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Abstract. We consider the problem of finding, for a given 2D pattern of coloured tiles, a minimal set
of tile types self-assembling to this pattern in the abstract Tile Assembly Model of Winfree (1998). This
Patterned self-Assembly Tile set Synthesis (PATS) problem was first introduced by Ma and Lombardi
(2008), and subsequently studied by Göös and Orponen (2011), who presented an exhaustive partition-
search branch-and-bound algorithm (briefly PS-BB) for it. However, finding the true minimal tile-sets
is very time consuming, and the algorithm PS-BB is not well-suited for finding small but not necessarily
minimal solutions.
In this paper, we modify the basic partition-search framework by using a heuristic to optimise the order
in which the algorithm traverses its search space. We find that by running several parallel instances
of the modified algorithm PS-H, the search time for small tile sets can be shortened considerably.
Additionally, we suggest a new approach, answer set programmin (ASP), to the PATS problem. We
also introduce a method for computing the reliability of a given tile set, i.e. the probability of its error-
free self-assembly to the desired target tiling, based on Winfree’s analysis of the kinetic Tile Assembly
Model (1998). We present empirical data on the reliability of tile sets found by the PS-BB and PS-H
algorithms and find that also here the PS-H algorithm constitutes a significant improvement over the
PS-BB method.

1 Introduction

Self-assembly of nanostructures templated on synthetic DNA has been proposed by several authors as a
potentially ground-breaking technology for the manufacture of next-generation circuits, devices, and ma-
terials [2, 8, 15, 16, 23, 24]. Also laboratory techniques for synthesizing the requisite 2D DNA template
lattices, many based on Rothemund’s [18] DNA origami tiles, have recently been demonstrated by many
groups [4, 10, 17, 25].

In order to support the manufacture of aperiodic structures, such as electronic circuit designs, these
DNA templates need to be addressable. When the template is construed as a tiling from a family of DNA
origami (or other kinds of) tiles, one can view the base tiles as being “coloured” according to their different
functionalities, and the completed template implementing a desired colour pattern. Now a given target
pattern can be assembled from many different families of base tiles, and it is clearly advantageous to try to
minimise the number of tile types needed and/or maximise the probability that they self-assemble to the
desired pattern, given some model of tiling errors.

The task of minimising the number of DNA tile types required to implement a given 2D pattern was iden-
tified by Ma and Lombardi [13], who formulated it as a combinatorial optimisation problem, the Patterned
self-Assembly Tile set Synthesis (PATS) problem. Ma and Lombardi proposed two greedy heuristics for
solving the task, and subsequently Göös and Orponen [7] presented an exhaustive partition-search branch-
and-bound algorithm for it.

While the search algorithm of Göös and Orponen [7], which we denote here as PS-BB, is somewhat
successful in finding minimal tile sets for small patterns, the size of the search space grows so rapidly that
it seems to hit a complexity barrier at approximately pattern sizes of 7 × 7 tiles. In practice one would of
course not need to find an absolutely minimal tile set for a given pattern, but any reasonably small solution
set would suffice. However, when the algorithm PS-BB fails to find a minimal solution, it does not seem to
yield very good approximate solutions either.



In the present work, we approach the task of finding small but not necessarily minimal tile sets for a
given 2D pattern by tailoring the basic partition-search framework of Göös and Orponen [7] towards this
goal. Instead of a systematic branch-and-bound pruning and traversal of the complete search space, we apply
a heuristic that attempts to optimise the order of the directions in which the space is explored. The new
algorithm, denoted PS-H, is described in more detail below in Section 3.1.

It is well known in the heuristic optimisation community [6, 11] that when the runtime distribution of
a randomised search algorithm has a large variance, it is with high probability more efficient to run several
independent short runs (“restarts”) of the algorithm than a single long run. Correspondingly, we investigate
the efficiency of the PS-H search method for a number of parallel executions ranging from 1 to 32, and note
that indeed this number has a significant effect on the success rate of the algorithm in finding small tile sets.
These results are discussed below in Section 3.3.

In addition to the partition search algorithms, we explore the PATS problem using the artificial intel-
ligence technique of answer set programming (ASP) [9], which has proved highly successful in other hard
combinatorial search problems. In Section 3.2 we outline the procedure for transforming the PATS problem,
as well as the given target pattern, to an ASP logic program. We present results on the performance of this
approach in Section 3.3 and find that, for patterns with a known small minimal solution, the ASP approach
indeed works very well in discovering that solution.

Given the inherently stochastic nature of the DNA self-assembly process, it is also of interest to assess
the reliability of a given tile set, i.e. the probability of its error-free self-assembly to the desired target tiling.
In Section 4.2 we introduce a method for estimating this quantity, based on Winfree’s analysis of the kinetic
Tile Assembly Model [22]. In Section 4.3 we present empirical data on the reliability of tile sets found by
the PS-BB and PS-H algorithms and find that also here the PS-H algorithm with parallel runs constitutes
a significant improvement over the PS-BB method.

2 The PATS Problem and the PS-BB Algorithm

In this Section, we first briefly review the abstract Tile Assembly Model (aTAM) from [19, 22], then sum-
marise the PATS problem from [13], and finally outline the PS-BB algorithm from [7].

2.1 The Abstract Tile Assembly Model

Let D = {N,E, S,W} be the set of four functions Z2 → Z2 corresponding to the cardinal directions (north,
east, south, west) so that N(x, y) = (x, y + 1), E(x, y) = (x+ 1, y), S = N−1 and W = E−1. Let Σ be a set
of glue types and s : Σ×Σ → N a glue strength function such that s(σ1, σ2) = 0 if σ1 6= σ2. A tile type
t ∈ Σ4 is a quadruple (σN (t), σE(t), σS(t), σW (t)) and a (tile) assembly A is a partial mapping from Z2

to Σ4. A tile assembly system (TAS) T = (T,S, s, τ) consists of a finite set T of tile types, an assembly
S called the seed assembly, a glue strength function s and a temperature τ ∈ Z+ (we use τ = 2).

Now consider a TAS T = (T,S, s, τ). Assembly A produces directly assembly A′, denoted A →T A′
if there exists a site (x, y) ∈ Z2 and a tile t ∈ T such that A′ = A∪ {((x, y), t)}, where the union is disjoint,
and ∑

D

s(σD(t), σD−1(A(D(x, y))) ≥ τ ,

where D ranges over those directions in D for which A(D(x, y)) is defined. That is, a new tile can be adjoined
to an assembly A if the new tile shares a common boundary with tiles that bind it into place with total
strength at least τ .

Let →∗T be the reflexive transitive closure of →T . A TAS T produces an assembly A if S →∗T A.
Denote by Prod T the set of all assemblies produced by T . A TAS T is deterministic if for any assembly
A ∈ Prod T and for every (x, y) ∈ Z2 there exists at most one t ∈ T such that A can be extended with t at
site (x, y). Then the pair (Prod T ,→∗T ) forms a partially ordered set, which is a lattice if and only if T is
deterministic. The maximal elements in Prod T , i.e. the assemblies A for which there do not exist any A′



satisfying A →T A′, are called terminal assemblies. Denote by Term T the set of terminal assemblies of
T . If all assembly sequences

S →T A1 →T A2 →T · · ·

terminate and Term T = {P} for some assembly P, we say that T uniquely produces P.

2.2 The PATS Problem

Let the dimensions m and n be fixed. A mapping from [m] × [n] ⊆ Z2 onto [k] defines a k-colouring or a
k-coloured pattern. To build a given pattern, we start with boundary tiles in place for the west and south
borders of the m by n rectangle and keep extending this assembly by tiles with strength-1 glues.

Definition 1 (Pattern self-Assembly Tile set Synthesis (PATS) [13]).

Given: A k-colouring c : [m]× [n]→ [k].
Find: A tile assembly system T = (T,S, s, 2) such that

P1. The tiles in T have bonding strength 1.
P2. The domain of S is [0,m]×{0}∪{0}× [0, n] and all the terminal assemblies have

the domain [0,m]× [0, n].
P3. There exists a colouring d : T → [k] such that for each terminal assembly A ∈

Term T we have d(A(x, y)) = c(x, y) for all (x, y) ∈ [m]× [n].

The problem of finding minimal solutions (in terms of |T |) to the PATS problem has been shown to be
NP-hard in [14]. Without loss of generality, we can consider only such TASs T that have tile sets in which
every tile participates in assembling some terminal assembly of T .

In the literature, the seed assembly of a TAS is often taken to be a single seed tile [1, 19] whereas we
consider an L-shaped seed assembly. The boundaries can always be self-assembled using m+ n+ 1 different
tiles with strength-2 glues, but we wish to make a clear distinction between the complexity of constructing
the boundaries and the complexity of the 2D pattern itself.

2.3 The PS-BB Algorithm

The partition-search branch-and-bound (PS-BB) algorithm for the PATS problem proposed in [7], and based
partly on ideas from [13], performs an exhaustive search in the lattice of partitions of the ambient rectangle
[m]× [n]. For each candidate partition P , the algorithm executes a polynomial-time test (details omitted in
the present summary) to see if it is constructible, i.e. whether it can be generated by some deterministic
tile system T . If so, then the algorithm proceeds to consider coarsenings of P — these correspond to smaller
tile systems — if not, then the algorithm backtracks. The search starts with the trivial partition which places
each of the m ·n sites in different classes, corresponding to an initial tile set that contains a distinct tile type
for each of the tile sites in [m]× [n].

Let us now review some of the basic notions of the PS-BB algorithm in more detail. In the following, a
PATS instance is assumed to be given by a fixed k-coloured pattern c : [m]× [n]→ [k].

The search space. Let X be the set of partitions of the set [m]× [n]. Partition P is coarser than partition
P ′ (or P ′ is a refinement of P ), denoted P v P ′, if

∀p′ ∈ P ′ : ∃p ∈ P : p′ ⊆ p .

Now, (X,v) is a partially ordered set, and in fact, a lattice. Note that P v P ′ implies |P | ≤ |P ′|.
The colouring c induces a partition P (c) = {c−1({i}) | i ∈ [k]} of the set [m] × [n]. In addition, since

every (deterministic) solution T = (T,S, s, 2) of the PATS problem uniquely produces some assembly A, we
associate with T a partition P (T ) = {A−1({t}) | t ∈ A([m]× [n])}. Here, |P (T )| = |T | in case all tiles in
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Fig. 2. (a) Partition A. (b) A partition M that is a
refinement of A with |M | = 7 parts.

T are used in the terminal assembly. With this terminology, the condition P3 in the definition of the PATS
problem is equivalent to requiring that a TAS T satisfies

P (c) v P (T ) .

A partition P ∈ X is constructible if P = P (T ) for some deterministic TAS T with properties P1
and P2. Now the PATS problem can be rephrased using partitions as the fundamental search space.

Proposition 1. A minimal solution to the PATS problem corresponds to a partition P ∈ X such that P is
constructible, P (c) v P and |P | is minimal.

Schematically, the PS-BB algorithm performs an exhaustive top-to-bottom search in the lattice (X,v)
as illustrated in Figure 1. The algorithm also involves several bounding heuristics for pruning the branches
of the search, but discussion of these is omitted here for lack of space (see [7]).

For example, the 2-coloured pattern in Figure 2(a) defines a 2-part partition A. The 7-part partition M
in Figure 2(b) is a refinement of A (A vM) and in fact, M is constructible (see Figure 3(b)) and corresponds
to a minimal solution of the PATS problem defined by the pattern A.

Determining constructibility. For lack of space, we shall omit the polynomial-time algorithm for testing
whether a given partition P is constructible (see [7]), except for the mention of the following key notion.

Definition 2. Given a partition P of the set [m] × [n], a most general tile assignment (MGTA) is a
function (“tile map”) f : P → Σ4 such that

A1. f is consistent: when sites in [m] × [n] are assigned tile types according to f , any two adjacent sites
have matching glues along their common side.

A2. f is minimally constrained: any tile map g : P → Σ4 satisfying A1 satisfies also:1

f(p1)D1 = f(p2)D2 =⇒ g(p1)D1 = g(p2)D2 ,

for all partition classes p1, p2 ∈ P and directions D1, D2 ∈ D.

As an illustration, a most general tile assignment f : I → Σ4 for the initial partition I = {{a} | a ∈
[m]× [n]} is presented in Figure 3(a) and a MGTA for the partition of Figure 2(b) in Figure 3(b).

1 For brevity we write f(p)D instead of σD(f(p)).
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Fig. 3. (a) A MGTA for the constructible initial partition I (with a seed assembly in place). (b) Finished assembly
for the pattern from Figure 2a. The tile set to construct this assembly is given in (c).

Given a partition P ∈ X and a tile map f : P → Σ4, tile map g : P → Σ4 is obtained from f by
merging glues a and b if for all (p,D) ∈ P ×D we have

g(p)D =

{
a, if f(p)D = b

f(p)D, otherwise
.

A most general tile assignment for a partition P ∈ X can be found as follows. One starts with a map
f0 : P → Σ4 that assigns to each tile edge a unique glue type. Next, one considers all pairs of adjacent sites
in [m]× [n] in some order and makes their common sides matching by merging the corresponding glues. This
process generates a sequence of tile maps f0, f1, f2, . . . , fN = f and terminates after N ≤ 2mn steps.

Lemma 1. [7] The above algorithm generates a most general tile assignment.

3 New Algorithms for Small Tile Sets

3.1 The PS-H Algorithm

Whereas the pruning heuristics of the PS-BB algorithm try to reduce the size of the search space in a
“balanced” way, our new PS-H algorithm attempts to “greedily” optimise the order in which the coarsenings
of a partition are explored, in the hope of being directly lead to close-to-optimal solutions. Such opportunism
may be expected to pay off in case the success probability of the greedy exploration is sufficiently high, and
the process is restarted sufficiently often, or equivalently several runs are explored in parallel.

The basic heuristic idea is to try to minimise the effect that a merge operation has on other partition
classes than those which are combined. This can be achieved by prefering to merge classes already having
as many common glues as possible. In this way one hopes to extend the number of steps the search takes
before it runs into a conflict. For example, when merging classes p1 and p2 such that f(p1)N = f(p2)N
and f(p1)E = f(p2)E , the glues on the W and S edges of all other classes are unaffected. This way, the
search avoids proceeding to a partition which is not constructible after the merge operation is completed.
Secondarily, we prefer merging classes which already cover a large number of sites in [m]× [n]. That is, one
tries to grow a small number of large classes instead of growing all the classes at an equal rate.

Definition 3. Given a partition P and a MGTA f for P , the number of common glues between classes
p, q ∈ P is defined by the function G : P × P → {0, 1, 2, 3, 4},

G(p, q) =
∑
D∈D

g(f(p)D, f(q)D),

where g(σ1, σ2) = 1 if σ1 = σ2 and 0 otherwise, for σ1, σ2 ∈ Σ.



Except for the bounding function, the PS-BB algorithm allows an arbitrary ordering {pi, qi}, i = 1, . . . , N ,
for the children (coarsenings) P [pi, qi] of a constructible partition P .2 In the PS-H algorithm, we choose the
ordering using the following heuristic. First form the set

H := {{p, q} | p, q ∈ P, p 6= q,∃k ∈ P (c) : p, q ⊆ k}

of class pairs of same colour, and then repeat the following process until H is empty.

H1. Set K := H.
H2. Optimise the number of common glues:

K := {{p, q} ∈ K |G(p, q) ≥ G(u, v) for all {u, v} ∈ K}.

H3. Optimise the size of the larger class:

K := {{p, q} ∈ K | max{|p|, |q|} ≥ max{|u|, |v|} for all {u, v} ∈ K}.

H4. Optimise the size of the smaller class:

K := {{p, q} ∈ K | min{|p|, |q|} ≥ min{|u|, |v|} for all {u, v} ∈ K}.

H5. Pick some pair {p, q} ∈ K at random and visit the partition P [p, q].
H6. Remove {p, q} from H:

H := H r {{p, q}}.

The PS-H algorithm also omits the pruning process utilised by the PS-BB algorithm. That way, it aims to
get to the small solutions quickly by reducing the computational resources used in a single merge operation.

Since step H5 of the heuristic above leaves room for randomisation, the PS-H algorithm performs differ-
ently with different random seeds. While some of the randomised runs may lead to small solutions quickly,
others may get sidetracked into worthless expanses of the solution space. We make the best of this situation
by running several instances of the algorithm in paraller, or equivalently, restarting the search several times
with a different random seed. The notation PS-Hn denotes the heuristic partition search algorithm with n
parallel search threads. The solution found by the PS-Hn algorithm is the smallest solution found by any of
the n paraller threads.

3.2 Answer Set Programming

Answer Set Programming (ASP) [9] is a declarative logic programming paradigm for solving difficult com-
binatorial search problems. In ASP, a problem is described as a logic program, and an answer set solver is
then used to compute stable models (answer sets) for the logic program.

ASP can be applied also to the PATS problem. In the following we give a brief desctiption on how to
transform the PATS problem to an ASP program using the lparse [21] language. First, we define constant
for each position of the grid [m]× [n], each colour, each available tile type and each available glue type. After
that, a number of choice rules is introduced to associate a tile type with each positions of the grid, a glue
type with each of the four sides of the tile types and a colour with each of the tile types. We also use choice
rules to make the glues of every pair of adjacent tiles to match and to make the tile system deterministic,
i.e. to ensure that every tile type has a unique pair of glues on its west and south edges.

We also compile the target pattern to a set of rules that associate every position of the grid with a colour.
This description of the pattern is combined with the above-described program and given to an answer set
solver, which then outputs a tile type for each position of the grid, given that such a solution exists. The
program is run several times using an increasing number of available tile and glue types, until a solution is
found.
2 The notation P [p, q] denotes the partition obtained from P by merging classes p, q ∈ P into one.
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Fig. 4. (a) The 32 × 32 Sierpinski triangle pattern. (b) The 32 × 32 binary counter pattern. (c) The 23 × 23 “tree”
pattern. (d) A CMOS full adder design that induces a 15-colour 20× 10 pattern.

3.3 Results

The Partition Search Algorithms. Our implementation of the PS-H algorithm is based on the DFS
implementation of the PS-BB algorithm used in [7], and we provide results on the PS-Hn algorithm for
n = 1, 2, 4, 8, 16 and 32. We consider several different finite 2-coloured input patterns, two of which are
classical examples of structured patterns: the discrete Sierpinski triangles of sizes 32× 32 (Figure 4(a)) and
64× 64, and the binary counter of size 32× 32 (Figure 4(b)). Furthermore, we introduce a 2-coloured “tree”
pattern of size 23 × 23 (Figure 4(c)) as well as a 15-coloured pattern of size 20 × 10 based on a CMOS
full adder design (Figure 4(d), [3]). The Sierpinski triangle and binary counter patterns are known to have
minimal solution of four tiles, while the minimal solutions for the tree pattern and the full adder pattern are
unknown.

Figure 5 presents the evolution of the “current best solution” as a function of time for the (a) 32 × 32
and (c) 64 × 64 Sierpinski patterns. To allow fair comparison, Figure 5(b) and 5(d) present the same data
with respect to the total processing time taken by all the parallely running instances. The experiments were
repeated 21 times and the median of the results is depicted. In 37% of all the runs conducted, the PS-H
algorithm is able to find the optimal 4-tile solution for the 32×32 Sierpinski pattern in less than 30 seconds.
The similar percentage for the 64 × 64 Sierpinski pattern is 34% in one hour. Remarkably, the algorithm
performs only from 1030 to 1035 and from 4102 to 4107 merge steps before arriving at the optimal solution
for the 32 × 32 and 64 × 64 patterns, respectively. In other words, the search rarely needs to backtrack. In
contrast, the smallest solutions found by the PS-BB algorithm are 42 tiles, reached after 1.4 · 106 merge
steps, and 95 tiles, reached after 5.9 · 106 merge steps.
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Fig. 5. Evolution of the smallest tile set found as a function of time. The time axis measures (a), (c) wall clock time
and (b), (d) wall clock time multiplied by the number of parallel instances.

In Figure 6 we present the corresponding results for the 32 × 32 binary counter and the 23 × 23 tree
patterns. The size of the smallest solutions found by the PS-H32 algorithm were 20 (cf. 307 by PS-BB) and
25 (cf. 192 by PS-BB) tiles, respectively. In the case of the tree pattern, the parallelisation brings significant
advantage over a single run. Finally, Figures 7(a)-7(b) show the results for the 20× 10 15-colour CMOS full
adder pattern. In this case, the improvement over the previous PS-BB algorithm is less clear. The PS-H32

algorithm is able to find a solution of 58 tiles, whereas the PS-BB algorithm gives a solution of 69 tiles.

Answer Set Programming. We used the answer set solver Smodels [21] to run our experiments. We
consider two patterns having a minimal solution of four tiles, the Sierpinski triangle and the binary counter.
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Fig. 6. Evolution of the smallest tile set found as a function of time. The time axis measures (a), (c) wall clock time
and (b), (d) wall clock time multiplied by the number of parallel instances.

The program was executed for pattern sizes 1×1, 2×2, 3×3, . . . , 100×100. The running time of the program
is presented in Figure 7(c) for the Sierpinski triangle and in Figure 7(d) for the binary counter. Smodels
was able to find the minimal solution for the 100× 100 Sierpinski triangle in little over 5 hours and for the
100×100 binary counter in less than two hours. The running time grows rather consistently with the pattern
size, but interestingly, there are a few notable exceptions. The running times for the 49 × 49 and 55 × 55
Sierpinski patterns, not shown in the Figure, are close to 40 hours and close to 10 hours, respectively. That
is clearly out of line with other proximate pattern sizes. For the binary counter patterns of size 29 × 29,
35× 35 and 60× 60 Smodels was not able to find a solution in less than 48 hours. Thus, the running times
for those instances are also missing from the Figure.
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Fig. 7. (a)-(b) Evolution of the smallest tile set found for the 20 × 10 full adder pattern as a function of time. The
time axes measure wall clock time and wall clock time multiplied by the number of parallel instances. (c)-(d) Running
time of Smodels for the Sierpinski triangle and the binary counter patterns.

Based on the above results, the ASP approach performs well when considering patterns with a small
minimal solution. However, the running time seems to increase dramatically with patterns having a larger
minimal solution. This renders our ASP program less applicable in the real world compared to the partition
search algorithms.



4 Reliability of Tile Sets

4.1 The Kinetic Tile Assembly Model

In this Section, we assess the reliability of the tile sets produced by the PS-BB and PS-H algorithms, using
the kinetic Tile Assembly Model (kTAM), which has been proposed by Winfree [22] as a kinetic counterpart
of the aTAM. Several variants of the kTAM exist, see e.g. [5, 20], however the main elements are similar.

The kTAM simulates two types of reactions, each involving an assembly, i.e. a crystal structure consisting
of several merged tiles, and a tile: association of tiles to the assembly, and dissociation.3 In the first type of
reaction, any tile can attach to the assembly at any position (up to the assumption that tile alignment is
preserved), even if only a weak bond is formed; the rate of this reaction is proportional to the concentration
of free tiles in the solution. In the second type of reaction, any tile can detach from the assembly, with a rate
which is exponentially correlated with the total strength of the bonds between the tile and the assembly.
Thus, tiles which are connected to the assembly by fewer or weaker bonds, i.e. incorrect “sticky end” matches,
are more prone to dissociation than those which are strongly connected by several bonds (well paired sticky
end sequences).

In the following, we follow the notations of [22]. For any tile t, the rate constant rf of the association
(forward) reaction of t to an existing assembly is given by

rf = kf [t] /sec,

where [t] is the concentration in solution of free tiles of type t and kf is a temperature dependent parameter.
In case of DNA double-crossover (DX) tiles, this parameter is given by the formula

kf = Afe
−Ef/RT ,

where Af = 5 · 108 M/sec, Ef = 4000 cal/mol, R = 2 cal/mol/K, and T is the temperature (in K).
In the case of dissociation (reverse) reactions, for a tile t which is connected to the assembly by a total

bond strength b, the rate constant rr,b is given by the formula

rr,b = kfe
∆G0

b/RT ,

where ∆G0
b/RT is the standard free energy needed in order to break the b bonds. In case of DX tiles, as the

glues of the tiles are implemented using 5-base long single-stranded DNA molecules, ∆G0
b can be estimated

using the nearest-neighbor model [12] to

∆G0
b = e5b(11−

4000
T )+3 /sec.

Moreover, b can range with integer values from 0 to 4, corresponding to the cases when the tile is totally
erroneously placed in the assembly (no bond connects it to the crystal) and when the tile is fully integrated
into the assembly (all its four sticky ends are correctly matched), respectively.

In order to easily represent and scale the system, the free parameters involved in the formulas of the rate
constants rf and rr,b are re-distributed into just two dimensionless parameters, Gmc and Gse, where the first
is dependent on the initial tile concentration, while the second is dependent on the assembly temperature:

rf = k̂fe
−Gmc rr,b = k̂fe

−bGse

where, in case of DX tiles, k̂f = e3kf is adjusted in order to take into consideration possible entropic factors,
such as orientation or location of the tiles. The previous parameter re-distribution is made possible as a
result of the assumption made in the initial kTAM [22] that all tile types are provided into the solution in
similar concentrations, and that the consumption in time of the free monomers is negligible compared to the
initial concentration.
3 Note that interactions between two tiles, such as forming a new assembly, as well as interactions between two

assemblies, are not taken into consideration in the initial model [22]. However, they are studied in some of the later
developed variants of the kTAM, see e.g. [20].



4.2 Computing the Reliability of a Tile Set

The probability of errors in the assembly process can be made arbitrarily low, at the cost of reduced speed,
by choosing appropriate physical conditions [22]. However, we would like to be able to compare the error
probability of different tile sets producing the same finite pattern, under the same physical conditions. Given
the amount of time the assembly process is allowed to take, we define the reliability of a tile set to be
the probability that the assembly process of the tile system in question completes without any incorrect tiles
being present in the terminal configuration. In this section, we present a method for computing the reliability
of a tile set, based on Winfree’s analysis of the kTAM and the notion of kinetic trapping in [22].

We call the West and South edges of a tile its input edges. First, we derive the probability of the correct
tile being frozen at a particular site under the condition that the site already has correct tiles on its input
edges. Let M1

ij and M2
ij be the number of tile types having one mismatching and two mismatching glue

types, respectively, between them and the correct tile type for site (i, j) ∈ [m]× [n]. Now, for a deterministic
tile set T , the total number of tiles is |T | = 1 +M1

ij +M2
ij for all i and j. Given that a site has correct tiles

on its input edges, a tile is correct for that site if and only if it has two matches on its input edges.
In what follows, we assume that correct tiles are attached at sites (i− 1, j) and (i, j − 1). The model for

kinetic trapping [22] gives four distinct cases in the situation preceding the site (i, j) being frozen by further
growth: (E) An empty site with “off-rate” of |T |rf . (C) The correct tile with off-rate of rr,2. (A) A tile with
one match, with off-rate of rr,1. (I) A tile with no matches, with off-rate of rr,0. Additionally, we have two
sink states FC and FI, which represent frozen correct and frozen incorrect tiles, respectively. The rate of a
site being frozen is equal to the rate of growth r∗ = rf − rr,2. Let pS(t) denote the probability of the site
being in state (S) after t seconds for all S ∈ {E,C,A, I, FC, FI}. To compute the frozen distribution, we
write rate equations for the model of kinetic trapping:

Mp(t) :=


−|T |rf rr,2 rr,1 rr,0 0 0
rf −rr,2 − r∗ 0 0 0 0

M1
ijrf 0 −rr,1 − r∗ 0 0 0

M2
ijrf 0 0 −rr,0 − r∗ 0 0
0 r∗ 0 0 0 0
0 0 r∗ r∗ 0 0




pE(t)
pC(t)
pA(t)
pI(t)
pFC(t)
pFI(t)

 = ṗ(t),

where p(0) = [1 0 0 0 0 0]T . To compute the probability of the site being frozen with the correct tile,
pFC(∞), we make use of the steady state of the related flow problem [22]:

Mp(∞) = [1 0 0 0 pFC(∞) pFI(∞)]T = ṗ(∞),

which gives us a system of linear equations. This system has a single solution, namely

pFC(∞) =
1

r∗+rr,2

1
r∗+rr,2

+
M1

ij

r∗+rr,1
+

M2
ij

r∗+rr,0

= Pr(C(i, j) |C(i− 1, j) ∩ C(i, j − 1)),

where C(i, j) denotes the correct tile being frozen on site (i, j).
The assembly process can be thought of as a sequence of tile addition steps (a1, a2, . . . , aN ) where ak =

(ik, jk), k = 1, 2, . . . , N denotes a tile being frozen on site (ik, jk). Due to the fact that the assembly process
of the tile systems we consider proceeds uniformly from south-west to north-east, {(ik−1, jk), (ik, jk−1)} ⊆
{a1, a2, . . . , ak−1} for all ak = (ik, jk). We assume that tiles elsewhere in the configuration do not affect the
probability. Now we can compute the probability of a finite-size pattern of size N assembling without any
errors, i.e. the reliability of that pattern:

Pr(correct pattern) = Pr(C(a1) ∩ C(a2) ∩ · · · ∩ C(aN ))
= Pr(C(a1))Pr(C(a2) |C(a1)) · · ·Pr(C(aN ) |C(a1) ∩ C(a2) ∩ · · · ∩ C(aN−1))

=
∏
i,j

Pr(C(i, j) |C(i− 1, j) ∩ C(i, j − 1)) .



We have computed the probability in terms of Gmc and Gse. Given the desired assembly speed, we want
to minimise the error probability by choosing values for Gmc and Gse appropriately. If the assembly process
is allowed to take t seconds, the needed assembly speed for an m×n pattern is approximately r∗ =

√
m2+n2

t .

Pr(C(i, j) |C(i− 1, j) ∩ C(i, j − 1)) =
1

r∗+rr,2

1
r∗+rr,2

+
M1

ij

r∗+rr,1
+

M2
ij

r∗+rr,0

≈ 1
1 +M1

ij
r∗+rr,2
r∗+rr,1

.

For small error probability and 2Gse > Gmc > Gse,

Pr(¬C(i, j) |C(i− 1, j) ∩ C(i, j − 1)) ≈M1
ij

r∗ + rr,2
r∗ + rr,1

≈M1
ije
−(Gmc−Gse) =: M1

ije
−4G .

From
r∗ = rf − rr,2 = k̂f (e−Gmc − e−2Gse)

we can derive
Gse = −1

2
log(e−Gmc − r∗

k̂f
) .

Now we can write 4G as a function of Gmc:

4G(Gmc) = Gmc −Gse = Gmc +
1
2

log(e−Gmc − r∗

k̂f
) .

We find the maximum of 4G, and thus the minimal error probability, by differentation:

Gmc = − log(2
r∗

k̂f
) .

Thus, if the assembly time is t seconds, the maximal reliability is achieved at

Gmc = − log(2
√
m2 + n2

tk̂f
), Gse = −1

2
log(
√
m2 + n2

tk̂f
) .

4.3 Results

In this Section, we present results on computing the reliability of tile sets using the method we presented in
Section 4.2. We assume the assembly process takes place in room temperature (298 K). As a result, we use
the value kf = Afe

−Ef/RT ≈ 6 · 105 /M/sec for the forward reaction rate.
Figure 8(a) shows the reliability of the 4-tile solution to the Sierpinski pattern as a function of pattern

size, using five distinct assembly times. As is expected, the longer the assembly time, the better the reliability.
We also applied the method for computing the reliability to the tile sets found by the partition search

algorithms. Our results show that the heuristic described in Section 3.1 improves not only the size of the
tile sets found, but also the reliability of those tile sets. This can be easily understood by considering the
following: The reliability of a tile set is largely determined by the number of tile types that have the same
glue as some other tile type on either one of their input edges. Since the heuristic prefers merging class pairs
with common glues, it reduces the number of such tile types effectively.

Figures 8(b), 8(c) and 8(d) present the reliability of the tile sets found by the PS-H and PS-BB algorithms
for the 32 × 32 Sierpinski triangle pattern, using assembly times of one hour, one day (24 hours) and one
week, respectively. The runs were repeated 100 times; the mean reliability of each tile set size as well as the
10th and 90th percentiles are shown.

As for reliability, we expect a large set of runs of the PS-BB algorithm to produce a somewhat decent
sample of all the possible tile sets for a pattern. Based on this, large and small tile sets seem to have a high
reliability while medium-size tile sets are clearly more unreliable on average. This observation reduces the
problem of finding reliable tile sets back to the problem of finding small tile sets. However, it is important
to note that artifacts of the algorithm may have an effect on the exact reliability of the tile sets found.



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000  3500  4000

R
e
lia

b
ili

ty

Pattern size

4-tile solution

1 s
30 s

3 min
15 min

1 h

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000

R
e
lia

b
ili

ty

Solution size

One hour assembly time

PS-BB 10%, 90% fractiles
PS-BB mean

PS-H 10%, 90% fractiles
PS-H mean

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000

R
e
lia

b
ili

ty

Solution size

One day assembly time

PS-BB 10%, 90% fractiles
PS-BB mean

PS-H 10%, 90% fractiles
PS-H mean

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000

R
e
lia

b
ili

ty

Solution size

One week assembly time

PS-BB 10%, 90% fractiles
PS-BB mean

PS-H 10%, 90% fractiles
PS-H mean

(d)

Fig. 8. (a) Reliability of the minimal tile as a function of pattern size for the Sierpinski pattern, using several different
assembly times. (b)-(d) Reliability of the solutions for the 32× 32 Sierpinski pattern found by the PS-H and PS-BB
algorithms, allowing assembly time of one hour, one day and one week.

5 Conclusion

We have presented a new algorithm, PS-H, for addressing the problem of finding small tile sets that have
a high probability of self-assembling a given target pattern. Our results show that for most patterns, the
new algorithm is able to find significantly smaller solutions in a reasonable amount of time compared to the
earlier PS-BB algorithm. Also the reliability of the tile sets produced by the PS-H algorithm clearly exceed
that of the tile sets produced by the PS-BB algorithm. We have also suggested the use of a novel approach,
ASP, to solve instances of the PATS problem.
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