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We present an overview of some of the work done in the past ten years concerning the
power of recurrent neural network models as general computational devices.

1. INTRODUCTION

The two main streams of neural networks research consider neural networks either as a
powerful family of nonlinear statistical models, to be used in for example pattern recogni-
tion applications [6], or as formal models to help develop a computational understanding
of the brain [10]. Historically, the brain theory interest was primary [32], but with the
advances in computer technology, the application potential of the statistical modeling
techniques has shifted the balance.!

The study of neural networks as general computational devices does not strictly follow
this division of interests: rather, it provides a general framework outlining the limitations
and possibilities affecting both research domains. The prime historic example here is
obviously Minsky’s and Papert’s 1969 study of the computational limitations of single-
layer perceptrons [34], which was a major influence in turning away interest from neural
network learning to symbolic Al techniques for more than a decade. A less dramatic,
but at least as significant example is Kleene’s 1956 paper [25] presenting an algebraic
characterization of the computations feasible in finite McCulloch—Pitts neural networks
— and thereby introducing the notion of regular expressions and their connection to
finite automata. An interesting recent instance of an ambitious research programme
aspiring to connect computation theory to real biology is Wolfgang Maass’s work on the
computational capabilities of pulse coded neural networks [29, 30].

In this overview, we focus on the computational power of recurrent (cyclic) neural
networks. The computational study of feedforward (acyclic) networks has intimate con-
nections to the classical theory of Boolean circuit complexity [53], and is surveyed briefly
in the articles [36, 40|, and at greater depth in the books [41, 43, 52].

2. BASIC NOTIONS AND RESULTS

With the brief exception of Section 6 on continuous-time models, we shall be concerned
with finite discrete-time recurrent networks. Such a network consists of n computational
units or neurons, indexed as 1,...,n, with interconnections described by an architecture
graph. Each edge in the architecture graph, leading from neuron 7 to 7, is labeled with the
corresponding interconnection weight w;;. An important special case are the symmetric
or Hopfield networks, whose architecture is given by an undirected graph with symmetric

LOf course, these research orientations are not mutually exclusive, but coexist and interact in produc-
tive ways.



weights w;; = wj; for every pair of neurons ¢, j. At each discrete time instant ¢ =0, 1,. ..,

every neuron j in the network has a well-defined state y(-t)

7, which in a binary-state network
comes from the set {0,1}, and in an analog-state network from the interval [0, 1].

We shall mostly be concerned with the synchronous fully parallel dynamics, under
which the evolution of the global network state y® = (¢\” ..., y®) € [0, 1]" is determined
for all discrete time instants ¢ = 0,1, ... as follows. At the beginning of the computation,
the network is placed in an initial state y(©) which may include an external input. At
discrete time ¢ > 0, each neuron j = 1,...,n collects its inputs from the states yft) € [0,1]
of incident neurons ¢. Then its excitation §; is computed as a weighted sum of its inputs,

{-“J(.t) =3, wj,-yft) (j = 1,...,n). This sum may include a local bias term wjy, which
can formally be viewed as a weighted input derived from a constant-state unit y(()t) =1,
t > 0. At the next instant ¢t + 1, an activation function o is applied to fj(-t) for all neurons

j=1,...,nin order to determine the new network state y*t!) as follows:

Y = o (gj(f)) j=1,...,n.

In binary neural networks the activation function is the step or Heaviside function

] 0, for{ <0,
0(5)_{1, for £ >0,

and in analog networks the activation function is some continuous sigmoid, such as o =
tanh, or the saturated-linear function

0, for & <0,
o§)=4¢ & for0<é<,
1, for&>1.

Alternative computational dynamics are also possible. For example, under sequential
mode only one neuron updates its state at each time instant. Also various block-parallel
dynamics can be considered, but we do not discuss them here (see [12, 15]).

A fundamental property of symmetric networks is that their dynamics are constrained
by Liapunov, or “energy” functions. A Liapunov function E is a bounded real-valued
function defined on the state space of a network, whose values F (y(t)) are properly

decreasing along any non-constant (productive) computation path y© y® y@& = Tt
follows from the existence of such a function F that the network state must in any
computation converge towards some simple attractor described by the respective minimum
value of E.

Consider, for example, a sequentially updated binary symmetric network with zero
biases w;o = 0 and feedbacks w;; = 0. (Nonnegative feedbacks are actually necessary in
symmetric sequential nets to guarantee the Liapunov property.) Without loss of gener-
ality [41], one may also assume non-zero excitations 51(;) #0,7=1,...,n. It was then
observed by Hopfield [20] (see also [11, 16]) that the following energy function

1 n n
E (y(t)) =Et) =~ > wi 'y,
j=1li=1

has the property that E(t) < E(t — 1) — 1 for every update step ¢ > 1 of a productive
computation. Moreover, the energy function is bounded, i.e. |E(t)| < W, where

1 n n
W= 522|wﬁ|

j=14i=1



is the weight of the network. Hence, the computation must converge to a stable state
where no more neuron state changes occur, within O(W) update steps. An analogous
result can be shown for synchronous dynamics in binary nets; however in this case the
network may also converge to a limit cycle of two alternating states [8, 13, 42].

It also follows from these considerations that if the weights w;; in a symmetric network
are polynomially bounded in the number of units n, then the network converges in poly-
nomial time. Conversely, it can be shown that networks with exponentially large weights
may indeed require an exponential time to converge. This was first shown in [17] for syn-
chronous updates (a simplified construction appears in [14]), and in [19] for a particular
sequential update rule. (For a different sequential rule the result actually follows already
from [17] or [14] by a fairly simple construction.) Finally, a network requiring exponential
time for convergence under any sequential update rule was demonstrated in [18].?

3. FINITE BINARY-STATE NETWORKS

It has been known since the early work of McCulloch and Pitts [32] and Kleene [25]
that finite binary-state neural networks are equivalent to finite automata for processing
sequentially given inputs. A somewhat interesting question here is how efficient are neural
nets as representations of finite automata. The elementary constructions [33] yield a
network of about 2m binary-state neurons for simulating an m-state automaton, and it
was proved only relatively recently in [1] that at least ((mlogm)'/3) neurons are really
required in the worst case.t The upper bound was further improved to O(m'/?) neurons
in [22, 23], and it was shown that under some additional constraints this upper bound is
tight.

The case of sequence processing by symmetric binary-state networks was considered
in [48, 51|, where it was shown that this model is properly weaker than finite automata,
and the respective subclass of the regular languages, so called Hopfield languages was
characterized. More precisely, it was shown in [48, 51] that a regular set of sequences
S € {0,1}* can be recognized by a symmetric binary-state neural network, if and only if
for every pair of sequences u,v € {0,1}*, and for every two-symbol sequence ab € {0,1}?,
either u(ab)*v € S or u(ab)*v ¢ S holds uniformly for all sufficiently large values of k.

4. SEQUENCES OF BINARY-STATE NETWORKS

In finite automaton -type models, the input is presented to the network as a sequence of
pulses, so that a single net is capable of processing arbitrary long input sequences. Another
convention, closer to many applications’ point of view, is to load the input initially to
a set of designated input neurons, and then let the network run unintervened until it
(possibly) converges, at which point the output is read from a set of designated output
neurons (in the case of Boolean function computations, a single output neuron). To be
able to process arbitrary input sizes, this formulation requires that the network grows with
increasing input size, i.e., that we actually consider nonuniform sequences of networks,

2The manuscript [18] remains unpublished, but the construction is reviewed in [37]. The result can
also be shown to follow, although in a somewhat convoluted way, from the more general theory of “PLS-
completeness” for local optimization problems [44].



one for each input size. If arbitrary changes to the network structure are possible, then
this model is fundamentally different from finite automata.

Since the computations of a binary recurrent net of n neurons converging in ¢ update
steps may be “unwound” into a binary feedforward net containing n - ¢ neurons, poly-
nomial time computations by polynomial-size binary recurrent nets can be simulated by
polynomial-size binary feedforward nets. It then follows from standard results [5, 41, 53]
that the class of Boolean functions computable by such networks coincides with the class
P/poly of functions computable by “nonuniform” Turing machines in polynomial time.
This is basically the standard complexity class P, with a certain technical proviso intro-
duced in [24] to account for changing the machine structure for different input sizes.

More interesting results can be obtained concerning unbounded time computations by
binary recurrent networks. A folklore result, apparently first formulated in print in [28],
states that polynomially space-bounded Turing machines can be simulated by polynomial-
size binary recurrent nets. The idea of the construction is as follows: one starts with the
standard simulation of a polynomially space-bounded Turing machine computation by a
feedforward net of polynomial width and exponential depth [5]. A moment of thought
shows that all the exponentially many layers of neurons in the resulting net are in fact
similar, and so the net can be “folded” upon itself to create a recurrent net of polynomial
size and exponential convergence time.> More precisely, one can show that the class of
Boolean functions computed by polynomial size binary recurrent nets coincides with the
nonuniform complexity class PSPACE /poly considered in [4, 24].

One might think that because of the Liapunov property discussed in Section 2, sym-
metric recurrent networks would be weaker computational devices than general asymmet-
ric ones. For instance, symmetric networks cannot produce arbitrary oscillatory behavior,
which seems to be an essential characteristic of general computation, and is also trivially
created in asymmetric networks.

However, it was shown in [38] that infinite oscillations are in a sense the only feature of
general-purpose (digital) computation that cannot be reproduced in symmetric recurrent
networks. Even polynomial-size symmetric binary networks compute exactly the func-
tions in the class PSPACE/poly, and when restricted to polynomially-bounded weights
(implying polynomial-time convergence as discussed in Section 2), they compute exactly
the functions in the class P/poly.

The proof in [38] proceeds by showing that an arbitrary converging computation of an
asymmetric binary network of n neurons can be simulated by a symmetric binary network
of O(n?) neurons. (The overhead was later reduced to O(n) in [50].) The crucial obser-
vation is that because the simulated network is binary and deterministic, any converging
computation on it must terminate within 2" steps. (Otherwise the network repeats a
configuration and goes into a nonterminating cycle.)

The core of the simulation is then the construction of an n-bit symmetric clock net-
work (a simulated binary counter) that, using O(n) neurons, produces a sequence of 2"
well-controlled oscillations before it converges. This sequence of clock pulses is used to
drive the rest of the network, where each asymmetric edge is simulated by a symmetric,
clock-latched constant-size subnetwork. (In the improved construction in [50], individual
neurons, instead of edges, are simulated directly, leading to the indicated improvement in
the size overhead.)

3An even more elementary way to see this result is to appeal to the intuition that a polynomially
space-bounded Turing machine can be simulated by a polynomial amount of digital “hardware”, and this
hardware can be implemented using a polynomial number of binary neurons.



The crucial clock construction in [38, 50] is the same as was used in [14] to establish
the exponentially slow convergence of symmetric binary networks under synchronous fully
parallel updates. The analogous, but more complicated counter network for arbitrary
sequential updates [18] was exploited in [38] to prove that even under sequential updates,
symmetric binary networks have the same computational capabilities as the other models
considered.

5. DISCRETE-TIME ANALOG NETWORKS

An interesting result proved by Siegelmann and Sontag in [46, 47] shows that if one
moves from binary-state to analog-state neurons, then arbitrary Turing machines may be
simulated by single, finite recurrent networks. The original construction in [46] required
1058 saturated-linear neurons to simulate a universal Turing machine, but this has later
been improved to at least 114 neurons [27], and even to 25 neurons [23].

The starting point in these constructions, and also in many other recent simulations
of Turing machines by finite-dimensional dynamical systems (e.g. [3, 7, 27, 35|), is the
well-known correspondence of Turing machines and two-stack pushdown automata. The
Turing machine tape is first represented as two opposing stacks, and then the contents of
these stacks are encoded in some manner as two real numbers, further implemented as the
states of two analog neurons. The other units in the network are then used to implement
the stack operations and the finite-state control of the simulated Turing machine.

A natural question arises again concerning the computational power of symmetric
analog networks. A Liapunov-function argument applies here too to show that under
fully parallel updates such networks converge to a limit cycle of length at most two [26].
In this case the only possibility for a general Turing machine simulation on a single
network would be to exploit finer and finer distinctions among a sequence of network
states converging to a limit cycle. Such a simulation seems to be tricky at best, if possible
at all.

A more reasonable approach is to augment the network with an external clock that
produces an infinite sequence of binary pulses, thus providing it with an “energy source”
for e.g. simulating an asymmetric analog network similarly as in [37]. Indeed, it is shown
in [50] that the computational power of analog Hopfield nets with an external clock is the
same as that of asymmetric analog networks.

The computational power of discrete-time analog networks is further discussed in the
book [45]. However, the theoretical fascination of this topic is tempered by the practical
observation that simulating arbitrarily long computations on a single finite network re-
quires arbitrary-precision real number calculations, and these are in practice unavoidably
corrupted by noise. In fact, it is shown in [9, 31] that any small amount of noise reduces
the computational power of analog recurrent networks back to that of finite automata.

6. CONTINUOUS-TIME NETWORKS

In a continuous-time network, discussed for instance by Hopfield in [21], the dynamics of

the network state y( = (ygt), ..,y®) € [0,1]" is determined for every real t > 0 by the
following system of differential equations, with the initial network state y(0) providing



the initial conditions:

%(t) = —y;(t) +0(§() = —y;(t) +o (iwﬁyi(t)) j=1.....n

=0

Similar Liapunov-function arguments as in the case of the other network types can be
applied to prove the convergence of symmetric continuous-time networks [21].

Because of the simultaneous evolution of the neuron states, the dynamics of continuous-
time networks are quite difficult to control. Nevertheless, it was shown in [39] that asym-
metric continuous-time networks based on the saturated-linear activation function can
simulate asymmetric binary-state networks with a linear size overhead, and in [49] that
the same holds also for symmetric continuous-time networks with respect to converging
computations. These results establish that also polynomial-size continuous-time networks
have the full computational power of PSPACE/poly for arbitrary interconnection weights
and P/poly for polynomially bounded weights. However, so far no upper bounds are
known for the power of continuous-time nets, so conceivably they could be even more
powerful than the corresponding binary models.
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