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Abstract

We propose efficient algorithms for two key tasks in the asialpf large nonuniform net-
works: uniform node sampling and cluster detection. Ourmeim technique is based on aug-
menting a simple, but slowly mixing uniform MCMC sampler ki regular random walk in or-
der to speed up its convergence; however the combined MCM® chthen only sampled when
itis in its “uniform sampling” mode. Our clustering algdmih determines the relevant neighbour-
hood of a given node in the network by first estimating the Fiedler vector of a Ehitet matrix
with « fixed at zero potential, and then finding the neighbourhood tifat yields a minimal
weighted Cheeger ratio, where the edge weights are detednbiy differences in the estimated
node potentials. Both of our algorithms are based on loaajedations, i.e. operations on the full
adjacency matrix of the network are not used. The algoritarasevaluated experimentally us-
ing three types of nonuniform networks: Dorogovtsev-GaltdMendes “pseudofractal graphs”,
scientific collaboration networks, and randomised “cavegraphs”.

1 Introduction

Two key tasks in the analysis of large natural networks, siscbommunication networks and social
networks, are obtaining aniform sample of nodes in the network, and determining the densely inter-
connectedlusters of nodes. Uniform sampling is important e.g. for the purpokestimating basic
network characteristics such as the degree distributi@rage path length, and clustering coefficient;
it is, however, nontrivial to obtain a truly uniform randomnsple of nodes from a large, practically
unobtainable network such as the WWW [13]. In this paper, uggsest an efficient approach for
uniform sampling of undirected nonuniform graphs, usingmstruction that combines two types of
random walks to produce one that mixes rapidly and still eogws to the uniform distribution over
the set of nodes.

We also discuss the problem of clustering nonuniform neisdre. the recognition of subgraphs
where the nodes have relatively many edges among themseidelatively few edges connecting
them to the rest of the graph [16]. For large nonuniform neksioan effective clustering algorithm
should scale at most linearly in the size of the graph, andnfamy applications, a method for deter-
mining the local cluster of a given source node will suffi@her than a complete clustering of the
entire graph. In this paper, we use approximate Fiedleovetb determine potentials around a given
source node, and then use the potentials to stochastieddlgtsan appropriate local cluster.
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In Section 2, we present the MCMC construction for unifornnpling, and in Section 3 discuss
experiments performed with the method. Section 4 discussas clustering with Fiedler vectors.
Finally, Section 5 summarises the work and addresses idinsdor further research.

2 An Efficient MCMC Method for Uniform Sampling

Let G = (V,E) be a connected symmetric simple graph witmodes andn edges. We denote
the neighbourhood of nodei € V by I'(i) = {j € V | (i,j) € E}, and thedegree of i by
deg(i) = |I'(z)]. It is well known (and easy to verify) that thregular random walk onG, with
transition probabilities

1
—, if 7 € '(9),
pij = deg(i) (@ (1)
0, otherwise,
satisfies theletailed balance conditions
Vi,jGV:ﬂi-pij:ﬂ'j-pji (2)

with respect to the distribution; = deg(z)/2m, and hence this distribution, which we denote by
TRw, IS Stationary w.r.t. the walk [5, 15]. K7 is non-bipartite, themrgy is the unique equilibrium
distribution. The chain (1) mixes rapidly, but the probapiof obtaining any given nodeas a sample
from it is proportional to the degree gfand thus not uniform unle<s is regular.

A straightforward approach to uniform sampling [1] would tbeaugment the nodes 6f with
virtual self-loops so as to make them all have the same defreemax;cy deg(i). This method,
however, requires knowing the target degieshead of time, and such global information is typically
not available in many of the interesting applications. Mae¥, this process may create some conver-
gence anomalies in the case of highly nonuniform gragh#nother alternative [13, 22] would be
to postprocess a sample obtained from walk (1) in order topemsate for the bias in the stationary
distribution Trw. Such postprocessing, however, requires sarpgori information on the number
of burn-in steps needed before one can obtain a represengatinple fromrgryy, and the burn-in time
again depends on the global structureof

We take a complementary approach, by starting from a somewbee slowly mixing random
walk onG with a provably uniform stationary distribution, and therctelerate” this walk by coupling
it together with the chain (1); however we only sample the loimed process whenitis in the “uniform
sampling” mode.

More precisely, we take as our starting point the followilegree-balanced random walk oGz,
where the transition probabilities from nodeare inversely proportional to the degree of the target
nodej:

1
, if 7 €e'(9),
deg(i) - deg(j) . jer
pii=41- > —— ifj=i, 3)
eI deg(i) - deg(5)
0, otherwise.

It is simple to verify that the transition probabilitigs; given by (3) satisfy the detailed balance
conditions with respect to the uniform distributionp (/) = 1/n, and hencerp is a stationary
distribution for this chain. (Note that in this case the éftum distribution is unique for anys
with more than two nodes, since any nadeith non-leaf neighbours has a self-loop probability of

pi =1 —(1/deg(j)) > 0.)



Mixing side

Figure 1: A diagram of the mirror construction for two nodeand;j on the sampling side and their
mirror nodes’ andj’ on the mixing side.

However, this degree-balanced walk avoids visiting théntdggree nodes (“hubs”) of a nonuni-
form graph, and so mixes relatively poorly in the graphs obniaterest to us. A related problem is
that the self-loop probabilities;; are rather large for nodes with many high-degree neighblours

In order to construct a sampling method that produces unifodistributed samples but avoids
the convergence problems of chain (3), we propose the foipeonstruction (cf. Figure 1): for each
node: € V we create a “mirror node’. The original nodes € V are called the “sampling side”
and the mirror nodeg € V' are the “mixing side” of the augmented graph’( = |V’| = n). We
continue to denote byleg(i) = deg(i’) the degree ot in the original graph G, i.e., ignoring the
added edges that connect the two sides.

The transition probabilities on the sampling side follovegh of the degree-balanced random
walk; on the mixing side, a regular random walk is mimickedwninor modifications. The exact
transition probabilities are defined as follows: tebe a parameter satisfying < ¢ < p;; for all
i € V — further restrictions om are discussed later in this section. Fix all the samplirgiixing
transition probabilitie;;s to e. On the sampling side, subtracfrom eachp;; and give all other
transition probabilities the values they would have in tegréde-balanced walk. On the mixing side,
denote the probability of moving back to the sampling siderfmodes’ by p;; = €. Letd be a
parameter (to be determined later) such that ¢, for all i/ € V’. Add to each node’ € V' a
self-loop with transition probability,;; = ¢ — €, and divide the remaining probability maks- §

evenly among the neighbours dfas in a regular random walk, i.e. assign; = (1 — )+~ for

deg(7)
eachj’ e T'(i) \ {i}.
We claim that the stationary distribution of sucleamnbination walk is a weighted combination
of the distributionsrp andnrw, such that am-fraction of the time the chain is in a state V', and
an(1 — «)-fraction of the time is spent withif:

a-mp(z) =a- i fe=ieV,

me() = { (1— ) mrw(z) = (1—a) - 90 if gz =i c V" “

To verify the claim it suffices to check the detailed balanoaditions (2) for the above construc-
tion. There are three cases to consider: (i) transitionkimwit’, (ii) transitions withinV’, and (iii)
transitions betweel’ andV’.

The first two cases are essentially the same as those catbintethe settings of the balanced
and regular random walks, respectively: only some constzefficients &, (1 — «), (1 — 0)) appear
on both sides of the balance equations and cancel out. Tégdeus with the third type: here

These problems could be alleviated somewhat by usindvitteopolis-Hastings chain proposed in [3], withp;; =
min{1/d;,1/d;} for j € I'(i), instead of our degree-balanced chain. However, as #itestrin Figure 5 below, both
chains have qualitatively similar convergence behaviand the arithmetic of coupling to the regular random walk is
somewhat simpler for the degree-balanced version.



Figure 2: The DGM pseudo-fractal grapts (adapted from [8]). Newly added nodes are drawn
white.

the requirement is that any transitions between a nodeV and its mirror node’ € V' satisfy
ﬂc(i) * Dyt = ﬂc(i/) *Ditiy |e that

a—-e= (1- a)dz%i)

These equations can be satisfied by solving for the transfifobabilitiese, once values for the
parametersx ande have been chosen:

L forallieV. (5)

* €

2mae 2m «
e =T . —  _edeg(i)! 6
S ol —a)dee ~ n d—ay el ©
Where%m = k is the average degree of nodes(in As a probability,¢; must be at most one for all
i € V. This yields an additional restriction on the parameter
n 11—« 1 11—«
< —. ) = — . ) f r ” ) . 7

€S 5 — deg(1) A deg(i), forallieV (7)
Sincedeg(i) > 1 for all : € V, it suffices to choose < l?:—“jTa. For a (nonuniform) graph,
averaging over a regular random walk will quickly give a pigsly biased estimate fak that can
be used to boune; note that many nonuniform networks have a modest averagreeledespite the
existence of a few extremely high-degree nodes.

In an implementation of the above sampler one does not ofseomrake explicit copies of the
node sets, but rather uses a state flag that indicates whidaf gansition probabilities should be
applied. All the transition probabilities are locally contpble at each nodg if the parameters
anda are given, and the degrees of both the néoded its neighbours i"'(i) are accessible. The
dependency of, on the parameter and the average degrée= 2m/n can be resolved by simply

always setting;, = @ which implicitly fixes the relationship
egl
a 2m 1
20 S 8
l—a n -« k+1 ®)

This implies by equation (7) the conditien< 1, which is a natural restriction on By this choice
of €, we also have < e for all i € V, and may thus set = ¢, completing the definition of the
transition probabilities on the mixing side.

3 Sampling experiments

In this section, we report on experiments using the abovepkangonstruction on both artificial
networks with known properties (so called “pseudofractapfs” of Dorogovtsev, Goltsev, and
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Figure 3: The coverage achieved by the regular (top row) bedegree-balanced walks at each step
for DGM graphs of generations 5, 7, and 9. In each plot, 50geddent walks are shown.
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Figure 4: The coverage achieved by the combination randadinamea ninth generation DGM graph
for different values ot.

Mendes [8]), and scientific collaboration networksrof= 503 andn = 5,909 mathematicians and
computer scientists, with total number of coauthorships- 828 andm = 13,510 respectively (sub-
graphs of the network constructed in [25]).

In the deterministic scale-free network generation motiBlavogovtsev, Goltsev, and Mendes [8]
(based on [2]), the initial grapf_; = (V_1, E_1) consists of two nodesandw and an edgév, w).

At each generatiom > 0 of the generative process, per each efige)) € E;_1, a new nodew

is added together with edgés, w) and (v, w). (See Figure 2 for an illustration of the first five
generations.) The resulting graptis have an almost constant average degrek; 6f 4(1 + 371),
yet a power-law distribution of node degrees according;td) ~ 3**1d~ 10823,

As a first indication of the behaviour of various samplingt&gies, Figures 3 and 4 present plots
of the percentage of graph covered versus length of the i@ip)GM networksGs, G7 and Gy.
Note that the combination walks sample fewer nodes duringll @f a given length than the others,
as it does not record samples during the mixing phase. Thietey of the degree-balanced method
to unwanted locality is quite evident in Figure 3.

In another set of experiments, we estimated the rate of cgemee of the above discussed random
walks to their respective stationary distributionsr s the distribution of a random walk aftesteps,
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Figure 5: Values ofA¢s(t) for the regular, degree-balanced, combination, and Melisplastings
(“minimum-balanced”) random walks over a set of 15,000 patelent walks in two DGM graphs and
two collaboration graphs, all starting from a fixed nodetjafly chosen at random. Note logarithmic
scale on the time axis.

andr is its stationary distribution, thital variation distance between the two is defined as [5, 15]:

A) = mae mu(S) — 7(9)] = 5 3 Imu(i) — (i) ©
- eV

We estimate this quantity by runnirgindependent instantiations of a given random walk starting
from the same start node, and looking at the state distoibsitat timet of the instantiations. For
definiteness, let us consider the case where the statiofgripdtion is uniform, withm (i) = 1/n

for all © € V. Denoting byf;(i) the number of instantiated walks that are visiting nodétimet, a
conservative estimate of the total variation distancenag tican then be computed as [4]:

Aesft) =1 — Zn: min { J téi) : l}. (10)

X n
=1

Figure 5 shows the time evolution of these estimates foregalar, balanced, combination ran-
dom walks and the Metropolis-Hastings walk of [3] in DGM dnapof generations five and seven,
and for the two collaboration graphseof= 503 andn = 5,909 scientists. The stationary distribution
for the regular walk is taken to be the degree-proportiongtridution 7ry, and for the three other
walks the uniform distributionrp. For the combination walk, only those instantiated walle tire
on the sampling side at any given time step are included inpatimg the corresponding estimate.
The plots illustrate quite graphically (particularly ireticase of the heavy-tailed DGM graphs) that
the convergence behaviour of the combination walk is catalily similar to that of the regular walk,
whereas both the pure balanced walk and the Metropolisitdgstvalk converge noticeably more
slowly.?

2There is some residual small-sample bias in the estimates$iawe computed the size of this effect and will indicate
these calculations in the extended version of this paper.



4 Local clustering by approximate Fiedler vectors

Another key task in the analysis of natural networks is figdifusters of densely interconnected
nodes. Most of the existing literature on this topic (sed f@dba survey) considers the task of finding
an idealcomplete clustering of a given graph. This is, however, often unnemgsand in any case
infeasible in the case of really large networks such as theWV\{T'he fastest complete algorithms
can currently deal with networks containing up to maybe ati@gions of nodes [14, 19, 20].) In
many cases it would be sufficient to know the relevant clustex given source node, or maybe a
group of nodes. Some recent papers, such as [24, 26] addsedkia more limited goal.

In [24, 25], a parameter-free local clustering quality meass optimised using simulated anneal-
ing: the computational effort needed to obtain the clustargiven source node is quite modest (and,
most importantly, independent of the total size of the neltly@nd the results seem to be quite robust
w.r.t. variations in the annealing process. In [26], thestdung task is formulated as a problem of
determining voltage levels in an electrical circuit withittnesistances corresponding to the edges of
the original network. The source node is fixed at a high veltzmjue and a randomly selected target
node at low voltage; an approximate solution to the Kirchlegiiations is computed by an iteration
scheme, and the eventual cluster of the source node is dderedsist of those nodes whose volt-
ages are “close” to the high value. The possibility that Hrgdt node is accidentally selected from
within the natural cluster of the source node is decreasekpyating the experiment some small
number of times and determining cluster membership by ritgjeote.

This electrical circuit analogue appears to have been figggested in [20], where however the
aim is to compute a complete clustering of a given networkdnsiering all possible source-target
pairs, and for each pair solving the Kirchhoff equationsctiydby explicitly inverting the correspond-
ing Laplacian matrix. (We note that since solutions of thecKhoff equations can be decomposed in
terms of the eigenvectors of the circuit graph Laplaciais, tfiethod is a variant of the much-studied
spectral partitioning techniques [9, 10, 11, 12, 17, 21, Z3listributed algorithm for spectral anal-
ysis, possibly suited for large networks, is proposed i.[A&Fundamental reference is [6].)

We continue the analogue of representing cluster memlipevsiiies as physical potentials, but
eliminate the unnatural choice of random “target” nodes hgiflg our model oniffusion in an
unbounded medium rather than an electrical closed-circuit model. Thus, weHhésource nodé at
a constant potential level, which we choose to be zero, andafineigenvector. corresponding to
the smallest eigenvalug, of the respectiv®irichlet matrix, i.e. the Laplacian matrix of the network
with row and columni removed [6, 7]. This eigenvectar, called the(Dirichlet-)Fiedler vector of
the graph, will now (hopefully) assign potential valueg) close to O for nodeg that are within
a densely interconnected neighbourhood of the source fyadal larger values for nodes that have
sparser connections to the source. (The method obviousrgkses to starting from a larger set of
source nodes, if desired.)

Since we wish to develop a local algorithm, and not deal with full adjacency matrix of the
network, we approach the computation of the Fiedler veateia minimising the Rayleigh quo-

tient [6, 7]:

= g Do) — (k)
u Zj u(4)? ’
where the infimum is computed over vectarsatisfying the Dirichlet boundary condition of having
u(i) = 0 for the source node(s). (The notatipn- k is an abbreviation fofj, k) € E.) Furthermore,
since we are free to normalise our eventual Fiedler vectanydength we wish, we can constrain the
minimisation to vectors: that satisfy, sayl|u||3 = n = |V|. Thus, the task becomes one of finding a

(11)



Figure 6: Three local Fiedler clusters in a caveman grapt3sfribdes.

vectory that satisfies:
w = argmind S ~ (k) | (i) =0, fulf =n}. 12
j~k

We can solve this task approximately by reformulating trguirement that|u||3 = n as a “soft
constraint” with weight: > 0, and minimising the objective function

1 . c .
f) = 53 ) —uk)® + 5 - (n =D u()?) (13)
J~k J
by gradient descent. Since the partial derivativeg bave the simple form

of
du(j)

= = u(k)+ (deg(j) — ) - u(j), (14)

k~j

the descent step can be computed locally at each node, bagefdmonation about the-estimates at
the node itself and its neighbours:

i (j) = w(i)+6- (D alk) — (deg(s) — ) - aly)), (15)

k~j

whered > 0 is a parameter determining the speed of the descent. Asguhahthe natural cluster of
nodei is small compared to the size of the full network, the norgaion||u||3 = n entails that most
nodes;j in the network will haveu(j) ~ 1. Thus the descent iterations (15) can be started from an
initial vector a that hasig (i) = 0 for the source nodéandig (k) = 1 for all k # i. The estimates
need then to be updated at tihe- 0 only for those nodeg that have neighbourd ~ j such that
ﬂtfl(k‘) < 1.

Figure 6 represents the results of such approximate Figdlgor calculations in the case of a
slightly randomised “caveman” network of 138 nodes, stgrtirom three different source nodes.
For visual effect, the nodes are colour-coded so that ddduc®correspond to small approximated
Fiedler potential values, with the source node in each calsei@d black. The parameter values used
in this case were = 0.1, § = 0.05.

Visually, the clusters in e.g. Figure 6 look reasonable;ractice, however, we need to determine
the cluster boundaries automatically. One possibility ydae to threshold the potentials as in [26],



but we prefer not to introduce any additional instance-$ijgggarameters to the algorithm. A natural
alternative is to find a set of nodésthat contains the source nodand minimises someeighted

Chegger ratio [6, p. 35]: ‘
D jes 2okmjigs W k)
ZjeS ZkNj w(j, k)

wherew(j, k) is an appropriate nonnegative edge weight function. In speements, edge weights
determined asv(j, k) = (Ju(j) — u(k)|)~! seem to lead to natural clusters in different types of
networks, and are also intuitively appealing. In Figure @, lvave indicated the nodes selected by
this heuristic as belonging to each cluster by circles witbkt boundaries. The minimisation of the
cluster cost function (16) was here performed by a local Eted annealing process similar to the
one used in [24, 25].

ha(S)

(16)

5 Conclusions and Further Work

In this paper we presented two methods to help analyse piregpef large nonuniform graphs: a uni-
form sampling construction and a local method for clustebiased on approximate Fiedler vectors.
According to our experiments, both approaches are welddia and conform to the intuition that
arises from their analytical properties.

As future work, we will look into more general constructidios rapidly mixing uniform MCMC
samplers; one direction might be to combine the regularaandalk with alternative slow uniform
samplers, such as those of [3]. Accuracy of the estimatestofal network network characteristics
based on our pseudo-uniform samples should also be ass8stbhdhe sampling and the clustering
algorithms should also be extended to work on directed graphorder to deal with interesting
natural networks such as the WWW.
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