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Abstract. An application of n-term Joint Sparse Form to three-term
simultaneous elliptic scalar multiplication is presented. This is shown
to significantly improve performance in comparison to processing the
scalar multiplications individually. A practical application of the results
is provided using Self-Certified signatures. These results are particularly
useful when compact and fast signatures are needed.

Key words: elliptic curve cryptography, self-certified identity based
digital signature schemes, simultaneous elliptic scalar multiplication, n-
term joint sparse form

1 Introduction

As “The Tragedy of the Commons” [9] is becoming an increasing reality
on the Internet, new and more efficient protection methods are required.
One vision [4] is that more protection is needed at the network infras-
tructure level. The sender should include a digital signature and some
addition data in every packet so that other nodes can verify the integrity,
timeliness, and uniqueness of packets without previous communication
with the sender.

This is just one example of a security problem in which digital signa-
tures, if implemented efficiently, can provide a solution. Digital signatures,
in turn, require an effective Public Key Infrastructure (PKI) to work prop-
erly. One of the many alternatives to traditional certificate-based PKI is
Self-Certified (SC) keys and signatures. SC signature schemes are attrac-
tive due to the reduction in computational and size requirements and are
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therefore well-suited for environments where fast and compact signature
are needed, as in [4].

Improving efficiency in verification of SC signatures provides the mo-
tivation for this paper. In Section 2, some background information is pro-
vided on digital signature schemes using elliptic curves, minimal weight
signed binary representations, joint signed binary representations, and SC
schemes. In Section 3, an application of n-term Joint Sparse Form (JSF)
[14] to three-term simultaneous elliptic scalar multiplication is presented.
A practical application of these results is given involving a SC signature
scheme [2]. In Section 4, estimates are provided which show that using si-
multaneous elliptic scalar multiplication and three-term JSF significantly
improves performance compared to processing the scalar multiplications
individually.

2 Background

This section provides a brief overview of background information that
helps understand the results presented in this paper. Topics covered in-
clude the Nyberg-Rueppel signature scheme, elliptic scalar multiplication,
minimal weight signed binary representations and joint expansions, simul-
taneous elliptic scalar multiplication, and SC signature schemes.

2.1 The Nyberg-Rueppel Signature Scheme

The Nyberg-Rueppel signature scheme was introduced in [11]. It is a
variation of the ElGamal scheme [6]. In this paper, an implementation
based on elliptic curves is considered. The steps of the signature scheme
are outlined below.

Setup. Elliptic curve E is chosen with base point generator G of prime
order r where r | #E.

Keygen. Alice generates a private key s and public key W by computing

s ∈R Z∗
r

W = sG (1)

This requires one elliptic scalar multiplication involving a fixed point
G.

Sign. To generate a signature (c, d) on a message m, Alice calculates

u ∈R Z∗
r

c = [uG]x + h(m) (mod r)
d = u− sc (mod r) (2)



where [P ]x denotes the x-coordinate of the point P converted to an
integer and h is a collision resistant hash function. This requires one
elliptic scalar multiplication involving a fixed point G.

Verify. To verify the signature (c, d) on the message m, Bob checks that

h(m) = c− [dG + cW ]x (mod r) (3)

This requires one elliptic scalar multiplication involving a fixed point
G and one involving an arbitrary point W for a total of two elliptic
scalar multiplications.

Correctness. These computations are consistent:

dG + cW = dG + csG = (d + cs)G = (u− sc + sc)G = uG

c− [uG]x = [uG]x + h(m)− [uG]x = h(m)

2.2 Elliptic Scalar Multiplication

Arguably the most well-known and simple method for elliptic scalar multi-
plication is the Double-and-Add Method, which is analogous to the Square-
and-Multiply Method for modular exponentiation. It uses the binary rep-
resentation of a scalar k to compute multiples of the point P .

Algorithm 1: Right-to-left elliptic scalar multiplication
Input: integer k, point P ∈ E(Fq)
Output: kP
Q←∞
while k > 0 do

if k is odd then Q← Q + P /* k & 1 */

k ← bk/2c /* right shift by one */

P ← 2P /* using a point doubling method */

end
return Q

Since the average number of non-zero digits in `-bit k is `/2, Algorithm
1 is executed at the cost of

`

2
A + `D (4)

where A denotes point additions and D point doublings.
In multiplicative groups, inversions are much more expensive than

multiplications. However, in groups over elliptic curves, point negation is
free, hence the equivalent elliptic curve operations of point subtraction



and point addition have roughly the same cost. To subtract the point P =
(x, y), the point −P = (x,−y) is added for elliptic curves over prime fields
and the point −P = (x, x + y) for binary fields. So when implementing
signature schemes using elliptic curves, signed digit representations are
preferred over unsigned digit representations.

The Addition-Subtraction Method presented as Algorithm 2 uses the
Non-Adjacent Form (NAF) of a scalar k to compute multiples of the point
P . This is the only method present in many standards [10, 1].

Algorithm 2: Right-to-left elliptic scalar multiplication using NAF
Input: integer k, point P ∈ E(Fq)
Output: kP
Q←∞
while k > 0 do

if k is odd then
u← 2− (k mod 4) /* get last 2 binary digits */

k ← k − u
if u = 1 then Q← Q + P
if u = −1 then Q← Q− P

end
k ← bk/2c /* right shift by one */

P ← 2P /* using a point doubling method */

end
return Q

NAF has the minimal weight among all signed binary digit represen-
tations. The average number of non-zero digits in the `-bit scalar k using
NAF is `/3, giving Algorithm 2 an average cost of

`

3
A + `D (5)

which is significantly less than the costs given in Equation 4.
Since the signature verification presented in Equation 3 requires two

elliptic scalar multiplications, processing these separately and adding the
results requires on average

(
2`

3
+ 1)A + 2`D (6)



2.3 Simultaneous Elliptic Scalar Multiplication and the Joint
Sparse Form

In many signature verification primitives (including Equation 3), the main
operation often involves a calculation similar to

– gk
1gl

2 for multiplicative groups.
– kP + lQ for groups over elliptic curves.

The straight-forward method as presented above is to calculate each term
separately, then combine the result. However, calculations of the above
form have specialized methods known as simultaneous elliptic scalar mul-
tiplication. Using a modification of Shamir’s Trick [6] to process kP + lQ
in parallel can reduce the number of operations needed. The idea is that
the values for the individual terms are not needed, only their sum. See
Figure 1 for a small example.

Fig. 1. Small example of Shamir’s Trick, computing 13P + 7Q (1̄ = −1).

computing: 13P + 7Q
precomp: (P + Q), (P −Q)
NAF(13) = 101̄01 (24 − 22 + 20 = 13)
NAF(7) = 01001̄ (23 − 20 = 7)
R←∞

i = 4 R← 2R =∞
R←∞+ P = P

i = 3 R← 2P
R← 2P + Q

i = 2 R← 2(2P + Q) = 4P + 2Q
R← 4P + 2Q− P = 3P + 2Q

i = 1 R← 2(3P + 2Q) = 6P + 4Q
R← 6P + 4Q +∞ = 6P + 4Q

i = 0 R← 2(6P + 4Q) = 12P + 8Q
R← 12P + 8Q + (P −Q) = 13P + 7Q

Algorithm 3 modified from [8] illustrates this method. Note that if ki, li
are both zero, no point addition takes place (the point at infinity, which is
the neutral element, is added). Improvements known as window methods
(looking at more than one digit of the scalars at each iteration) can also
be used, but as the window size increases along with the use of NAF
the amount of precomputation required causes substantial diminishing
returns.

In Equation 5, the cost of one elliptic scalar multiplication when using
NAF was given. Analogously, when using NAF on the pair of integers



Algorithm 3: Left-to-right simultaneous elliptic scalar multiplica-
tion

Input: `-bit integers k, l, points P, Q ∈ E(Fq)
Output: kP + lQ
Precompute xP + yQ ∀ x, y ∈ {0,−1, 1}
Compute a signed binary-digit representation of k.l
R←∞
for i← `− 1 to 0 do

R← 2R
R← R + (kiP + liQ)

end
return R

(k, l) the probability of a non-zero column is 1 − (22/32) = 5/9, giving
Algorithm 3 an average cost of

(
5`

9
+ 2)A + `D (7)

including precomputation and assuming point negation is free. This is a
substantial improvement over processing the elliptic scalar multiplications
separately (Equation 6 above).

Another representation was developed in [16] called Joint Sparse Form
(JSF), which is a generalization of NAF for a pair of integers. JSF has
minimal weight among all signed binary digit representations for a pair
of integers, yielding an average of `/2 non-zero columns. Therefore, when
using JSF Algorithm 3 requires

(
`

2
+ 2)A + `D (8)

which is slightly more efficient than NAF in Equation 7.

2.4 Self-Certified Keys and Signatures

Self-certified signatures provide a good alternative to traditional certificate-
based PKI. Instead of verifying the certificate and signature separately,
the signer’s public key is extracted from the trusted third party’s signa-
ture on the signer’s identity and then used to verify the signature. This
reduces the computational requirements. Instead of two elliptic scalar
multiplications for each of two signatures, only one is needed for the
public key extraction and two for the signature verification. The space
requirements are also reduced, as an explicit signature on a user’s public
key is no longer needed.



SC signatures have the following drawback. It is impossible for a third
party to verify an extracted public key; if a signature fails to verify, it is
unknown where the failure lies. The public key and/or the signature is
incorrect.

A self-certified identity based (SCID) signature scheme based on the
Nyberg-Rueppel signature scheme was presented in [2]. A version using
groups over elliptic curves is outlined below.

Setup. Elliptic curve E is chosen with base point generator G of prime
order r where r | #E. The Trusted Third Party (TTP) uses Equation
1 to generate a domain private key sD and domain public key WD.
TTP then publishes WD.

Keygen. To generate a private key on user Alice’s identity IDA, TTP
calculates

u ∈R Z∗
r

(rA, bA) = compress(uG) + h(IDA)
sA = u− sDrA (mod r) (9)

and escrows1 the private key sA to Alice securely and values (rA, bA)
publicly. compress is the point compression function2, yielding the
x-coordinate of uG and the compression bit bA. Note that (rA, sA) is
simply a Nyberg-Rueppel signature by TTP on the message m = IDA;
sA acts as Alice’s private key while rA will be used by third parties
to reconstruct Alice’s public key WA = sAG as shown in Extract.

Sign. To generate the signature (c, d) on the message m, Alice uses Equa-
tion 2.

Verify. After extracting Alice’s public key WA using Extract, Bob ver-
ifies the signature (c, d) using Equation 3.

Extract. To extract Alice’s public key WA on identity IDA given public
values (rA, bA), Bob calculates

WA = decompress(rA − h(IDA), bA)− rAWD (10)

where decompress is the point decompression function given an x-
coordinate and compression bit b. This requires one elliptic scalar
multiplication and one point addition.

1 In [2], methods were presented to avoid key escrow and allow only Alice access to
the secret key sA (blinding TTP from sA ). However, this feature is beyond the
scope of this paper.

2 There are either zero or two solutions to the elliptic curve equation for the y-
coordinate when given an x-coordinate. The compression bit determines which so-
lution to use.



Correctness. The extracted public key is correct (WA = sAG):

WA = decompress(rA − h(IDA), bA)− rAWD

= uG− rAsDG = (u− rAsD)G
= (sA + rAsD − rAsD)G = sAG

3 Improving the Performance of SCID Signatures

In the above SCID signature scheme, the signature is verified by using
Equation 3. Therefore, simultaneous elliptic scalar multiplication can also
be used in this scheme to improve performance. The extraction of the
signer’s public key is accomplished using Equation 10. However, these
two equations can be combined to produce

h(m) = c− [dG + c(decompress(rA − h(IDA), b)− rAWD)]x (mod r)

Performing the point decompression (producing the point uG) and dis-
tributing c yields the calculation

dG + c(uG)− crAWD (11)

Hence, the public key extraction and signature verification process can be
rewritten as the sum of three distinct elliptic scalar multiplications. This
can be computed most efficiently using three-term simultaneous scalar
multiplication.

As JSF is defined for a pair of integers, a generalization of JSF to
n terms is needed. In [16], Solinas suggested this generalization as fu-
ture work, with a remark questioning the practicality due to increased
precomputation requirements. Such a generalization was presented inde-
pendently in [13] and [7]. The need for a left-to-right method of gener-
ating the JSF was also noted, so as to work in-line with Shamir’s Trick
and not require separate storage of the JSF, which was presented in [14].
Algorithm 5 appearing in Appendix A is a three-term version with mi-
nor modifications3. This algorithm can easily be modified to perform the
elliptic scalar multiplications in-line.

As seen in the previous examples, the amount of precomputation
needed increases when using a signed-binary representation. Using Equa-
tion 11, 33 different points could be added. To compute these points,
3 In steps 7-9b of [14], C + 1 columns are examined; however, only C − 1 columns

actually need to be examined, as the left and right columns of the N × (C + 1)
window are already guaranteed to have non-zero entries.



assuming negation is free, only 10 point additions actually need to be
computed and stored4. Algorithm 4 illustrates this method.

Algorithm 4: Left-to-right three-term simultaneous elliptic scalar
multiplication

Input: `-bit integers j, k, l, points P, Q, R ∈ E(Fq)
Output: jP + kQ + lR
Precompute xP + yQ + zR ∀ x, y, z ∈ {−1, 0, 1}
Calculate 3-term JSF of j, k, l using Algorithm 5
S ←∞
for i← `− 1 to 0 do

S ← 2S
S ← S + (jiP + kiQ + liR)

end
return S

4 Results

A comparison of the probabilities of a non-zero column given n different
scalars is presented in Table 1. These values correspond to the number
of point additions needed (not including precomputation). Table 2 shows
a comparison5 of the number of required elliptic curve operations for
two common standardized curves [12] when processing Equation 11 us-
ing simultaneous and separate elliptic scalar multiplications (including
precomputation).

Table 1. Probabilities of a non-zero column given n terms.

n Binary NAF JSF

1 .5 .3333 .3333
2 .75 .5555 .5
3 .875 .7037 .5897

4 This assumes that point additions involving three terms (e.g. P +Q+R) are actually
done using previous point addition results (P+Q+R = (P+Q)+R using a previously
computed P + Q only requires one point addition).

5 Ex Add denotes extra additions needed either for precomputation or adding resulting
individual points.



Table 2. Elliptic curve operations needed for common curves.

Curve Method A D Ex Add Field Mult Gain

B-163 NAF (separate) 162 486 2 3256
B-163 JSF (simul) 95 162 10 1488 54%
P-192 NAF (separate) 189 573 2 6418
P-192 JSF (simul) 112 191 10 2804 56%

The number of field multiplications is an estimate based on using
mixed coordinates. For binary curves using affine and López-Dahab co-
ordinates, the cost of one point addition is eight field multiplications and
one point doubling is four field multiplications. For prime curves using
affine and Jacobian coordinates, the cost of one point addition is eight
field multiplications and three field squarings and one point doubling is
four field multiplications and four field squarings. Field squarings have
an estimated cost of 0.85 of a field multiplication. These are generally
considered the most efficient methods [8]. Equation 11 involves two fixed
points (the base point and the trusted third party’s public key), so these
estimates could be improved by persisting the precomputed values that
involve only these two fixed points.

5 Conclusion

It has been shown that using three-term JSF with three-term simultane-
ous elliptic scalar multiplication significantly improves performance com-
pared to individual processing. For an elliptic curve over a binary field
where q = 2163, using three-term simultaneous elliptic scalar multiplica-
tion has over 54% less field multiplications. For an elliptic curve over a
prime field where q is a 192-bit prime, there are over 56% less field mul-
tiplications. This requires minimal temporary storage and is therefore
well-suited for both software and hardware implementations. These per-
formance enhancement estimates should also be attainable in practice, as
the number of field multiplications is proportional to timings of signature
verifications. An application of these results was provided in the form of
SC signatures, so the results also have a practical use.

6 Recent Work

When Koblitz curves are used, point doublings are replaced by an effi-
ciently computable endomorphism called the Frobenius map τ : E(F2m)→
E(F2m) such that (x, y) 7→ (x2, y2). τ -adic NAF [15] and two-term τ -adic



JSF [5] have been developed. For SCID signature schemes using Koblitz
curves, a three-term (or more generally n-term) τ -adic JSF is needed. A
generalization appears in [3].
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A Three-Term JSF Algorithm

Algorithm 5: Three-Term JSF
Input: integers a′, b′, c′, largest being of L-bit length
Output: JSF of a′, b′, c′

for i← L to 0 do
ai ← a′i−1 − a′i /* max 4 cols actually need to be */
bi ← b′i−1 − b′i /* examined per iteration, so the entire
*/
ci ← c′i−1 − c′i /* ints need not be recoded at once */

end
for i← L to 0 do

S ← {a, b, c} /* S holds rows with reducible bits */
foreach k ∈ S do if ki = 0 then remove k from S
C ← 1 /* C-1 0’s between the non-0 bits */
foreach k ∈ S do

for j ← 1 to 3 do
if ki−j 6= 0 or j = 3 then

if ki + ki−j 6= 0 then S ← ∅, C ← 1
else C ← max(j, C)
break

end
end
/* is there an all-0 col that should be preserved? */
for j ← 1 to C − 1 do if ai−j = bi−j = ci−j = 0 then
S ← ∅, C ← 1
/* replace x0 . . . 0x with 0x . . . x */
foreach k ∈ S do

for j ← 1 to 3 do
if ki−j = 0 then ki−j ← ki

else break
end
ki ← 0

end
i← i− (C − 1) /* C columns have been processed */

end
return a, b, c


