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Abstract

We consider the problem of gathering data from a wireless multi-hop network of
energy-constrained sensor nodes to a common base station. Specifically, we aim to
balance the total amount of data received from the sensor network during its lifetime
against a requirement of sufficient coverage for all the sensor locations surveyed. Our
main contribution lies in formulating this balanced data gathering task, studying
the effects of balancing, and proposing an approximation algorithm for the problem.
Based on an LP network flow formulation, we present experimental results on both
optimal and approximate data routing designs, in open transmission ranges and
with impenetrable obstacles between the nodes.

1 Introduction

Wireless networks consisting of a large number of miniature electromechanical
devices with sensing, computing and communication capabilities are rapidly
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becoming a reality, due to the accumulation of advances in digital electronics,
wireless communications and microelectromechanical technology [11,12,17,29].
Prospective applications of such devices cover a wide range of domains [2,7,9,10,23].

One generic type of application for sensor networks is the continuous mon-
itoring of an extended geographic area at relatively low data rates [2,5,32].
The information provided from all points of the sensor field is then gathered
via multi-hop communications to a base station for further processing. We
are here envisaging a scenario where environmental data are frequently and
asynchronously collected over an area, and all information is to be gathered
for later postprocessing of best possible quality, including detection of possibly
faulty data. This means that data aggregation [24,25] cannot be employed.

Significant design constraints are imposed by multi-hop routing and the lim-
ited capabilities and battery power available at the sensor nodes. A number
of recent papers have addressed e.g. optimal sensor placement [6,13,14,22,28]
and energy-efficient routing designs and protocols [8,16,20,24,26,27,31] with
the objective of maximizing lifetime [3,4,24,28] or data volume [21].

We envisage the sensor placement to be fixed beforehand, either by an appli-
cation expert according to the needs of the particular application at hand, or
randomly, for example by scattering the sensors from an airplane. For the sake
of achieving a comprehensive view of the whole area to be monitored, not only
should the total amount of data received at the base station be maximized,
but the different sensors should be able to get through to the base station
some minimum amount of data.

The idea of incorporating a certain balancing requirement on the data gath-
ering has also recently been proposed in [26,27] and in [13], as well as in the
preliminary conference version of this paper [18]. In [26,27] the authors put
forth a more general model of information extraction that takes into account
the nonlinear relation between transmission power and information rate. Our
problem formulation can be seen as a linearized, computationally feasible ver-
sion of this approach. Another difference between [26,27] and our work pertains
to the expression of the balancing, or fairness, requirement. Article [13] consid-
ers the problem of maximizing the lifetime of a sensor network, and explicates
this task in terms of an integer program that counts the number of “rounds”
the network is operational, assuming that each sensor sends one data packet
in each round. This formulation entails a strict fairness condition among the
sensors, requiring them all to send exactly equal amounts of data. We allow an
adjustable trade-off between maximizing the total amount of data received at
the base station and the minimum amount of data received from each sensor.
Moreover our program formulation does not require integer variables.

It should be noted that our linear-programming based solution relies on in-
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formation about the energy costs of transmitting and receiving a unit of data
between each pair of nodes, and about the energy supply at each node. This
information suffices; knowledge of node locations as such is not required. Our
model readily adjusts to obstacles and other deviations from simple radio-link
models as long as the transmission and reception costs can be determined by
the nodes themselves, either by simply probing at different power levels, or
using more sophisticated means such as a Received Signal Strength Indicator
(RSSI) [30].

Our linear program formulation also requires all the information to be available
at a single location. This assumption is realistic only if the operation time of
the network is long and the amount of control traffic small. Otherwise, routing
decisions must be made based on local information. Our results thus provide
an upper bound on what is actually achievable using distributed protocols
with local information.

This paper is organized as follows. In Sect. 2 we formulate the balanced data
gathering task as an optimization problem that admits an exact solution via
linear programming. In Sect. 3 we extend our previous work in [18] by de-
signing a faster flow-based algorithm that, for any approximation ratio α > 1,
finds an approximate solution in time O(N3 log N), where N is the number of
nodes in the network. In Sect. 4 we present experimental results for a num-
ber of different network topologies. For large instances, the experiments show
that the approximation algorithm outperforms linear programming in terms
of execution time. The paper is concluded in Sect. 5.

2 Optimization of balanced data gathering

A sensor network consists of three types of nodes. The sensor nodes (sources)
generate data, which is to be gathered via multi-hop transmission to a base
station (sink). The network may also contain relay nodes that only forward,
but do not generate data. Each node has a limited supply of energy, which
constrains its ability to receive and transmit data.

Formally, let V be the set of all nodes in the network, consisting of disjoint
subsets S (the source nodes), R (the relay nodes) and {t} (the sink). We
denote by N the total number of nodes, and by n the number of source nodes.
Each node i ∈ V has an initial energy supply of Ei; as a special case, we may
set Et = ∞. We assume that the actual transmissions are infrequent enough
for collisions and signal interference not to occur. Furthermore, assuming that
the sensors generate data asynchronously and in small packets, the process
can be modeled as a flow.
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maximize Fλ = (1− λ) 1
n

∑

i∈S qi + λ mini∈S qi

subject to

∑

j∈V

ftj = 0, (1)

∑

j∈V

fij = qi +
∑

j∈V

fji, i ∈ S, (2)

∑

j∈V

fij =
∑

j∈V

fji, i ∈ R, (3)

fij ≥ 0, i, j ∈ V, (4)

fii = 0, i ∈ V, (5)

qi ≥ 0, i ∈ S, (6)
∑

j∈V

τijfij +
∑

j∈V

ρfji ≤ Ei, i ∈ V. (7)

Fig. 1. Model for balanced data gathering.

The flow-based model for data gathering is depicted in Fig. 1. The variable
qi, where i ∈ S, models the quantity of data generated at source node i and
ultimately received at the sink. The flow variable fij , where i, j ∈ V , models
the data transmitted from node i and received at node j.

Formally, a flow f is a function that associates a nonnegative value fij to
every edge ij, where i, j ∈ V , such that the constraints from (1) to (6) are
satisfied. The quantity variables qi can be expressed in terms of the flow as
qi(f) =

∑

j fij −
∑

j fji, i ∈ S.

A flow is feasible if it also satisfies the energy constraint (7). The energy cost
of transmitting a unit of data from node i to node j is given by a parameter
τij (transmission cost) and the cost of receiving a unit of data is given by a
parameter ρ (reception cost).

Our model places no restrictions on the values of the parameters τij and ρ. As
an example, in the commonly used simple radio-link models [30], τij would be
taken to be τelec +τamp ·d

ν
ij, where τelec corresponds to the energy consumed by

the transmitter electronics and τamp · d
ν
ij corresponds to the energy consumed

by the transmit amplifier to achieve an acceptable signal-to-noise ratio at the
receiving node; dij is the physical distance between nodes i and j and the
path loss exponent ν, 2 ≤ ν . 4, models the decay of the radio signal in the
ambient medium. The parameter ρ corresponds to the energy consumed by
the receiver electronics.

One goal of the data flow design for the network is to maximize the total
quantity of data, or equivalently, the average avgi∈S qi = 1

n

∑

i∈S qi. However,
taking this as the singular objective may lead to the “starvation” of some of
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the sensor nodes: typically, the average data quantity objective is maximized
by data flows that only forward data generated close to the sink, and do not
expend any energy on relaying data generated at distant parts of the network.

To counterbalance this tendency, we take as another objective to maximize
the minimum quantity mini∈S qi. The two objectives are combined as a utility
function

Fλ := (1− λ) avg
i∈S

qi + λ min
i∈S

qi, (8)

where the balancing parameter λ, 0 ≤ λ ≤ 1, controls the trade-off between
the two conflicting objectives. If strict balancing between sensors is desired,
λ = 1 can be selected.

Even though the utility function Fλ is not linear in the variables qi, the problem
can be converted into a linear program (LP) by replacing the term mini∈S qi

with an additional variable µ, and adding constraints qi ≥ µ for all i ∈ S. The
linear program can then be solved using standard techniques, giving an optimal
data gathering flow solution for a given λ. Note that a linear programming
approach is taken also in [13,24,28,31].

We remark that the model here differs slightly from our earlier model [18]
in that each source has unlimited capacity of generating data. If desired, an
upper bound on qi can easily be introduced by splitting each source node i
into a pair consisting of a source node i and a relay node i′, where τii′ = 1 and
Ei is the desired upper bound.

In practice, an optimal feasible flow f can be used to route approximately qi

unit-size data packets from each source node i ∈ S to the sink node, assuming
that all the qi and fij values are large. At each node i, simply forward the first
bfi1c packets to node 1, the next bfi2c packets to node 2, the next bfi3c packets
to node 3, and so on. A somewhat more elegant solution is to randomize the
routing strategy, so that each incoming packet at node i is forwarded to node
j with probability fij/

∑

j′ fij′.

3 An approximation algorithm

In this section we develop a polynomial-time approximation algorithm for
the balanced data gathering problem in Fig. 1. The algorithm is based on
the approximation framework for fractional packing problems in [19]. By a
fractional packing problem we mean a linear program of the form max{cT x :
Ax ≤ b, x ≥ 0}, where the matrix A and the vector b are nonnegative.

To arrive at a packing problem equivalent to the balanced data gathering
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Fig. 2. Examples of elementary flows.

problem, we require some further definitions and lemmata. A flow f is balanced

if qi(f) = qj(f) for all i, j ∈ S. The support of a flow is the set of all edges ij
carrying positive flow. A flow is acyclic if its support is acyclic. A unit path

flow (from a node i ∈ S) is a flow such that qi = 1 and the support of the
flow is a path from i to t. A balanced path sum flow is a sum of unit path
flows, one from each source node i ∈ S. An elementary flow is a unit path
flow or a balanced path sum flow (see Fig. 2). We write E for the set of all
elementary flows. Similarly, we write Ep and Eb for the sets of all unit path
flows and balanced path sum flows, respectively. To avoid degenerate cases,
we assume n > 1 so that Ep ∩ Eb = ∅.

Lemma 1 For every (feasible) flow f , there exists an acyclic (feasible) flow

f ′ such that qi(f) = qi(f
′) for all i ∈ S.

Proof. If f is acyclic, we are done. Otherwise, let C be a cycle in the support
of f . Let c = min{fij : ij ∈ C}. Decreasing the flow on every edge of C by c
results in a flow f ′ with at least one less edge in its support and qi(f) = qi(f

′)
for all i ∈ S. Repeating the transformation if necessary eventually gives an
acyclic flow. Since flow is only decreased, the transformation cannot produce
an infeasible flow from a feasible flow. 2

Lemma 2 Every acyclic flow f can be expressed as a nonnegative linear com-

bination f =
∑

e∈E xee such that mini∈S qi(f) =
∑

e∈Eb
xe.

Proof. If f is the zero flow, we are done. Otherwise, we decompose the flow
step by step into elementary flows so that each step k removes at least one
edge from the support of the flow. Thus, there are at most N(N − 1)/2 steps
because the support is acyclic. Initially, put f (0) = f and xe = 0 for all e ∈ E .
The iteration step is divided into two cases.

If mini∈S qi(f
(k)) > 0, we proceed as follows. As qi(f

(k)) > 0 there exists a unit
path flow from i whose support is contained in the support of f . Let e ∈ Eb

be a balanced path sum flow obtained as the sum of such unit path flows, one
for every i ∈ S. Set xe to the maximum value such that xeeij ≤ f

(k)
ij for all

i, j ∈ V , and let f (k+1) = f (k)−xee be the flow for the next iteration. Because
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e carries one unit of flow from every source node i ∈ S to the sink t, we have
qi(f

(k+1)) = qi(f
(k))− xe for all i ∈ S.

Otherwise; that is, when mini∈S qi(f
(k)) = 0 and f (k) is still nonzero, there

exists a node i ∈ S with qi(f
(k)) > 0 because the support of f (k) is acyclic.

In this case, let e ∈ Ep be a unit path flow from i such that the support of
e is contained in the support of f (k). Set xe to the maximum value such that
xeeij ≤ fij for all i, j ∈ V , and let f (k+1) = f (k) − xee be the flow for the next
iteration.

Let u be the least integer such that mini∈S qi(f
(u)) = 0. By the structure of the

iteration, 0 = mini∈S qi(f
(u)) = mini∈S qi(f

(0) −
∑

e∈Eb
xee) = mini∈S qi(f) −

∑

e∈Eb
xe. 2

Define the constraint matrix A so that the entry aie is the cost for node
i ∈ V for receiving and transmitting the elementary flow e ∈ E ; that is,
aie =

∑

j∈V τijeij +
∑

j∈V ρeji. Furthermore, put bi = Ei for all i ∈ V .

Lemma 3 A flow f =
∑

e∈E xee is feasible if and only if Ax ≤ b.

Proof. Substitute the expression for f into (7). 2

To complete the packing problem, we must express the functional

Fλ(f) = (1− λ)
1

n

∑

i∈S

qi(f) + λ min
i∈S

qi(f) (9)

for a flow f =
∑

e∈E xee in terms of the elementary flows. Applying

∑

i∈S

qi(e)/n =







1/n if e ∈ Ep; and

1 if e ∈ Eb

for all e ∈ E , we obtain

Fλ(f) = (1− λ)
1

n

∑

e∈Ep

xe + (1− λ)
∑

e∈Eb

xe + λ min
i∈S

(

∑

e∈E

xeqi(e)
)

.

For all i ∈ S and e ∈ Eb, it holds that qi(e) = 1. Thus

∑

e∈E

xeqi(e) ≥
∑

e∈Eb

xe,

implying

Fλ(f) ≥ (1− λ)
1

n

∑

e∈Ep

xe +
∑

e∈Eb

xe. (10)
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In particular, equality holds in (10) if a decomposition given by Lemma 2 is
used for f . These observations lead to the following packing objective function.
Associate with every elementary flow e ∈ E the coefficient

ce =







(1− λ)/n if e ∈ Ep; and

1 if e ∈ Eb.

Thus, (10) is equivalent to Fλ(f) ≥ cT x, and equality holds if a decomposition
given by Lemma 2 is used for f .

Theorem 4 Let x be an optimal solution to the packing linear program

max{cTx : Ax ≤ b, x ≥ 0}.

Then, f =
∑

e∈E xee is an optimal solution to the balanced data gathering

problem in Fig. 1.

Proof. By Lemma 3, f is feasible. To reach a contradiction, suppose that f
is not optimal. Then, there exists a feasible flow f ′ with Fλ(f

′) > Fλ(f).
By Lemma 1 we can assume that f ′ is acyclic. Let f ′ =

∑

e∈E x′
ee be a de-

composition given by Lemma 2. By Lemma 3, x′ is a feasible solution to the
packing linear program. Furthermore, since equality holds in (10) for f ′, we
have cT x′ = Fλ(f

′) > Fλ(f) ≥ cT x, a contradiction. 2

Initialization Given the approximation parameter α > 1, put ε = 1−α−1/2 and
δ = (1 + ε)((1 + ε)N)−1/ε. Initialize xe = 0 for all e ∈ E , and let yi = δ/bi for
all i ∈ V . Start the iteration.

Iteration Repeat the following four steps in sequence until bT y ≥ 1.

(1) Let g = arg mine∈E
∑

i∈V aieyi/ce.
(2) Let k = arg mini∈V bi/aig.
(3) Update xg ← xg + bg/akg.
(4) Update yi ← yi · (1 + ε · aigbk/(akgbi)) for all i ∈ V .

Termination Multiply all components of x by 1/ log1+ε((1 + ε)/δ) and report x
as an approximate optimal solution. Stop.

Fig. 3. The packing approximation algorithm adapted from [19].

Figure 3 shows the approximate solution algorithm for packing LPs from [19]
that has been adapted to the present context. The following theorem is an
immediate consequence of [19, Theorem 3.1].

Theorem 5 For any given α > 1, the algorithm in Fig. 3 computes an α-

approximation to the balanced data gathering problem in time Ndε−1 log1+ε Nem(N),
where ε = 1−α−1/2 and m(N) is the time required by steps (1) through (4) of

the iteration.
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As it turns out, we can achieve m(N) = O(N2) by applying the single-source
shortest paths algorithm of Dijkstra [15] on an auxiliary directed graph with
nonnegative edge weights. For a nonnegative vector y with components in-
dexed by V , let H(y) be the complete directed graph with vertex set V such
that for all i, j ∈ V , the weight of edge ij is wij = τijyi +ρyj . As an immediate
consequence, we have:

Lemma 6 Let e ∈ E have support T . Then,
∑

ij∈T eijwij =
∑

i∈V aieyi.

In particular, a unit path flow e ∈ Ep that minimizes `(e) =
∑

i∈V aieyi cor-
responds to a shortest path from a source node to the sink node t in H(y).
Reversing the direction of the edges in H(y), one shortest path computation
originating from t allows us to obtain `-minimizing unit path flows from all
source nodes. The sum of such minimum unit path flows over the source nodes
is an `-minimizing balanced path sum flow. Because the coefficients ce are con-
stant over the unit path flows and the balanced path sum flows, respectively,
these observations enable us to determine in time m(N) = O(N2) an elemen-
tary flow e ∈ E that minimizes

∑

i∈V aieyi/ce.

We conclude this section by noting that although network flow problems of var-
ious kinds have been extensively studied (see [1]), the present problem differs
from the traditional setting. Here a flow through a node incurs a local energy
cost, which must not exceed the energy available at the node. These constraints
are inherently local, in contrast to the global cost functional encountered in
a traditional minimum-cost flow problem. Furthermore, the combined utility
function Fλ differs from the standard maximum-flow type setting. Compared
with the augmenting path decomposition, we decompose a flow into two types
of elementary flows having different contributions to the utility function.

In analogy to the max-flow min-cut characterization for a maximum flow,
it would be of interest to develop a fully combinatorial characterization of an
optimum solution in the present context. Such a characterization, if one exists,
is likely to lead to a fully combinatorial exact algorithm for the balanced data
gathering problem.

4 Experimental results

4.1 Exact solutions and the effect of balancing

We first study the effect of balanced data gathering in various kinds of net-
works. In each network, the exact optimum flow is found by solving the linear
program formed from the model shown in Fig. 1, using the linprog routine
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avg(q)=12.87 min(q)=1.59 util=12.87

(a) λ = 0

avg(q)=6.99 min(q)=6.99 util=6.99

(b) λ = 1
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(c) effect of λ

Fig. 4. Regular grid sensor network in an unobstructed area.

of MATLAB’s Optimization Toolbox.

In each simulation experiment, the network consists of 36 sensor nodes, in
a square area of dimensions 1 km × 1 km, and the base station located at
the center of the south side. All sensors have an energy constraint of 20 J.
Transmission and reception costs are computed as τij = 100 nJ

bit
+0.01 nJ

bit m2 ·d2
ij

and ρ = 100 nJ
bit

. These values are comparable to those in [4,20,21].

In Fig. 4 the area is unobstructed and the sensor nodes are placed in a regular
6 × 6 grid. If no balancing is required (λ = 0), each node selfishly transmits
as much of its own data as its energy constraint allows, leading to very small
data quantities from nodes far away from the base station. As higher balanc-
ing parameters are used, the distant nodes get a larger share of the network’s
transport resources, and accordingly, the area is more evenly covered by obser-
vations. This comes at a cost of reducing the average data quantity. It should
be noted that with intermediate values of λ, the solutions are not simply linear
combinations of the two extreme cases. At λ = 0.5 the minimum quantity is
already increased almost by a factor of four compared to the λ = 0 case, while
the average quantity is reduced by only 12%.

As an example of nonuniformly distributed sensors, in Fig. 5 most of the area
is covered by a lake where no sensor nodes can be placed; the sensors are
placed randomly around it. However, radio transmission is unaffected by the
lake. If balancing is required, much of the flow is routed around the lake, where
it can be sent over shorter links than those crossing the lake.

Since our model allows arbitrary transmission costs τij , it is not restricted to
idealized transmission conditions like the popular unit disk model. We can
study situations where there are large impenetrable obstacles within the area,
as illustrated in Fig. 6. This is done by assigning an infinite transmission cost
to any link that intersects an obstacle. The sensors are again randomly placed.
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avg(q)=22.32 min(q)=1.85 util=22.32

(a) λ = 0

avg(q)=6.41 min(q)=6.41 util=6.41

(b) λ = 1
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(c) effect of λ

Fig. 5. Random sensor network around a square-shaped lake.

avg(q)=7.30 min(q)=0.00 util=7.30

(a) λ = 0

avg(q)=2.39 min(q)=2.39 util=2.39

(b) λ = 1
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(c) effect of λ

Fig. 6. Random sensor network around a U-shaped impenetrable wall.

In the λ = 0 case, the few sensors that have line-of-sight to the base station
expend all of their energy for their own data, with the result that sensors
behind the wall are unable to transmit anything (minimum quantity equals
0). When λ is increased, sensors begin to co-operate, and all sensors can reach
the base station through multihop transmission.

Finally, in Fig. 7 we study a different kind of obstruction. Scattered throughout
the area there are 100 small square obstacles that block transmission. By this
we intend to model difficult environment, such as a dense forest. Due to the
large number of these small obstacles, each node can directly see some of the
other nodes (on the average 12 out of the 36), and only a few sensors have
line-of-sight to the base station. Balanced data gathering requires routing the
flow around the obstacles in a nontrivial way, as can be seen in the figure.
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avg(q)=11.73 min(q)=0.00 util=11.73

(a) λ = 0

avg(q)=5.95 min(q)=5.95 util=5.95

(b) λ = 1
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(c) effect of λ

Fig. 7. Random sensor network in an area containing small, randomly scattered
obstructions.

4.2 Approximate solutions

The next set of experiments concerns the applicability of the approximation
algorithm from Sect. 3 to balanced data gathering. The algorithm was imple-
mented in C, and applied to network instances similar to those in the previous
section.

Keeping in mind that the algorithm admits an arbitrary approximation ratio
parameter α, it is interesting to study how varying its value affects the solution
quality and the running time of the algorithm. Another question of interest
is whether the approximation algorithm can successfully handle large network
instances, for which solving the LP exactly is impractical.

For the first experiment, we take random networks of various sizes (36, 64,
81, 100, 144 and 196 sensors) surrounding an impenetrable wall, as in Fig. 6
in the previous section. The balancing parameter is fixed at λ = 0.5. The in-
stances are solved both exactly with an LP solver, and with the approximation
algorithm for values α ∈ {1.1, 1.2, 1.5}. The results are shown in Fig. 8.

It can be seen that the actually achieved approximation ratio (that is, the
ratio of utility Fλ between the exact solution and the approximate solution)
is systematically smaller than the bound α guaranteed by Theorem 5.

According to Theorem 5, for a given α, the approximation algorithm runs in
time O(N3 log N). The experimental results are in line with this. Note that
if very high precision is desired, solving the LP exactly may be faster than
running the approximation algorithm with a very small value of α; the break-
even point naturally depends on the implementation. However, for e.g. α = 1.5,
the approximation algorithm provides quite reasonable approximations and
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runs (in our experiments) significantly faster than the linear program solver.

We also conducted the same experiment using the other network topologies
from Sect. 4.1: the grid network in an unobstructed area, the random network
around a lake, and the random network in a densely obstructed area. In all
cases, the results were similar to those shown above. Approximation ratios
achieved in practice were systematically better than the bound α; for example,
α = 1.5 usually gives ratios between 1.2 and 1.25.

In the last experiment, we study how the performance of the approximation al-
gorithm depends on the obstruction density in a randomly obstructed network.
For this experiment, we first place 300 small obstructions at random, and 100
sensors at random in the remaining area. We then remove the obstructions
gradually, 50 at a time, leading finally to an unobstructed network. The bal-
ancing parameter is fixed at λ = 0.5 and the approximation ratio at α = 1.5.
The results are illustrated in Fig. 9. The approximation algorithm finds good
approximations in all cases. The achieved approximation ratio varies between
1.12 and 1.27.

As expected, the utility attained in the network decreases as more links are
obstructed. However, even in a densely obstructed situation, such as the one
shown in Fig. 9(a), the network is able to attain about one fourth of the
utility of the unobstructed network. It should be noted that with 300 obstacles,
transporting the flow is quite diffult, as each node can see only a few other
nodes (9 on the average), and some nodes can see only one other node.

(a) Flow solution for
N = 36, α = 1.2.
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Fig. 8. Approximate solutions for flow maximization in the case λ = 0.5. Random
sensor networks of various sizes, around a U-shaped impenetrable wall.
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(a) Approximate flow solution for
300 obstacles.
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Fig. 9. Effect of obstacle density. Random sensor network in an area scattered with
random obstructions.

5 Conclusions

We have considered the problem of energy-efficient data gathering in sensor
networks, with special emphasis on the goal of balancing the average volume
of data collected against sufficient coverage of the monitored area. We have
formulated a linear programming model of the task of finding optimal routes
for the data produced at the sensor nodes, given a balancing requirement in
terms of a balancing parameter λ ∈ [0, 1].

Experiments with the model show that for reasonable values of the balancing
parameter, a significant increase in coverage is achieved, without any great
decrease in the average amount of data gathered per node.

We have also developed a polynomial-time approximation algorithm for the
task, using an approximation framework for fractional packing problems. Our
experiments confirm that the approximation algorithm is computationally fea-
sible.

In our experiments with obstacles, sensor networks were seen to be fairly
robust against even a fairly high number of obstructions. This was achieved
through the use of global optimization at a central location, where information
about all link costs in the network was available. It remains to be studied how
closely this global optimum can be approximated by distributed algorithms
that have access to local information only. The effect of possible node faults
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during the operation of the network is also a topic for further research.
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