
Implementing Cryptography for Packet Level
Authentication

Billy Bob Brumley
Department of Information and Computer Science

Helsinki University of Technology
P.O.Box 5400, FI-02015 TKK, Finland

billy.brumley@hut.fi

Abstract—Packet Level Authentication (PLA) is a novel coun-
termeasure against distributed denial-of-service attacks. Each
packet sent across a network has a digital signature and public
key attached to it, allowing each hop along the route to verify
the authenticity of packets. This requires high-speed elliptic curve
cryptography (ECC) to improve throughput. In this paper, we
present a software solution of cryptography for PLA using the
combination of Koblitz curves to increase throughput and implicit
certificates to decrease storage and computation overhead. A
software implementation is presented, built on OpenSSL libraries
and extending the OpenSSL API to support not only fast
ECC using Koblitz curves, but implicit certificates and fast
signature verifications using implicit certificates as well. Software
implementation results of these API extensions are provided,
yielding significant speedup of elliptic curve operations.

Index Terms—Elliptic curve cryptography, Koblitz curves,
digital signatures, implicit certificates.

I. INTRODUCTION

As Hardin noted [1] in “The Tragedy of the Commons”, a
large, shared resource will inevitably be exploited by its users.
This idea is timeless and has been documented as far back as
350 BC by Aristotle:

For that which is common to the greatest number has
the least care bestowed upon it. Every one thinks
chiefly of his own, hardly at all of the common
interest; and only when he is himself concerned as
an individual.

The same is true of the Internet. Attacks such as (distributed)
denial-of-service, packet spoofing, etc. are widespread. New
and more efficient countermeasures are constantly required
to protect against such attacks. Packet Level Authentication
(PLA) [2] is one such countermeasure that provides protection
at the network infrastructure level.

PLA modifies IPv6 packets by adding a so-called PLA
header to each packet. Sequence numbers and timestamps are
added to ensure timeliness and uniqueness. Certificate, digital
signature, and trusted third party ID fields are added. Users are
certified by a trusted third party, then include this information
along with the signature on the packet in the corresponding
fields. This allows every hop along the route to verify the

Proceedings of The 2008 International Conference on Security &
Management—SAM’08, CSREA Press, Arabnia, Aissi, Bedworth, Eds., pp.
475–480.

authenticity of the packet. This also does not require previous
communication between the sender and the receiver. This is
different from other end-to-end solutions, such as IPSec, where
authenticity can only be verified once the packet has reached
the final destination—thus IPSec is not a good countermeasure
to prevent distributed denial-of-service.

To implement PLA, signatures must be able to be quickly
verified to increase throughput, but at the same time be
compact enough as to not cause excess overhead in the
packet. In this paper, we present a software solution for
PLA cryptography. The combination of Koblitz curves and
implicit certificates yields an interesting cryptographic setting,
ripe with methods for speeding up the cryptographic opera-
tions. We provide OpenSSL API extensions for high-speed
Koblitz curve support and implicit certificates. Results from
a software implementation of these OpenSSL API extensions
are provided. The result is high-speed, compact, and secure
elliptic curve cryptography, for use not only with PLA, but
for the OpenSSL community and elliptic curve cryptography
in general.

We begin in Sec. II with a description of cryptography used
in PLA, providing background on Koblitz curves, digital signa-
tures, and implicit certificates. The software implementation is
described in Sec. III and results given. We conclude in Sec. IV.

II. CRYPTOGRAPHY FOR PLA

The cryptography parameters for PLA have been chosen
in such a way as to make signature verifications fast, while
at the same time minimizing the packet overhead. This is
done using a combination of Koblitz curves [3] and implicit
certificates. This results in fast and compact cryptography; a
detailed description follows.

A. Koblitz Curves

Koblitz curves [3] are elliptic curves over F2 defined by the
equation

Ea(F2m) : y2 + xy = x3 + ax2 + 1 where a ∈ {0, 1}. (1)

The set of all (x, y) solutions over F2m along with the identity
element O, or point-at-infinity, form an abelian group with
point addition (doubling) that can be used for cryptographic
operations [4], [5]. These curves are of particular interest in



high-speed cryptography as they admit the efficient endomor-
phism φ : Ea(F2m)→ Ea(F2m) defined by

φ(x, y) 7→ (x2, y2), φ(O) 7→ O (2)

called the Frobenius endomorphism. Squaring is a linear oper-
ation in F2m so this endomorphism can be applied extremely
efficiently. It can be shown from the point addition formula
that φ satisfies the characteristic polynomial

P (T ) = T 2 − µT + 2 where µ = (−1)1−a (3)

and denoting τ as a complex root of (3), applying φ carries
out complex multiplication by the complex number τ = (µ +√
−7)/2. Integers are then considered as members of Z[τ ] and

expressed as the sum (and difference) of powers of τ , a base-τ
expansion:

k =
∑
i=0

ciτ
i (4)

where ci are the coefficients. Scalar multiplication, the main
operation in elliptic curve cryptography, is then accomplished
using no point doublings, only applications of τ and point
additions:

kP =
∑
i=0

ciφ
i(P ) (5)

The length of such a straightforward expansion is twice that
of the binary expansion, leading to twice the number of
point additions on average. To shorten the length of the
base-τ expansion, scalars are reduced using the fact [6] that
φm(P ) = P thus τm− 1 ≡ 0 (mod r). After such reduction,
the resulting base-τ expansion has the same average length
and weight as the binary expansion, and scalar multiplication
is much faster as all of the point doublings are traded for
applications of φ, a very fast operation compared to point
doubling. This is the reason that Koblitz curves are often used
when high-speed elliptic curve cryptography is needed.

To reduce the weight and thus the number of point additions,
τ -adic analogues of width-w Non-Adjacent Form or NAFw

denoted τNAFw exist; see [7], [8] for details.
For PLA, currently the standardized Koblitz curve K-163 [9]

is used. With K-163, m = 163, a = 1 and r ≈ 2163. For
comparison, this provides an equivalent level of 80 bits of
symmetric cryptography security or 1024 bits compared to
DSA/RSA[10]. The key size requirement for elliptic curves
grows much slower than those of DSA/RSA.

Koblitz curves were chosen for speed. Due to point dou-
blings being replaced by applications of the Frobenius, other
methods for general curves (or hyperelliptic curves) simply
cannot compete with the reduced number of operations [11],
[12].

B. Digital Signatures

The Elliptic Curve Digital Signature Algorithm
(ECDSA) [9] is a widely used signature scheme that
uses elliptic curves. A few domain parameters are first agreed
upon. Elliptic curve E is chosen with base point generator
G of prime order r where r | #E. A collision-resistant hash

ECDSA SIGN
1) f ← H(m)
2) k ←R Z∗r
3) (x, y)← kG
4) c← x mod r
5) d← k−1(f + cw) mod r
6) Return (c, d)

ECDSA VERIFY
1) f ← H(m)
2) t← d−1 mod r
3) u← ft mod r, v ← ct mod r
4) (x, y)← uG + vW
5) Return “Valid” iff x ≡ c (mod r) else “Invalid”

Fig. 1. ECDSA signature and verification.

function H is also agreed upon. The procedure for signature
generation and verification are given in in Fig. 1. A user
generates a private key w ∈R Z∗r and public key W = wG.
To sign a message m, a user executes ECDSA SIGN. To
verify the signature (c, d) on a message m, given public key
W a user executes ECDSA VERIFY.

Signatures are of size 2r and public keys consist of points,
so a pair (x, y). These keys can be compressed to just the
x-coordinate and a compression bit; to decompress the point,
given an x-coordinate the elliptic curve equation is solved for
y, yielding at most two solutions—the compression bit tells
which solution to use. Hence for Koblitz curves, public keys
are stored using m + 1 bits. We will refer to the functions
for point compression and decompression as COMPRESS and
DECOMPRESS, respectively.

Signature generation requires one scalar multiplication by
a fixed point (G), while signature verification requires two
scalar multiplications: one by a fixed point (G) and one by
an arbitrary point (W , the public key). More emphasis is
thus put on speeding up verification rather than signing. As
only the sum of the two points is needed in verification, it is
common to carry out the scalar multiplications simultaneously
using Shamir’s trick [13]. Using some simple precomputation,
this cuts the number of point doublings in half, but the joint
expansion has slightly higher weight than a single expan-
sion hence the number of point additions increases slightly
when comparing a single expansion to a joint expansion.
For example, a single scalar in NAF2 (or τNAF2) form has
average weight 1/3; the joint weight of two scalars in Joint
Sparse Form (JSF) [14] (or τJSF [15]) has average weight 1/2.
In either case, the number of point additions and doublings
(or applications of φ for Koblitz curves) when performing
simultaneous scalar multiplication is significantly less than
when processing the the scalar multiplications individually.

C. Implicit Certificates

Using traditional certificate-based PKI, users must have
their public keys authenticated by a Trusted Third Party (TTP)
to guarantee their authenticity. The TTP constructs a certificate
containing many fields such as the TTP signature, validity



period, etc.—the TTP then signs this certificate and appends
the signature to it. When a user wants to verify a signature
on a message, they should first verify the authenticity of the
certificate, thus requiring even more signature verifications. In
such a way a user can make their way up a chain of trust to
verify if a certificate is valid or invalid.

Implicit certificates (self-certified keys) are an efficient
alternative to this approach. Instead of verifying certificates
and public keys using an explicit TTP signature, the public key
is extracted directly from TTP’s signature on the user’s identity
using a cryptographic operation. This reduces the storage and
computational requirements.

While the extracted public key cannot be explicitly verified,
resulting signatures will not verify unless the extracted key is
authentic; that is, the authenticity is said to be implicit. If
the message signature fails to verify, it is unknown whether
the user’s signature on the message is invalid or the extracted
public key is invalid (or both)—but this distinction makes little
difference in practical applications.

To better define the notion of trust with respect to implicit
certificates, Girault [16] introduced three distinct trust levels
associated with self-certified keys.

• Trust Level 1. TTP knows the user’s private key and can
therefore impersonate the user without being detected.

• Trust Level 2. TTP does not know the user’s private key,
but can still impersonate the user without being detected.

• Trust Level 3. TTP does not know the user’s private key,
but can impersonate the user. However, such imperson-
ation can be detected.

Here, detected means that if TTP tries to impersonate a user,
the user can prove it—for example, providing two different
signatures from TTP on the same identity.

Trust Level 1 is inadequate for many reasons, one being that
it usually requires a secure key escrow. Reaching Trust Level
3 is generally the goal; for good reasons, users are often not
comfortable sharing their private keys with TTP. Consider the
following scenario. An ISP (the user’s TTP) charges based on
bandwidth usage. Each packet is digitally signed by the user
as with PLA, providing assurance that the ISP is billing in
an honest manner. If the ISP can impersonate the user in an
undetectable manner, the ISP can generate false traffic from
the user to increase the charges. Trust Levels 1 and 2 are
therefore inadequate. This is just one example of why Trust
Level 3 is desirable.

1) An Implicit Certification Scheme: An implicit cer-
tification scheme based on the Nyberg-Rueppel signature
scheme [17] is given in [18]. We presented the modified
version from [19] which omits the proof-of-knowledge step. It
reaches Trust Level 3 by blinding TTP from the user’s private
key.
Setup. Elliptic curve E is chosen with base point generator
G of prime order r where r | #E. TTP generates a domain
private key sT ∈R Z∗r and domain public key WT = sT G.
TTP then publishes WT .
Keygen. The following protocol is used to generate a key pair

on user Alice’s identity IDA.

TTP←− Alice: kAG

TTP: (rA, bA) = COMPRESS(kAG + kT G)
rA = rA + H(IDA)
sA = kT − rAsT (mod r)

Alice←− TTP: (rA, bA, sA) (6)

Alice’s private key is sA = kA + sA (mod r) .
Extract. To extract Alice’s public key WA = sAG on identity
IDA given public values (rA, bA), Bob calculates

WA = DECOMPRESS(rA − H(IDA), bA)− rAWT (7)

The extracted public key is correct (WA = sAG):

WA = DECOMPRESS(rA − H(IDA), bA)− rAWT

= DECOMPRESS(rA + H(IDA)− H(IDA), bA)− rAWT

= kAG + kT G− rAsT G = (kA + kT − rAsT )G
= (kA + sA)G = sAG

2) Attempting Impersonation Attacks: In contrast to the key
issuing protocol in [18], no proof-of-knowledge is performed
by Alice in (6); TTP has no guarantee that Alice knows
the discrete log of kAG. It is possible that a malicious user
Malice is attempting to obtain a valid signature from TTP on
Alice’s identity—an impersonation attack. To succeed in such
an attack, Malice must choose some difference d ∈ Zr such
that the following equation holds:

[(kA +d)G+kT G]x + H(IDM ) = [kAG+kT G]x + H(IDA).

Letting k denote kA + kT (k is as random as kT is), this
becomes

[(k + d)G]x − [kG]x = H(IDA)− H(IDM ). (8)

In general, the ability to find such a difference is linked to the
differential uniformity [20] of the projections involved. It was
shown in [19] that the projection of an elliptic curve point
to its x-coordinate is 4-uniform and thus the probability of
successfully carrying out an impersonation attack is negligible
in the group order r. In this case, the proof-of-knowledge can
therefore be omitted, saving one roundtrip communication.

D. Fast Verifications using Implicit Certificates

In [21] it was shown how to perform self-certified public key
extraction and signature verification simultaneously using the
Nyberg-Rueppel signature scheme. Indeed, the same can be
accomplished here with the ECDSA scheme and the implicit
certification scheme above. In ECDSA signature verification
shown in Sec. II-B, the value uG + vW is computed. The
public key W would first be extracted using (7). Combining
these two calculations, we have

uG + v(DECOMPRESS(rA − H(IDA), bA)− rAWT )

and denoting the resulting point from decompression as D,

uG + v(D − rAWT ) = uG + vD − vrAWT . (9)



Therefore we first perform the point decompression, then
calculate the value −vrA mod r and perform the three
needed scalar multiplications simultaneously similarly as with
Shamir’s trick. The online precomputation requirement in-
creases to 10 points.

E. Implications for PLA

A comparison of PLA with traditional PKI and with implicit
certificates is given in Table I, where r is the group order,
m the field size, and ESM the elliptic scalar multiplication
operation. The certificate therein is a minimal one, containing
only a TTP signature on the client’s public key—in practice
more information is needed (validity period, etc.), but only the
cryptographic storage requirements are measured here.

One could argue that to save computation time, in traditional
certificate-based PKI the certificate need only be verified once,
then a hash stored (the same can be said of implicit certificates
and extracting a client’s public key). However, this requires
extra storage and time and as the number of clients trusted
third parties grows, this is not convenient. Additionally, the 4
scalar multiplications required for PLA with certificate-based
PKI can be reduced to 2 simultaneous scalar multiplications,
and similarly with implicit certificates from 3 scalar multi-
plications to 1 simultaneous scalar multiplication—hence one
could argue the exact opposite when using implicit certificates:
such storage and hashing will in fact not significantly reduce
the computation time, but simply increase the implementation
complexity.

III. SOFTWARE IMPLEMENTATION

Due to its widespread use, OpenSSL [22] is used as a
basis for the software implementation. We first discuss the
existing OpenSSL ECC functionality, then present extensions
to the OpenSSL API to support Koblitz curves and implicit
certificates. Finally, results of the implementation of these
OpenSSL API extensions are provided.

A. ECC in OpenSSL

Scalar multiplication in OpenSSL is provided with the
function EC_POINTs_mul that takes, amongst many argu-
ments, a scalar to multiply by the generator (optional) and
an array of scalars and points. The function results in one
point, the sum of all these scalar multiplications. In the case of
binary curves, this function calls ec_GF2m_simple_mul.
which scalar multiplication method is then used depends
on the number of scalars passed and if one of the points
is the generator (thus the precomputation is done offline
and as a result the scalar multiplication is faster). If there
is only one point and it is the generator, or there are 3
or more points, the function ec_wNAF_mul is called, a
standard implementation of NAFw scalar multiplication (us-
ing interleaving [11] when more than one point is passed)
which, in the case of binary curves, uses affine coordinates—
the functions (via wrappers) ec_GF2m_simple_add and
ec_GF2m_simple_dbl for point addition and doubling,
respectively, executed at a cost of 1S + 2M + 1I where

S,M, I are respectively field squarings, multiplications, and
inversions. Width-w NAFs are generated using the function
compute_wNAF (note that OpenSSL offsets the widths by
one—thus what would usually be referred to as NAF=NAF2,
no two adjacent coefficients are both non-zero, would have
w = 1 in OpenSSL). If there is only one point passed and it
is not the generator, or there are exactly two points passed,
the function ec_GF2m_montgomery_point_multiply
is then iterated to obtain the resulting point. This function is a
straightforward implementation of Montgomery’s ladder [23]
using projective coordinates from [24] that eliminates the need
for precomputation.

In OpenSSL, public and private key pairs are generated
using the EC_KEY_generate_key function. ECDSA sig-
natures are created using ECDSA_do_sign and verifications
done using ECDSA_do_verify.

To summarize, for PLA and Koblitz curve K-163 [9] using
a mostly stock OpenSSL this means for generating ECDSA
signatures, the standard NAF4 scalar multiplication with affine
coordinates is used with offline precomputation. For extracting
the public key from the implicit certificate, Montgomery’s
ladder is used with projective coordinates. For verifying
ECDSA signatures, Montgomery’s ladder is iteratively used
with projective coordinates. For simultaneous key extraction
and signature verification (requiring some modifications to the
stock OpenSSL to support implicit certificates as described
below), the interleaving method with NAF4 is used for scalar
multiplication with affine coordinates; the precomputation for
the generator is provided offline, but the precomputation for
the remaining two points is done online.

B. Extending OpenSSL

Adding support in OpenSSL for the implicit certificate
scheme (6) previously presented is fairly straightforward. We
use the naming convention ICNR for “Implicit Certificate,
Nyberg-Rueppel”. For the key issuing protocol, the function
ICNR_blind generates the blinded value for users, basically
just a wrapper for key generation; the result can then be
passed to ICNR_ttp that produces a TTP signature on the
identity and certificate. Finally, ICNR_finalkey computes
the user’s final private key given the blinded value and the
result from the TTP. To extract (7) the keys, ICNR_extract
is used. The simultaneous extraction and signature verification
is provided by ICNR_do_verify—optionally, keys can first
be extracted using ICNR_extract then signatures verified
using the standard ECDSA_do_verify as usual.

The first step to speed up scalar multiplication using binary
curves in OpenSSL is to provide projective coordinates, which
trade the (relatively) expensive field division in point addition
and doubling present when using affine coordinates for a
number of field multiplications and squarings. López-Dahab
(LD) [25] projective coordinates were implemented, resulting
in a point addition cost of 8M+5S using ec_GF2m_ld_add
and point doubling 4M + 5S using ec_GF2m_ld_dbl.

OpenSSL does not have any special methods for Koblitz
curves—they are treated as normal binary curves. We extend



TABLE I
PLA STORAGE AND COMPUTATION REQUIREMENTS COMPARED.

Certificate-Based PKI PLA Implicit Certificates PLA

signature (2r) 326 signature (2r) 326
public key (m + 1) 164 self-certified public key (m + 1) 164
TTP signature on public key (2r) 326 - 0
verify public key 2 ESMs extract public key 1 ESM
verify signature 2 ESMs verify signature 2 ESMs

Packet Total (bits) 816 490
Computation (ESMs, Sign/Verify) 1/4 1/3

OpenSSL to support Koblitz curve-specific functions. We
implemented a function compute_koblitz_reduce that
performs reduction of scalars as described in Sec. II-A—
it is important call this function to shorten the length
of scalars before scalar multiplication, otherwise the op-
eration will take roughly twice as long. An analogous
function compute_wNAF_tau is implemented that gen-
erates width−w τNAFs as described in [8]. The function
ec_GF2m_koblitz_tau applies the Frobenius (2)—in the
case of projective coordinates, a minor cost of 3S.

For scalar multiplication using Koblitz curves, we im-
plement the function ec_GF2m_koblitz_mul, somewhat
analogous to ec_GF2m_simple_mul. When only one point
is passed to the function, the the sliding window [11] method
on the τNAF2 is used, with a window width of w = 3;
for two or three points, a method using Shamir’s trick [13]
with τ -adic scalar recoding [26] specific to Koblitz curves.
For two scalars, two precomputation points must be computed
online and this method produces a joint weight (0.5) with
the same average length and density as that of τJSF [15].
For three scalars, 10 precomputation points must be computed
online and the average joint weight is 0.5897. We explicitly
provide the three-term scalar multiplication algorithm with
recoding that can be used for simultaneous key extraction
and signature verification in Fig. 2. The precomputed points
must be in affine coordinates. In the precomputation phase,
we also implemented a version of Montgomery’s trick [23] for
simultaneous inversion. This would allow the point additions
for precomputation to be done in projective coordinates, then
all at once normalized to affine coordinates. However, the
resulting difference in timings was negligible and hence the
results are not included.

C. Implementation Results

The implementation was done on an AMD Athlon Thun-
derbird 1.0GHz 32-bit processor with 1GB of RAM running
Debian Linux and OpenSSL v0.9.8g. The compiler used was
GCC v4.1.2 using compiling switches -march=athlon-tbird
-O3 -pipe -fforce-addr -fomit-frame-pointer -funroll-loops.
The timing results are given in Table II. The “Unmodified
OpenSSL” section is the stock OpenSSL with only minor mod-
ifications to support implicit certificates and simultaneous key
extraction and signature verification (“Extract+Verify”). The
“Modified OpenSSL” section includes the entire implementa-

Input: `-bit expansions a, b, c in τNAF2, points P, Q, R ∈ E1(F2m )
Output: aP + bQ + cR
Precompute xP + yQ + zR ∀ x, y, z ∈ {−1, 0, 1}
S ←∞, i← `− 1
while i ≥ 0 do

D ← {a, b, c}, C ← 1
foreach k ∈ D do

if ki = 0 then D ← D \ {k}
else if ki + ki−2 = ±2 then C ← max(2, C)
else if ki + ki−3 = ±2 then C ← max(3, C)
else D ← ∅, C ← 1

end
for j ← 1 to C − 1 do

if ai−j = bi−j = ci−j = 0 then D ← ∅, C ← 1
end
foreach k ∈ D do

if ki−2 6= 0 then ki−1 ← ki, ki−2 ← −ki, ki ← 0
else ki−2 ← −ki, ki−3 ← −ki, ki ← 0

end
while C > 0 do

S ← φ(S)
S ← S + (aiP + biQ + ciR)
i← i− 1 , C ← C − 1

end
end
return S

Fig. 2. Three term simultaneous scalar multiplication for Koblitz curves.

tion previously described. The “Storage” column indicates the
number of offline/online points needed in the precomputation
stage, exclusive of the accumulator point for the result.

The unmodified OpenSSL “Extract+Verify” performance
of 25.461ms is rather disappointing, but indicative of the
significant cost of using affine coordinates instead of projective

TABLE II
SOFTWARE IMPLEMENTATION RESULTS, OPENSSL SOFTWARE TIMINGS.

Method Storage Time (ms)

Unmodified OpenSSL

Sign 3/0 4.104
Extract 0 4.214
Verify 0 8.289
Extract+Verify 3/6 25.461

Modified OpenSSL

Sign 0/2 2.374
Extract 0/2 2.472
Verify 0/2 4.376
Extract+Verify 0/10 5.966



coordinates. With the unmodified OpenSSL, it is indeed faster
simply to perform the extraction first then the verification
(12.503ms), which is surprising. With the modified OpenSSL,
the performance of signature generation is clearly improved,
but could be improved even further with the use of a wider
width τNAF and offline precomputation (for example τNAF4).
However, as expected the bottleneck is still clearly the verifica-
tion. All of the modifications presented here significantly speed
up these operations for OpenSSL. These timings should also
scale accordingly with an increase in CPU speed, number of
cores, and CPU size (e.g. 32 to 64-bit CPU). We also note that,
although OpenSSL is used as a basis, significant linear speed
increase is possible with the use of custom field arithmetic.

IV. CONCLUSION

In this paper, we have described an efficient method of im-
plementing cryptography for PLA. A software implementation
was presented, using the well-known OpenSSL distribution
as a base; this was chosen in an attempt to make PLA
more accessible. Extentions were provided to the standard
OpenSSL API to support Koblitz curve operations and implicit
certificates, as well as implementations of these API extensions
which achieve significant speedup in signature generation
as well as signature verification. The provided simultaneous
public key extraction and signature verification has particularly
competitive performance. As mentioned, even greater perfor-
mance would be possible by providing custom finite field
arithmetic, or with the use of custom hardware; for example,
the corresponding hardware implementation [27] reaches an
impressive 166K combined extractions and verifications per
second. These results have been achieved with PLA in mind—
however, the provided implementations have a wide-range of
other practical applications, wherever high-speed and compact
elliptic curve cryptography is needed.

Readers interested in deploying PLA are encouraged to
visit the project website at http://www.tcs.hut.fi/Software/PLA/
new/.

REFERENCES

[1] G. Hardin, “The tragedy of the commons,” Science, vol. 162, no. 3859,
pp. 1243–1248, 1968.

[2] C. Candolin, J. Lundberg, and H. Kari, “Packet level authentication in
military networks,” in Proceedings of the 6th Australian Information
Warfare & IT Security Conference, Geelong, Australia, Nov. 2005.

[3] N. Koblitz, “CM-curves with good cryptographic properties,” in Ad-
vances in cryptology—CRYPTO ’91, ser. Lecture Notes in Comput. Sci.
Springer-Verlag, 1992, vol. 576, pp. 279–287.

[4] N. Koblitz, “Elliptic curve cryptosystems,” Math. Comp., vol. 48, no.
177, pp. 203–209, 1987.

[5] V. S. Miller, “Use of elliptic curves in cryptography,” in Advances in
cryptology—CRYPTO ’85, ser. Lecture Notes in Comput. Sci., 1986,
vol. 218, pp. 417–426.

[6] W. Meier and O. Staffelbach, “Efficient multiplication on certain non-
supersingular elliptic curves,” in Advances in cryptology—CRYPTO ’92,
ser. Lecture Notes in Comput. Sci. Springer-Verlag, 1993, vol. 740,
pp. 333–344.

[7] J. A. Solinas, “An improved algorithm for arithmetic on a family of
elliptic curves,” in Advances in cryptology—CRYPTO ’97, ser. Lecture
Notes in Comput. Sci. Springer-Verlag, 1997, vol. 1294, pp. 357–371.

[8] J. A. Solinas, “Efficient arithmetic on Koblitz curves,” Des. Codes
Cryptogr., vol. 19, no. 2-3, pp. 195–249, 2000.

[9] NIST, “Digital signature standard (DSS),” National Institute of Standards
and Technology, FIPS PUB 186-2 (+ Change Notice), Jan. 2000.

[10] A. K. Lenstra and E. R. Verheul, “Selecting cryptographic key sizes,”
J. Cryptology, vol. 14, no. 4, pp. 255–293, 2001.

[11] D. Hankerson, A. J. Menezes, and S. A. Vanstone, Guide to Elliptic
Curve Cryptography. New York: Springer-Verlag, 2004.

[12] D. Hankerson, J. L. Hernandez, and A. Menezes, “Software implementa-
tion of elliptic curve cryptography over binary fields,” in Cryptographic
hardware and embedded systems—CHES ’00. Springer, 2000, vol.
1965, pp. 243–267.

[13] A. Shamir, “How to check modular exponentiation,” Presented at the
rump session of EUROCRYPT ’97. Konstanz, Germany, May 1997.

[14] J. A. Solinas, “Low-weight binary representations for pairs of integers,”
Centre for Applied Cryptographic Research, University of Waterloo,
Canada, Tech. Rep. CORR 2001-41, 2001.

[15] M. Ciet, T. Lange, F. Sica, and J.-J. Quisquater, “Improved algorithms
for efficient arithmetic on elliptic curves using fast endomorphisms,”
in Advances in cryptology—EUROCRYPT ’03, ser. Lecture Notes in
Comput. Sci. Berlin: Springer, 2003, vol. 2656, pp. 387–400.

[16] M. Girault, “Self-certified public keys,” in Advances in cryptology—
EUROCRYPT ’91, ser. Lecture Notes in Comput. Sci. Berlin: Springer,
1992, vol. 547, pp. 490–497.

[17] K. Nyberg and R. A. Rueppel, “A new signature scheme based on the
DSA giving message recovery,” in CCS ’93: Proceedings of the 1st ACM
conference on Computer and communications security. New York, NY,
USA: ACM, 1993, pp. 58–61.

[18] G. Ateniese and B. de Medeiros, “A provably secure Nyberg-Rueppel
signature variant with applications,” Cryptology ePrint Archive, Report
2004/093, 2004, http://eprint.iacr.org/.

[19] B. B. Brumley and K. Nyberg, “Differential properties of elliptic
curves and blind signatures,” in Information Security, 10th International
Conference—ISC ’07, ser. Lecture Notes in Computer Science, vol.
4779. Springer-Verlag, 2007, pp. 376–389.

[20] K. Nyberg, “Differentially uniform mappings for cryptography,” in Ad-
vances in cryptology—EUROCRYPT ’93, ser. Lecture Notes in Comput.
Sci. Berlin: Springer, 1994, vol. 765, pp. 55–64.

[21] B. B. Brumley, “Efficient three-term simultaneous elliptic scalar multi-
plication with applications,” in Proceedings of the 11th Nordic Workshop
on Secure IT Systems—NordSec ’06, V. Fåk, Ed., Linköping, Sweden,
Oct. 2006, pp. 105–116.

[22] M. Cox, R. Engelschall, S. Henson, and B. Laurie, “The OpenSSL
Project,” http://www.openssl.org/.

[23] P. L. Montgomery, “Speeding the Pollard and elliptic curve methods of
factorization,” Math. Comp., vol. 48, no. 177, pp. 243–264, 1987.

[24] J. López and R. Dahab, “Fast multiplication on elliptic curves over
GF(2m) without precomputation,” in Cryptographic hardware and
embedded systems—CHES ’99, ser. Lecture Notes in Comput. Sci.
Springer-Verlag, 1999, vol. 1717, pp. 316–327.

[25] J. López and R. Dahab, “Improved algorithms for elliptic curve arith-
metic in GF(2n),” in Selected areas in cryptography—SAC ’98, ser.
Lecture Notes in Comput. Sci. Berlin: Springer, 1999, vol. 1556, pp.
201–212.

[26] B. B. Brumley, “Left-to-right signed-bit τ -adic representations of n
integers (short paper),” in Information and Communications Security, 8th
International Conference—ICICS ’06, ser. Lecture Notes in Computer
Science, vol. 4307. Springer-Verlag, 2006, pp. 469–478.

[27] K. U. Järvinen, J. Forsten, and J. Skyttä, “FPGA design of self-certified
signature verification on Koblitz curves,” in Cryptographic hardware
and embedded systems—CHES ’07, ser. Lecture Notes in Comput. Sci.
Berlin: Springer, 2007, vol. 4727, pp. 256–271.


