . . . a161

Figure 2.3: Storing m = 163 rotations of A.

This requires m × dm/W e computer words. However, there are many redundant
words being stored in memory; for example, word 1 of A0 = word 0 of A32. The
storage requirements can be reduced by eliminating these redundant words. More
specifically, let TAi be word 0 of Ai (TA is column 0 of Figure 2.3). The rotation
Ai can then be accessed via the words

Ai = TAi , TAi+W , TAi+2W , . . . , TAi+bm/W cW

3This does not necessarily mean m rotations need be performed; if the rotation operation is
considered non-trivial, then at most only W rotations are needed.

CHAPTER 2. BINARY FIELDS 13

For example, in Figure 2.3

A0 = TA0 , TA32 , TA64 , TA92 , TA128 , TA160

(clearing the extra bits at the end). This method of storage only requires m words.
The modular reductions can be eliminated by doubling the size of TA in a wrap-
around fashion. Algorithm 3 from [NY01] demonstrates this method.

Algorithm 3: Ning-Yin vector-level normal basis multiplication.
Input: field elements A,B
Output: field element C = AB
Precompute arrays Ai, Bi

C ← 0
for i← 0 to m− 1 do

S ← 0 /* go L-R (j), T-B (i) through M */
for j ← 0 to m− 1 do

if Mi,j = 1 then S ← S ⊕Bj

end
C ← C ⊕ (Ai � S)

end
return C

2.2.4 The Improved Ning-Yin Method

It was proved in [RM06] that the multiplication matrix M has at most T non-zero
entries in each row. An improvement to the Ning-Yin method was suggested which
makes use of an m × T matrix R which holds the indices of the ones in M . An
example of R for F27 is shown in Figure 2.4. Since M is fixed and generated offline,
so is R.

This solution, presented as Algorithm 4, is very attractive due to the drastic reduc-
tion in the amount of shifting (at the cost of storing the tables TA, TB). Note that
there is an inner loop present bound by the type T .

2.2.5 Normal Basis Multiplication Costs

Field multiplication costs measured by the number of bitwise operations are pre-
sented in Table 2.2. Two algorithms are compared; the bit-level Algorithm 1 and
the vector-level Algorithm 4. The field sizes of m = 163, 233 are analyzed, as well
as the computer word sizes W = 32, 64.

CHAPTER 2. BINARY FIELDS 14

1 0 0 0

0 2 5 6

1 3 4 5

2 5 0 0

2 6 0 0

1 2 3 6

1 4 5 6

Figure 2.4: Matrix R for F27 .

Algorithm 4: Improved Ning-Yin vector-level GNB multiplication.
Input: field elements A,B
Output: field element C = AB
Precompute arrays Ai, Bi

C ← A�B1

for i← 1 to m− 1 do C ← C ⊕ (Ai � (BR(i,1) ⊕BR(i,2) ⊕ . . .⊕BR(i,T)))
return C

As demonstrated, bit-level and vector-level GNB multiplication algorithms are fun-
damentally different. As shown in Figure 2.1, the lookup of arbitrary bits in software
often involves some more complex calculations. These costs are not considered in
Table 2.2. The value for the Lookups column includes both table lookups as well
as (in the vector-level case) precomputed rotation lookups (each computer word
counting as one lookup).

There are many points to consider when viewing Table 2.2. Higher values for the
computer word size are always more efficient. Increasing from m = 163 to m = 233
has a very small impact on the number of bitwise operations. This is due mainly to
the multiplication complexity type (T) difference. As shown in Tables 1.1 and 1.2,
this result is significant because as the security requirements increase in the future,
this means there will be very little field multiplication efficiency loss when increasing
the field size from m = 163 to m = 233.

CHAPTER 2. BINARY FIELDS 15

Method Words (d) Shifts ANDs XORs Lookups

Bit-level (BL) - 2m Tm2 Tm2 Tm2

Vector-level (VL) dm/W e 2m dm dT (m + 1) m(T (d + 1) + d)

BL, m = 163, T = 4 - 326 106276 106276 106276

VL, W = 32 6 326 978 3936 5542

VL, W = 64 3 326 489 1968 3097

BL, m = 233, T = 2 - 466 108578 108578 108578

VL, W = 32 8 466 1864 3744 5592

VL, W = 64 4 466 932 1872 3262

Table 2.2: Estimated field multiplication costs.

2.3 Normal Basis Inversion

Using the fact that squaring is essentially free, the inverse of a field element can be
calculated using exponentiation as

a−1 = a−2a = a−2a2m
= a2m−2 (2.4)

While a general exponentiation algorithm can be used, a specialized algorithm was
presented in [IT88] for exponentiation to the power of 2m − 2. The version from
[IEE99] is outlined below in Algorithm 5.

Algorithm 5: Normal basis inversion by exponentiation.
Input: Field element a ∈ F2m .
Output: The inverse a−1.
Let bi denote coefficient i in the binary expansion of m− 1 and bj the most
significant bit.
e← a , k ← 1
for i← j − 1 to 0 do

c← e� k /* c← e2k
, k right-rotations of e */

e← ce , k ← 2k
if bi = 1 then e← e2a , k ← k + 1

end
return e2

Since Algorithm 5 is bound by the fixed value of m, the cost of inversion using normal
bases is fixed; these costs are presented in Table 2.3 for a few different values of m.
The costs are exact, as the number of field multiplications is dependent only on

CHAPTER 2. BINARY FIELDS 16

the value of m. As inversion in Fp is estimated at a cost of 80 field multiplications
[HMV04], inversion in F2m is much more efficient.

m T Mults

113 2 8

131 2 8

163 4 9

233 2 10

Table 2.3: Normal basis inversion costs for different binary field sizes (F2m).

Chapter 3

Elliptic Curves

“It is possible to write endlessly on elliptic curves.

(This is not a threat.)” Serge Lang, [Lan78]

Elliptic curves for cryptographic use [Mil86, Kob87] are defined by their Weierstrass
equation. These curves are over a finite field Fq, where q = p (a prime finite field)
or q = 2m (a binary finite field) [Kob94, IEE99]. An elliptic curve over Fp is the set
of points P = (x, y) satisfying the Weierstrass equation

y2 = x3 + ax + b , (3.1)

where x, y ∈ Fp. Similarly, an elliptic curve over F2m is the set of points satisfying
the Weierstrass equation

y2 + xy = x3 + ax2 + b , (3.2)

where x, y ∈ F2m . Another point called the point at infinity, denoted by ∞, is
the identity element (∞ + P = P). The order of E is the number of points on
E including ∞, denoted #E(Fq). Elliptic curves for cryptographic use have large
prime order r.

While it is possible to generate elliptic curves with large prime order, in practice
standardized curves are often used. For example, NIST published [NIS99] many
elliptic curves for cryptographic use that have been adopted by various cryptographic
standards [ANS98, SEC00]. Implementations have been well documented [BHLM01,
HHM00].

As the implementation here is targeted towards software and hardware, elliptic
curves over F2m will be the focus, as binary field arithmetic is much more efficient

17

CHAPTER 3. ELLIPTIC CURVES 18

in software and hardware than prime field arithmetic. However, elliptic curves over
prime fields are generally easier to visualize geometrically. Hence, many of the small
examples will use elliptic curves over prime fields.

The following notation will be used for operation costs: S = field squaring, M =
field multiplication, I = field inversion, D = point doubling, A = point addition.

3.1 Point Addition and Doubling on E(F2m)

For adding two distinct points (x1, y1) + (x2, y2) = (x3, y3) on an elliptic curve over
F2m , the following equation is used.

x3 = λ2 + λ + x1 + x2 + a

y3 = λ(x1 + x3) + x3 + y1 , where (3.3)

λ =
y1 + y2

x1 + x2

This computation requires1 1S+2M+1I. To subtract the point P = (x, y) the point
−P = (x, x + y) is added.

To double a point 2(x1, y1) = (x3, y3) on an elliptic curve over F2m , the following
equation is used.

x3 = λ2 + λ + a

y3 = x2
1 + x3(λ + 1) , where (3.4)

λ = x1 +
y1

x1

This requires 2S + 2M + 1I.

3.2 Projective Coordinates

As inversion is generally more expensive than multiplication, projective coordinates
are often used to trade a certain number of field multiplications for inversion. While
[IEE99] advocates the use of Jacobian projective coordinates for all E(Fq), López-
Dahab (LD) projective coordinates [LD99] actually prove to be a little more efficient
for E(F2m).

1Division is inversion followed by multiplication.

CHAPTER 3. ELLIPTIC CURVES 19

3.2.1 LD Coordinates

Using LD coordinates, the point (X : Y : Z) , where Z 6= 0 , corresponds to the
affine point (X/Z, Y/Z2). The point at infinity ∞ = (1 : 0 : 0). The projective
elliptic curve equation is given by

Y 2 + XY Z = X3Z + aX2Z2 + bZ4 . (3.5)

Point Addition, Mixed Coordinates. Given P = (X1 : Y1 : 1) and Q = (X2 :
Y2 : Z2) , where P 6= ±Q, P + Q = (X3 : Y3 : Z3) is calculated [ADMRK02] as

U = Z2
2Y1 + Y2 , S = Z2X1 + X2 , T = Z2S , Z3 = T 2 ,

V = Z3X1 , C = X1 + Y1 , X3 = U2 + T (U + S2 + aT) ,

Y3 = (V + X3)(TU + Z3) + Z2
3C . (3.6)

This requires 8M + 5S and 8 field additions2. Note that P is in affine coordinates
while Q and the resulting point are in LD coordinates.

Point Doubling. Given P = (X1 : Y1 : Z1), 2P = (X3 : Y3 : Z3) is calculated as

S = X2
1 , T = Z2

1 , Z3 = ST , T = bT 2 ,

X3 = S2 + T , Y3 = (Y 2
1 + aZ3 + T)X3 + TZ3 . (3.7)

This requires 4M + 5S and 4 field additions. Note that P and the resulting point
are both in LD coordinates.

3.3 Elliptic Scalar Multiplication

Elliptic scalar multiplication, the elliptic curve analogue of modular exponentia-
tion [Knu98], replaces all the multiplicative group operations of multiplication and
squaring with the analogous elliptic curve operations of point addition and point
doubling. Given an `-bit scalar k = 〈k`−1 . . . k0〉, ki ∈ {1, 0} (binary expansion) and
a point P , k multiples of P are computed using

kP =
`−1∑
i=0

ki2iP . (3.8)

2Assuming a ∈ {0, 1} , which is the case for standardized curves [NIS99].

CHAPTER 3. ELLIPTIC CURVES 20

The Double-and-Add Method is outlined in Algorithm 6. The average number of
non-zero digits in `-bit k is `/2, so it is executed at the average cost of

`

2
A + `D . (3.9)

Algorithm 6: Right-to-left elliptic scalar multiplication.
Input: integer k, point P ∈ E(Fq)
Output: kP
Q←∞
while k > 0 do

if k is odd then Q← Q + P /* k & 1 */
k ← bk/2c /* right shift by one */
P ← 2P /* using a point doubling method */

end
return Q

Using Mixed Coordinates

In Algorithm 6, the point P accumulates doubles of P and has a value of 2iP at
each iteration i. Depending on the binary digit of ki, Q gets the point 2iP added to
it. Projective coordinates should not be used in this case, as both P and Q would
be in projective coordinates.

However, when moving left-to-right, the point Q accumulates doubles at each itera-
tion, then depending on the digit ki has the point P is added to Q. Having P in affine
coordinates and Q in LD coordinates is then appropriate and projective coordinates
can be used. Hence, algorithms that move left-to-right are generally preferred over
right-to-left. However, right-to-left methods are usually easier to understand and
express logically, so many of the examples here and in academic literature present
right-to-left methods for brevity.

3.3.1 NAF, Addition-Subtraction Method

In multiplicative groups, an unsigned binary representation is used for exponenti-
ation, since inversion is much more expensive than multiplication. However, for
elliptic scalar multiplication a binary signed-digit representation known as Non-
Adjacent Form (NAF) [Gor98] of the `-bit scalar k = 〈k`−1 . . . k0〉, ki ∈ {1,−1, 0}

CHAPTER 3. ELLIPTIC CURVES 21

is commonly used. For groups over elliptic curves, the analogous operation of point
subtraction has roughly the same cost as point addition [MO90].

As with the unsigned binary representation, each integer has a unique NAF. Of any
two adjacent digits, at least one must be zero. Given an `-bit integer in NAF, the
average density is `/3, which is minimal among all signed binary representations.

Deriving the NAF of an integer is very similar to computing the normal, unsigned
binary representation of an integer. For the unsigned representation, the integer
is repeatedly divided by 2, outputting the remainder at each step (either 0 or 1).
NAF is generated by repeatedly dividing k by 2, choosing a remainder such that the
quotient is divisible by 2.

The Addition-Subtraction Method presented as Algorithm 7 from [Sol00] is the only
method present in many standards [IEE99, ANS98]. It performs the scalar mul-
tiplication and NAF calculation simultaneously. This is done to avoid the extra
temporary storage of the NAF representation. Since there are on average `/3 non-
zero digits using NAF, Algorithm 7 is executed at the cost of

`

3
A + `D . (3.10)

Algorithm 7: Right-to-left elliptic scalar multiplication using NAF.
Input: integer k, point P ∈ E(Fq)
Output: kP
Q←∞
while k > 0 do

if k is odd then
u← 2− (k mod 4) /* get last 2 binary digits */
k ← k − u
if u = 1 then Q← Q + P
if u = −1 then Q← Q− P

end
k ← bk/2c /* right shift by one */
P ← 2P /* using a point doubling method */

end
return Q

An example of Algorithm 7 is presented in Figure 3.1. When using an unsigned
binary representation,

1262 = 210 + 27 + 26 + 25 + 23 + 22 + 21 .

CHAPTER 3. ELLIPTIC CURVES 22

Using NAF,
1262 = 210 + 28 − 24 − 21 .

2i kbin bin Qbin kNAF NAF QNAF

0 1262 0 ∞ 1262 0 ∞

1 631 1 ∞+ 2P = 2P 631 - 1̄ = 632 1̄ ∞+−2P = −2P

2 315 1 2P + 4P = 6P 316 0

3 157 1 6P + 8P = 14P 158 0

4 78 0 79 - 1̄ = 80 1̄ −2P +−16P = −18P

5 39 1 14P + 32P = 46P 40 0

6 19 1 46P + 64P = 110P 20 0

7 9 1 110P + 128P = 238P 10 0

8 4 0 5 - 1 = 4 1 −18P + 256P = 238P

9 2 0 2 0

10 1 1 238P + 1024P = 1262P 1 - 1 = 0 1 238P + 1024P = 1262P

7 Additions 4 Additions

Figure 3.1: Computation of 1262P using binary and NAF.

3.3.2 Combing

Elliptic scalar multiplication by the Combing Method [Pro03, HMV04] can be an
efficient alternative to Algorithms 6 and 7. The `-bit scalar k is broken up into w

pieces of length d = d`/we. All possible values of

aw−12(w−1)dP + . . . + a222dP + a12dP + a0P , where a ∈ 0, 1,−1

are then precomputed. The d columns are then processed in a left-to-right manner
as outlined in Algorithm 8. An example is provided in Figure 3.2.

Due to the precomputation requirements (mainly the d(w − 1) point doublings),
combing is usually only done for fixed values of P , such as the generator G. The
precomputation can then be done offline and persisted. In this case (offline precom-
putation), Algorithm 8 is executed at the cost of(

1− 2w

3w

)
dA + dD (3.11)

CHAPTER 3. ELLIPTIC CURVES 23

Algorithm 8: Left-to-right elliptic scalar multiplication by combing.
Input: `-bit integer k in NAF, point P ∈ E(Fq)
Output: kP
Precompute aw−12(w−1)dP + . . . + a222dP + a12dP + a0P ∀ ai ∈ {0,−1, 1}
Q←∞
for i← d− 1 to 0 do

Q← 2Q
Q← Q + (kdw−i2d(w−1)P + kd(w−1)−i2(w−2)dP + · · ·+ kd−iP)

end
return Q

NAF(2524) =
28︷︸︸︷

1010

24︷︸︸︷
001̄0

20︷︸︸︷
01̄00

=1010 · (28)+

001̄0 · (24)+

01̄00 · (20)

=23 · 28 + 22 · (−20) + 2 · (28 − 24)

=2(2(2 · 28 − 20) + 28 − 24)

computing: 2524P

` = 12, d = 4, w = 3

precompute a228P + a124P + a0P ∀ ai ∈ {0,−1, 1} (10 points)

Q←∞

i = 3 Q← 2(∞) =∞

Q←∞+ 28P = 256P

i = 2 Q← 2(256P) = 512P

Q← 512P − P = 511P

i = 1 Q← 2(511P) = 1022P

Q← 1022P + (28P − 24P) = 1262P

i = 0 Q← 2(1262P) = 2524P

Q← 2524P +∞ = 2524P

Figure 3.2: Combing example.

CHAPTER 3. ELLIPTIC CURVES 24

3.4 Simultaneous Elliptic Scalar Multiplication

In many signature verification primitives, the main operation often involves a cal-
culation similar to

� gk
1gl

2 for multiplicative groups.

� kP + lQ for groups over elliptic curves.

The straight-forward method is to calculate each term separately, then combine the
result. Using Algorithm 7, this requires on average(

2`

3
+ 1

)
A + 2`D . (3.12)

However, calculations of the above form have specialized methods known as simulta-
neous elliptic scalar multiplication. Using a modification of Shamir’s Trick [ElG85]
to process kP + lQ in parallel can reduce the number of operations needed. This
method was first documented in [Str64] and is sometimes referred to as Straus’s
Algorithm.

The idea is that the values for the individual terms are not needed, only their sum. It
works by precomputing all possible values of a column in a joint representation, then
moves left-to-right, performing elliptic curve operations at each step. See Figure 3.3
for a small example.

Algorithm 9 modified from [HMV04] illustrates this method. Note that if ki, li are
both zero, no point addition takes place (the point at infinity is added). Improve-
ments known as Window methods [HMV04] (looking at more than one digit of the
scalars at each iteration) can also be used, but as the window size increases along
with the use of NAF the amount of precomputation required causes substantial
diminishing returns.

When using NAF on the pair of integers (k, l) the probability of a non-zero column
is 1− (22/32) = 5/9, giving Algorithm 9 an average cost of(

5`

9
+ 2

)
A + `D (3.13)

including precomputation and assuming point negation is free. This is a substantial
improvement over processing the elliptic scalar multiplications separately.

CHAPTER 3. ELLIPTIC CURVES 25

computing: 13P + 7Q

precomp: (P + Q), (P −Q)

NAF(13) = 101̄01 (24 − 22 + 20 = 13)

NAF(7) = 01001̄ (23 − 20 = 7)

R←∞

i = 4 R← 2R =∞

R←∞+ P = P

i = 3 R← 2P

R← 2P + Q

i = 2 R← 2(2P + Q) = 4P + 2Q

R← 4P + 2Q− P = 3P + 2Q

i = 1 R← 2(3P + 2Q) = 6P + 4Q

R← 6P + 4Q +∞ = 6P + 4Q

i = 0 R← 2(6P + 4Q) = 12P + 8Q

R← 12P + 8Q + (P −Q) = 13P + 7Q

Figure 3.3: Small example of Shamir’s Trick, computing 13P + 7Q (1̄ = −1).

Algorithm 9: Left-to-right simultaneous elliptic scalar multiplication.
Input: `-bit integers k, l, points P,Q ∈ E(Fq)
Output: kP + lQ
Precompute xP + yQ ∀ x, y ∈ {0,−1, 1}
Compute a signed binary-digit representation of k, l
R←∞
for i← `− 1 to 0 do

R← 2R
R← R + (kiP + liQ)

end
return R

3.4.1 Joint Sparse Form

Another representation was developed in [Sol01] called Joint Sparse Form (JSF),
which is a generalization of NAF for a pair of integers. JSF has minimal joint weight
(JW) among all signed binary digit representations for a pair of integers, yielding

CHAPTER 3. ELLIPTIC CURVES 26

an average of `/2 non-zero columns. The example from [Sol01] is presented in Table
3.1, showing that NAF has a higher JW than JSF. The second row is the original
JSF, while the third row is a left-to-right alternative to JSF from [RK04].

Form Representation JW Length

NAF 53 = 0101̄0101

102 = 101̄0101̄0 8 8

JSF 53 = 01001̄01̄1̄

102 = 1001̄1̄01̄0 6 8

l2r BSD 53 = 01001̄1̄01

102 = 0110101̄0 6 7

Table 3.1: Binary signed digit joint representations.

Therefore, when using JSF, Algorithm 9 is slightly more efficient than NAF, requir-
ing

(
`

2
+ 2

)
A + `D . (3.14)

3.4.2 Generalization of Joint Sparse Form

Thusfar, simultaneous elliptic scalar multiplication via Shamir’s Trick has only been
considered for two points. However, more generally it can be used for computations
involving n scalars (k0, . . . , kn−1) and elliptic curve points (P0, . . . , Pn−1):

n−1∑
i=0

kiPi . (3.15)

As JSF is defined for a pair of integers, a generalization of JSF to n terms can be used
to reduce the joint weight. The joint weight of n integers in a joint representation
is defined as the number of columns with at least one non-zero entry.

Solinas [Sol01] suggested a generalization of JSF as future work, with a remark
questioning the practicality due to increased precomputation requirements. Such a
generalization was presented independently in [Pro03, GHP04]. The need for a left-
to-right method of generating a low-weight representation of an arbitrary number

CHAPTER 3. ELLIPTIC CURVES 27

of integers was also noted, so as to work in-line with Shamir’s Trick and not require
separate storage of the joint representation, which was presented in [RK04].

3.5 Koblitz Curves

Koblitz curves [Kob92] are anomalous binary curves of the form

Ea : y2 + xy = x3 + ax2 + 1 where a ∈ {0, 1} . (3.16)

Since Ea(F2) is a subgroup of Ea(F2m), the cofactor f = #Ea(F2) divides #Ea(F2m).
If m is prime, then r = #Ea(F2m)/f can also be prime. Koblitz curves with large
prime r are suitable for cryptographic use. Those points of order r are said to be in
the main subgroup. A few examples of such Koblitz curves are listed in Table 3.2.

m a #Ea(F2m)

131 0 22 · 680564733841876926932320129493409985129

163 1 2 · 5846006549323611672814741753598448348329118574063

233 0 22 · 3450873173395281893717377931138512760570940988862252126328087024741343

Table 3.2: Examples of Koblitz curves.

The Frobenius map τ : Ea(F2m)→ Ea(F2m) is a mapping such that (x, y) 7→ (x2, y2).
From Equation 3.16 it follows that if (x, y) is on the curve then so is (x2, y2).
Squaring an element of F2m is a very cheap operation. It can be shown from Equation
3.3 that for all (x, y) ∈ Ea

(x4, y4) + 2(x, y) = µ(x2, y2) , where µ = (−1)1−a , or,

(τ2 + 2)P = µτP , from where

τ2 + 2 = µτ. (3.17)

Using elliptic scalar multiplication along with the Frobenius map, it is possible to
compute a multiple of a point by using complex multiplication by an element of the
ring Z[τ]. More specifically, instead of representing integer k as distinct powers of
2, k is represented as the sum of distinct powers of τ , called a τ -adic expansion of
k. For example, 9 = τ5 − τ3 + 1 when a = 1 as shown in Figure 3.4.

Analogous to NAF, τ -adic NAF is generated by repeatedly dividing k by τ , choosing
a remainder such that the quotient is divisible by τ . Given Equation 3.17, every

CHAPTER 3. ELLIPTIC CURVES 28

element of the ring Z[τ] can be written in canonical form c0 + c1τ . It was proved in
[Sol00] that c0 + c1τ is divisible by τ if and only if c0 is even, and divisible by τ2 if
and only if c0 ≡ 2c1 (mod 4). Analogous to Equation 3.8, multiples of the point P

are then computed as

kP =
`τ−1∑
i=0

kiτ
iP (3.18)

where `τ is the length of the τ -adic expansion of k. The τ -adic analogue of Algorithm
7 is shown in Algorithm 10. The τ -adic NAF is generated inline as illustrated in
Figure 3.4. Unfortunately, it was shown in [MS92] that while τ -adic NAF has density
of `/3, the length is twice as long as the binary signed NAF. Since no point doublings
are required, it is executed at the cost of

2`

3
A . (3.19)

Algorithm 10: Right-to-left elliptic scalar multiplication using τ -adic NAF.
Input: integer k, point P ∈ Ea(F2m)
Output: kP
Q←∞ , c0 ← k , c1 ← 0 /* k = c0 + c1τ */
while c0 6= 0 or c1 6= 0 do

if c0 is odd then
u← 2− (c0 − 2c1 mod 4)
c0 ← c0 − u
if u = 1 then Q← Q + P
if u = −1 then Q← Q− P

end
P ← τP /* square the coordinates */
c0 ← c1 + µc0/2 , c1 ← −c0/2

end
return Q

3.5.1 Reduced τ-adic NAF

Fortunately, a method for avoiding the excess length of the τ -adic NAF exists
[MS92]. Given any point P ∈ Ea(F2m), it follows that

P = (x, y) = (x2m
, y2m

) = τmP

∞ = (τm − 1)P .

CHAPTER 3. ELLIPTIC CURVES 29

kτ−NAF c0 c1

1 9− 1 = 8 , 0 + 8/2 = 4 −8/2 = −4

0 −4 + 4/2 = −2 −4/2 = −2

0 −2 +−2/2 = −3 −− 2/2 = 1

-1 −3−−1 = −2 , 1 +−2/2 = 0 −− 3/2 = 1

0 1 + 0 = 1 0

1 1− 1 = 0 0

Figure 3.4: Generating τ -adic NAF for k = 9.

The elements γ, ρ ∈ Z[τ] such that γ ≡ ρ (mod τm − 1) are said to be equivalent
with respect to P as γ multiples of P can also be obtained using the element ρ since

γP = ρP + κ(τm − 1)P = ρP + κ∞ = ρP .

Therefore, scalars can be reduced by (τm − 1) to reduce the length of the τ -adic
representation.

When Koblitz curves are used for cryptographic purposes, only points in the main
subgroup (those of order r) are considered. Since (τ − 1) divides (τm − 1), Solinas
[Sol00] showed that for points in the main subgroup, reduction by (τm − 1)/(τ − 1)
is possible, leading to slightly shorter τ -adic representations. It was also shown
that the average weight of the resulting reduced τ -adic NAF is `/3 (the same as
binary signed NAF). Therefore, when performing modular reduction, Algorithm 10
is executed at the cost of

`

3
A , (3.20)

which is a large improvement over the binary signed NAF case.

3.5.2 Koblitz Curves and Combing

It was noted that when combing using Algorithm 8, the amount of point doublings
needed in the precomputation stage made it unsuitable for elliptic scalar multipli-
cations of an arbitrary point P . However, when using Koblitz curves this precom-
putation requirement is significantly reduced as the point doublings are replaced by
applications of τ . Therefore, combing can be a very efficient method when used

CHAPTER 3. ELLIPTIC CURVES 30

with Koblitz curves.

3.5.3 Joint Sparse Form, τ-adic

In [CLSQ03], a τ -adic analogue of JSF was presented which, like JSF, moves right-to-
left. Table 3.3 continues the example provided therein. The first entry demonstrates
that simply using τ -adic NAF of both scalars is not optimal with regards to the JW.
The second entry is the τ -adic JSF representation with lower JW. The third entry
is related to Algorithm 11 and will be explained in Section 3.5.4.

Form Representation JW Length

τ -NAF [Sol00] 〈1̄01̄01̄0101〉

〈01̄01̄00010〉 8 9

τ -JSF [CLSQ03] 〈1̄001̄10011̄〉

〈01̄01̄00010〉 6 9

Algorithm 11 〈01̄101̄0011̄〉

〈01̄01̄00010〉 6 8

Table 3.3: τ -adic joint representations.

3.5.4 An Efficient Alternative to τ-adic Joint Sparse Form

As shown, Shamir’s Trick moves left to right through the expansions of (k0, k1).
Therefore, just as with the binary signed JSF, a method of generating a τ -adic JSF
that moves left-to-right would work in-line with Shamir’s Trick and also be more
memory efficient, as separate storage for the joint representation would not longer
be needed. This improved algorithm is presented as Algorithm 11. The strategy
is to create more zero columns given the fact that τ2 + 1 = τ − 1. The first for

loop generates the digits and the bottom while loop performs the elliptic curve
arithmetic. This algorithm works when µ = 1, but only small modifications are
needed when µ = −1.

The third entry in Table 3.3 is the left-to-right representation, which happens to
demonstrate how moving left-to-right can also decrease the length of the represen-
tation by one if substitutions can be made in the first column (meaning up to one
point addition and one application of τ can be saved).

CHAPTER 3. ELLIPTIC CURVES 31

Algorithm 11: left to right τ -adic simultaneous elliptic scalar multiplication
Input: `-bit integers k0, k1 in τ -NAF, points P,Q ∈ E(F2m)
Output: k0P + k1Q
Precompute xP + yQ ∀ x, y ∈ {0,−1, 1}
R←∞, i← `− 1
while i ≥ 0 do

j ← 1 /* number of columns to process */
for n← 0 to 1 do

if i > 1 and kn,i + kn,i−2 = ±2 and k1−n,i = 0 then
kn,i−1 ← kn,i /* replace the bits */
kn,i−2 ← −kn,i

kn,i ← 0 /* zero out the column */
j ← 2 /* two columns can be processed */

end
end
while j > 0 do

R← τR /* square the coordinates of R */
R← R + (k0,iP + k1,iQ)
i← i− 1 , j ← j − 1

end
end
return R

3.5.5 Generalizing τ-adic Signed-Bit Joint Representations

When using τ -adic representations for computations similar to Equation 3.15, a
method for generating a low-weight signed-bit τ -adic joint representation would be
useful. In the binary signed digit case, the algorithm in [RK04] works on the fact
that for all n > 0

2n − 1 =
n−1∑
i=0

2i . (3.21)

As demonstrated previously with NAF and τ -adic NAF, τ -adic analogues are usually
constructed by finding the equivalent operation when working with powers of τ .

Unfortunately, the τ -adic analogue of Equation 3.21 is not immediately apparent as
opposed to the NAF case. To produce a τ -adic analogue, for all n > 1 the task is
to find a solution to one of

τn ± 1 =
n−1∑
i=0

xiτ
i , where xi ∈ {1,−1, 0}. (3.22)

CHAPTER 3. ELLIPTIC CURVES 32

It turns out that one has four different cases to consider with respect to the value
of n (mod 4). Given Equation 3.17 and assuming µ = 1, the following solutions
are obtained to Equation 3.22 for the initial cases of n = 2, 3, 4, or 5, leading to
Theorem 3.5.1.

τ2 + 1 = τ − 2 + 1 = τ − 1

τ3 + 1 = τ(τ2) + 1 = τ2 − 2τ + 1 = τ − 2− 2τ + 1 = −τ − 1

τ4 − 1 = (τ2 + 1)(τ2 − 1) = (τ − 1)(τ2 − 1) = τ3 − τ2 − τ + 1

τ5 − 1 = τ(τ4)− 1 = τ4 − τ3 − τ2 + 2τ − 1 = τ4 − τ3 + τ + 1

Theorem 3.5.1. Given an arbitrary n > 1 and assuming µ = 1, one of τn ± 1 can
be expressed by the equation below depending on the value k = n (mod 4)

τn + Sk =
n−1∑
Ik

τ i −
n−2∑
Jk

τ i , where (3.23)

k Sk Ik Jk

0 −1 i = 0 | i ≡ 0, 3 (mod 4) i = 0 | i ≡ 1, 2 (mod 4)

1 −1 i = 0 | i ≡ 0, 1 (mod 4) i = 3 | i ≡ 2, 3 (mod 4)

2 1 i = 0 | i ≡ 1, 2 (mod 4) i = 0 | i ≡ 0, 3 (mod 4)

3 1 i = 3 | i ≡ 2, 3 (mod 4) i = 0 | i ≡ 0, 1 (mod 4)

Proof. Only the case n ≡ 0 (mod 4) is proved here, as the other cases are similar.
The proof will be by induction. The base case of n = 4 holds as

τ4 − 1 = τ3 − τ2 − τ + 1 .

Assume that, for an arbitrary k > 1 satisfying k ≡ 0 (mod 4), the following formula
holds:

τk =

 k−1∑
i=0|i≡0,3 (mod 4)

τ i

−
 k−2∑

i=0|i≡1,2 (mod 4)

τ i

 + 1

CHAPTER 3. ELLIPTIC CURVES 33

Then the inductive step of k + 4 yields k+3∑
i=0|i≡0,3 (mod 4)

τ i

−
 k+2∑

i=0|i≡1,2 (mod 4)

τ i

 + 1

=

 k−1∑
i=0|i≡0,3 (mod 4)

τ i

−
 k−2∑

i=0|i≡1,2 (mod 4)

τ i

 + 1 + τk+3 − τk+2 − τk+1 + τk

=τk + τk+3 − τk+2 − τk+1 + τk

=τk(τ3 − τ2 − τ + 2) = τk(τ4) = τk+4 .

Therefore, the inductive step also holds. Since the base case and the inductive step
are both true, the theorem holds.

The µ = −1 Case

Given Equation 3.17 and assuming µ = −1, the following solutions to Equation 3.22
are obtained for the initial cases of n = 2, 3, 4, or 5, leading to Theorem 3.5.2.

τ2 + 1 = −τ − 2 + 1 = −τ − 1

τ3 − 1 = τ(τ2)− 1 = −τ2 − 2τ − 1 = −(−τ − 2)− 2τ − 1 = −τ + 1

τ4 − 1 = (τ2 + 1)(τ2 − 1) = (−τ − 1)(τ2 − 1) = −τ3 − τ2 + τ + 1

τ5 + 1 = τ(τ4) + 1 = −τ4 − τ3 + τ2 + 2τ + 1 = −τ4 − τ3 + τ − 1

Theorem 3.5.2. Given an arbitrary n > 1 and assuming µ = −1, one of τn ± 1
can be expressed by the equation below depending on the value k = n (mod 4)

τn + Sk =
n−3∑
Ik

τ i −
n−1∑
Jk

τ i + Tk , where (3.24)

k Sk Tk Ik Jk

0 −1 0 i = 0 | i ≡ 0, 1 (mod 4) i = 2 | i ≡ 2, 3 (mod 4)

1 1 −τ2 i = 1 | i ≡ 1, 2 (mod 4) i = 0 | i ≡ 0, 3 (mod 4)

2 1 0 i = 2 | i ≡ 2, 3 (mod 4) i = 0 | i ≡ 0, 1 (mod 4)

3 −1 τ2 i = 0 | i ≡ 0, 3 (mod 4) i = 1 | i ≡ 1, 2 (mod 4)

CHAPTER 3. ELLIPTIC CURVES 34

The proofs are similar to those of Theorem 3.5.1.

3.5.6 Joint τ-adic Representations of n Integers

Now that solutions are known for Equation 3.22, a generalized left-to-right algorithm
for generating a low-weight signed-bit τ -adic joint representation of n integers is
presented as Algorithm 12. Note that Algorithm 9 is the explicit case of n = 2.
This algorithm assumes µ = 1. For the µ = −1 case, modifications to steps 1c, 2b,
and 2c should be made corresponding to Theorem 3.5.2.

A comparison of the probabilities of a non-zero column given n different integers
when using Algorithm 12 is presented in Table 3.4. These values correspond to the
number of point additions needed (not including precomputation). Values in the
Alg. 12 column are estimates from [Pro03]; values for n = 1, 2, 3 have been verified
by simulation, while simulation results for n > 3 are forthcoming.

n τ -adic τ -NAF Alg. 12

1 .5 .3333 .3333

2 .75 .5555 .5

3 .875 .7037 .5897

4 .9375 .8025 .6425

5 .9688 .8683 .6727

6 .9844 .9122 .6999

Table 3.4: Probabilities of a non-zero column given n terms.

CHAPTER 3. ELLIPTIC CURVES 35

Algorithm 12: Generating a τ -adic joint representation of n integers.
Input: n `-bit integers kn in τ -NAF expansion
Output: Low-weight signed-bit τ -adic joint representation of kn

1. Scan the ` columns × n rows from left to right. For each non-zero entry
in the column, determine if that row is reducible.

(a) Count the number of consecutive zeros (denoted C) rightward from
the non-zero entry (x). Examine at most n bits. Since all kn are in
τ -NAF, note that C ≥ 1. If C ≥ n, then the row is not reducible.

(b) Check the C columns of the n rows rightward from x. If there
already exists at least one all-zero column in the next C columns,
then the current non-zero column is not reducible.

(c) Determine reducibility as follows:

i. C + 1 ≡ 2, 3 (mod 4). If the bits from x to the next non-
zero entry (x′) are of the form x0...0x (same sign), the row is
reducible.

ii. C + 1 ≡ 0, 1 (mod 4). If the bits from x to x′ are of the form
x0...0x (opposite sign), the row is reducible.

2. If all rows with non-zero entries are determined to be reducible, then
perform the replacement in each of the rows to zero-out the column as
follows.

(a) Replace x with 0.

(b) Replace the bit to the right of x with x.

(c) For the next C bits (meaning up to and including x′), repeat the
pattern xxxxxxxx...xxxx (two x of opposite sign, two x of same
sign, two x of opposite sign . . .).

(d) If C is even, replace the bit two to the left of x′ with 0 (e.g., xxx→
0xx).

3. If replacements were made, continue scanning again from step 1 after
skipping C + 1 columns (start scanning again from bit x′). All of the
column between are not reducible due to the consecutive bits inserted
above. If replacements were not made, check the next column (rows in
the current column were not reducible or already zero).

Chapter 4

Digital Signatures

“The Theory of Groups is a branch of mathematics in which one

does something to something and then compares the result with

the result obtained from doing the same thing to something else,

or something else to the same thing.” J. R. Newman, [New56]

Elliptic curves over finite fields can be used to construct secure cryptosystems that
have many advantages over those that use multiplicative groups. These advantages
include, but are not limited to, small key and signature sizes. Table 4.1 from [IEE99]
outlines elliptic curve analogues of multiplicative groups.

Multiplicative Groups Elliptic Curve Groups

Setting Fq curve E over Fq

Basic operation multiplication in Fq addition of points

Main operation exponentiation scalar multiplication

Base element generator g base point G

Base element order prime r prime r

Private key s (integer mod r) s (integer mod r)

Public key w (element of Fq) W (point on E)

Table 4.1: Multiplicative and elliptic curve group analogues.

36

CHAPTER 4. DIGITAL SIGNATURES 37

4.1 The Nyberg-Rueppel Signature Scheme Using El-

liptic Curves

The Nyberg-Rueppel signature scheme is a variation of the ElGamal scheme [ElG85].
It is one of the few schemes present in many popular standards [IEE99]. An elliptic
curve analogue of the Nyberg-Rueppel signature scheme is shown below.

Setup. Elliptic curve E is chosen with base point generator G of prime order r

where r | #E.

Keygen. Alice generates a private key s and public key W by computing

s ∈R Z∗
r

W = sG (4.1)

This requires one elliptic scalar multiplication involving a fixed point G.

Sign. To generate a signature (c, d) on a message m, Alice calculates

u ∈R Z∗
r

c = [uG]x + h(m) (mod r)

d = u− sc (mod r) (4.2)

where [P]x denotes the x-coordinate of the point P converted to an integer
and h is a collision-resistant hash function.

Verify. To verify the signature (c, d) on the message m, Bob checks that

h(m) = c− [dG + cW]x (mod r) (4.3)

Correctness. These computations are consistent:

dG + cW = dG + csG = (d + cs)G = (u− sc + sc)G = uG

c− [uG]x = [uG]x + h(m)− [uG]x = h(m)

Alice’s public key W is made up of the x-coordinate xW and the y-coordinate yW ,
both of size q. To further reduce this size requirement W can be compressed1, re-

1There are either zero or two solutions to the elliptic curve equation for the y-coordinate when
given an x-coordinate. The compression bit determines which solution to use.

CHAPTER 4. DIGITAL SIGNATURES 38

quiring only q + 1 bits. Both parts of the signature (c, d) are of size r. Signature
generation requires one elliptic scalar multiplication while signature verification re-
quires one elliptic scalar multiplication involving a fixed point G and one involving
an arbitrary point W for a total of two elliptic scalar multiplications.

4.2 Self-Certified Keys and Signatures

Self-certified keys [Gir91] provide a good alternative to traditional certificate-based
PKI. Instead of verifying the certificate and signature separately, the signer’s public
key is extracted from the trusted third party’s signature on the signer’s identity and
then used to verify the signature. This reduces the computational requirements.
Instead of two elliptic scalar multiplications for each of two signatures, only one is
needed for the public key extraction and two for the signature verification. The
space requirements are also reduced, as an explicit signature on a user’s public key
is no longer needed.

SC signatures have the following drawback. It is impossible for a third party to
verify an extracted public key; if a signature fails to verify, it is unknown where the
failure lies. The public key and/or the signature is incorrect.

The concept of a trusted third party can be fairly vague when discussing self-certified
keys. To better define the notion of trust, Girault introduced three distinct trust
levels.

Trust Level 1. TTP knows the user’s private key and can therefore impersonate
the user in an undetectable manner.

Trust Level 2. TTP does not know the user’s private key, but can still impersonate
the user in an undetectable manner.

Trust Level 3. TTP does not know the user’s private key, but can impersonate
the user. However, such impersonation is detectable.

In this case, detectable means that if TTP tries to impersonate a user, the user
can prove it; for example, providing two different signatures from TTP on the same
identity.

Trust Level 1 is inadequate for many reasons, one being that it usually requires
a secure key escrow. Reaching Trust Level 3 is generally the goal; consider the
following scenario. An Internet Service Provider (ISP, the user’s TTP) charges

CHAPTER 4. DIGITAL SIGNATURES 39

based on bandwidth usage. Each packet is digitally signed by the user, providing
assurance that the ISP is billing in an honest manner. If the ISP can impersonate
the user in an undetectable manner, the ISP can generate false traffic from the user
to increase the charges. Trust Levels 1 and 2 are therefore inadequate. This is just
one example of why Trust Level 3 is desirable.

A self-certified identity based (SCID) signature scheme based on the Nyberg-Rueppel
signature scheme was presented in [AdM04]. The paper uses multiplicative group
notation, although it is mentioned that the scheme was designed for elliptic curve
implementation. The paper also focuses on provable security and as a result, ex-
ponentiation of the message hash takes place. A version using groups over elliptic
curves is outlined below. Message hash exponentiation is not used, as the focus is
not proveable security.

Setup. Elliptic curve E is chosen with base point generator G of prime order r

where r | #E. The Trusted Third Party (TTP) uses Equation 4.1 to generate
a domain private key sD and domain public key WD. TTP then publishes
WD.

Keygen. To generate a private key on user Alice’s identity IDA, TTP calculates

u ∈R Z∗
r

([uG]x, bA) = compress(uG)

rA = [uG]x + h(IDA) (mod r)

sA = u− sDrA (mod r) (4.4)

and escrows the private key sA to Alice securely and values (rA, bA) publicly.
compress is the point compression function, yielding the x-coordinate of uG

and the compression bit bA.

Sign. To generate the signature (c, d) on the message m, Alice uses Equation 4.2.

Verify. After extracting Alice’s public key WA using Extract, Bob verifies the
signature (c, d) using Equation 4.3.

Extract. To extract Alice’s public key WA on identity IDA given public values
(rA, bA), Bob calculates

WA = decompress(rA − h(IDA), bA)− rAWD (4.5)

CHAPTER 4. DIGITAL SIGNATURES 40

where decompress is the point decompression function given an x-coordinate
and compression bit b. This requires one elliptic scalar multiplication and one
point addition.

Correctness. The extracted public key is correct (WA = sAG):

WA = decompress(rA − h(IDA), bA)− rAWD

= uG− rAsDG = (u− rAsD)G

= (sA + rAsD − rAsD)G = sAG

Note that (rA, sA) is simply a Nyberg-Rueppel signature by TTP on the message
m = IDA; sA acts as Alice’s private key while rA will be used by third parties to
reconstruct Alice’s public key WA = sAG as shown in Extract. The key issuing
protocol Keygen only reaches Trust Level 1.

4.3 Improving the Performance of SCID Signatures

Using the above SCID scheme, the extraction of the signer’s public key is accom-
plished using Equation 4.5 and the signature is then verified using Equation 4.3.
However, these two equations can be combined to produce

h(m) = c− [dG + c(decompress(rA − h(IDA), b)− rAWD)]x (mod r)

Performing the point decompression (producing the point uG) and distributing c

yields the calculation
dG + c(uG)− crAWD (4.6)

Hence, the public key extraction and signature verification process can be rewritten
as the sum of three distinct elliptic scalar multiplications. This can be computed
most efficiently using three-term simultaneous scalar multiplication.

Using Algorithm 12 (the case of n = 3 and µ = −1) with Algorithm 9 for three
points, the explicit solution is presented as Algorithm 13. This combination greatly
reduces the number of elliptic curve operations needed.

Table 4.2 shows a comparison of the number of required elliptic curve operations
(including precomputation) for a few common standardized curves [NIS99] when
processing Equation 4.6 using simultaneous and separate elliptic scalar multiplica-
tions. The Koblitz curve estimates are for Algorithm 13, while the prime and binary

CHAPTER 4. DIGITAL SIGNATURES 41

Algorithm 13: Three-Term τ -adic simultaneous scalar multiplication.
Input: `-bit integers a, b, c in τ -NAF, points P,Q,R ∈ E(F2m)
Output: aP + bQ + cR
Precompute xP + yQ + zR ∀ x, y, z ∈ {−1, 0, 1}
S ←∞, i← `− 1
while i ≥ 0 do

D ← {a, b, c}, C ← 1 /* D holds rows with reducible bits */
foreach k ∈ D do

if ki = 0 then remove k from D
else if ki + ki−2 = ±2 then C ← max(2, C)
else if ki + ki−3 = ±2 then C ← max(3, C)
else D ← ∅, C ← 1

end
for j ← 1 to C − 1 do

if ai−j = bi−j = ci−j = 0 then D ← ∅, C ← 1
end
foreach k ∈ D do

if ki−2 6= 0 then ki−1 ← ki, ki−2 ← −ki, ki ← 0
else ki−2 ← −ki, ki−3 ← −ki, ki ← 0

end
while C > 0 do

S ← τS
S ← S + (aiP + biQ + ciR)
i← i− 1 , C ← C − 1

end
end
return S

curve estimates are for any generalized JSF.

Curve Method Precomp A D M Gain

P-192 NAF (separate) 0 194 576 6309

P-192 JSF (simul) 10 123 192 2719 56.9 %

B-163 NAF (separate) 0 165 489 3276

B-163 JSF (simul) 10 106 163 1500 54.2 %

K-163 NAF (separate) 0 165 - 1320

K-163 JSF (simul) 10 106 - 848 35.75 %

Table 4.2: Elliptic curve operations needed for common curves.

CHAPTER 4. DIGITAL SIGNATURES 42

The number of field multiplications is an estimate based on using mixed coordinates.
For binary curves, the costs are given in Section 3.2 where S = 0. For prime curves
using affine and Jacobian coordinates, A = 8M + 3S and D = 4M + 4S, where
S = 0.85M. These are generally considered the most efficient methods [HMV04].

These figures show that when using simultaneous scalar multiplication the number
of point additions and doublings (and hence the number of field multiplications) is
significantly reduced due to the lower joint weight. While the efficiency gains are
less when using Koblitz curves, the total amount of field multiplications are still less
and therefore the most efficient.

4.4 Improving the Security of SCID Signatures

In Equation 4.4, one of the major disadvantages is that TTP escrows the private key
to Alice. This not only requires a secure channel, but also means that both TTP
and Alice have knowledge of Alice’s private key sA, so TTP can freely impersonate
Alice. Avoiding this key escrow is desirable [PH97].

A solution was suggested in [AdM04] to avoid this disadvantage. It was written
for multiplicative groups, where a proof of knowledge is needed to prevent users
from obtaining certificates for a different identity. The proof of knowledge has been
omitted here, and the threat of impersonation attacks is discussed in detail in Section
4.4.1.

The following blind key issuing protocol for groups over elliptic curves avoids key
escrow and reaches Trust Level 3. It works in a way such that both TTP and Alice
contribute to the randomness, yet only Alice has access to the final private key sA.

Keygen. To generate a private key on user Alice’s identity IDA, Alice calculates

kAG , where kA ∈R Z∗
r

and sends kAG to TTP2. TTP calculates

(r̄A, bA) = compress(kAG + kT G) , where kT ∈R Z∗
r

rA = r̄A + h(IDA)

s̄A = kT − rAsD (mod r) (4.7)

2This point can be compressed if needed.

CHAPTER 4. DIGITAL SIGNATURES 43

and sends (rA, bA), s̄A to Alice. Alice calculates

sA = kA + s̄A (mod r) (4.8)

Alice’s public key is WA = sAG.

Correctness. The extracted public key is correct (WA = sAG):

WA = decompress(rA − h(IDA), bA)− rAWD

= decompress(r̄A + h(IDA)− h(IDA), bA)− rAWD

= kAG + kT G− rAsDG = (kA + kT − rAsD)G

= (kA + s̄A)G = sAG

4.4.1 The Threat of Impersonation Attacks

Using Equation 4.7, a user obtains a signature on it’s identity from the trusted third
party using random contributions from both the user and the trusted third party.
While Equation 4.7 assumes that users are indeed generating random values, a user
could possibly be attempting to obtain a key pair for another user’s identity. Using
multiplicative groups, Equation 4.7 would use the following operations.

Alice: gkA , where kA ∈R Zr =⇒ TTP

TTP: gkT gkAh(IDA) , where kT ∈R Zr =⇒ Alice

Now consider a user Malice who wants to obtain a valid signature from the trusted
third party for Alice’s identity as opposed to her own (impersonation). Malice
chooses

gkM h(IDA)
h(IDM)

, where kM ∈R Zr =⇒ TTP.

The trusted third party then calculates

gkT h(IDM)gkM h(IDA)
h(IDM)

, where kT ∈R Zr

= gkT gkM h(IDA) =⇒ Malice.

Thus, Malice has obtained a signature on Alice’s identity from the trusted third
party and can freely impersonate Alice.

While this is a serious security flaw for such cryptosystems that use multiplicative

CHAPTER 4. DIGITAL SIGNATURES 44

groups, impersonation turns out to be a much more difficult task when using groups
over elliptic curves. Consider the above example where Malice wishes to obtain a
signature on Alice’s identity from the trusted third party. Using the protocol in
Equation 4.7 over elliptic curves, to be successful in the same type of impersonation
attack Malice needs to choose kM and kM + d such that

h(IDM) + [(kM + d)GD + kT GD]x = h(IDA) + [(kMGD + kT GD]x .

Letting k denote kM + kT (since kT is random, so is k), this becomes

[(k + d)GD]x − [kGD]x = h(IDA)− h(IDM) . (4.9)

One way to approach this problem is to estimate the probability that Equation 4.9
holds for a chosen d value, or formally

Probp{[dGD + P]x − [P]x = h(IDA)− h(IDM)} .

This probability is upper bounded by its maximum value taken over all values of
∆x ∈ Fq and non-zero differences ∆k ∈ {1, 2, . . . ,#E − 2}:

Probp{[(∆k)GD + P]x − [P]x = ∆x}

Example. Consider the elliptic curve

E : y2 = x3 + 26x + 3 , Z31 , #E = 33 , GD = (2, 1) .

The 33 points on this curve are listed in Table 4.3. The x-coordinates of these points
are symmetric around k = #E/2 = 16.5.

Working modulo 31, the differences are obtained in the x-coordinate when varying
k by 1, 2, . . . ,#E − 2 = 31. So for k = 1, 2, the following differences are computed.

k = 1{2− 16 = 17, 16− 22 = 25, 22− 7 = 15, . . . , 16− 2 = 14} (mod 31)

k = 2{2− 22 = 11, 16− 7 = 9, 22− 11 = 11, . . . , 2− 2 = 0} (mod 31)

Continuing through k = #E − 2 = 31 (varying k by #E − 1 yields ∞). The
frequencies of the differences for each value of k are then totaled, to produce the
frequencies listed in Table 4.4. Since the x-coordinates on E are symmetric (for
prime fields), the difference frequencies are also symmetric around the same value.

CHAPTER 4. DIGITAL SIGNATURES 45

k k k

1 (2,1) 12 (21,13) 23 (19,3)

2 (16,12) 13 (9,6) 24 (29,25)

3 (22,1) 14 (30,10) 25 (5,17)

4 (7,30) 15 (8,17) 26 (18,17)

5 (11,15) 16 (4,4) 27 (12,20)

6 (12,11) 17 (4,27) 28 (11,16)

7 (18,14) 18 (8,14) 29 (7,1)

8 (5,14) 19 (30,21) 30 (22,30)

9 (29,6) 20 (9,25) 31 (16,19)

10 (19,28) 21 (21,18) 32 (2,30)

11 (24,6) 22 (24,25) 33 ∞

Table 4.3: A small elliptic curve.

The larger the values of the frequency counts in comparison to the other frequency
counts, the more chance of success there is for an impersonation attack. The maxi-
mum number of times a difference occurred was 4, meaning that Malice has about
a 12% chance of success at such an impersonation attack for this (extremely) small
curve (5 bits). The same experiment was also run on the 12-bit curve

E = y2 = x3 + 1347 , Z3271 , #E = 3373 , GD = (544, 430) .

The maximum value in the resulting 3373 x 3271 table was also 4, meaning that
Malice has about a 0.12% chance of success at such an impersonation attack for
this (also extremely) small curve (12 bits). To put this figure in perspective, Malice
has about a 0.03% chance of guessing a private key on this curve given only one
attempt. These experimental results suggest that as the size of the curve increases,
the probability of success of such an impersonation attack shrinks to an insignificant
amount.

CHAPTER 4. DIGITAL SIGNATURES 46

∆x ∆k ∈ {1, 2, . . . , 31}

0 1111111111111111111111111111111

1 1110200121200111111002121002011

2 0101100220110122221011022001101

3 1000104113024210012420311401000

4 2102100222020000000020222001201

5 1341101002011100001110200101143

6 2021111200102111111201002111120

7 1201010000240212212042000010102

8 0010100012212022220212210001010

9 1202141001012010010210100141202

10 2020122121100101101001121221020

11 0313220211200001100002112022313

12 1010111110111411114111011111010

13 1011021101102212212201101120110

14 1121201121220042240022121102121

15 1102023110001000000100011320201

16 1102023110001000000100011320201

17 1121201121220042240022121102121

18 1011021101102212212201101120110

19 1010111110111411114111011111010

20 0313220211200001100002112022313

21 2020122121100101101001121221020

22 1202141001012010010210100141202

23 0010100012212022220212210001010

24 1201010000240212212042000010102

25 2021111200102111111201002111120

26 1341101002011100001110200101143

27 2102100222020000000020222001201

28 1000104113024210012420311401000

29 0101100220110122221011022001101

30 1110200121200111111002121002011

Table 4.4: Distribution of difference frequencies.

Chapter 5

Conclusions

This thesis has provided many efficient algorithms for elliptic curve cryptography.
These results and contributions are widely applicable, from low-weight τ -adic joint
representations to efficient signature verifications and secure key issuing protocols.
The research has resulted in a few peer-reviewed publications.

1. A paper presenting a method for efficient self-certified identity-based signature
verifications (Equation 4.6) was accepted for publication [Bru06a].

2. A paper presenting the generalized algorithm for generating a low-weight
signed-bit τ -adic joint representation of an arbitrary number of integers (Al-
gorithm 12) was accepted for publication [Bru06b].

3. A paper presenting a secure key issuing protocol is forthcoming (Sect. 4.4).

Future Work

The question of optimality and Algorithm 12 has not been explored. It is possible
that there are methods that will lead to lower joint weights. More research is
planned.

When it comes to compact digital signatures, probably the most active area of re-
search is paring-based cryptography [BLS01]. Unfortunately, pairings are generally
considered much more computationally difficult to compute then elliptic scalar mul-
tiplication. Efficient methods and settings for computing pairings could be future
work in this area.

47

Bibliography

[AdM04] Giuseppe Ateniese and Breno de Medeiros. A provably secure Nyberg-
Rueppel signature variant with applications. Cryptology ePrint
Archive, Report 2004/093, 2004. http://eprint.iacr.org/.

[ADMRK02] Essame Al-Daoud, Ramlan Mahmod, Mohammad Rushdan, and
Adem Kilicman. A new addition formula for elliptic curves over
GF(2n). IEEE Trans. Comput., 51(8):972–975, 2002.

[ANS98] ANSI. The elliptic curve digital signature algorithm. Technical Report
ANSI X9.62-1998, American National Standards Institute, September
1998.

[Ari43] Aristotle. Aristotle’s Politics. The Modern library, New York, NY,
1943. Translated by Benjamin Jowett.

[BBB+05] Elaine Barker, William Barker, William Burr, William Polk, and Miles
Smid. Recommendation for key management - part 1: General. Tech-
nical Report NIST Special Publication 800-57, August 2005.

[BHLM01] Michael Brown, Darrel Hankerson, Julio López, and Alfred Menezes.
Software implementation of the nist elliptic curves over prime fields.
In CT-RSA 2001: Proceedings of the 2001 Conference on Topics in
Cryptology, pages 250–265, London, UK, 2001. Springer-Verlag. ex-
tended version available as CORR 2000-56.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from
the Weil pairing. In ASIACRYPT ’01: Proceedings of the 7th Inter-
national Conference on the Theory and Application of Cryptology and
Information Security, pages 514–532, London, UK, 2001. Springer-
Verlag.

48

http://eprint.iacr.org/

BIBLIOGRAPHY 49

[Bru06a] Billy Bob Brumley. Efficient three-term simultaneous elliptic scalar
multiplication with applications. In Viiveke F̊ak, editor, Proceedings
of the 11th Nordic Workshop on Secure IT Systems (NordSec 2006),
pages 105–116, Linköping, Sweden, 2006.

[Bru06b] Billy Bob Brumley. Left-to-right signed-bit τ -adic representations of
n integers (short paper). In International Conference on Information
and Communications Security – ICICS’06, volume 4307 of Lecture
Notes in Computer Science, pages 469–478, Raleigh, North Carolina,
USA, December 2006. Springer-Verlag.

[BW05] S. Blake-Wilson. Ecc cipher suites for tls. Technical report, IETF,
October 2005.

[Caj91] Florian A. Cajori. A History of Mathematics. Chelsea, New York, 5th
edition, 1991.

[CC05] Hannu Kari Catharina Candolin, Janne Lundberg. Packet level au-
thentication in military networks. In Proceedings of the 6th Australian
Information Warfare & IT Security Conference, Geelong, Australia,
November 2005.

[CLSQ03] Mathieu Ciet, Tanja Lange, Francesco Sica, and Jean-Jacques
Quisquater. Improved algorithms for efficient arithmetic on elliptic
curves using fast endomorphisms. Advances in Cryptology-Eurocrypt
2003, 2656:388–400, 2003.

[Dai06] Wei Dai. Crypto++ Library, 2006. Available at http://www.eskimo.
com/∼weidai/cryptlib.html.

[DHH+04] Ricardo Dahab, Darrel Hankerson, Fei Hu, Men Long, Julio López,
and Alfred Menezes. Software multiplication using normal bases. Tech-
nical Report CACR 2004-12, Centre for Applied Cryptographic Re-
search, University of Waterloo, Canada, 2004.

[ElG85] Taher ElGamal. A Public-Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms. IEEE Transactions on Information
Theory, IT-31(4):469–472, 1985.

[FD04] Haining Fan and Yiqi Dai. Two software normal basis multiplication
algorithms for gf(2n). Cryptology ePrint Archive, Report 2004/126,
2004. http://eprint.iacr.org/.

http://www.eskimo.com/~weidai/cryptlib.html
http://www.eskimo.com/~weidai/cryptlib.html
http://eprint.iacr.org/

BIBLIOGRAPHY 50

[GHP04] Peter J. Grabner, Clemens Heuberger, and Helmut Prodinger. Distrib-
ution results for low-weight binary representations for pairs of integers.
Theoretical Computer Science, 319(1-3):307–331, June 2004.

[Gir91] Marc Girault. Self-certified public keys. In Donald W. Davies, editor,
Advances in Cryptology - EuroCrypt ’91, pages 490–497, Berlin, 1991.
Springer-Verlag. Lecture Notes in Computer Science Volume 547.

[Gor98] Daniel M. Gordon. A survey of fast exponentiation methods. J. Al-
gorithms, 27(1):129–146, 1998.

[Har68] Garrett Hardin. The tragedy of the commons. Science, 162, 1968.

[HHM00] Darrel Hankerson, Julio López Hernandez, and Alfred Menezes. Soft-
ware implementation of elliptic curve cryptography over binary fields.
In CHES ’00: Proceedings of the Second International Workshop on
Cryptographic Hardware and Embedded Systems, pages 1–24, London,
UK, 2000. Springer-Verlag.

[HMV04] Darrel Hankerson, Alfred Menezes, and Scott Vanstone. Guide to
elliptic curve cryptography. Springer, New York, 2004.

[IEE99] IEEE. Standard specifications for public-key cryptography. Technical
Report IEEE P1363 / D13, Institute of Electrical and Electronics
Engineers, Inc., November 12 1999.

[IT88] Toshiya Itoh and Shigeo Tsujii. A fast algorithm for computing mul-
tiplicative inverses in GF(2m) using normal bases. Information and
Computing, 78(3):171–177, September 1988.

[Knu98] Donald E. Knuth. The Art of Computer Programming: Seminumerical
Algorithms, volume 2. Addison-Wesley, Reading, MA, 3rd edition,
1998.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Compu-
tation, 48:203–209, 1987.

[Kob92] Neal Koblitz. Cm-curves with good cryptographic properties. In
CRYPTO ’91: Proceedings of the 11th Annual International Cryptol-
ogy Conference on Advances in Cryptology, pages 279–287, London,
UK, 1992. Springer-Verlag.

BIBLIOGRAPHY 51

[Kob94] Neal Koblitz. A Course in Number Theory and Cryptography. Number
114 in Graduate Texts in Mathematics. Springer, 2nd edition, 1994.

[Kra93] David W. Kravitz. Us patent #5231668: Digital signature algorithm,
1993.

[Lan78] Serge Lang. Elliptic Curves: Diophantine Analysis. Springer, 1978.

[LD99] Julio López and Ricardo Dahab. Improved algorithms for elliptic curve
arithmetic in GF(2n). In SAC ’98: Proceedings of the Selected Areas
in Cryptography, pages 201–212, London, UK, 1999. Springer-Verlag.

[LG06] LiDIA-Group. LiDIA - A C++ Library For Computational Num-
ber Theory. The LiDIA Group, 2006. Available at http://www.

informatik.tu-darmstadt.de/TI/LiDIA/.

[Mil86] Victor S. Miller. Use of elliptic curves in cryptography. In CRYPTO
’85: Advances in Cryptology, pages 417–426, London, UK, 1986.
Springer-Verlag.

[MO90] Morain and Olivos. Speeding up the computations on an elliptic curve
using addition-subtraction chains. RAIRO: R. A. I. R. O. Informa-
tique Theorique et Applications/Theoretical Informatics and Applica-
tions, 24, 1990.

[MS92] W. Meier and O. Staffelbach. Efficient multiplication on certain non-
supersingular elliptic curves. In Ernest F. Brickell, editor, Advances in
Cryptology - Crypto ’92, pages 333–344, Berlin, 1992. Springer-Verlag.
Lecture Notes in Computer Science Volume 740.

[New56] James R. Newman, editor. The World of Mathematics. Four volumes.
Simon and Schuster, New York, 1956.

[NIS99] NIST. Recommended elliptic curves for federal government use. Na-
tional Institute of Standards and Technology, May 1999.

[NR93] Kaisa Nyberg and Rainer A. Rueppel. A new signature scheme based
on the dsa giving message recovery. In CCS ’93: Proceedings of the
1st ACM conference on Computer and communications security, pages
58–61, New York, NY, USA, 1993. ACM Press.

http://www.informatik.tu-darmstadt.de/TI/LiDIA/
http://www.informatik.tu-darmstadt.de/TI/LiDIA/

BIBLIOGRAPHY 52

[NY01] Peng Ning and Yiqun Lisa Yin. Efficient software implementation for
finite field multiplication in normal basis. In ICICS ’01: Proceedings
of the Third International Conference on Information and Communi-
cations Security, pages 177–188, London, UK, 2001. Springer-Verlag.

[PH97] H. Petersen and P. Horster. Self-Certified Keys: Concepts and Ap-
plications. In Proceedings of the Third International Conference on
Communications and Multimedia Security, pages 102–116, 1997.

[Pro03] John Proos. Joint sparse forms and generating zero columns when
combing. Technical Report CORR 2003-23, Centre for Applied Cryp-
tographic Research, University of Waterloo, Canada, 2003.

[RK04] Xiaoyu Ruan and Rajendra S. Katti. Low-weight left-to-right binary
signed-digit representation of n integers. In 2004 IEEE International
Symposium on Information Theory, June 2004.

[RM06] Arash Reyhani-Masoleh. Efficient algorithms and architectures for
field multiplication using gaussian normal bases. IEEE Transactions
on Computers, 55(1):34–47, January 2006.

[RMH01] Arash Reyhani-Masoleh and M. Anwar Hasan. Fast normal basis mul-
tiplication using general purpose processors. Technical Report CORR
2001-25, Centre for Applied Cryptographic Research, University of
Waterloo, Canada, 2001.

[RMH03] Arash Reyhani-Masoleh and M. Anwar Hasan. Fast normal basis mul-
tiplication using general purpose processors. IEEE Transactions on
Computers, 52(11):1379–1390, November 2003.

[Ros99] Michael Rosing. Implementing elliptic curve cryptography. Manning
Publications Co., Greenwich, CT, 1999.

[RSA78] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of
the ACM, 21(2):120–126, February 1978.

[Sch91] C.P. Schnorr. Efficient signature generation by smart cards. Journal
of Cryptology, 4(3):161–174, 1991.

BIBLIOGRAPHY 53

[Sco06] Michael Scott. MIRACL—A Multiprecision Integer and Rational
Arithmetic C/C++ Library. Shamus Software Ltd, Dublin, Ireland,
2006. Available at http://indigo.ie/∼mscott.

[SEC00] SECG. Standards for efficient cryptography. Technical Report Version
1.0, Standards for Efficient Cryptography Group, September 20 2000.

[Sol00] Jerome A. Solinas. Efficient arithmetic on Koblitz curves. Designs,
Codes, and Cryptography, 19(2–3):195–249, March 2000.

[Sol01] Jerome A. Solinas. Low-weight binary representations for pairs of
integers. Technical Report CORR 2001-41, Centre for Applied Cryp-
tographic Research, University of Waterloo, Canada, 2001.

[Str64] Ernst G. Straus. Addition chains of vectors (problem 5125). American
Mathematical Monthly, 71:806–808, 1964.

http://indigo.ie/~mscott

