
Towards an Efficient Tableau Method for
Boolean Circuit Satisfiability Checking

Tommi A. Junttila and Ilkka Niemelä

Helsinki University of Technology
Dept. of Computer Science and Engineering

Laboratory for Theoretical Computer Science
P.O.Box 5400, FIN-02015 HUT, Finland
{Tommi.Junttila,Ilkka.Niemela}@hut.fi

Abstract. Boolean circuits offer a natural, structured, and compact
representation of Boolean functions for many application domains. In this
paper a tableau method for solving satisfiability problems for Boolean cir-
cuits is devised. The method employs a direct cut rule combined with de-
terministic deduction rules. Simplification rules for circuits and a search
heuristic attempting to minimize the search space are developed. Ex-
periments in symbolic model checking domain indicate that the method
is competitive against state-of-the-art satisfiability checking techniques
and a promising basis for further work.

1 Introduction

Propositional satisfiability checkers have been applied successfully to many in-
teresting domains such as planning [11] and model checking of finite state sys-
tems [1, 3, 2]. The success has built on recent significant advances in the perfor-
mance of SAT checkers based both on stochastic local search algorithms and on
complete systematic search.

In this paper we are interested in developing SAT checking methodology
especially for symbolic model checking purposes. Most work on symbolic model
checking [6] has been based on binary decision diagrams (BDDs) [5]. However,
BDD-based methods suffer from the fact that a BDD representation of a Boolean
expression can require exponential space. Recent research has shown that this
problem can be overcome by using state-of-the-art SAT checking methods which
work in polynomial space in the size of the input [1, 3, 2].

Most successful satisfiability checkers assume that the input formulae are in
conjunctive normal form (CNF). This sometimes makes efficient modeling of an
application challenging because natural non-clausal formalizations can lead to
significant blow-up when the formulae are transformed to CNF. An example of
the CNF transformation problem is a formula of the form

(P1 ∧Q1) ∨ · · · ∨ (Pn ∧Qn)

whose equivalent CNF is of exponential size. If it is enough to preserve satisfia-
bility, the size of the CNF can be decreased to linear by introducing a new atom

J. Lloyd et al. (Eds.): CL 2000, LNAI 1861, pp. 553–567, 2000.
c©Springer-Verlag Berlin Heidelberg 2000

554 Tommi A. Junttila and Ilkka Niemelä

for each conjunction and transforming the formula to

(R1 ∨ · · · ∨Rn) ∧ (R1 ↔ (P1 ∧Q1)) ∧ · · · ∧ (Rn ↔ (Pn ∧Qn))

whose CNF is

(R1 ∨ · · · ∨Rn) ∧ · · · ∧ (Rn ∨ ¬Pn ∨ ¬Qn) ∧ (¬Rn ∨ Pn) ∧ (¬Rn ∨Qn) .

Notice, however, that now the number of atomic formulae has increased by n
and the search space (and running time) of typical SAT checkers could increase
exponentially.

In this paper we study an alternative approach to solving propositional sat-
isfiability problems which is not based on representing the input in CNF but as
a Boolean circuit. This allows a compact and natural representation in many do-
mains. Using Boolean circuits as the input format makes it possible to simplify
the representation by sharing common subexpressions and by preserving natural
structures and concepts of the domain.

Our idea is to combine advantages of a compact representation based on
Boolean circuits and polynomial space requirements of CNF-based search pro-
cedures and devise a satisfiability checking algorithm for Boolean circuits, i.e., a
procedure for finding truth assignments for a circuit given some constraints on
its output values or for determining that none such exists.

There is a lot of previous research on theorem proving and satisfiability check-
ing methods working with arbitrary (non-clausal) formulae. The work is mainly
based on tableaux and sequent calculi, see e.g. [13] for a technique to make this
approach more amenable to real applications using simplification methods. A
commercial SAT-checking system, Prover [4], is also working with non-CNF in-
put. Also SAT checking systems basically working with CNF input have been
extended to handle more general formulae. This has been done both for complete
SAT checkers, e.g. in [8], as well as for local search methods [10, 17].

In this paper we develop a tableau method that works directly with Boolean
circuits. Instead of standard (cut free) tableau techniques we employ a direct cut
rule combined with deterministic (non-branching) deduction rules. The aim is to
achieve high performance and to avoid some computational problems in cut free
tableaux [7]. In order make the method more efficient we devise simplification
rules and a search heuristic which attempts to minimize the search space of the
algorithm. The heuristic is inspired by the search technique used in a system
for computing stable models [15, 18]. Experimental results indicate that the cut-
based tableau method combined with suitable deduction and simplification rules
and the search space minimizing heuristic has promising performance, e.g., in
symbolic model checking applications.

The rest of the paper is structured as follows. We start by introducing
Boolean circuits. Then we develop a tableau method for circuits. In Section 4
we identify transformation rules for simplifying circuits and then we describe an
experimental implementation of the tableau method. Section 6 provides a simple
translation of circuits to CNF used in the experiments presented in the following
section where our tableau method is compared to state-of-the-art satisfiability
checkers using symbolic model checking benchmarks.

Towards an Efficient Tableau Method 555

2 Boolean Circuits

A Boolean circuit C is an acyclic directed graph where the nodes are called the
gates of C. The gates with no outgoing edges are the output gates and the gates
with no incoming edges and no Boolean function are the input gates of C. Each
non-input gate is associated with a Boolean function and “calculates” its value
from the values of its children. In this paper we represent Boolean circuits as
Boolean equation systems. Such systems offer a convenient way of writing down
circuits and of describing transformations on them. For more on Boolean circuits,
see e.g. [16].

Given a finite set V of Boolean variables, a Boolean equation system (a system
for short) S over V is a set of equations of the form v = f(v1, . . . , vk), where
v, v1, . . . , vk ∈ V and f is an arbitrary Boolean function. Boolean circuits can be
seen as Boolean equation systems of a certain form where each variable has at
most one equation and the equations are not recursive. More precisely this can
be characterized as follows. Given a Boolean equation system S over V such that
for each variable v ∈ V there is at most one equation in S, we define the directed
graph G(S) = 〈V, E〉, where E = {〈v′, v〉 | v = f(. . . , v′, . . .) ∈ S} ⊆ V × V. The
graph G(S) describes the variable dependencies in S and if G(S) is acyclic, then
G(S) can be seen as a Boolean circuit. See Fig. 1 for an example. The variables
of S correspond to the gates of the circuit and the variables for which there is
no equation are the input gates of the circuit. A variable defined by an equation
of form v = > (v = ⊥) in turn corresponds to a constant gate “true” (“false”).

v1 = and(v2, v3)
v2 = not(v4)
v3 = or(v4, v5, v6)
v6 = ⊥

and

notv2 v3

v1

or

v5 ⊥ v6v4

Fig. 1. A system over {v1, . . . , v6} and the corresponding Boolean circuit.

A truth valuation for S is a function τ : V → {true, false}. Valuation τ is
consistent if τ(v) = f(τ(v1), . . . , τ(vk)) holds for each equation v = f(v1, . . . , vk)
in S. A system S is satisfiable if there exists a consistent valuation for it. The
question of whether a system is satisfiable is obviously an NP-complete prob-
lem under the plausible assumption that each Boolean function appearing in
the system can be computed in deterministic polynomial time. However, note
that each Boolean equation system describing a Boolean circuit has exactly 2n

556 Tommi A. Junttila and Ilkka Niemelä

consistent truth assignments, where n is the number of input gates in the cir-
cuit (the system only describes the structure of the circuit). Therefore, in case
of Boolean circuits, we are interested in the constrained satisfaction problem:
given that variables in c+ ⊆ V must be true and those in c− ⊆ V false (the con-
straints), is there a consistent valuation that respects these constraints? Again,
this is obviously an NP-complete problem.

In the rest of the paper we consider the class of Boolean circuits where the
following Boolean functions are allowed in the gates (equations).

– > (a constant function) is always true. The constant ⊥ is always false.
– equiv(v1, . . . , vn) = true iff all vi, 1 ≤ i ≤ n, are true or all vi, 1 ≤ i ≤ n, are

false.
– or(v1, . . . , vn) = true iff at least one vi, 1 ≤ i ≤ n, is true.
– and(v1, . . . , vn) = true iff all vi, 1 ≤ i ≤ n, are true.
– even(v1, . . . , vn) = true iff an even number of vis, 1 ≤ i ≤ n, are true.
– odd(v1, . . . , vn) = true iff an odd number of vis, 1 ≤ i ≤ n, are true.
– not(v) = true iff v is not true.

3 A Tableau Method

In this section we develop a tableau method for solving satisfiability problems for
constrained Boolean circuits. A straightforward approach would be to interpret
each equation v = f(v1, . . . , vk) as an equivalence v ↔ f(v1, . . . , vk). We could
thus use a traditional tableau method [14] by setting (i) for each equation v =
f(v1, . . . , vk) in S an entry T(v ↔ f(v1, . . . , vk)) and (ii) for each constraint
v ∈ c+ (v ∈ c−) an entry Tv (Fv) in the tableau root and then applying the
standard tableau rules.

However, standard (cut free) tableau methods suffer from some computa-
tional problems [7]. In order to overcome these we use a tableau system that has
an explicit cut rule while all the rest of the rules are deterministic. The basic rules
are shown in Fig. 2. Note that the versions of rules obtained by commutativity
of the operations are not shown, e.g., the following is a rule:

v = odd(v1, . . . , vk)
Tv1, . . . , Tvj−1, Tvk, j is even

Fvj , . . . , Fvk−1

Fv

Given a system S, the root of the tableau consists of the equations in S and the
constraints. The rules appearing in Fig. 2 are then applied as in the standard
tableau method. A branch in the tableau is contradictory if it contains both Fv
and Tv entries for a variable in v ∈ V. A branch is complete if it contains an Fv
or Tv entry for each v ∈ V and no application of rules in Fig. 2(b)–(f) leads to
contradiction.

Theorem 1. The above tableau system is sound and complete in the sense that
a complete branch gives a satisfying truth assignment for S while the absence of
a complete branch indicates that the system is unsatisfiable.

Towards an Efficient Tableau Method 557

v ∈ V
Tv Fv

v = >
Tv

v = ⊥
Fv

v = not(v1)
Fv1

Tv

v = not(v1)
Tv1

Fv

(a) The explicit cut rule (b) Constant rules (c) Negation rules

v = or(v1, . . . , vk)
Fv1, . . . ,Fvk

Fv

v = and(v1, . . . , vk)
Tv1, . . . ,Tvk

Tv

v = or(v1, . . . , vk)
Tvi, i ∈ {1, . . . , k}

Tv

v = and(v1, . . . , vk)
Fvi, i ∈ {1, . . . , k}

Fv

(d) “Up” rules for or and and

v = equiv(v1, . . . , vk)
Tv1, . . . ,Tvk

Tv

v = equiv(v1, . . . , vk)
Fv1, . . . ,Fvk

Tv

v = equiv(v1, . . . , vk)
Tvi, i ∈ {1, . . . , k}
Fvj , i ∈ {1, . . . , k}

Fv

(e) “Up” rules for equiv

v = even(v1, . . . , vk)
Tv1, . . . , Tvj , j is even

Fvj+1, . . . , Fvk
Tv

v = even(v1, . . . , vk)
Tv1, . . . , Tvj , j is odd

Fvj+1, . . . , Fvk
Fv

v = odd(v1, . . . , vk)
Tv1, . . . , Tvj , j is odd

Fvj+1, . . . , Fvk
Tv

v = odd(v1, . . . , vk)
Tv1, . . . , Tvj , j is even

Fvj+1, . . . , Fvk
Fv

(f) “Up” rules for even and odd

Fig. 2. Basic rules.

Notice that for Boolean circuits it would be sufficient to apply the cut rule to
the input gates only: other gates are functionally fully dependent on input (and
constant) gates. Therefore the values of all gates can be evaluated by using the
rules in Fig. 2(b)–(f) once the values of input gates are assigned.

The size of a tableau depends essentially on the branching of the tableau, i.e.,
on the number of times that the cut rule in Fig. 2(a) is applied. In order to avoid
the use of the cut rule we devise a set of additional rules which complement the
basic rules. These rules given in Fig. 3 can be used in the tableau construction
without affecting its soundness or completeness. In the following, the rules in
Fig. 2(b)–(f) and Fig. 3 are called the deterministic deduction rules.

558 Tommi A. Junttila and Ilkka Niemelä

v = not(v1)
Tv

Fv1

v = not(v1)
Fv

Tv1

(a) “Down” rules for not

v = or(v1, . . . , vk)
Fv

Fv1, . . . ,Fvk

v = and(v1, . . . , vk)
Tv

Tv1, . . . ,Tvk

v = equiv(v1, . . . , vk)
Tvi, i ∈ {1, . . . , k}

Tv

Tv1, . . . ,Tvk

v = equiv(v1, . . . , vk)
Fvi, i ∈ {1, . . . , k}

Tv

Fv1, . . . ,Fvk

(b) “Down” rules for or, and and equiv

v = or(v1, . . . , vk)
Fv1, . . . , Fvk−1

Tv

Tvk

v = equiv(v1, . . . , vk)
Tv1, . . . , Tvk−1

Tv

Tvk

v = equiv(v1, . . . , vk)
Tv1, . . . , Tvk−1

Fv

Fvk

v = and(v1, . . . , vk)
Tv1, . . . , Tvk−1

Fv

Fvk

v = equiv(v1, . . . , vk)
Fv1, . . . , Fvk−1

Tv

Fvk

v = equiv(v1, . . . , vk)
Fv1, . . . , Fvk−1

Fv

Tvk

(c) “Last undetermined child” rules for or, and and equiv

v = even(v1, . . . , vk)
Tv1, . . . , Tvj , j is even

Fvj+1, . . . , Fvk−1

Tv

Fvk

v = even(v1, . . . , vk)
Tv1, . . . , Tvj , j is even

Fvj+1, . . . , Fvk−1

Fv

Tvk

v = odd(v1, . . . , vk)
Tv1, . . . , Tvj , j is odd

Fvj+1, . . . , Fvk−1

Tv

Fvk

v = even(v1, . . . , vk)
Tv1, . . . , Tvj , j is odd

Fvj+1, . . . , Fvk−1

Tv

Tvk

v = even(v1, . . . , vk)
Tv1, . . . , Tvj , j is odd

Fvj+1, . . . , Fvk−1

Fv

Fvk

v = odd(v1, . . . , vk)
Tv1, . . . , Tvj , j is odd

Fvj+1, . . . , Fvk−1

Fv

Tvk

v = odd(v1, . . . , vk)
Tv1, . . . , Tvj , j is even

Fvj+1, . . . , Fvk−1

Tv

Tvk

v = odd(v1, . . . , vk)
Tv1, . . . , Tvj , j is even

Fvj+1, . . . , Fvk−1

Fv

Fvk

(d) “Last undetermined child” rules for even and odd

Fig. 3. Additional deduction rules.

Towards an Efficient Tableau Method 559

Example 1. Consider the circuit in Fig. 1 and the constrained satisfaction prob-
lem where variable v1 must be true. Below is a tableau solving this problem

1. v1 = and(v2, v3)
2. v2 = not(v4)
3. v3 = or(v4, v5, v6)
4. v6 = ⊥
5. Tv1

6. Fv6 (4)
↙↘

7. Tv4 (cut)
9. Fv2 (2, 7)
10. Fv1 (1, 9)
× (5, 10)

8. Fv4 (cut)
11. Tv2 (2, 8)
12. Tv3 (1, 5, 11)
13. Tv5 (3, 6, 8)

where expressions 1–4 represent the circuit and expression 5 the constraint. For
each other expression we give in parentheses the expressions from which it is
derived using the tableau rules. Notice that the left hand branch (1–7,9,10) is
contradictory and does not provide a solution but the right hand branch (1–
6,8,11–13) is complete and yields a satisfying truth assignment where τ(v1) =
τ(v2) = τ(v3) = τ(v5) = true and τ(v4) = τ(v6) = false.

The use of the cut rule can be further limited by employing stronger determin-
istic deduction rules. There is an interesting trade-off between the computational
complexity involved in implementing a deduction rule and its ability to derive
further truth values. We consider as an interesting compromise a deduction rule
that we call one-step lookahead.

One-step lookahead: Consider a branch B and an expression Tv (Fv). If a
complementary pair of variables Tw,Fw can be derived using the determin-
istic deduction rules from B ∪ {Tv} (from B ∪ {Fv}), deduce Fv (Tv).

For instance, in the example above one-step lookahead could be applied to the
branch containing expressions 1–6 and for Tv4. Now Tv1,Fv1 can be derived
and, hence, Fv4 can be deduced. After that the branch can be completed us-
ing the deterministic deduction rules and a solution is found without any cuts
(branching). The one-step lookahead rule is similar to the failed literal rule [12]
in Davis-Putnam procedures for CNF satisfiability checking and the lookahead
rule in Smodels system [18] computing stable models. Notice that examining
whether the lookahead rule is applicable for a given expression Tv (Fv) can be
done in linear time in the size of the branch (given appropriate implementation
techniques). Hence, determining the applicability of the rule is more expensive
than for the other deterministic deduction rules. However, the lookahead rule
is quite powerful in decreasing the number of cut rule applications needed to
determine the existence of a solution. Experimental results indicate that often
the additional overhead is worth the effort.

560 Tommi A. Junttila and Ilkka Niemelä

4 Satisfiability Preserving Simplifications

In order to simplify the structure of a circuit, some efficiently implementable,
simple satisfiability preserving simplifications can be applied to a circuit. Actu-
ally, some of these simplifications require that the value of a gate is assigned and
should thus be applied to a constrained circuit (where Tv and Fv provide the
information).

1. Common subexpressions can be shared, i.e., if a system has two similar equa-
tions, v = f(v1, . . . , vk) and v′ = f(v1, . . . , vk), then v′ = f(v1, . . . , vk) can
be removed from the system and all the occurrences of v′ are substituted
with v.

2. If a gate has a child whose value is determined, the connection to the child can
be removed by the rewriting rules shown in Fig. 4(b)–(c). Figure 4 also shows
some other simplification rewriting rules. One simplification that deserves
special attention is the “input gate under true equivalence”-simplification in
Fig. 4(d). It can detect that an input gate is functionally fully depended on
other gates and removes it.

3. A cone of influence reduction can be performed: if a variable is not con-
strained and no other equation refers to it (i.e. it is an output gate in the
circuit), it can be removed, that is, gates that cannot influence constrained
gates can be removed.

5 An Experimental Implementation

We have made an experimental implementation called BCSat [9] of the tableau
method described in Sec. 3 for Boolean circuits. In the following we briefly discuss
the implementation.

After parsing in the circuit, some simple preprocessing steps are applied to it.
First, we set the constraints in the tableau root. We then apply the deterministic
deduction rules, one-step lookahead and the satisfiability preserving simplifica-
tions of Sec. 4 until nothing new can be deduced. Naturally, if any step here leads
to a contradiction, the circuit is unsatisfiable and the procedure is stopped.

After this the tableau is built one branch at a time using a chronological
backtracking procedure. At each search level, we first apply the deterministic
rules and the one-step lookahead rule as long as they produce new information.
We then choose the next undetermined cut variable for which the cut rule is
applied, after which the search branches to the next level. The cut variable is
selected by using the following heuristic. For each undetermined variable v the
following question is considered: if v is set to false (true), how many values of
other undetermined variables can be deduced by using the deterministic rules?
Call these numbers v⊥ and v>, respectively. A variable for which min{v⊥, v>} is
largest is then selected as the cut variable. The reasoning behind this choice of
cut variable is that choosing a maximum of the minimum minimizes the sum of
the remaining search space (the number of still possible variable assigments) left

Towards an Efficient Tableau Method 561

v = and()

v = >
v = or()

v = ⊥
v = equiv()

v = >
v = even()

v = >
v = odd()

v = ⊥

v = and(v′)

v = v′
v = or(v′)

v = v′
v = equiv(v′)

v = >
v = even(v′)

v = not(v′)

v = odd(v′)

v = v′

(a) Simplification rules for 0-ary and 1-ary gates

v = or(v1, . . . , vi−1, vi, vi+1, . . . , vk)
Fvi

v = or(v1, . . . , vi−1, vi+1, . . . , vk)
Fvi

v = or(v1, . . . , vi−1, vi, vi+1, . . . , vk)
Tvi
v = >
Tvi

v = and(v1, . . . , vi−1, vi, vi+1, . . . , vk)
Tvi

v = and(v1, . . . , vi−1, vi+1, . . . , vk)
Tvi

v = and(v1, . . . , vi−1, vi, vi+1, . . . , vk)
Fvi
v = ⊥
Fvi

v = even(v1, . . . , vi−1, vi, vi+1, . . . , vk)
Tvi

v = odd(v1, . . . , vi−1, vi+1, . . . , vk)
Tvi

v = even(v1, . . . , vi−1, vi, vi+1, . . . , vk)
Fvi

v = even(v1, . . . , vi−1, vi+1, . . . , vk)
Fvi

v = odd(v1, . . . , vi−1, vi, vi+1, . . . , vk)
Tvi

v = even(v1, . . . , vi−1, vi+1, . . . , vk)
Tvi

v = odd(v1, . . . , vi−1, vi, vi+1, . . . , vk)
Fvi

v = odd(v1, . . . , vi−1, vi+1, . . . , vk)
Fvi

(b) “Determined child”-simplification rules for or, and, even and odd

v = equiv(v1, . . . , vi−1, vi, vi+1, . . . , vk)
Tvi

v = and(v1, . . . , vi−1, vi+1, . . . , vk)
Tvi

v = equiv(v1, v2, . . . , vn)
Tv

v1 is an input gate
v2 is an input or a constant gate

v = equiv(v2, . . . , vn)
Tv

v1 = v2

(c) A “determined child”-simplification (d) “Input gate under true equivalence”-
rule for equiv simplification

v = not(v′)
v′ = not(v′′)

v = v′′

v′ = not(v′′)

v = and(. . . , v′, . . . , v1, . . .)
v1 = not(v′)

v = ⊥
v1 = not(v′)

v = or(. . . , v′, . . . , v1, . . .)
v1 = not(v′)

v = >
v1 = not(v′)

(e) Double negation and “v/¬v” simplifications

Fig. 4. Satisfiability preserving simplification rewriting rules for constrained circuits
(an equation of form v = v′ means that occurrences of v are substituted with v′).

562 Tommi A. Junttila and Ilkka Niemelä

in both search branches: if the number of undetermined variables is N , then after
the cut and deterministic rules the search space left is O(2N−v

⊥
+2N−v

>
). This is

minimized by our heuristic and we have thus chosen a balancing heuristic rather
than a greedy one. As a small improvement we do not count the determined not-
gates into v⊥ or v> since not is a fully deterministic operation w.r.t. to its only
argument. Our experiments so far indicate that counting in all the variables
when computing v⊥ and v> leads to smaller tableaux than when considering
only the undetermined input variables.

The lookahead and computation of v⊥ and v> are implemented simply by
first assigning an undetermined variable v to false and then applying the deter-
ministic rules. The number v⊥ is then stored and the effects of the assignment
and application of deterministic rules are undone. The same procedure is re-
peated for true. If it is found out that assigning a variable to false (true) leads to
a contradiction but assignment to true (false) does not, the variable is assigned
to true (false), and the deterministic rules are applied. If both assignments lead
to contradiction, backtracking to the previous search level occurs. This kind of
lookahead and its use was inspired by the one used in the Smodels system [18].

6 Translating Circuits into CNF

In order to compare our tool to some satisfiability checkers requiring the input
to be in CNF, we now present a very simple translation from Boolean circuits
to CNF. We do not treat here equiv-, even- or odd-gates with more than 2
inputs (this would require more than a linear number of clauses or additional
variables). Furthermore, the experimental cases we consider do not have such
gates. The CNF translation is the conjunction of clauses obtained from the gates
by the translation rules in Table 1. Input gates (variables with no definitions) are

Table 1. Boolean circuit to CNF translation rules.

Gate CNF clause(s)

v = > v
v = ⊥ ¬v
v = not(v1) (v ∨ v1) ∧ (¬v ∨ ¬v1)
v = or(v1, . . . , vn) (v ∨ ¬v1) ∧ · · · ∧ (v ∨ ¬vn) ∧ (¬v ∨ v1 ∨ · · · ∨ v2)
v = and(v1, . . . , vn) (¬v ∨ v1) ∧ · · · ∧ (¬v ∨ vn) ∧ (v ∨ ¬v1 ∨ · · · ∨ ¬v2)

v = even(v1, v2) and (v ∨ v1 ∨ v2) ∧ (v ∨ ¬v1 ∨ ¬v2)∧
v = equiv(v1, v2) (¬v ∨ v1 ∨ ¬v2) ∧ (¬v ∨ ¬v1 ∨ v2)

v = odd(v1, v2) (v ∨ v1 ∨ ¬v2) ∧ (v ∨ ¬v1 ∨ v2)∧
(¬v ∨ v1 ∨ v2) ∧ (¬v ∨ ¬v1 ∨ ¬v2)

translated into (v∨¬v). The constraints in the constrained satisfaction problem
are simply translated into corresponding unit clauses (like the constant gates).

Towards an Efficient Tableau Method 563

7 Some Experiments

We use the bounded model checking examples of Biere et al [1]. For each problem
instance we use two different input sources. First one is the DIMACS CNF output
produced directly by the bounded model checker tool BMC [1]. We will call this
format BMC-CNF. We were also able to reconstruct Boolean circuits from the
Prover output format files produced by BMC. These circuits were used as such
or translated into CNF as described in Sec. 6.

We used the following solvers: BCSat described in this paper, CGrasp [8],
Satz [12] and Sato [19]. BCSat and CGrasp both work on Boolean circuit in-
put formats (we made a straightforward translation from our format to that of
CGrasp). These tools were thus ran only on the Boolean circuit input. Since
Satz and Sato expect DIMACS CNF as input format, we ran these tools in
both BMC-CNF and CNF translated from circuits. All solvers were used “as
is”, no engineering work was put on trying to find suitable parameter settings.
Unfortunately, we did not have access to the Prover tool [4].

The tests were run on 450 MHz Pentium machines running the Linux op-
erating system. The times shown are the user times measured with the time
command. The times do not include neither the generation of input files with
the BMC tool nor translations between formats.

As the first test case we used the barrel shifter, with results shown in Table 2.
The parameter |r| in the first column indicates the number of registers in the
shifter and also the number of time steps in BMC. The next two columns show
the times of CNF solvers Sato and Satz when ran on BMC-CNF. The next four
columns show the solver times when ran on unsimplified Boolean circuit input
(translated into CNF in case of Sato and Satz). The last column shows the
running time of the BCSat tool when allowed to make simplifications described
in Sec. 4. The striking difference in the performance is due to the “input gate
under true equivalence”-simplification in Fig. 4(d): BCSat finds out during the
simplification that the circuit is not satisfiable and does thus not perform any
actual search. This observation also explains the good results of the Prover tool
as described in [1]: Prover simplifies the equivalences, too.

Table 2. Barrel shifter (|r| = number of registers).

BMC-CNF Circuit, no red. BCSat
|r| Sato Satz BCSat CGrasp Sato Satz red.

4 0 0 0 0 5 0 0
5 13 465 302 135 ≥1h 44 0
6 73 ≥1h ≥1h ≥1h - 224 0
7 280 - - - - 1369 0
8 613 - - - - ≥1h 0
9 ≥1h - - - - - 0
10 - - - - - - 0

564 Tommi A. Junttila and Ilkka Niemelä

Table 3 shows our next example in which a counter-example of length k has
to be found in a buggy design of a mutual exclusion algorithm under fairness.
Unlike in other examples, the instances here are satisfiable. Again, the solvers
are run on BMC-CNF, circuit input and then on simplified circuit input (the
simplification times for solvers other than BCSat are not included in their running
times).

Table 3. Counterexample for liveness in a buggy DME with 2 cells.

BMC-CNF Circuit, no red. Circuit, red.
k Sato Satz BCSat CGrasp Sato Satz BCSat CGrasp Sato Satz

10 0 1 104 17 1 1 4 4 0 0
11 1 3 3 28 3 ≥1h 3 6 0 ≥1h
12 0 6 4 61 5 4 3 9 0 ≥1h
13 ≥1h ≥1h 5 126 136 3 4 11 0 -
14 2 ≥1h 6 152 6 3 6 23 0 -
15 249 - 223 150 152 4 6 21 0 -
16 ≥1h - 8 129 ≥1h 5 13 36 7 -
17 ≥1h - 8 178 ≥1h 5 8 94 1 -
18 - - 13 201 - 6 10 57 3 -
19 - - 10 1255 - 7 19 99 4 -
20 - - 14 445 - 8 514 110 23 -
21 - - 16 369 - 8 13 161 1 -
22 - - 22 1253 - 10 17 190 ≥1h -
23 - - 24 412 - 11 15 210 3185 -
24 - - 26 891 - 11 19 349 23 -
25 - - 27 867 - 11 20 666 2 -
26 - - 30 2573 - 14 26 666 11 -
27 - - 28 892 - 16 30 3091 ≥1h -
28 - - 38 1356 - 24 34 2941 ≥1h -
29 - - 34 937 - 35 34 2815 - -
30 - - 47 ≥1h - 46 38 3159 - -

Our two last examples concern the same mutual exclusion algorithm, this
time a correct one (thus there are no counter-examples and the instances are
unsatisfiable). Table 4 shows results in the case of two users, parameterized
w.r.t. the number of time steps. This means that we parameterize over the cir-
cuit depth since the greater the number of time steps, the greater the circuit
depth. On the other hand, Table 5 depicts results when the number of time
steps is kept as 10 but the number of users is parameterized. This corresponds
to parameterization over circuit width. When comparing these two parameteri-
zation dimensions, we notice that the circuit depth seems to be a more crucial
dimension for solver efficiency.

Admittedly, in order to draw any firm conclusions on the behavior of different
solvers, more experiments should be conducted, especially on other types of
Boolean circuits. However, we make some preliminary observations: (i) BCSat

Towards an Efficient Tableau Method 565

Table 4. Liveness in DME with 2 cells, parameterized w.r.t. the number of time steps.

BMC-CNF Circuit, no red. Circuit, red.
k Sato Satz BCSat CGrasp Sato Satz BCSat CGrasp Sato Satz

10 1322 1 2 43 178 1 1 18 1 0
11 ≥1h 1 3 159 ≥1h 1 3 17 ≥1h 0
12 ≥1h 2 3 113 ≥1h 2 4 48 12 1
13 - 5 5 193 - 3 5 68 7 1
14 - 15 6 280 - 4 6 72 27 3
15 - 52 9 380 - 8 8 95 6 3
16 - ≥1h 23 1859 - 10 12 105 159 7
17 - ≥1h 37 641 - 25 14 188 23 10
18 - - 47 858 - 34 17 245 166 21
19 - - 55 1010 - 78 343 428 ≥1h 37
20 - - 117 2010 - 32 524 400 ≥1h 67
21 - - 341 3457 - 211 1054 633 - 326
22 - - 3461 1682 - ≥1h ≥1h 2496 - ≥1h
23 - - ≥1h 3591 - ≥1h ≥1h 1274 - ≥1h
24 - - ≥1h 3495 - - - 2254 - -
25 - - - 2621 - - - ≥1h - -
26 - - - ≥1h - - - 1962 - -
27 - - - ≥1h - - - ≥1h - -
28 - - - - - - - 2939 - -
29 - - - - - - - ≥1h - -
30 - - - - - - - ≥1h - -

Table 5. Liveness in DME with 10 time steps, parameterized w.r.t. the number of
cells.

BMC-CNF Circuit, no red. Circuit, red.
cells Sato Satz BCSat CGrasp Sato Satz BCSat CGrasp Sato Satz

2 1322 1 2 43 178 1 1 18 1 0
3 ≥1h 4 4 82 ≥1h 2 4 36 1 1
4 ≥1h 18 7 340 ≥1h 4 8 59 124 1
5 - 73 13 364 - 5 14 125 ≥1h 1
6 - ≥1h 20 691 - 7 20 129 25 2
7 - ≥1h 28 1058 - 13 34 88 ≥1h 6
8 - - 35 1891 - 10 39 204 ≥1h 3
9 - - 47 1678 - 16 50 166 - 4
10 - - 67 2053 - 20 63 178 - 5
11 - - 81 2567 - 22 83 381 - 5
12 - - 93 ≥1h - 31 98 416 - 7
13 - - 101 ≥1h - 26 107 781 - 7
14 - - 119 - - 46 126 872 - 19
15 - - 139 - - 43 165 817 - 9
16 - - 160 - - 44 183 926 - 15
17 - - 192 - - 56 218 1059 - 12
18 - - 232 - - 94 239 1035 - 13
19 - - 242 - - 85 260 584 - 42
20 - - 275 - - 112 295 1653 - 19

566 Tommi A. Junttila and Ilkka Niemelä

and Satz seem to work quite similarly: this is probably because they both use
lookahead and their heuristics are somewhat similar. (ii) All solvers seem to be
a bit input syntax sensitive: there are cases when simplifications help but also
counter-cases.

Finally, note that since our Boolean circuits were reconstructed from the
output generated for the Prover tool, the circuits are probably not equal to
those that would be generated should the BMC tool support Boolean circuit
formalism directly. However, we assume that the circuits we have are quite close
to those.

8 Conclusions

We have developed a tableau method for solving Boolean circuit satisfiability
problems. The method works directly on Boolean circuits and does not require
any clausal form translation of the circuit. Our method differs from standard
tableau techniques. It uses an explicit cut rule together with deterministic (non-
branching) deduction rules. In addition to typical deduction rules propagating
truth values, our method employs a one-step lookahead rule which is compu-
tationally more expensive than standard propagation rules but which enables
stronger propagation and reduces the need to use the cut rule. Furthermore,
we identify simplification rules which preserve satisfiability but reduce the size
and the form of a circuit. We have developed a prototype implementation of the
method which applies the simplification rules and builds a tableau one branch
at the time using backtracking search and a search heuristic based on the looka-
head rule. We have tested the method on symbolic model checking benchmarks
against state-of-the-art satisfiability checkers. The experiments indicate that the
tableau method provides a promising basis for solving Boolean satisfiability prob-
lems. Interesting topics of further research include the development of refined
search heuristics that take better into account the circuit structure, intelligent
backtracking methods and simplification techniques.

Acknowledgements

The authors wish to thank Patrik Simons for discussing the implementation
of the Smodels system and to gratefully acknowledge the financial aid of the
Academy of Finland (projects no. 43963 and 47754). Tommi Junttila is grateful
for the support from Helsinki Graduate School in Computer Science and Engi-
neering (HeCSE) and Tekniikan Edistämissäätiö (“Foundation of Technology”).

Towards an Efficient Tableau Method 567

References

1. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In W. R. Cleaveland, editor, Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’99), volume 1579 of LNCS, pages 193–207. Springer,
1999.

2. A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking
using SAT procedures instead of BDDs. In Proceedings of the 36th ACM/IEEE
Design Automation Conference (DAC’99), pages 317–320. ACM, 1999.

3. A. Biere, E. Clarke, R. Raimi, and Y. Zhu. Verifying safety properties of a PowerPC
microprocessor using symbolic model checking without BDDs. In N. Halbwachs
and D. Peled, editors, Computer Aided Verification: 11th International Conference
(CAV’99), volume 1633 of LNCS, pages 60–71. Springer, 1999.

4. A. Borälv. The industrial success of verification tools based on St̊almarck’s method.
In Proceeding of the 9th International Conference on Computer Aided Verification
(CAV’97), volume 1254 of LNCS, pages 7–10, Haifa, Israel, June 1997. Springer.

5. R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35(8):677–691, 1986.

6. J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic model checking:
1020 states and beyond. Information and Computation, 98(2):142–170, 1992.

7. M. D’Agostino and M. Mondadori. The taming of the cut. Journal of Logic and
Computation, 4:285–319, 1994.

8. L. Guerra e Silva, L. M. Silveira, and J. Marques-Silva. Algorithms for solving
Boolean satisfiability in combinatorial circuits. In Design, Automation and Test
in Europe (DATE’99), pages 526–530. IEEE, 1999.

9. T. Junttila. BCSat — a satisfiability checker for Boolean circuits. Available at
http://www.tcs.hut.fi/~tjunttil/bcsat.

10. H. Kautz, D. McAllester, and B. Selman. Exploiting vari-
able dependency in local search. A draft available at
http://www.cs.cornell.edu/home/selman/papers-ftp/papers.html, 1997.

11. H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic,
and stochastic search. In Proceedings of the 13th National Conference on Artificial
Intelligence, Portland, Oregon, July 1996.

12. C. Li and Anbulagan. Look-ahead versus look-back for satisfiability problems. In
Principles and Practice of Constraint Programming – CP97, volume 1330 of LNCS,
pages 341–355. Springer, 1997.

13. F. Massacci. Simplification — a general constraint propagation technique for
propositional and modal tableaux. In H. de Swart, editor, Proceedings of the Inter-
national Conference on Automated Reasoning with Analytic Tableaux and Related
Methods (TABLEAUX-98), pages 217–231. Springer, May 1998.

14. A. Nerode and R. A. Shore. Logic for Applications. Text and Monographs in
Computer Science. Springer-Verlag, 1993.

15. I. Niemelä and P. Simons. Efficient implementation of the well-founded and stable
model semantics. In M. Maher, editor, Proceedings of the Joint International Con-
ference and Symposium on Logic Programming, pages 289–303. The MIT Press,
1996.

16. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1995.
17. R. Sebastiani. Applying GSAT to non-clausal formulas. Journal of Artificial In-

telligence Research, 1:309–314, 1994.
18. P. Simons. Towards constraint satisfaction through logic programs

and the stable model semantics. Research report A47, Helsinki Uni-
versity of Technology, Helsinki, Finland, August 1997. Available at
http://www.tcs.hut.fi/pub/reports/A47.ps.gz.

19. H. Zhang. SATO: An efficient propositional prover. In Automated Deduction –
CADE-14, volume 1249 of LNCS, pages 272–275. Springer, 1997.

