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Abstract

We propose efficient algorithms for two key tasks in the analysis of large nonuniform net-
works: uniform node sampling and cluster detection. Our sampling technique is based on aug-
menting a simple, but slowly mixing uniform MCMC sampler with a regular random walk in or-
der to speed up its convergence; however the combined MCMC chain is then only sampled when
it is in its “uniform sampling” mode. Our clustering algorithm determines the relevant neighbour-
hood of a given nodeu in the network by first estimating the Fiedler vector of a Dirichlet matrix
with u fixed at zero potential, and then finding the neighbourhood ofu that yields a minimal
weighted Cheeger ratio, where the edge weights are determined by differences in the estimated
node potentials. Both of our algorithms are based on local computations, i.e. operations on the full
adjacency matrix of the network are not used. The algorithmsare evaluated experimentally us-
ing three types of nonuniform networks: Dorogovtsev-Goltsev-Mendes “pseudofractal graphs”,
scientific collaboration networks, and randomised “caveman graphs”.

1 Introduction

Two key tasks in the analysis of large natural networks, suchas communication networks and social
networks, are obtaining auniform sample of nodes in the network, and determining the densely inter-
connectedclusters of nodes. Uniform sampling is important e.g. for the purposeof estimating basic
network characteristics such as the degree distribution, average path length, and clustering coefficient;
it is, however, nontrivial to obtain a truly uniform random sample of nodes from a large, practically
unobtainable network such as the WWW [13]. In this paper, we suggest an efficient approach for
uniform sampling of undirected nonuniform graphs, using a construction that combines two types of
random walks to produce one that mixes rapidly and still converges to the uniform distribution over
the set of nodes.

We also discuss the problem of clustering nonuniform networks, i.e. the recognition of subgraphs
where the nodes have relatively many edges among themselvesand relatively few edges connecting
them to the rest of the graph [16]. For large nonuniform networks, an effective clustering algorithm
should scale at most linearly in the size of the graph, and formany applications, a method for deter-
mining the local cluster of a given source node will suffice, rather than a complete clustering of the
entire graph. In this paper, we use approximate Fiedler vectors to determine potentials around a given
source node, and then use the potentials to stochastically select an appropriate local cluster.
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In Section 2, we present the MCMC construction for uniform sampling, and in Section 3 discuss
experiments performed with the method. Section 4 discusseslocal clustering with Fiedler vectors.
Finally, Section 5 summarises the work and addresses directions for further research.

2 An Efficient MCMC Method for Uniform Sampling

Let G = (V,E) be a connected symmetric simple graph withn nodes andm edges. We denote
the neighbourhood of node i ∈ V by Γ(i) = {j ∈ V | (i, j) ∈ E}, and thedegree of i by
deg(i) = |Γ(i)|. It is well known (and easy to verify) that theregular random walk onG, with
transition probabilities

pij =







1

deg(i)
, if j ∈ Γ(i),

0, otherwise,
(1)

satisfies thedetailed balance conditions

∀i, j ∈ V : πi · pij = πj · pji (2)

with respect to the distributionπi = deg(i)/2m, and hence this distribution, which we denote by
πRW, is stationary w.r.t. the walk [5, 15]. IfG is non-bipartite, thenπRW is the unique equilibrium
distribution. The chain (1) mixes rapidly, but the probability of obtaining any given nodei as a sample
from it is proportional to the degree ofi, and thus not uniform unlessG is regular.

A straightforward approach to uniform sampling [1] would beto augment the nodes ofG with
virtual self-loops so as to make them all have the same degreed = maxi∈V deg(i). This method,
however, requires knowing the target degreed ahead of time, and such global information is typically
not available in many of the interesting applications. Moreover, this process may create some conver-
gence anomalies in the case of highly nonuniform graphsG. Another alternative [13, 22] would be
to postprocess a sample obtained from walk (1) in order to compensate for the bias in the stationary
distributionπRW. Such postprocessing, however, requires somea priori information on the number
of burn-in steps needed before one can obtain a representative sample fromπRW, and the burn-in time
again depends on the global structure ofG.

We take a complementary approach, by starting from a somewhat more slowly mixing random
walk onG with a provably uniform stationary distribution, and then “accelerate” this walk by coupling
it together with the chain (1); however we only sample the combined process when it is in the “uniform
sampling” mode.

More precisely, we take as our starting point the followingdegree-balanced random walk onG,
where the transition probabilities from nodei are inversely proportional to the degree of the target
nodej:

pij =























1

deg(i) · deg(j)
, if j ∈ Γ(i),

1 −
∑

j∈Γ(i)

1

deg(i) · deg(j)
, if j = i,

0, otherwise.

(3)

It is simple to verify that the transition probabilitiespij given by (3) satisfy the detailed balance
conditions with respect to the uniform distributionπID(i) = 1/n, and henceπID is a stationary
distribution for this chain. (Note that in this case the equilibrium distribution is unique for anyG
with more than two nodes, since any nodei with non-leaf neighbours has a self-loop probability of
pii = 1 − 〈1/deg(j)〉 > 0.)
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Figure 1: A diagram of the mirror construction for two nodesi andj on the sampling side and their
mirror nodesi′ andj′ on the mixing side.

However, this degree-balanced walk avoids visiting the high-degree nodes (“hubs”) of a nonuni-
form graph, and so mixes relatively poorly in the graphs of most interest to us. A related problem is
that the self-loop probabilitiespii are rather large for nodes with many high-degree neighbours.1

In order to construct a sampling method that produces uniformly distributed samples but avoids
the convergence problems of chain (3), we propose the following construction (cf. Figure 1): for each
nodei ∈ V we create a “mirror node”i′. The original nodesi ∈ V are called the “sampling side”
and the mirror nodesi′ ∈ V ′ are the “mixing side” of the augmented graph (|V | = |V ′| = n). We
continue to denote bydeg(i) = deg(i′) the degree ofi in the original graph G, i.e., ignoring the
added edges that connect the two sides.

The transition probabilities on the sampling side follow those of the degree-balanced random
walk; on the mixing side, a regular random walk is mimicked with minor modifications. The exact
transition probabilities are defined as follows: letε be a parameter satisfying0 < ε < pii for all
i ∈ V — further restrictions onε are discussed later in this section. Fix all the sampling-to-mixing
transition probabilitiespii′ to ε. On the sampling side, subtractε from eachpii and give all other
transition probabilities the values they would have in the degree-balanced walk. On the mixing side,
denote the probability of moving back to the sampling side from nodesi′ by pi′i = ε′i. Let δ be a
parameter (to be determined later) such thatδ ≥ ε′i for all i′ ∈ V ′. Add to each nodei′ ∈ V ′ a
self-loop with transition probabilitypi′i′ = δ − ε′i, and divide the remaining probability mass1 − δ
evenly among the neighbours ofi′ as in a regular random walk, i.e. assignpi′j′ = (1 − δ) 1

deg(i) for

eachj′ ∈ Γ(i′) \ {i}.
We claim that the stationary distribution of such acombination walk is a weighted combination

of the distributionsπID andπRW, such that anα-fraction of the time the chain is in a statei ∈ V , and
an(1 − α)-fraction of the time is spent withinV ′:

πC(x) =

{

α · πID(x) = α · 1
n
, if x = i ∈ V,

(1 − α) · πRW(x) = (1 − α) · deg(i)
2m

, if x = i′ ∈ V ′.
(4)

To verify the claim it suffices to check the detailed balance conditions (2) for the above construc-
tion. There are three cases to consider: (i) transitions within V , (ii) transitions withinV ′, and (iii)
transitions betweenV andV ′.

The first two cases are essentially the same as those considered in the settings of the balanced
and regular random walks, respectively: only some constantcoefficients (α, (1 −α), (1− δ)) appear
on both sides of the balance equations and cancel out. This leaves us with the third type: here

1These problems could be alleviated somewhat by using theMetropolis-Hastings chain proposed in [3], withpij =
min{1/di, 1/dj} for j ∈ Γ(i), instead of our degree-balanced chain. However, as illustrated in Figure 5 below, both
chains have qualitatively similar convergence behaviour,and the arithmetic of coupling to the regular random walk is
somewhat simpler for the degree-balanced version.
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Figure 2: The DGM pseudo-fractal graphsGt (adapted from [8]). Newly added nodes are drawn
white.

the requirement is that any transitions between a nodei ∈ V and its mirror nodei′ ∈ V ′ satisfy
πC(i) · pii′ = πC(i′) · pi′i, i.e. that

α
1

n
· ε = (1 − α)

deg(i)

2m
· ε′i, for all i ∈ V . (5)

These equations can be satisfied by solving for the transition probabilitiesε′i, once values for the
parametersα andε have been chosen:

ε′i =
2mαε

n(1 − α) deg(i)
=

2m

n
·

α

(1 − α)
εdeg(i)−1, (6)

where 2m
n

= k̄ is the average degree of nodes inG. As a probability,ε′i must be at most one for all
i ∈ V . This yields an additional restriction on the parameterε:

ε ≤
n

2m
·
1 − α

α
deg(i) =

1

k̄
·
1 − α

α
deg(i), for all i ∈ V . (7)

Sincedeg(i) ≥ 1 for all i ∈ V , it suffices to chooseε ≤ k̄−1 1−α
α

. For a (nonuniform) graph,
averaging over a regular random walk will quickly give a positively biased estimate for̄k that can
be used to boundε; note that many nonuniform networks have a modest average degree, despite the
existence of a few extremely high-degree nodes.

In an implementation of the above sampler one does not of course make explicit copies of the
node sets, but rather uses a state flag that indicates which set of transition probabilities should be
applied. All the transition probabilities are locally computable at each nodei, if the parametersε
andα are given, and the degrees of both the nodei and its neighbours inΓ(i) are accessible. The
dependency ofε′i on the parameterα and the average degreek̄ = 2m/n can be resolved by simply

always settingε′i =
ε

deg(i)
, which implicitly fixes the relationship

α

1 − α
·
2m

n
= 1 ⇒ α =

1

k̄ + 1
. (8)

This implies by equation (7) the conditionε ≤ 1, which is a natural restriction onε. By this choice
of ε′i we also haveε′i ≤ ε for all i ∈ V , and may thus setδ = ε, completing the definition of the
transition probabilities on the mixing side.

3 Sampling experiments

In this section, we report on experiments using the above sampler construction on both artificial
networks with known properties (so called “pseudofractal graphs” of Dorogovtsev, Goltsev, and
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Figure 3: The coverage achieved by the regular (top row) and the degree-balanced walks at each step
for DGM graphs of generations 5, 7, and 9. In each plot, 50 independent walks are shown.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  250000  500000  750000  1e+06

C
ov

er
 p

er
ce

nt
ag

e

Step (combined RW)

DGM, generation 9

0.5
0.25
0.1

0.05
0.01

Figure 4: The coverage achieved by the combination random walk on a ninth generation DGM graph
for different values ofε.

Mendes [8]), and scientific collaboration networks ofn = 503 andn = 5,909 mathematicians and
computer scientists, with total number of coauthorshipsm = 828 andm = 13,510 respectively (sub-
graphs of the network constructed in [25]).

In the deterministic scale-free network generation model of Dorogovtsev, Goltsev, and Mendes [8]
(based on [2]), the initial graphG−1 = (V−1, E−1) consists of two nodesv andw and an edge(v,w).
At each generationt ≥ 0 of the generative process, per each edge(u, v) ∈ Et−1, a new nodew
is added together with edges(u,w) and (v,w). (See Figure 2 for an illustration of the first five
generations.) The resulting graphsGt have an almost constant average degree ofk̄t = 4(1 + 3−t),
yet a power-law distribution of node degrees according tont(d) ∼ 3t+1d− log2 3.

As a first indication of the behaviour of various sampling strategies, Figures 3 and 4 present plots
of the percentage of graph covered versus length of the walk,for DGM networksG5, G7 andG9.
Note that the combination walks sample fewer nodes during a walk of a given length than the others,
as it does not record samples during the mixing phase. The tendency of the degree-balanced method
to unwanted locality is quite evident in Figure 3.

In another set of experiments, we estimated the rate of convergence of the above discussed random
walks to their respective stationary distributions. Ifπt is the distribution of a random walk aftert steps,
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Figure 5: Values of∆est(t) for the regular, degree-balanced, combination, and Metropolis-Hastings
(“minimum-balanced”) random walks over a set of 15,000 independent walks in two DGM graphs and
two collaboration graphs, all starting from a fixed node, initially chosen at random. Note logarithmic
scale on the time axis.

andπ is its stationary distribution, thetotal variation distance between the two is defined as [5, 15]:

∆(t) = max
S⊆V

|πt(S) − π(S)| =
1

2

∑

i∈V

|πt(i) − π(i)|. (9)

We estimate this quantity by runningk independent instantiations of a given random walk starting
from the same start node, and looking at the state distributions at timet of the instantiations. For
definiteness, let us consider the case where the stationary distribution is uniform, withπ(i) = 1/n
for all i ∈ V . Denoting byft(i) the number of instantiated walks that are visiting nodei at timet, a
conservative estimate of the total variation distance at timet can then be computed as [4]:

∆est(t) = 1 −

n
∑

i=1

min

{

ft(i)

k
,

1

n

}

. (10)

Figure 5 shows the time evolution of these estimates for the regular, balanced, combination ran-
dom walks and the Metropolis-Hastings walk of [3] in DGM graphs of generations five and seven,
and for the two collaboration graphs ofn = 503 andn = 5,909 scientists. The stationary distribution
for the regular walk is taken to be the degree-proportional distribution πRW, and for the three other
walks the uniform distributionπID . For the combination walk, only those instantiated walks that are
on the sampling side at any given time step are included in computing the corresponding estimate.
The plots illustrate quite graphically (particularly in the case of the heavy-tailed DGM graphs) that
the convergence behaviour of the combination walk is qualitatively similar to that of the regular walk,
whereas both the pure balanced walk and the Metropolis-Hastings walk converge noticeably more
slowly.2

2There is some residual small-sample bias in the estimates; we have computed the size of this effect and will indicate
these calculations in the extended version of this paper.

6



4 Local clustering by approximate Fiedler vectors

Another key task in the analysis of natural networks is finding clusters of densely interconnected
nodes. Most of the existing literature on this topic (see [20] for a survey) considers the task of finding
an idealcomplete clustering of a given graph. This is, however, often unnecessary and in any case
infeasible in the case of really large networks such as the WWW. (The fastest complete algorithms
can currently deal with networks containing up to maybe a fewmillions of nodes [14, 19, 20].) In
many cases it would be sufficient to know the relevant clusterof a given source node, or maybe a
group of nodes. Some recent papers, such as [24, 26] address also this more limited goal.

In [24, 25], a parameter-free local clustering quality measure is optimised using simulated anneal-
ing: the computational effort needed to obtain the cluster of a given source node is quite modest (and,
most importantly, independent of the total size of the network), and the results seem to be quite robust
w.r.t. variations in the annealing process. In [26], the clustering task is formulated as a problem of
determining voltage levels in an electrical circuit with unit resistances corresponding to the edges of
the original network. The source node is fixed at a high voltage value and a randomly selected target
node at low voltage; an approximate solution to the Kirchhoff equations is computed by an iteration
scheme, and the eventual cluster of the source node is deemedto consist of those nodes whose volt-
ages are “close” to the high value. The possibility that the target node is accidentally selected from
within the natural cluster of the source node is decreased byrepeating the experiment some small
number of times and determining cluster membership by majority vote.

This electrical circuit analogue appears to have been first suggested in [20], where however the
aim is to compute a complete clustering of a given network by considering all possible source-target
pairs, and for each pair solving the Kirchhoff equations exactly by explicitly inverting the correspond-
ing Laplacian matrix. (We note that since solutions of the Kirchhoff equations can be decomposed in
terms of the eigenvectors of the circuit graph Laplacian, this method is a variant of the much-studied
spectral partitioning techniques [9, 10, 11, 12, 17, 21, 23]. A distributed algorithm for spectral anal-
ysis, possibly suited for large networks, is proposed in [18]. A fundamental reference is [6].)

We continue the analogue of representing cluster membership values as physical potentials, but
eliminate the unnatural choice of random “target” nodes by basing our model ondiffusion in an
unbounded medium rather than an electrical closed-circuit model. Thus, we fixthe source nodei at
a constant potential level, which we choose to be zero, and find an eigenvectoru corresponding to
the smallest eigenvalueσ1 of the respectiveDirichlet matrix, i.e. the Laplacian matrix of the network
with row and columni removed [6, 7]. This eigenvectoru, called the(Dirichlet-)Fiedler vector of
the graph, will now (hopefully) assign potential valuesu(j) close to 0 for nodesj that are within
a densely interconnected neighbourhood of the source nodei, and larger values for nodes that have
sparser connections to the source. (The method obviously generalises to starting from a larger set of
source nodes, if desired.)

Since we wish to develop a local algorithm, and not deal with the full adjacency matrix of the
network, we approach the computation of the Fiedler vectoru via minimising the Rayleigh quo-
tient [6, 7]:

σ1 = inf
u

∑

j∼k(u(j) − u(k))2
∑

j u(j)2
, (11)

where the infimum is computed over vectorsu satisfying the Dirichlet boundary condition of having
u(i) = 0 for the source node(s). (The notationj ∼ k is an abbreviation for(j, k) ∈ E.) Furthermore,
since we are free to normalise our eventual Fiedler vector toany length we wish, we can constrain the
minimisation to vectorsu that satisfy, say,‖u‖2

2 = n = |V |. Thus, the task becomes one of finding a
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Figure 6: Three local Fiedler clusters in a caveman graph of 138 nodes.

vectoru that satisfies:

u = argmin

{

∑

j∼k

(u(j) − u(k))2 | u(i) = 0, ‖u‖2
2 = n

}

. (12)

We can solve this task approximately by reformulating the requirement that‖u‖2
2 = n as a “soft

constraint” with weightc > 0, and minimising the objective function

f(u) =
1

2

∑

j∼k

(u(j) − u(k))2 +
c

2
·
(

n −
∑

j

u(j)2
)

(13)

by gradient descent. Since the partial derivatives off have the simple form

∂f

∂u(j)
= −

∑

k∼j

u(k) + (deg(j) − c) · u(j), (14)

the descent step can be computed locally at each node, based on information about theu-estimates at
the node itself and its neighbours:

ũt+1(j) = ũt(j) + δ ·
(

∑

k∼j

ũ(k) − (deg(j) − c) · ũ(j)
)

, (15)

whereδ > 0 is a parameter determining the speed of the descent. Assuming that the natural cluster of
nodei is small compared to the size of the full network, the normalisation‖u‖2

2 = n entails that most
nodesj in the network will haveu(j) ≈ 1. Thus the descent iterations (15) can be started from an
initial vector ũ0 that has̃u0(i) = 0 for the source nodei andũ0(k) = 1 for all k 6= i. The estimates
need then to be updated at timet > 0 only for those nodesj that have neighboursk ∼ j such that
ũt−1(k) < 1.

Figure 6 represents the results of such approximate Fiedlervector calculations in the case of a
slightly randomised “caveman” network of 138 nodes, starting from three different source nodes.
For visual effect, the nodes are colour-coded so that dark colours correspond to small approximated
Fiedler potential values, with the source node in each case coloured black. The parameter values used
in this case werec = 0.1, δ = 0.05.

Visually, the clusters in e.g. Figure 6 look reasonable; in practice, however, we need to determine
the cluster boundaries automatically. One possibility would be to threshold the potentials as in [26],
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but we prefer not to introduce any additional instance-specific parameters to the algorithm. A natural
alternative is to find a set of nodesS that contains the source nodei and minimises someweighted
Cheeger ratio [6, p. 35]:

hw(S) =

∑

j∈S

∑

k∼j,k 6∈S w(j, k)
∑

j∈S

∑

k∼j w(j, k)
, (16)

wherew(j, k) is an appropriate nonnegative edge weight function. In our experiments, edge weights
determined asw(j, k) = (|u(j) − u(k)|)−1 seem to lead to natural clusters in different types of
networks, and are also intuitively appealing. In Figure 6, we have indicated the nodes selected by
this heuristic as belonging to each cluster by circles with thick boundaries. The minimisation of the
cluster cost function (16) was here performed by a local simulated annealing process similar to the
one used in [24, 25].

5 Conclusions and Further Work

In this paper we presented two methods to help analyse properties of large nonuniform graphs: a uni-
form sampling construction and a local method for clustering based on approximate Fiedler vectors.
According to our experiments, both approaches are well-behaving and conform to the intuition that
arises from their analytical properties.

As future work, we will look into more general constructionsfor rapidly mixing uniform MCMC
samplers; one direction might be to combine the regular random walk with alternative slow uniform
samplers, such as those of [3]. Accuracy of the estimates of natural network network characteristics
based on our pseudo-uniform samples should also be assessed. Both the sampling and the clustering
algorithms should also be extended to work on directed graphs, in order to deal with interesting
natural networks such as the WWW.
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