Probably Approximately Optimal
Satisficing Strategies”

Russell Greiner Pekka Orponen
Siemens Corporate Research Department of Computer Science
755 College Road, East University of Helsinki, P. O. Box 26
Princeton, NJ 08540 FIN-00014 Helsinki, Finland
Abstract

A satisficing search problem consists of a set of probabilistic experiments to be per-
formed in some order, seeking a satisfying configuration of successes and failures. The
expected cost of the search depends both on the success probabilities of the individual
experiments, and on the search strategy, which specifies the order in which the exper-
iments are to be performed. A strategy that minimizes the expected cost is optimal.
Earlier work has provided “optimizing functions” that compute optimal strategies for
certain classes of search problems from the success probabilities of the individual exper-
iments. We extend those results by providing a general model of such strategies, and an
algorithm pao that identifies an approximately optimal strategy when the probability
values are not known. The algorithm first estimates the relevant probabilities from a
number of trials of each undetermined experiment, and then uses these estimates, and
the proper optimizing function, to identify a strategy whose cost is, with high prob-
ability, close to optimal. We also show that if the search problem can be formulated
as an and-or tree, then the pao algorithm can also “learn while doing”, i.e. gather the
necessary statistics while performing the search.

1 Introduction

Consider the following situation: There are two reliable tests for deciding whether an indi-
vidual has hepatitis; one involves a blood test and the other a liver biopsy. Assuming there
can be false negatives but no false positives, there are two “strategies” a doctor can follow to
obtain a diagnosis. Using strategy ©; = (blood, liver), he would first perform the blood
test and conclude the patient has hepatitis if that test is positive. If not, he would then

*Some of this work was performed while the authors were at the University of Toronto, supported re-
spectively by an operating grant from the National Science and Engineering Research Council of Canada,
and by the Academy of Finland. The authors thank Dale Schuurmans, Tom Hancock and the anonymous
referees for their useful comments on earlier versions of this paper. Preliminary versions of parts of the work
have appeared in the conference reports [10] and [19].

examine the patient’s liver, and conclude his diagnosis based on the result of that biopsy.
The doctor’s other option, strategy ©, = (1iver, blood), performs these tests in the other
order — first the liver test and then, only if necessary, the blood test.

Which strategy is better? Our goal is a strategy that will perform well in practice. To
quantify the measurement, we assume there is a distribution of patients that the doctor
will be asked to evaluate. We can then define a strategy’s expected cost as the average
cost required to perform these tests, averaged over the distribution of anticipated patients.
Assuming, for now, that these tests (blood and liver) have the same cost, strategy ©; is
clearly better if the probability of a positive blood test (pg) is larger than the probability of
a positive liver test (pr,); otherwise, strategy © is preferable.

Earlier research on this decision making model has produced a number of “optimizing
functions” that each identify a strategy optimal for a specific testing situation, given the
success probability values of the relevant experiments [6, 21, 18, 22, 7]. A limitation of
these techniques, however, is that the probability values are in practice typically not known
a priori. This paper specifies the number of trials of each experiment that are required
to obtain estimates of these probability values that are good enough to identify a nearly-
optimal strategy, with high confidence. It also addresses the complexities of observing this
many trials.

Section 2 below first generalizes from the doctor’s situation to a general class of arbitrary
“decision structures” and defines strategies, and optimal strategies, for these structures.
Section 3 then specifies the pao algorithm, a general process that uses a set of observed trials
of each experiment to identify a strategy whose cost is, with high probability, approximately
optimal. The algorithm presumes the existence of an optimizing function for the class of
search structures considered. When dealing with certain search structures, notably and-or
trees, the pao algorithm can “learn while doing”, i.e. gather the necessary statistics while
solving relevant performance tasks.

An extended version of this paper, available as a technical report [11], discusses several
variants and applications of the basic algorithm presented here.

2 Framework

2.1 Decision Structures

The doctor’s task presented in Section 1 is a simple example of a satisficing search problem
(term due to Simon and Kadane [21]), as his goal is to find a single satisfactory configuration
of events: in this case, an informative combination of test results. Other examples of such
problems include, e.g., performing a sequence of tests to decide whether a product specimen
is satisfactory [6], screening employment candidates for a position [6], competing for prizes
at a quiz show [6], mining for gold buried in treasure chests [21], and performing inference in
simple expert systems [22, 10]. In general, such tasks may involve searching through general
“decision structures”, which can involve an arbitrary number of experiments, constrained by
various precedence constraints.

And-Or Decision Trees: More general versions of this diagnostic task can be represented by
and-or decision trees, such as (G; in Figure 1. Here, the nodes {A,e;, ..., eg} correspond

([Patient has hepatitis])

1 2

€1 €2
[Try to draw blood] [Attempt Liver Biopsy]

2 1 1

€3
GReacts(blood, SerumA)]) GReact (blood Serum B)]) C[CytologlcalTe st(liver)]) GnﬂrunologlcalTe t(lner)])

Figure 1: An And-Or Tree Representation of a Decision Structure G4

to experiments, and the arcs encode the precedence relationships — e.g., the doctor cannot
perform experiment es (test whether the patient’s blood reacts with a particular serum) until
he has performed experiment e; (attempted to draw blood from the patient) and moreover,
found that e; succeeds. The experiment associated with the A node is formally degenerate,
i.e. it is guaranteed to succeed. The set of arcs descending from a given node can be either
disjunctive, or conjunctive (here indicated by a horizontal line, e.g., connecting the arcs from
€3 to e and from e; to eg). Hence, the graph in Figure 1 states that the patient has hepatitis
iff the condition [e1 A (e3 V e4)] V [e2 A €5 A eg] on the experiments holds. The number near
each arc designates the cost of traversing that arc — hence it costs 1 unit to reduce the top
o node to the ey subgoal (draw blood), and 2 more units to further reduce e; to es (test the
blood against serum A), and so forth. The incremental cost of performing each experiment
is the sum of the costs of the additional arcs that must be traversed. (This cost specification
means such trees cannot always be “collapsed” to simpler two-level trees.)

Beyond And-Or Trees: The general class of decision structures we shall consider is strictly
more general than and-or trees. First, and-or trees can encode only simple formulae, which
can include each experiment only once, and whose connections are only “and”s and “or”s.
In general, we may want to express more complicated interrelationships of the experiments;
e.g., the XOR of m experiments, or “at least 3 of 5 specified experiments”. Second, and-
or trees only permit relatively simple precedence relationships; in general, we may want to
specify that an experiment can only be performed if some complicated boolean combination
of other experiments has succeeded or failed. Third, and-or trees use a restricted form of
cost-function, in which the incremental cost of performing experiment e can depend only on
which other experiments have been performed. In general, we may want the cost to depend
also on whether e, and/or various prior experiments, have been successful. There are also
situations which require yet more complicated ways of computing the incremental cost of
performing a particular experiment; see the extended paper [11].

To accommodate these extensions, we define a more general class of “decision structures”.
A decision structure can involve an arbltrary set of experiments W = {e;}™,, with general
precedence constraints that can prevent an experiment from being performed until after cer-
tain other specified experiments have been performed with the specified (success or failure)
result. The overall test result (e.g., whether the patient has hepatitis) can correspond to an
arbitrary boolean combination of the successes and failures of any subset of these experi-

ments, and the costs of performing a sequence of experiments can be given by an arbitrary
non-decreasing function. This leads to the “decision structures” defined below.

Notation: Given two sequences, 0 = (01, ..., 0,) and 7 = (71, ..., Tp), let o - 7 refer to
the sequence formed by concatenating o and 7 —ie. 0.7 = (01, ..., 0p, 71, ..., Tm). The
definition is extended to the case where o or 7 are single elements in the obvious manner.
A sequence o is a subsequence of sequence 7, denoted o C 7, if o; = 75(;) for all 2 = 1..n, for
some monotonically increasing function h. The empty sequence () is trivially a subsequence
of any sequence o.

Definition 1 (Decision Structures) A decision structure is a four-tuple G = (W, F, R, c)
where

o W ={ei,...,e,} is a set of experiments.

o ' C (W x {+,—}]" x W is a precedence relation that specifies which further experi-
ments can be performed given the resulls of a previous sequence of experiments. (E.g.,
F({),e1) means that e; may be performed initially; and F({{e1 +) (es —)), €2) means
that experiment ey may be performed after ey has been performed successfully, and then
es has been performed but was unsuccessful.)

The following conditions use the notion of a legal labeled experiment sequence (ab-
breviated “lles”). This is a sequence of the form (({e; +1), ..., (ex %)), where each
e; € W, each +; € {+,—1}, and no ¢ € W appears more than once. Furthermore,
the sequence must satisfy the precedence constraints specified by the F' relation: a se-
quence { = ({e1 1), ..., {ex£x)) is alles only if F'({{e131), ..., (€m-1 Tm-1)), €m)
holds for all m = 1..k. The collection of all such sequences is denoted LLES(G).

o R: LLES(G) — {S, F,U} is the result function that specifies whether a given legal
labeled experiment sequence renders the overall test successful or not; i.e. R maps each
lles to one of {S, F, U} (for Success, Failure, and Undecided). We require R to be
monotonic, in the sense that R(c) =8 = R(oc:1)=8S and R(c)=F = R(o-7)=F

whenever o and o - 7 are lles.

o c: LLES(G) — RNY is the cost function that maps each lles to its nonnegative real
cost. It is required to be non-decreasing: c¢(o - 7) > ¢(o) whenever o and o - 7 are lles.

We let DS refer to the class of all such decision structures.

To illustrate these definitions: the diagnostic tree of Figure 1 can be encoded as a
structure G4 = ({e1,...,e6}, F1, Ry, ¢1), where e.g. e3 corresponds to “a patient’s blood
reacts with Serum_A” and e; corresponds to “a patient’s liver has a positive cytologi-
cal test”. The Fj relation, encoding the precedence relationships, includes Fi((),e;) and
Fi({),e2) to mean that e; or e; can be performed initially; and Fi({{e1 +)), e3) but not
Fi({{e1 —)), e3) (resp., Fi({{e1 +)), e4) but not Fi({{e1 —}), e4)) to indicate that es (resp.,
e4) can be performed if and only if e¢; has already succeeded. The Ry function includes

Bi(((er +) (es+))) = S, Ba(({(ex+) (eat))) = &, Ra({{ea+) (€5 +) (es +))) = S and so

forth, as well as Ry({{e; —) {(e2 —))) = F, and Ry({{e1 —) (e2+))) = U, etc. The cost func-
tion ¢; encodes the incremental cost of performing any sequence of experiments: for instance,
ci(({ex+),{es+), (es—))) = 14241 =4 and c1(({e1 +) (es =) (€2 +) (e +)) = 14+2+42+1 =
6.

Notice that for standard graph-like decision structures, whenever an example becomes
reachable, it stays so until performed, i.e. F'(o, e) implies F/(7, e¢) whenever o is a subsequence
of 7 and 7 is a lles that does not include experiment e. For instance, both conditions
Fi({{e1 —)), e2) and Fi({{e1 +)), e2) follow from the condition Fi((), e2). When there is a
unique minimal reachability condition for every experiment, we say that the structure is
“tree-like”. Formally, we define:

Definition 2 (Tree-like Decision Structures) A decision structure G = (W, F, R, c) is
tree-like if we can identify with each experiment e € W a single minimal lles, denoted path(e),
that encodes the necessary and sufficient conditions for reaching e; i.e.

Ve € W. dpath(e) € LLES(G). Vo € LLES(G). F(o,e) < [path(e) C ol.

The class of all tree-like decision structures is denoted TDS.

When the structure (represents an and-or decision tree, the lles path(e) corresponds to
the unique path leading to the experiment e in the tree: e.g., as the path to e4 in (G} goes

through eg and eq, path(eq) = ({€o +) (€1 +))-

2.2 Satisficing Search Strategies

A “search strategy” for a satisficing search problem specifies the order of traversal through
the associated decision structure — in the sample application Gy of Figure 1, it tells the
doctor when to perform which tests to determine whether the patient has hepatitis.

A strategy can be represented as a binary tree; for example the tree shown on the
right side of Figure 2 represents one possible strategy ©; for the decision structure Gj.
Each internal node in the strategy tree is labeled with an experiment that corresponds to
some node in the decision structure. The strategy specifies the sequence of experiments
to be performed in any given situation. For example, the O, strategy first performs the
experiment e; associated with ©’s root u;. If e; succeeds, ©; then follows the +-labeled
arc to the strategy sub-tree rooted in the es-labeled node, and performs es. If that test
succeeds, O, advances up to the S-labeled node, signifying that ©; terminates with success.
Alternatively, if e3 fails, ©; then follows the —-labeled arc, descending to the tree rooted in
the e4-labeled node, then performs ey, and so forth. A general definition of this process is as
follows:

Definition 3 (Search Strategies) A strategy for a decision structure G = (W, F, R, ¢)
is a node- and arc-labeled binary tree © = (N, A, ly,l4), where N is the set of nodes and
A C N x N s the set of arcs connecting nodes to their descendants. The node-labeling Iy
maps each internal node n € N in the tree to an experiment e € W, and each leaf node to

In each node of the strategy tree to the right,
the experiment e; associated to the node is indicated
together with the name of the node, wuy.

Figure 2: Decision Structure (G; and an Associated Strategy Tree 0

either § or F. The arc-labeling 14 maps each arc a € A to either + or —. FEach internal
node must have exactly two descending arcs, one labeled + and the other —.

A path 7 in © is an alternating sequence of nodes and arcs leading from the root of
the tree to a leaf — i.e. a sequence of the form © = (ny,a12,n2,a23,...,05-1k,ng) Where
each n; € N, and each a;;41 = (n;, niz1) € A. Fach such path has an associated labeled
experiment sequence (7) = ({Iy(ny)lalarz)), -y {In(nk—1) la(ag—1x))). For © to be a
proper strategy for G, the following conditions must be fulfilled by each path # = (nq,...,,ng)
in ©:

1. I(r) € LLES(G)

(i.e. (7)) must be a legal labeled experiment sequence);

2. In(ng) = R(IU(7)) € {S,F}

(i.e. the label of the final node must be either “success” or “failure”); and

3. R(lLij(m))=U forallj <k, where ly_;(x) = {{In(n1) la(a12)), ..., {In(n;)la(a;;+1)))
are the first j elements of I(x)
(i.e. no proper prefizx of a path can be conclusive).

We let path(©) refer to the set of all such proper paths in the strategy ©. We also let
SS(G) refer to the set of all strategies defined for the decision structure G, and SS(DS) =
{S8S8(G)| G € DS} refer to the class of all strategies for all decision structures.

For an illustration of these notions, see the strategy tree ©1 shown on the right side of Fig-
ure 2. There are 10 paths in Oy, one corresponding to each leaf node (indicated by the letters
S and F in the figure). For instance, one such path is w16 = (u1, a1 13, U13, @13,15, U15, 15,16, U16),
for which the corresponding lles is I(716) = ({€1 —), {€13+), (€15 =)).

2.3 Optimal Strategies

We wish to identify the best strategy for traversing a given decision structure, i.e. the strategy
whose expected cost is minimal. As this depends on the success probabilities of the individual
experiments, different strategies will be optimal for different distributions. To state this more
precisely, we define:

Definition 4 (Expected Cost of a Strategy) Let O be a strategy for the decision struc-
ture G = (W, F, R, ¢), and p: W — [0, 1] a distribution function that maps each experiment
to its success probability. The (expected) cost of strategy © relative to the distribution p,
denoted C,(0), is defined as the sum of the cost of each path in the strategy, weighted by its
probability, i.e.

Co®) = > plr)) xe(i(r)).

repath(®)

Here the probability of a path « is defined as p(l(x)) = H(eii,‘)el(w) pti(e;), where p*(e) is
ple) if + equals +, and 1 — p(e) if + equals —.

Definition 5 (Optimizing Functions) An optimizing function for a class of decision struc-
tures D C DS is a function OSS that maps any decision structure G = (W, F, R, ¢) € D,
together with a distribution p € [0, 1]W, to a strategy in SS(G) whose cost is minimal. That

is,

VG eD. Vpel0,1]V. VO e SS(G). C,(085(G,p) < C,(0).
For brevity, we often denote by ©, the optimal strategy OSS(G, p) provided by the optimizing
function for a given distribution p.

While these definitions assume that the experiments are independent of each other, both
these definitions and the theorems below could be extended to handle more complicated
situations.

Since we are only dealing with finite decision structures, optimal strategies can always
be found by exhaustive search. Of course, exhaustive search is in general impractical, and
if we are dealing with decision structures with concise encodings, such as and-or trees, the
optimal strategies may not even have polynomial-size representations.

Nevertheless, optimal strategies can be determined in polynomial time in many interesting
special cases. Garey [6] provided an algorithm for finding the optimal search strategy when
the constraints can be represented as a regular “or-tree” (i.e. no conjunctive subgoals and
no multiple predecessors are allowed; cf. also [22]). Simon and Kadane [21] later extended
this algorithm to deal with directed acyclic graphs in the special case where success at any
intermediate node implies global success. (In dag’s where global success requires reaching
a specified goal node, the problem is NP-hard [8].) It is currently not known whether
optimal strategies can be found in polynomial time for and-or trees. Some partial results on
this question exist: for instance, Natarajan [18] presents an efficient algorithm for finding
optimal “depth-first” search strategies in this case, and Smith [22] provides an algorithm for
finding optimal “serial strategies”. In the more general case of and-or dag’s, the problem is
NP-hard even when all the success probabilities are 1 [20].

3 The pao Algorithm

Each of the abovementioned optimization algorithms assumes that the precise success prob-
abilities of the experiments are known, which of course is not the case in most real-life
situations. The best one can do then is to estimate these probabilities by observing a set of
trials of the experiments, and then use these estimates to compute a near-optimal strategy.
A potential pitfall in this approach, however, is that the strategies computed by any of the
above algorithms are very sensitive to errors in the probability estimates: small changes
in the estimates may lead to drastically different strategies. Fortunately, even though the
choice of the actual strategy is very sensitive to estimation errors, the cost of the strategy
obtained is not. This realization is one of the main contributions of this paper, as it means
that we can use our estimates to obtain a near-optimal strategy.

Below, we describe an algorithm pao that can be used in conjunction with any optimizing
function OSS. Section 3.1 first formally defines the task of finding approximately optimal
strategies and outlines the algorithm. The following sections then discuss the technical issues
in more detail. First, in Section 3.2 we compute the sample complexity of this task: how
many samples of each experiment are needed to guarantee, with a high level of confidence,
that a strategy based on the resulting estimates will be close to optimal.

Section 3.3 then addresses a second problem: guaranteeing that the pao algorithm will
be able to obtain a sufficient number of samples of each experiment. The main complication
arises from the precedence constraints. For example, in the context of our diagnostic example
(Figure 1), the sample complexity analysis may suggest that the doctor needs to obtain 100
samples of the test “CytologicalTest(liver)”. This is impossible if he is never able to
perform a biopsy on any patients; i.e. if the experiment e; in structure Gy never succeeds. In
Section 3.3 we provide a solution to this problem for general “tree-like” decision structures,
but also observe that the task is intractable in general.

3.1 The pao Task

A pao problem instance consists of: a decision structure G = (W, F, R, ¢) € DS; a bound
on the allowed excess ¢ € RT; and the required confidence § € (0,1]. The algorithm also
uses an oracle O that produces samples drawn at random from some fixed but unknown
distribution.

For each instance, the pao algorithm returns a strategy ©pq0 € SS(G), whose expected
cost is, with high probability, close to optimal. Stated more precisely, let ©, = OSS(G, p)
be the optimal strategy for a given true distribution p. Then with probability at least 1 — ¢,
the cost of the strategy @pqo is no more than ¢ higher than the cost of this optimal strategy,
ie.

Pr{Cp(Op0) < Cp(O,) +¢] > 1-56.

We split the pao task into two subtasks: subroutine GS, which gathers the relevant
statistics, and OSS, which uses those statistics to produce an appropriate strategy; see
Figure 3.

The GS subroutine takes as input the decision structure G and the parameters € and 6;
it computes how many samples are required, and makes the specified number of calls to the

Algorithm pao(G: DS, e R*, 6: (0,1])
p «— GS(G,e¢ 0)
/* GS may call oracle O a polynomial number of times */
O « 0ss(d, p)
Return ©
End pao
Figure 3: Outline of the pao Algorithm

oracle O (specified below) to obtain them. The subroutine produces a vector of probability
estimates, p = (p1,...,Pn), Where each p; is the estimate for the success probability of the
it" experiment e; € W. (To simplify our description, we are assuming that we do not know a
priori the success probabilities of any of the experiments. If we happen to know some of the
values, we can simply use those values directly, and not bother with the estimation.) The
pao algorithm then concludes by running an appropriate optimizing function OSS on these
estimated probabilities p, instead of the unknown true values. We concentrate here on the
sample-gathering part of the pao algorithm, GS; for the OSS functions, we rely on the ones
provided by earlier researchers.

3.2 Sample Complexity

We first analyze the sample complexity of the pao task in the simple case where we can always
perform the experiments whose success probabilities we need to estimate. Here we assume
access to an oracle O that will, upon request, produce a sample «; from the population,
together with its complete labeling £(x;) = (€1, ..., (2}, where {1 is 1 if £; passes experiment
e; € W, and 0 otherwise. The GS routine performs a number M (specified below) calls to
this O oracle, and returns a vector of probability estimates p = (p1,...,pn), where each
pi = ﬁ Z?:l ¢1; the OSS optimizing function then uses these values. We prove (Corollary 1
in the Appendix) that the cost of the strategy ©p40 = OSS(G, p) is within € of the optimal,
with reliability at least 1 — 6, whenever

o= (1)], 0

where (U is the worst-case cost of performing any sequence of experiments in W.
In fact, we can improve on the constant €' somewhat. Let us denote by D(e) the maximal
cost of any concluding sequence of experiments beginning with experiment e. Formally:

Definition 6 Let G = (W, F, R, ¢) be a decision structure. For each experiment e € W we
define

D(e) = max{c(a-{ed)-p)—cla)]|a-(e+) -8 € LLES(G) }.

(The + above indicates that the max should range over both + and — values.)

We can then let C' = max.ew{ D(e)} be the maximum remainder cost starting with any
experiment ¢ € W. These D(e) values are quite easy to compute when the underlying
decision structure is an and-or tree: Here, D(e) = Ctot — ¢(path(e)), where Ctoy is the sum
of the costs of all of the tree’s arcs and ¢(path(e)) is the cost of path(e), the unique path in
the and-or tree that leads from the root to experiment e; see Definition 2. (For instance, in
the tree G4 of Figure 2 we have Cyy¢ = 10 and c(path(es)) = 2, so D(es) = 10 —2 = 38.)

The sample complexity bound (1) is derived in the Appendix as Corollary 1 of a more
general result that also takes into account the difficulty of labeling the samples (i.e. perform-
ing the experiments; see below). To very briefly outline the proof for this simple case: we first
prove that after M samples, we are at least 1 — 6 confident that each probability estimate p;
is within ¢/2nC of the correct value p;; we then show, based directly on the definition of the
cost of a strategy and independent of which optimizing function is used, that this precision
of the probability estimates suffices to guarantee that the cost of the obtained strategy is
within € of the optimal, i.e. that

= |Cp(®z3) - Cp(®z¢)| < e

€
Vi lps — Bl < ——
lpi—p — 2nC

3.3 “Learning While Doing” in Tree-like Structures

The simple pao algorithm presented above assumes that the oracle O produces a complete
labeling for each sample, i.e. it returns a complete vector L(k) = (€1, ..., £,) € {0,1}" on
each query. In practical situations, however, such an oracle will typically not be available.
Instead, the learning system must collect the statistics it needs (i.e. the individual component
¢; values of L(x)) while watching a performance element perform its task, over a sufficiently
large set of samples. In the context of our diagnostic example, the learning module would
observe the doctor as he examines patients, recording how many of these patients pass the
various tests. After gathering enough information, the learner would compute the approxi-
mately optimal strategy ©pqo, instruct the doctor to use this ©pqo strategy, and terminate
itself.! We view this as a “learning while doing” protocol [16], as the overall system is
performing useful work during the learning phase (here, examining patients).

From now on, we assume our oracle O, when queried, provides only an unlabeled sample
(e.g., a patient k), rather than the full labelings of that sample, £(«). In order to determine
the value of any label ¢; on sample &, the GS subroutine must then actually “reach” and
perform experiment ¢; on .

Computing these {; values is problematic when there are intermediate experiments: For
instance, in the case of our decision structure GGy, the doctor can not immediately deter-
mine whether a patient’s blood will react to serum A; he must first be able to draw blood
from the patient. Hence, our learning system will be unable to estimate the probability
of event “blood reacts to serum A” if the doctor is never able to extract blood (i.e. if

Pr[Draw blood] = 0).

'We are still considering only “one-shot learning”, in which the learner sets the strategy only once,
after the learning phase. We are not considering ways of modifying the strategy gradually over time to
become incrementally better; but see [9]. Also, this issue differs from the “Exploration-Exploitation” trade-
off discussed in the context of the Bandit problem (cf. [3, 17]) as we are not concerned with minimizing the
cumulative cost of the learning and performance systems together, over an infinite sequence of samples.

10

Fortunately, there is a way around this problem. The critical observation is the following:
Let p(e;) be the probability of “reaching” an experiment e; during the execution of a strategy.
(This notion is defined formally below.) If p(e;) is very small, we will be unlikely to reach
¢; and hence to obtain samples of this experiment. However, the smaller the value of p(e;),
the less sensitive the cost of the optimal strategy is to the value of the success probability
p(e;), which means that we also need fewer samples of e;. In the limit, if there is no chance
of reaching e; (i.e. p(e;) = 0), then we will also need no samples of it (i.e. OSS can produce
an optimal strategy even if |p; — p;| = 1).

Definition 7 Let G = (W, F, R, ¢) € DS be a decision structure, and p: W — [0,1] a
distribution function that maps each experiment to its success probability. For any strategy
O = (N, A, Iy, l4) € S§(G), and any experiment e € W, let p(e, ©) be the probability that
© will reach e, i.e.

pe,®) = Y pUx(n)),

n: Iy(n)=e

where the sum is over nodes n in the strategy © labeled with e, n(n) is the path in © that
leads to n, and the probability of this path p(l(w(n))) is as defined above in Definition .
Finally, let p(e) = max{p(e,0)| O € SS(G)}.

The formula for p(e) reduces to a particularly simple form when the decision structure
(i is tree-like. In this case p(e) = Hle pEi(f:), where path(e) = ({fi &1), -+, (fu £1)) is
the unique path that leads to e in G. For instance, in the (G; decision structure of Figure 1,
we have path(eq) = ((eo, +), {€1,4)), and so p(eq) = p(eg) X p(eq).

Now let ©, = OSS(G, p) be the actual optimal strategy based on the unknown correct
probability vector p = (p1,...,pn), and O3 = OSS(G, p) be the strategy that our pao algo-
rithm will produce, based on the estimates the GS subroutine has obtained, p = (py, ..., pn)-
We wish to bound the cost difference C,(0;) — C,(0,). The following lemma shows that,
in place of obtaining precise estimates of the probabilities p;, we need only ensure that the
product p(e;) X |p; — p;| is small for each e;.?

Lemma 1l Let G = (W, F, R, ¢) be a decision structure with |W| = n experiments. Let
p = {(p1,--.,pn) be a vector of success probabilities for W, and p = (p1,...,pn) a vector of
their estimates. Let the optimal search strategy for G w.r.t. p be ©, = OSS(G,p), and let
0; = OSS(G, p) be the strategy based on the estimated probabilities. Then

Co(©5) = Co(©,) < 2) Dles) x ples) x |pi = pil -
=1

A further complication now arises from the fact that the p(e;) values actually depend
on the unknown true distribution p. Fortunately, we can also approximate these values as
we are obtaining the estimates of the p;’s. In essence, we need only “aim for e;” a certain
number of times: each time we reach ¢;, we improve our estimate of p; (i.e. reduce the |p; —p;|

2The Appendix contains the proofs for all lemmata, theorems and corollaries presented in the text.

11

“error bars”) and each time our path to e; is blocked, we can, with confidence, reduce the
value of p(e;).

The rest of this subsection first shows how to estimate the products p(e;) X |p;—p;| in tree-
like decision structures, then discusses the difficulties in computing near-optimal strategies
in more general structures.

Dealing with Tree-like Deciston Structures: Given an experiment e in a tree-like decision
structure G, recall that path(e) = ({eq +1), (€3 +2), - -+, (ex *x)) is the unique minimal lles
that determines when e can be performed. We say that a strategy © € SS(G) is a direct
strategy for e if it contains this lles as an initial segment, in the sense that the root of © is
labeled with the experiment eq, and its +;-labeled arc (i.e. the +-labeled arc if 41 equals +,
and the —-labeled arc if +; equals —) descends to a node labeled with the experiment ey, and
the +5-labeled arc from that node descends to a node labeled with ez, and so on, down to a
node labeled ex, whose +j-labeled arc leads to a node labeled with e. We denote the class
of direct strategies for an experiment e by SS(e). As an example, the strategy 01 shown in
Figure 2 goes directly to e; and hence ©, € §5(e1); it also contains the direct route to ez as
an initial segment, and hence ©; € §5(e3). On the other hand, the strategy “digresses” to
consider ez before €4, and so ©1 & S§S(e4); similarly ©1 ¢ SS(ez) as Oy considers e; before
€.

The GS algorithm shown in Figure 4 can deal with any tree-like decision structure G.
The algorithm first identifies a direct strategy ©. € SS(e) for each ¢ € W. (There can
in general be many such strategies, performing different experiments outside their common
initial path to e; this paper does not consider how to choose between the alternatives. Nor
does it consider the cost of identifying any of these strategies, except to observe that for
e.g. and-or trees they can be constructed quite efficiently, directly from the tree structure.)
After selecting this set of strategies, GS associates three counters with each experiment,
tot(e;), suc(e;) and m(e;), which will record, respectively, the number of times experiment
e; has been performed, the number of times e; succeeded, and the number of attempts that
remain to be performed. As it processes the instances, GS updates each of these counters by:
incrementing tot(e;) each time GS performs experiment e; incrementing suc(e;) each time
the experiment e succeeds; and decrementing m(e;) each time GS has attempted to reach
experiment e; either by performing e;, or by using the strategy O., but failing to reach e;.

The remaining challenge is to identify when to use which strategy. (Clearly GS will not,
in general, be able to observe enough trials of the different experiments if it uses the same
strategy throughout.) On each sample, GS first identifies the needy experiments, i.e. those
e’s for which m(e) > 0. If there are none, then GS has collected enough samples, and so can
terminate, passing the obtained vector of estimates p to the OSS algorithm. Otherwise, GS
selects one of the needy experiments e, and executes the associated strategy ©..

Notice that GS decrements at least one m(e) counter on each sample, viz. the one associ-
ated with the experiment e to which it is currently aiming. Hence, after at most >y, mo(e)
samples (where the mg(e) are the initial values of the counters), all of the m(e) counters will
be zero and GS will terminate; it therefore requires only a polynomial number of samples.
(The algorithm may of course use far fewer samples, as most O, strategies will reduce the
m(e;) values for several different experiments e;. GS can also be changed to decrease the
counters of all experiments ¢’ that are deemed unreachable in the process of following ©..)

12

Algorithm GS(G:7DS, e: R, 6:(0,1])
ForEach ee€ W do
Find some O, € §S(e)
tot(e) «— 0
suc(e) «— 0

[2 (2212 1n ﬂ it P, e€)
[2 <1+nD€(e)> (an@)Ylﬂ%ﬂ it =F(() ¢)
End ForEach

While de such that m(e) >0 do
Get sample &« from oracle O
Execute strategy ©. on sample &
After performing each experiment ¢;:
tot(e;) « tot(e;) +1
m(e;) « m(e;)—1
If e; succeeds: suc(e;) «— suc(e;)+1
If e;’s result (success or failure) means
e cannot be reached: m(e) «— m(e)—1

m(e)

End While
ForEach e; € W do

se) o 2eled it dol(eg) > 0
‘ % otherwise
End ForEach

Return p = (pler), ..., plen))
End GS

Figure 4: A GS Algorithm for Tree-like Decision Structures

13

The following lemma characterizes the behavior of the algorithm:

Lemma 2 Let G = (W, F, R, ¢) be a tree-like decision structure with |W| = n experiments,
and let p = (p1,...,pn) be a vector of success probabilities for the experiments. Furthermore,
let €, 6 > 0 be any given constants, and let p = (p1,...,Pn) be a vector of probability estimates
computed by the GS algorithm of Figure 4. Then

€ 1)

= < -

Vei eW. Pr D(ez) X p(ez) X |pi_ﬁi > 9
n

(While our analysis uses the p(e;) values, notice that the GS algorithm never actually com-
putes them.) Combining the results of Lemmas 1 and 2, we obtain the following theorem:

Theorem 1 Let G = (W, F, R, ¢) be a tree-like decision structure with |W| = n exper-
iments, and let p = (p1,...,pn) be a vector of success probabilities for the experiments.
Furthermore, let €, 6 > 0 be any given constants, and let ©pqo =pao(G, €, 6) be the strategy
produced by the pao algorithm using the GS subroutine of Figure 4. Then, with probability
at least 1 — 6, Cp(Opgo) — Cp(0,) < €, where ©, = OSS(G,p) is the optimal strategy for
probability vector p.

Beyond Tree-like Decision Structures: While the specific GS algorithm presented above
applies only to tree-like decision structures, there can be other related algorithms that can
learn strategies for other decision structures. The main challenge is in estimating p(e;), as
required to bound the product p(e;) X |p; — pi|, which is complicated by the fact that there
can be many distinct ways of reaching an experiment in a general decision structure.

To address this task, recall from Definition 7 that p(e) is the mazimum probability of
reaching the experiment e, where the maximum is taken over all possible strategies. We can
always approximate this value by first estimating p(e, ©) for every possible strategy ©, and
then taking the maximum of these values: If each estimate p(e, @) is within € of p(e, ©) with
probability at least 1 — §/|SS(G)|, then the value p(e) = max{p(e,0) | © € SS§(G)} will be
within € of p(e) = max{p(e,0) | © € SS(G)} with probability at least 1 — é. Even though
the number of strategies in SS(G) for a given decision structure GG can be exponential in the
size of GG, there can be ways of exploiting the structure of ¢, and hence of S§(G), to limit
the number of j(e, ©) values that need to be considered. From this point of view, the GS
algorithm for tree-like structures is based on the observation that for any tree-like structure
(7, the direct strategies ©. € SS(e) necessarily yield the largest values of p(e, ©.) for any
experiment e. In fact, one can use the same GS algorithm whenever it is possible to identify
each experiment e with a strategy O, for which p(e, ©.) = p(e).

This is not always straightforward. The extended paper [11] includes an algorithm that
uses dynamic programming techniques to sequentially estimate the probabilities of each
“layer” of certain types of decision structures. Unfortunately, the following general result
shows that the computational complexity of any such algorithm is likely to be exponential
in the number of experiments.

Theorem 2 Assume RP # NP. (RP is the class of problems solvable by probabilistic poly-
nomial time algorithms with one-way error, cf. [12].) Then there is no probabilistic poly-
nomial time algorithm, and consequently no deterministic polynomial time algorithm that,

14

given a decision structure G = (W, F, R, ¢), an experiment ¢ € W, a distribution func-
tion p: W — [0,1], and parameters e, 6 > 0, can estimate the value p(e) to within € with
probability at least 1 — 6.

4 Conclusion

The results presented in this paper have been motivated by, and extend, various other lines
of research. The underlying objective of finding a provably good search strategy comes from
the work on optimal satisficing search strategies [6, 21, 2, 18, 22]. Each of these earlier papers
considered some specifically defined class of search structures and, moreover, required the
user to supply precise success probability values for the experiments. Our work extends this
body of research in three ways. First, we have defined a general framework of “decision
structures” and “search strategies”, which encompasses and generalizes the models used
before. Second, we have analyzed, in this very general setting, the sensitivity of optimal
search strategies to errors in the probability estimates. Third, we have provided an efficient
algorithm for finding good estimates of the probability values in the case of tree-like decision
structures, and proved that (unless RP = NP) there can be no efficient algorithm for this
task for general structures.

Our approach also resembles the work on speed-up learning (including both “explanation-
based learning” [15, 5, 14] and “chunking” [13]), as it uses previous solutions to suggest a way
of improving the speed of a performance system. Most speed-up learning systems, however,
use only a single example to suggest an improvement; we extend those works by showing how
to use a set of samples and by describing, furthermore, the exact number of samples required.
Also, while most speed-up learning systems are based on purely heuristic considerations, we
use mathematically sound techniques to guarantee that our new strategies will be close to
optimal, with provably high probability.

Finally, this work derives many of its mathematical methods, as well as its title, from
the field of “probably approximately correct learning” [23]. We hope to have enriched this
field by providing an application of the PAC framework outside of its traditional setting of
concept learning.

15

A Proofs

This appendix contains the proofs of the results mentioned in the body of the paper.

Lemma 1 Let G = (W, F, R, ¢) be a decision structure with |W| = n experiments. Let
p = (p1,...,pn) be a vector of success probabilities for G, and p = (p1,...,p,) a vector of
their estimates. Let the optimal search strategy for G w.r.t. p be ©, = OSS(G,p), and let
0; = OSS(G, p) be the strategy based on the estimated probabilities. Then

Cp(03) = Cp(0,) < 2 ZD X |pi — pil -

Proof: Given the vectors p and p, let p(9) denote the vector {(pr,..., P, Pists- -, pn), and as
special cases, p®) = p and p(™ = p. We shall prove below that for any strategy © for (7, and
for every: =0,...,n— 1,

‘ p(z+1)(®)‘ < D(ez) X p(ez) X |pi _ﬁi|a (2>

which implies that

|Co(0) = C4(0)] Z\Cm Cyin ()] < ZD x |pi = pil -

Applying this bound to the strategies ©, and ©;, and noting that by optimality C3(0;) —
C5(0,) <0, then yields the desired result:

Cp(05) = Cp(0,) = [Cp(G)ﬁ) — C3(05)] + [C5(05) — C5(6,)] +[C*(») = Cp(O5)]

< ZD X |pi — pil ZD Xp() \pi — pil

= ZZD |pz pi|'

In proving inequality (2), we shall make use of the following notation (cf. Figure 5):
Given any node u; in a strategy O, let 7; denote the path leading from the root of © to

+0+

u;. For any such path 7;, we denote the associated cost c({(x;)) briefly by ¢(x;). (Here, we
have extended the [(-) function to partial sequences: u;, the final entry in 7;, does not have
to be a leaf node in the strategy tree.) We also extend the cost function to incomplete paths
in the strategy tree by defining

e((iy @iigry Wizt <oy ur)) = c({Uoy @01y Uy - ooy Uiy Qiig1y Uity « ooy Uk))
— c({uo, a1, Uty ..., u;)),
where ug is the root node of the strategy tree and (ug, ao1, U1, ..., ag_1k, Ux) is any con-

nected path through the tree; furthermore, for single nodes we define ¢(u;) = ¢({u;)).

16

Figure 5: Tllustration of Notation

Let uj' be the 4-descendant of node u;, and let t(u;) denote the set of leaf nodes below
u;. For each u; € t(u;), let 7;; denote the path from wu; to u;, and if u; € t(u}"), let 7r;-’; denote
the path from node u;" to u;. Let CP(G);-") denote the “expected cost of the +-subtree of u;”:

Co(0F) = cuf)+ D p(rh)elnh).

+
ulet(uj)

Analogous definitions hold for u}, t(u}), p(7};), and C,(©7F).

For a given experiment ¢; € W, let N(e;) = {u;};=1,. . be the set nodes in O labeled
with ¢;. Let O|e; be the subtree within © consisting of the paths from the root of © through
a node in N(e;) down to a leaf; and let ©l¢; be the subtree consisting of the other paths.
Notice that C,(0©) = C,(Ole;) + Cp(O|€;). We may partition the paths in ©F according to
which of the u; nodes each passes through (recall that in any strategy ©, an experiment e
can occur at most once on any path from the root to a leaf node), and use this representation
to obtain a very simple formula expressing the influences of e;’s success probability p; on the

17

function C,(O|e;) (and hence on C,(0)):

Cp(Oe:)

Z p(r)e(m) = Z Z p(mi)e(m)

mepath(e+) L uy€t(uy)

s,

k

S p(mdelm) 4+ Y plm)e(m)

> p(r;) [Pi (C(m) +e(uf) +) p(ﬂfz)C(Wﬁ))

+(1—p) (C(m) +e(uy) +) p(ﬂﬁ)C(Wﬁ))]

=1

> o(m) [pile(m) + Co(OF)) + (1= pi)(e(m;) + C,(07)]

=1

ZP(%‘) (e(m5) + piCo(OF) + (1 = pi)C,(07)) -

(Near the end of the proof we have simplified the formulas using the fact that a complete sys-

tem of elementary probabilities sums to 1: in this case Zulet(uj)p(w;) = Eulet(uf)p(wﬁ) =

1.) An analogous formula can be derived for the cost function Cj,(©le;), where p; =
{p1, ..., Pi—1, Pi, Piz1, - .-, Pn) is the probability vector that differs from p only in the 7%

18

value. Using now the facts that C,(0|¢;) = C;,(0|e;) and C,(0F) = C;4,(07), as none of the
substrategies O|é;, (“);r, J # t, involve the experiment ¢;, we obtain the following bound:
| Co(©) = C5(0) | = [(Cy(Ole) + Cp(Oler)) — (Cp,(Bles) + Ci,(Ole))|
= [(Cp(Oles) = C5,(Oles)) + (Cp(Oles) — Cp,(Oes))]

Zp(’ﬁj) ((p: = B)Co(OF) + (B — p1)C(07)) + 0

IN

Zp(m) X [pi = pil x max | Cy(8]) - Cy(O7)]

7=1
< pled) X [pi = Bl x max max{ Co(O7), C,(07) }-
uj)=¢;

The last line of the calculation uses the facts that C,(-) > 0 and that Z] 1 p(mj) = p(ei, ©)
is the probability that this strategy © will reach e;, and hence is bounded by p(e;) =
max{p(e;,0) | O € SS(G)}.

All that remains is to show that the value max;(y;)=c, { C,(07), C;,(©7) } is bounded by
D(e;). To see this, consider any u; such that {(u;) = eZ Then

Co(0F) = cuf)+ Y plaf)e(n])

ulEt(uj')
< c(u;") -+ (max c(w}'})) p(wﬁ)
u€t(ul) qut(uj‘)
= c(ul)+ max c(w;})
u €t(u])
= max e(wj)
ulEt()
< D(e;)
Similarly, C’p((ﬂj—) < Max,, e;(,-) c(mj) < D(e;). O (Lemma 1)

Lemma 2 Let G = (W, F, R, ¢) be a tree-like decision structure with |W| = n experiments,
and let p = (p1,...,pn) be a vector of success probabilities. Furthermore, let €,6 > 0 be any

given constants, and let p = (p1,...,pn) be a vector of probability estimates computed by the
GS algorithm of Figure 4. Then

1)
Ve e W. Pr|Dle) xple) x pi—pl = -] < = (3)
n n

Proof: We use Hoeffding’s Inequality, which is a simple form of Chernoff bounds [4, 1]:
Let {X;} be a set of independent, identically-distributed random Bernoulli variables, whose

19

common mean is y. Let S = L Zf\il X; be the sample mean after taking M samples.

M
Then
PriSM > 4 Al < MY PriS™M > 2] < 7MY (4)

To prove that inequality (3) holds for each experiment ¢; € W, we consider two cases,
depending on whether the experiment can be performed initially or not. If so (i.e. if F'({), ¢;)
and consequently p(e;) = 1), then the GS algorithm will perform at least

zcﬂyifm%w g

trials of e;. As the samples are drawn at random from a fixed distribution, we can use
inequality (4): after m(e;) samples,

m(e;) =

€

Pr | p(e;) x |pi — pi| > m} = Pr {|Pz —pil > anﬁ(ei)}
2
< 2exp <—2m(ei) (ﬁ(e))) < L

Now consider an experiment e; that is not immediately reachable (i.e., such that F({),¢;)
does not hold). Here, the GS algorithm will attempt to reach e; along a direct path a total

of M times, where
€ n D(e;) 2 4n
M > 2(1 — .
= {<+n0w0< e >m6w ©)

Of these, GS reaches and performs e; some number k£ times; and does not reach e; the

remaining M — k times. Denote by j(k) the value of the product p(e;) X |p; — pi| assuming
that GS succeeds exactly k times. It suffices to show that for any value of k, j(k) < W
with probability at least 1 — %

Using the fact that p(e;) = & is the estimated value of p(e;) here (as GS has succeeded k

times out of M) together with inequality (4), we know that with probability at least 1 — -,

1 2n
. < ~ . -
p(ez) — p(62)+ 2M1n 5 9
and with probability at least 1 — %,
. < 1 | 4n
pPi — Pi ~ —In —
p=p % "5

Of course, each of these terms tops off at 1 (since p(e;) <1 and |p; — p;| < 1). We therefore

define
. k 1 2n . 1 in
g(k’) = mlﬂ{l, M-I— mlll?} Xﬂlln{l, %1117}

20

and observe that j(k) < g(k) with probability at least (1 — %)2 >1-3

We now need to bound the largest possible value of g(k). First, note that g(k) can be
bounded by

W < %—}—,/ﬁln% when 0 < k < kg,
g <
(% + /) x [kt when ko <k < M,

where kg = 1In 2. (The two expressions for g(k) have the same value at k = ko.) As the first
expression has a positive first derivative with respect to k, it is largest at its largest allowed
value of k, viz. kg. Using first and second derivatives, we see that the second expression is
upwards concave on the interval k& = [ky..M], and thus its value is maximal at either k& = kq
or k=M.

Hence, the largest value of g(k) is bound by the value of the second expression at either
k = ko or k= M, i.e. by the larger of the values

Gre = Sy A\ 50—

e YT A S sy v

By inspection, both of these values, and hence all values of ¢g(k), are below

2
Y T Y AL 1
M= oy s oM s T \2 oM s 1

As p(e;) X |pi — pil = j(k) < gm, we need only find an M sufficiently large so that

9M < gopy- Solving gu = 5755 for M yields

-2
2¢ 4n
M = 2 1—-1 In —.
(nD(e;) +) g

To see that the m(e;) value from equation (6) is larger than this M (and hence the corre-
sponding gps value will be yet smaller), just observe that (y/2y+1 —1)7% < % holds for
any v > 0, so in particular for v = m. Hence, after taking at least m(e;) samples, we

can be confident that the product p(e;) X |p; — p;| is sufficiently small, as desired.
Notice that in the typical situation where € is small relative to D(e), the m(e;) value
obtained here is only slightly larger than the value obtained from equation (5).
O (Lemma 2)

Theorem 1 Let G = (W, F, R, c¢) be a tree-like decision structure with |W| = n experiments,
and let p = (p1,...,pn) be a vector of success probabilities for the experiments. Furthermore,
let €, 6 > 0 be any given constants, and let ©pqo =pao((, €, 6) be the strategy produced by
the pao algorithm using the GS subroutine of Figure 4. Then, with probability at least 1 — 6,

21

Cp(Opao) — Cp(0,) < €, where ©, = OSS(G, p) is the optimal strategy for probability vector
p.

Proof: Let p = (p1,...,pn) be the vector of probability estimates produced by the GS
subroutine. By Lemma 2 each of the products D(e;) X p(e;) X |p; — p;| is upper bounded
by the value ¢/2n with probability at least 1 — §/n. Hence, the probability that they are
all less than ¢/2n is at least 1 — §. The theorem’s claim follows from this by Lemma 1.
O (Corollary 1)

Corollary 1 Let ©pqo = pao(G, e, 6) be the result of the pao algorithm, where G = (W, F, R, c)
is any decision structure in DS, and €, 6 > 0 are given constants. Then, with probability at
least 1 — 6, Cy(Opao) — Cp(0,) < € where ©, = OSS(G, p) is the optimal strategy, based on
the correct probability vector p.

Proof: This result follows immediately from the proof of Theorem 1, using only the easy
first part of Lemma 2, and the observation that C' > D(e;) guarantees that the value M in
equation (1) is larger than the value m(e;) in equation (5). O (Corollary 1)

Theorem 2 Assume RP # NP. Then there is no probabilistic polynomial time algorithm
that, given a decision structure G = (W, F, R, ¢), an experiment e € W, a distribution
function p: W — [0, 1], and parameters ¢, § > 0, can estimate the value p(e) to within ¢ with
probability at least 1 — 6.

Proof: Assume to the contrary that such an algorithm exists for some fixed values of ¢, > 0;
say € = 6 = 1/3. We show that this algorithm could also be used to decide the satisfiability
of boolean formulas (SAT) with reliability 1 — §.> As the SAT problem is NP-complete, it
would follow by standard arguments that RP = NP.

Let ¢ be a boolean formula over the variables z,...,z,. We show how to construct
a corresponding decision structure G, = (W, F,, Ry, ¢,), such that the formula ¢ has
(resp. does not have) a satisfying assignment to its variables if and only if the value p(g)
for a specific experiment g in W, is 1 (resp. 0). We could thus decide the satisfiability of
formula ¢, with reliability 1 — é, by running our hypothetical algorithm on structure G, and
experiment ¢, and checking whether the estimate it provides for p(g) is greater than 1 — ¢
or less than e.

The structure G, has 2n + 1 experiments W, = {e1,€1,...,€n,E,,9}. The precedence
relation F, permits exactly one of e; or € to be performed initially, then exactly one of e,
or €, and so on; in general permitting exactly one of e or €; as the k" experiment. (That
is, Fy(a,eryr) and Fy(a, €xpr) both hold iff a is of the form ({é1 +), (é2+), ..., (éx+)),
where each ¢; is either ¢; or €;.) Now each complete sequence of the é-type experiments,
a=((é&1+4), (é2+), ..., (€, +)), can be identified with a truth assignment to the variables
T1,...,%,, whereby x; is true (resp. false) if and only if é&; = e; (resp. é; = €;) in a. The
precedence relation F' finally specifies that experiment g can be performed (i.e. F,(a,g)
holds) if and only if this truth assignment satisfies the formula .

3We are indebted to Tom Hancock for suggesting this reduction.

22

Consider then the trivial probability distribution that assigns success probability 1 to all
experiments, and recall that p(g) is the maximum probability of reaching experiment ¢ using
any strategy. Given the precedence constraints specified above, it is clear that there exists
a strategy O for reaching ¢ if and only there exists a satisfying truth assignment for ¢, and
any such strategy will have p(g,0) = 1. Hence p(g) = 1 if and only if ¢ is satisfiable, and
otherwise p(¢g) = 0. O (Theorem 2)

References

[1] N. Alon, J. H. Spencer, and P. Erd6s. The Probabilistic Method. J. Wiley & Sons, New
York, NY, 1992.

[2] J. A. Barnett. How much is control knowledge worth?: A primitive example. Artificial

Intelligence, 22:77-89, 1984.

[3] D. A. Berry and B. Fristedt. Bandit Problems: Sequential Allocation of Experiments.
Chapman and Hall, London, 1985.

[4] Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on
the sums of observations. Annals of Mathematical Statistics, 23:493-507, 1952.

[5] Gerald DeJong and Raymond Mooney. Explanation-based learning: An alternative
view. Machine Learning, 1:145-76, 1986.

[6] M. R. Garey. Optimal task sequencing with precedence constraints. Discrete Mathe-
maties, 4:37-56, 1973.

[7] Dan Geiger and Jeffrey A. Barnett. Optimal satisficing tree searches. In Proceedings of
AAAI-91 (Anaheim, CA, 1991), pp. 441-445.

[8] Russell Greiner. Finding the optimal derivation strategy in a redundant knowledge base.
Artifictal Intelligence, 50:95-116, 1991.

[9] Russell Greiner and Igor Jurisica. A statistical approach to solving the EBL utility
problem. In Proceedings of AAAI-92 (San Jose, CA, 1992), pp. 241-248.

[10] Russell Greiner and Pekka Orponen. Probably approximately optimal derivation strate-
gies. In Proceedings of KR-91 (Cambridge, MA, April 1991), pp. 277-288. Morgan
Kaufmann, San Mateo, CA, 1991.

[11] Russell Greiner and Pekka Orponen. Probably Approximately Optimal Satisficing
Strategies. Technical report, Siemens Corporate Research, 1993.

[12] D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, Volume A: Algorithms and Complexity, pp. 67-186.
Elsevier, Amsterdam, 1990.

23

[13]

[14]

[15]

[16]

John E. Laird, Paul S. Rosenbloom, and Allan Newell. Universal Subgoaling and Chunk-
ing: The Automatic Generation and Learning of Goal Hierarchies. Kluwer Academic

Press, Hingham, MA, 1986.

Steven Minton, Jaime Carbonell, C.A. Knoblock, D.R. Kuokka, Oren Etzioni, and
Y. Gil. Explanation-based learning: A problem solving perspective. Artificial Intelli-
gence, 40:63-119, September 1989.

Thomas M. Mitchell, Richard M. Keller, and Smadar T. Kedar-Cabelli. Example-based
generalization: A unifying view. Machine Learning, 1:47-80, 1986.

Thomas M. Mitchell, Sridhar Mahadevan, and Louis 1. Steinberg. LEAP: A learning
apprentice for VLSI design. In Proceedings of IJCAI-85 (Los Angeles, CA, August
1985), pp. 573-580.

Kumpati S. Narendra and Mandayam A. L.. Thathachar. Learning automata: an intro-

duction. Prentice Hall, Englewood Cliffs, NJ, 1989.

K. S. Natarajan. Optimizing Depth-First Search of AND-OR Trees. Technical report,
Research report RC-11842, IBM T. J. Watson Research Center, January 1986.

P. Orponen and R. Greiner. On the sample complexity of finding good search strate-
gies. In Proceedings of the 3rd Annual Workshop on Computational Learning Theory
(Rochester, NY, August 1990), pp. 352-358. Morgan Kaufmann, San Mateo, CA, 1990.

S. Sahni. Computationally related problems. SIAM Journal on Computing, 3:262-279,
1974.

H. A. Simon and J. B. Kadane. Optimal problem-solving search: All-or-none solutions.
Artificial Intelligence, 6:235-247, 1975.

David E. Smith. Controlling backward inference. Artificial Intelligence, 39:145-208,
June 1989.

Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27:1134—
1142, 1984.

24

