Nordic Journal of Computing (to appear)

COMPUTATIONAL COMPLEXITY OF NEURAL NETWORKS:
A SURVEY

PEKKA ORPONEN*
Department of Computer Science
P. O. Boz 26
FIN-00014 Unuwversity of Helsinki, Finland
E-mail: orponen@cs.helsinki.fi.

Abstract.

We survey some of the central results in the complexity theory of discrete neural
networks, with pointers to the literature. Our main emphasis is on the computa-
tional power of various acyclic and cyclic network models, but we also discuss briefly
the complexity aspects of synthesizing networks from examples of their behavior.

CR Classification: F.1.1 [Computation by Abstract Devices]: Models of
Computation—neural networks, circuits; F.1.3 [Computation by Abstract De-
vices]: Complexity Classes—complezily hierarchies

Key words: Neural networks, computational complexity, threshold circuits, asso-
clative memory

1. Introduction

The currently again very active field of computation by “neural” networks
has opened up a wealth of fascinating research topics in the computational
complexity analysis of the models considered. While much of the general
appeal of the field stems not so much from new computational possibilities,
but from the possibility of “learning”, or synthesizing networks directly from
examples of their desired input-output behavior, it is nevertheless important
to pay attention also to the complexity issues: firstly, what kinds of functions
are computable by networks of a given type and size, and secondly, what
is the complexity of the synthesis problems considered. In fact, inattention
to these issues was a significant factor in the demise of the first stage of
neural networks research in the late 60’s, under the criticism of Minsky and
Papert [65].

The intent of this paper is to survey some of the central results in the
complexity theory of neural network computation, as developed to date.
We give no proofs. The paper might be most profitably read in conjunction
with Tan Parberry’s earlier survey article [72]. which also gives the proofs of

* A preliminary version of this paper appears in Proc. of the 17th International Symp.
on Mathematical Foundations of Computer Science (Prag, Aug. 1992), Lecture Notes in
Computer Science 629, Springer-Verlag, Berlin, 1992, pp. 50-61.

Received December 1995.

2 PEKKA ORPONEN

T2 —
Y

Tn

Fig. 1: A formal neuron.

many of the most significant (semi-)elementary results. Our emphasis is at
some points slightly different from Parberry’s, and we also update his article
with some of the more recent developments. Other survey articles of related
topics, partially overlapping the present one, are [73, 96]. (At least two more
comprehensive books [74, 75] are also in preparation.) As a general introduc-
tion to neural networks theory, although mostly other than complexity as-
pects, the excellent textbook [40] can be recommended, and certain aspects
of computations in cyclic networks are covered in depth in [48]. The original
“PDP” books [86, 61] still make very inspiring reading, and many significant
original papers have been reprinted in the anthologies [6, 7]. Also, earlier
texts on threshold logic such as the comprehensive [66] contain a wealth of
material that has again become very relevant.

Finally, a caveat: this brief survey necessarily ignores many aspects of the
issues covered (e.g., average case vs. worst case results, different models of
learning, etc.) For further details, see the works listed in the Bibliography,
and the references therein.

2. Preliminaries

The neural networks literature abounds with seemingly very different neu-
ral models of computation, intended for different kinds of applications and
with different synthesis algorithms (learning rules). Luckily, from the point
of view of their computational capabilities, the number of fundamentally
different models is far fewer.

We may vaguely define a neural network to be any network-like model
of computation whose basic computational unit is some kind of a formal
neuron, as illustrated in Fig. 1. A neuron receives input signals z1,...,z,
from either other neurons or the outside environment. It computes its output
signal y by adding together the z;’s weighted by some internal weights w;,
possibly subtracting a bias or threshold term wq, and applying some transfer
function o to the result:

n
Yy = U(Z w;Tr; — ’wo).
J=1

COMPUTATIONAL COMPLEXITY OF NEURAL NETWORKS: A SURVEY 3

For simplicity and uniformity, we shall usually not distinguish between the
bias terms and the other weights. There are also more complicated models,
where either the combination of the input signals is not a simple summation,
or the neurons may have more complicated internal states, but we shall
not consider those models here. (In particular, we are ignoring the widely
researched models of cellular automata and automata networks; for uniform
treatments of neural and automata networks see [18, 30]).

In the most general case, all the parameters of the model — the weights
and the input and output signals — may be arbitrary real numbers, but
they may also be restricted to integral values, to reals or integers from
within some interval [—M, ..., M] (as in, e.g, [70]), or often just to integers
from {-1,1}, {0,1}, or {-1,0,1}.

The transfer function ¢ may be either a discrete step function:

0 ift<0
sgn(t):{ 1t >0,

or a smooth “sigmoid” such as
oft) = (14),

or possibly a piecewise linear or polynomial approximation of the latter.
(These forms of the functions can be used when the output signals are
restricted to the interval [0,1]. For different output intervals, the transfer
functions must be adjusted accordingly.) The transfer function may even be
stochastic, as in the Boltzrnann machine model [41, 1], where its behavior
moreover depends on a time-dependent “temperature” parameter T

Pr(or(t) = 1) = (1 + e /7).

Neurons with a step transfer function are commonly called perceptrons (a
name introduced by Rosenblatt in his seminal work [83]), or threshold gates
in the case of binary valued inputs. An important special type of threshold
gate is the majority gate, where all the weights equal 1, except the bias term,
which equals half the number of input lines.

A binary valued function defined on some set of points in the input space
and computable by a single perceptron is called linearly separable. The name
derives from the fact that a perceptron basically implements a hyperplane
in the input space, dividing the points with output 1 from the points with
output 0. A linearly separable function defined on the corners of a binary
hypercube (i.e., a Boolean function computable by a single threshold gate)
is called a threshold function.

A neural network can be either cyclic or acyclic, and the interconnections
between the neurons in a cyclic network may be either symmetric or asym-
melric. Denoting the weight given at neuron ¢ for the input signal coming
from neuron j by w;;, symmetricity means that w;; = wj;, for all neurons
1,7. A cyclic network is simple if w;; = 0 for all neurons ¢.

4 PEKKA ORPONEN

In a cyclic network, it is customary to call the neuron output signals their
states. In such a network, the update method for the states is of significance.
The updates may be continuous, in which case the behavior of the network
is described by a set of differential equations, or they may be discrete, in
which case the differential equations are replaced by iterated functions. We
shall here consider only discrete-time models, although the continuous ones
are also of considerable importance (for references, see [40]).

In a discrete-time cyclic network the updates may be synchronous, in which
case all the neurons are updated simultaneously in parallel, or asynchronous,
in which case the neurons are selected for updating one at a time in some
order. A global state ¥ of a cyclic network is stable if none of the neurons
would change its state in an update. (In matrix notation, o(WZ — @) = Z,
where W is the connection weight matrix and @ is the threshold vector.)
The collection of stable states of a network is independent of whether the
updates are performed synchronously or asynchronously.

Some well-known neural network models are the following (for more infor-
mation on these and other models, see [40, 53, 86]):

The backpropagation network. An acyclic network of neurons, usually of
bounded depth. In this model, typically all the parameters are ar-
bitrary real numbers, and the transfer function is a sigmoid such as

o(t)=(1+e)7L,

The Hopfield net. A symmetric, simple, fully connected cyclic network. Typ-
ically discrete-time, with neuron states 0/1 or —1/1, and a step transfer
function; but also the continuous-time version, with real-valued states
and a sigmoid transfer function, appears in the literature.

The Boltzmann machine. A stochastic version of the discrete-time Hopfield
net, with transfer function o7, where T is lowered to 0 during compu-
tation.

3. Acyclic nets

In the neural networks literature, the most powerful and commonly studied
acyclic network model is the backpropagation net, with arbitrary real num-
ber parameters and a sigmoid transfer function. At the other end of the scale
is the majority circuil where all the neurons are simple majority gates. An
important intermediate model is the threshold circuit or “multilayer percep-
tron”, where the weights may be arbitrary reals, but the input and output
signals are discretized to binary values by step transfer functions.

3.1 Computational power

We shall concentrate on using acyclic networks to compute (sequences of)
single-valued Boolean functions, i.e., mappings from {0,1}" to {0,1}, for
growing values of n. Since the simple majority circuits can strictly speaking

COMPUTATIONAL COMPLEXITY OF NEURAL NETWORKS: A SURVEY 5

only compute monotone functions, we shall asssume that a network gets as
input both the actual input bits zy,...,z, and their negations zq, ..., Z,.

In comparing different networks computing a given function, the important
parameters to consider are the size, depth and weight of a network, defined
respectively as the number of neurons, the length of a longest path from an
input point to an output neuron, and the sum total of the absolute values
of all the weights in the network. Because real number parameters may be
scaled at will, the weight measure really makes sense only for networks with
integer parameters.

The following result is fundamental ([67, 66]; for recent versions of the
proof, see [37, 42, 72, 73, 80]):

THEOREM 1. Any threshold function on n wvariables can be computed by a
threshold gate with integer weights w; such that |w;| < (n+1)"+t1/2 /27 for
allt=10,....n.

A converse to this was proved only very recently [37] (although weaker
versions of the converse have been known since the early 60’s, cf. [66, 68, 72]):
THEOREM 2. For infinitely many n, there are threshold functions on n vari-
ables whose compulation by a single threshold gate requires weights as large
as n"/? 2",

These theorems imply that polynomial size threshold circuits may be di-
vided in two subclasses: circuits whose weights are polynomially bounded,
and circuits whose weights are not polynomially bounded, but nevertheless
are representable in O(slogs) bits each, where s is the size of the circuit.
A polynomial size threshold circuit with small weights can be easily imple-
mented as a polynomial size majority circuit of the same depth [72], and a
polynomial size threshold circuit with large weights can be implemented as
a polynomial size majority circuit of at most twice the depth [26].

In analogy to the standard AND/OR/NOT circuit complexity classes ACF
and NC* [95], the following threshold, or equivalently majority circuit com-
plexity classes are defined for each k& > 0:

TCF = {functions computable by threshold circuits of
polynomial size and depth O(log" n)}.

It is quite easy to show that for all £ > 0,
ACF C TCF C NCFH,

Of these inclusions, only the inclusion of AC® in TCP is known to be proper.
This separation is witnessed by, e.g., the majority function, which is known
not to be in AC? [22, 98, 36, 95], but can of course be computed by a single
majority gate. It is at the moment quite conceivable that TC® = NC!,
although the general conjecture seems to be the opposite.

Polynomial size, bounded depth majority circuits are in fact surprisingly
powerful. All symmetric Boolean functions, as well as the comparison and
addition on two n-bit numbers can be computed by such networks in depth

6 PEKKA ORPONEN

2 (66, 72], the product of two n-bit numbers can be computed in depth 3 [92],
and analytic functions with a convergent rational power series (e.g., sin, cos,
exp, log, sqrt) can all be approximated in bounded depth [82] (cf. also [90]).
It is therefore of great interest to consider also the following fixed-depth
sublevels of the class TC® individually:

TCS = {functions computable by threshold circuits of
polynomial size and depth d},

—~0
TC,; = {functions computable by majority circuits of

polynomial size and depth d}.

(Some authors, e.g. [26, 91], use the notations LT, ﬁd, from “linear thresh-

—~0
olds”, for these classes.) It is shown in [26] that the classes TCy, TCY form
a hierarchy:

TC) € 1Y € TCy,,

for all d > 1. (For a constructive version of the proof, see [27].) Separat-
ing the levels of this hierarchy, as far as they are separate, is currently a
significant research task.

—0
That class TC, is properly contained in TCY follows from Theorem 2

—~0
above; and the proper containment of TCY in TC, follows from the well-
known fact [65] that the parity function cannot be computed by a single
threshold gate, but being a symmetric function, it can be computed by a
0
small majority circuit of depth 2. The classes TC, and TCY are separated

—0 —~0
by a result in [26]. The separation of TC, from TC; was first proved in [32].
The separating function is a generalization of parity called “inner product

mod 2”: .

ip2($1, PR PN) yn) = @(sz A yi)a
=1

where @ denotes the “exclusive or” operation. The proof in [32] basi-
cally consists in showing that the ipy function correlates only weakly with
any function computable by a threshold gate with polynomially bounded
weights, but strong correlation would be necessary for the function to be
computable by a small two-layer circuit of majority gates. (However, the
function could still conceivably be computable by a small two-layer circuit of
unbounded-weight threshold gates.) This important technique has recently
been simplified and used to prove new results in [26, 38, 84].

The separation of TTJS from 'f\Cg stands in contrast to the often-cited re-
sults in the neural networks literature [12, 21, 45] proving that two-layer
backpropagation nets with sigmoid transfer functions “suffice”, in the sense
of being capable of approximating arbitrary continuous functions. However,
the latter results are essentially analogous to the Boolean normal form the-
orems asserting the existence of a depth 2 representation for any Boolean

COMPUTATIONAL COMPLEXITY OF NEURAL NETWORKS: A SURVEY 7

function — albeit in almost all cases this representation is exponentially
large in the number of inputs [95].

Still, there could in principle be some representational efficiency to be
gained from using continuous instead of step transfer functions. This ques-
tion was studied in [60], where it was shown, under a reasonable definition
of what it means for a continuous-valued network to compute a Boolean
function, and very modest conditions on the continuous, nonlinear transfer
function o, that for all d > 1,

TC,(0) = TC,,

where TE}S(U) denotes the class of Boolean functions computable by poly-
nomial size, polynomial weight, depth d backpropagation nets with transfer
function o.

Also acyclic nets with stochastic transfer functions can be reduced, by
relatively standard complexity theory techmiques [76, 72], to the basic de-
terministic threshold circuit model. However, the argument showing the
existence of a deterministic circuit sequence corresponding to a sequence of
stochastic circuits is nonconstructive, and hence the resulting sequence is
potentially nonuniform (i.e., not describable by an effective algorithm).

3.2 Synthesis

The possibility of synthesizing neural networks from examples of their in-
put/output behavior is a central motivating factor for the field. Conse-
quently, many algorithms have been developed for solving this problem, be-
ginning with the celebrated “perceptron convergence procedure” [83, 65, 40]
for single perceptrons, and the more recent “backpropagation algorithm” [85]
for backpropagation nets. The problem may be precisely formulated in dif-
ferent ways, depending on how much of the network architecture is given as
input, and what precisely qualifies as a solution. The first complexity results
regarding the synthesis problem are due to Judd [46, 47], who proved that
the following version is NP-complete:

Threshold Circuit Loading. Given aset of pairs {(Z1,61),...,(Zm,bm)}
where each Z; € {0,1}" and each b; € {0,1}, and a directed acyclic graph,
is there an assignment of weights to the nodes in the graph, such that for
the function f computed by the resulting threshold circuit, f(Z;) = b; for
alle=1,...,m?

Judd’s proof depends quite significantly on the fact that also the network
architecture is given as part of the input in the problem. The result was
improved by Blum and Rivest [10], who showed that the loading problem
remains NP-complete even when restricted to the simple three-node network
structure presented in Fig. 2.

Still, the Blum/Rivest result leaves open the possibility that it is an arte-
fact of the fixed number of nodes in the architecture, and the way they

8 PEKKA ORPONEN

z1

z2

(-

In

Fig. 2: A three-node network.

T
CD: —’® _’

Fig. 3: A “cascade” two-node network.

are connected. Lin and Vitter [58] further proved that the loading problem
is NP-complete also for the “cascade” two-node architecture presented in
Fig. 3. Since any other two-node network can be obtained from the cascade
network by setting some weights to zero, the Lin/Vitter result also implies
that the following problem is NP-complete:

Threshold Circuit Minimization. Given a set of pairs {(Z1,01), ...,
(Zyn, b)}, where each @; € {0,1}" and each b; € {0,1}, and an integer K,
is there a threshold circuit of at most K neurons, such that for the function
[computed by the circuit, f(Z;) = b; forall i = 1,...,m?

It should be pointed out that the problem of whether a given set of in-
put/output pairs can be implemented by a single threshold gate can be
solved in polynomial time by linear programming techniques. (The require-
ments for correct loading can be written as a system of linear inequalities,
with the weights as unknowns. This system can then be solved by, e.g.,
some variant of the ellipsoid method [88].) However, the original perceptron
convergence procedure for solving this problem requires exponential time
in the worst case. (This follows from Theorem 2 above, as the procedure
changes the weights of a gate in fixed increments.)

Of course, in practical neural network synthesis, one is typically not in-
terested in finding the absolutely minimal circuit responding correctly to a
given set of examples; some circuit not too much larger than the minimum
would do just as well. However, Kearns and Valiant [50] have proved that
under cryptographic assumptions, it is intractable to find a bounded depth
threshold circuit implementing a given set of input/output pairs that is at
most polynomially larger than the minimal possible one.

COMPUTATIONAL COMPLEXITY OF NEURAL NETWORKS: A SURVEY 9

Interestingly, despite all these results on the synthesis of threshold cir-
cuits, the complexity of the learning problem in backpropagation nets with
continuous transfer functions still seems to be an open question.

4. Cyclic nets

4.1 Computational power

It has been known since the early work of McCulloch and Pitts [62] and
Kleene [51] (see also [64]) that finite asymmetric networks of threshold gates
are equivalent to finite automata'; and various infinitary analogs of neural
networks have recently been shown to be equivalent to Turing machines.
For the latter type of result, constructions using a potentially infinite net-
work are presented in [20, 35], and constructions using a finite network,
but real-valued neurons of arbitrary precision are presented in [35, 78, 89].
The construction in [89] is rather interesting, as there the required precision
grows only linearly in the space requirement of the simulated Turing ma-
chine, and only very simple “saturated linear” transfer functions are used.

In the McCulloch—Pitts—Kleene model and its extensions, the input is pre-
sented as a sequence of pulses to a net that is capable of processing arbitrary
long input sequences. Another convention, closer to the current applications’
point of view, is to load the input initially to a set of designated input neu-
rons, and then let the network run unintervened until it (possibly) converges,
at which point the output is read from a set of designated output neurons (in
the case of Boolean function computations, a single output neuron). This
formulation naturally requires that the network grow with increasing input
size, i.e., that we actually consider nonuniform sequences of networks, one
for each input size. If the only part of the network that changes is the set of
input neurons, then this model is computationally equivalent to the sequen-
tial input, uniform network model. However, if also changes in the network
structure are possible, then the situation is fundamentally different.

Since the computations of a cyclic net of size s converging in time ¢ may
be unwound into an acyclic net of size s - t, the class of Boolean functions
computed by polynomial size, polynomial time cyclic nets coincides with
the class P/poly of functions computed by polynomial size acyclic nets.
On the other hand, the class of functions computed by polynomial size
cyclic nets in unbounded time can be seen to equal the class PSPACE/poly
considered in [8, 49]. (The construction is actually quite simple: one starts
with the standard simulation of polynomial space bounded Turing machines
by acyclic nets of polynomial width and exponential depth [9]. A moment
of thought shows that all the layers of gates in the resulting net are in fact
similar, and so the net can be “folded” upon itself to create a cyclic net of
polynomial size and exponential convergence time. Parberry [72] attributes

! An interesting question here is how efficient is the representation of finite automata as
neural nets. It was shown recently in [3] that representing an automaton of n states may
require Q((nlogn)'/?) gates in the worst case.

10 PEKKA ORPONEN

this result to the unpublished report [57].) For approaches to computations
on nets of unbounded size, see [19, 20, 23, 24].

Concerning symmetric nets, the fundamental result is Hopfield’s [43] ob-
servation that a symmetric simple net using an asynchronous update rule
always converges. Hopfield’s result was based on defining an “energy” func-
tion on the global states of the network, such that in every permissible
update of a neuron state, the energy decreases. By a more careful consid-
eration of the energy function, the result was improved in [17] to show that
in a symmetric simple network of n neurons with integer weights w;;, the
convergence requires at most a total of

3 lwij| = O(n® - max|w;|)

— J
1< '

neuron state changes, under any asynchronous update rule. Under syn-
chronous updates, a similar time bound holds [28], but the network may
also converge to oscillate between two alternating states instead of a unique
stable state (see also [11]). Thus, in particular, networks with polynomially
bounded weights converge in polynomial time. On the other hand, networks
with exponentially large weights may indeed require an exponential time
to converge, as was first shown in [31] for synchronous updates (a simpli-
fied construction appears in [29]), and in [34] for a particular asynchronous
update rule. (For a different update rule the latter result actually follows
already from [31] or [29] by a fairly simple construction.) Finally, a network
requiring exponential time for convergence under any asynchronous update
rule was demonstrated in [33]. This result is now also known to follow
from the more general theory of “PLS-completeness” for local optimization
problems [87]. Related work appears in [11, 30].

Somewhat surprisingly, the very constrained convergence behavior of sym-
metric nets is not reflected in their computational power, at least not when
under synchronous updates. In this model, polynomial size symmetric nets
with unbounded weights are capable of computing all of PSPACE/poly, and
polynomial size symietric nets with polynomially bounded weights are ca-
pable of computing all of P/poly [71].

4.2 Synthesis

The most significant application areas for cyclic neural networks proposed
so far are associative (or error-correcting) memory, and solving combina-
torial optimization problems. For optimization applications, Hopfield and
Tank [44] suggested mapping a given instance of, say, a minimization prob-
lem to a symmetric network whose energy function encodes the relevant
costs and constraints, and then letting the network solve the problem by
converging to a (local) minimum of its energy. The idea is intriguing, but
so far the results have been mixed (cf. e.g. [97]). We shall not consider this
application area further here.

COMPUTATIONAL COMPLEXITY OF NEURAL NETWORKS: A SURVEY 11

For associative memory, the idea is to construct from a given set of binary
vectors I1,...,%, a cyclic network that has at least these vectors as its
stable global states, preferably so that when the network is initialized in
some state that is close to one of the vectors, #;, it will quickly correct itself
and converge to @;. The set of all vectors that are guaranteed to eventually
converge to a given Z; forms the atiraction domain of ¥;. The altraction
radius of Z; is the largest Hamming distance from within which all other
vectors are guaranteed eventually to converge to &;2.

A storage rule is an algorithm for constructing, from a given set of vectors
Z;, a cyclic net that stores those vectors, or at least a net that with high
probability stores most of the &; approximately correctly. The capacity of a
storage rule is, roughly speaking, the maximum number of random vectors
it can store with high probability, as a function of the number of neurons n
in the network. This notion can be made precise in several alternative ways,
depending on whether all the given vectors must be stored, whether they
need to be stored exactly, what is required of the attraction radii, etc.

Several different storage rules have been proposed and analyzed in the
literature. The two most prominent varieties are the outer product rule
popularized by Hopfield in [43] (but actually studied already in the 70’s
by Anderson [5], Kohonen [52], Nakano [69], and others), and the various
spectral or pseudoinverse algorithms discussed recently in [14, 77, 94] (and
in the 70’s in at least [54]).

In the outer product rule, the weight matrix W is derived from the vec-
tors Z;, which we may for simplicity assume to have components —1/1, as
W = 37 (%(%)T — I). The threshold vector is set to zero. The rule re-
flects a form of “Hebbian learning” [39]: two similarly active components in
the stored vectors tend to create an excitatory (positive) interconnection be-
tween the respective neurons, whereas opposing activities in the components
tend to create inhibitory (negative) connections.

The capacities achieved by the outer product rule are not too good. With
high probability, only O(n/logn) random n-bit vectors can be stored so
that all, or even most of them are recalled correctly [56, 63, 94]. If a limited
number of errors can be tolerated in the recall of the stored vectors, then
the probabilistic capacity reaches 0.138n [4, 43].

Better performance can be obtained from the spectral algorithms, where
the goal is to construct the weight matrix W so that the vectors &, if they
are linearly independent, become its eigenvectors. This can be achieved
by choosing, e.g., W = X(XTX)"1XT, where X is a column matrix of the
vectors &y, 3, ..., Tmym. This method obviously guarantees perfect retrieval of
any set of linearly independent vectors. Since the probability that » random
binary vectors are linearly independent approaches 1 as n — oo [55], the
probabilistic capacity of the spectral algorithms is n.

2 Note that while the set of stable states of a network does not depend on the update
rule, a given unstable state can in sequential operation converge to different stable states,
depending on the update order. In the definition of attraction domains and radii for
asynchronous nets, convergence should be required irrespective of the update order chosen.

12 PEKKA ORPONEN

In general, the problem of deciding whether a given set of vectors can be
stored as stable states of a Hopfield network can again be solved in polyno-
mial time by linear programming, as the constraints on the interconnection
weights can be expressed as a system of linear inequalities. Of course, this
technique gives no control on the attraction radii of the stable states — in
fact, the complexity of the following version of the problem is apparently
not known:

Hopfield Net Loading. Given a set of vectors {#1, ..., %}, where each
Z; € {—1,1}", and a constant p, is there a symmetric net of n neurons that
has these vectors as stable states, with attraction radii > p?

It seems to be not known even whether the problem is in P or NP-hard for
any fixed p > 1. Of course, all the storage rules proposed in the literature
provide in some sense approximate solutions to this problem.

While the complexity of synthesizing a cyclic net from a given set of pat-
terns is not known, several results point to the difficulty of analyzing a
ready-made cyclic net. For instance:

(1) It is an NP-hard problem to decide if a given asymmetric network
under synchronous updates will converge from all initial states [79], or
from any initial state [2, 25]. (Actually, it follows from the network
construction in [71] that these problems are PSPACE-complete.)

(2) It is an NP-complete problem to decide if a given symmetric, simple
network has more than one stable state [25]. In fact, the problem
of counting the number of stable states is #P-complete [16]. (By
Hopfield’s convergence result, a symmetric simple net always has at
least one stable state.)

(3) It is an NP-complete problem to determine if a given stable state in
a symmetric simple network has a nontrivial attraction basin under
synchronous updates (i.e., if the network converges to the given state
from any other initial state) [16]. Computing the size of the attraction

basin is #P-hard.

(4) Computing the attraction radius, under synchronous or asynchronous
updates, of a given stable state in a symmetric simple network is NP-
hard. In fact, the attraction radius cannot be even approximated to
within a factor of n!=¢ for any fixed € > 0, unless P = NP [15].

5. Open Problems

Among the open problems in the complexity theory of neural networks per-
haps the most intriguing ones are those related to the TC hierarchies: is
the bounded-depth TC hierarchy infinite, as is the corresponding AC hier-
archy [98, 36]7 All the separations from TCY upwards are open. (Partial
results appear in [38, 81].) If the hierarchy is finite, is TC® = NC!? Or a
potentially easier question: is TC' = NC?? Also, is AC® C TCY for some
constant d?

COMPUTATIONAL COMPLEXITY OF NEURAL NETWORKS: A SURVEY 13

From the point of view of developing a unified theory of neural computa-
tion, it would be of significance to extend the result of [60] on the equivalence
of sigmoid and step transfer functions for small-weight networks to arbitrary
weights; i.e., to prove that for any “reasonable” nonlinear transfer function
0-7

TCY(o) = TCY

holds for all d > 1. (Partial results in this direction are presented in [13,
59]. However, simple smoothness conditions are not sufficient to constrain
the function ¢ here, as in [93] an arbitrarily smooth o is constructed that
is capable of representing any Boolean function in a network of just two
neurons with sufficiently large weights.)

For cyclic nets, it would be most interesting to know the exact complexity
of the Hopfield net loading problem mentioned in section 4.2. A number of
interesting issues remain to be explored also in determining the computa-
tional power of nets under asynchronous and continous-time updates.

Acknowledgment

I am grateful to Mikael Goldmann for pointing out an error in an earlier
version of this paper.

References

[1] Aarts, E., Korst, J. Simulated Annealing and Boltzmann Machines. John Wiley &
Sons, Chichester, 1989.

[2] Alon, N. Asynchronous threshold networks. Graphs and Combinatorics 1 (1985),
305-310.

[3] Alon, N., Dewdney, A. K., Ott, T. J. Efficient simulation of finite automata by neural
nets. J. Assoc. Comp. Mach. 38 (1991), 495-514.

[4] Amit, D. J., Gutfreund, H., Sompolinsky, H. Storing infinite numbers of patterns in
a spin-glass model of neural networks. Physical Review Letters 55 (1985), 1530-1533.

[5] Anderson, J. A. A simple neural network generating an interactive memory. Mathe-
matical Biosciences 14 (1972), 197-220. Reprinted in [6], pp. 181-192.

[6] Anderson, J. A., Rosenfeld, E. (eds.) Neurocomputing: Foundations of Research. The
MIT Press, Cambridge, MA, 1988.

[7] Anderson, J. A., Pellionisz, A., Rosenfeld, E. (eds.) Neurocomputing 2: Directions
for Research. The MIT Press, Cambridge, MA, 1990.

[8] Balcdzar, J. L., Diaz, J., Gabarrd, J. On characterizations of the class PSPACE /poly.
Theoret. Comput. Sci. 52 (1987), 251 267.

[9] Balcdzar, J. L., Diaz, I., Gabarrd, J. Structural Complezity I. Springer-Verlag,
Berlin, 1988.

[10] Blum, A. L., Rivest, R. L. Training a 3-node neural network in NP-complete. Neural
Networks 5 (1992), 117-127.

[11] Bruck, J. On the convergence properties of the Hopfield model. Proc. of the IEEE
78 (1990), 1579 1585.

[12] Cybenko, G. Approximation by superposition of a sigmoidal function. Math. of Con-
trol, Signals, and Systems 2 (1989), 303 314.

[13] DasGupta, B., Schnitger, G. The power of approximating: A comparison of activa-
tion functions. In: Advances in Neural Information Processing Systems 5 (ed. S. J.
Hanson, J. D. Cowan, C. L. Giles). Morgan Kaufmann, San Mateo, CA, 1993. Pp.
615 622.

14

[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
23]
[24]

[25]

[26]

[27]

[28]
[29]
[30]
[31]

(32]

[36]

37]

[38]

PEKKA ORPONEN

Dembo, A. On the capacity of associative memories with linear threshold functions.
IEEE Trans. on Information Theory 35 (1989), 709-720.

Floréen, P., Orponen, P. Attraction radii in binary Hopfield nets are hard to compute.
Neural Computation 5 (1993), 812 821.

Floréen, P.; Orponen, P. On the computational complexity of analyzing Hopfield
nets. Complex Systems 3 (1989), 577 587.

Fogelman, F., Goles, E., Weisbuch, G. Transient length in sequential iterations of
threshold functions. Discr. Appl. Math. 6 (1983), 95-98.

Fogelman, F.; Robert, Y., Tchuente, M. Automata Networks in Computer Science:
Theory and Applications. Manchester University Press, 1987.

Franklin, S., Garzon, M. Global dynamics in neural networks. Complex Systems 3
(1989), 29 36.

Franklin, S., Garzon, M. Neural computability. In: Progress in Neural Networks 1
(ed. O. M. Omidvar). Ablex, Norwood, NJ, 1990. Pp. 128-144.

Funahashi, K.-I. On the approximate realization of continuous mappings by neural
networks. Neural Networks 2 (1989), 183-192.

Furst, M., Saxe, J. B., Sipser, M. Parity, circuits, and the polynomial-time hierarchy.
Math. Systems Theory 17 (1984), 13-27.

Garzon, M., Franklin, S. Global dynamics in neural nets II. Report 89-9, Memphis
State Univ., Dept. of Mathematical Sciences, 1989.

Garzon, M., Franklin, S. Neural computability I1. In: Proc. of the 3rd Internat. Joint
Conf. on Neural Networks, Vol. 1. IEEE, New York, 1989. Pp. 631-637.

Godbeer, G. H., Lipscomb, J., Luby, M. On the Computational Complexity of Find-
ing Stable State Vectors in Connectionist Models (Hopfield Nets). Technical Report
208/88, Dept. of Computer Science, Univ. of Toronto, March 1988.

Goldmann, M., Hastad, J., Razborov, A. Majority gates vs. general weighted thresh-
old gates. Computational Complezity 2 (1992), 277-300.

Goldmann, M., Karpinski, M. Simulating threshold circuits by majority circuits. In:
Proc. of the 25th Ann. ACM Symp. on Theory of Computing. ACM, New York, 1993.
Pp. 551-560.

Goles, E., Fogelman, F., Pellegrin, D. Decreasing energy functions as a tool for
studying threshold networks. Discr. Appl. Math. 12 (1985), 261-277.

Goles, E., Martinez, S. Exponential transient classes of symmetric neural networks
for synchronous and sequential updating. Complex Systems 3 (1989), 589 597.
Goles, E., Martinez, S. Neural and Automata Networks. Kluwer Academic, Dor-
drecht, 1990.

Goles, E., Olivos, J. The convergence of symmetric threshold automata. Info. and
Control 51 (1981), 98-104.

Hajnal, A., Maass, W., Pudldk, P.; Szegedy, M., Turdn, G. Threshold circuits of
bounded depth. J.Comput. Syst. Sci. 46 (1993), 129 154. (Preliminary version in:
Proc. of the 28th Ann. IFEFE Symp. on Foundations of Computer Science. IEEE,
New York, 1987. Pp. 99-110.)

Haken, A. Connectionist networks that need exponential time to stabilize. Unpub-
lished manuscript, Dept. of Computer Science, University of Toronto, 1989.

Haken, A., Luby, M. Steepest descent can take exponential time for symmetric con-
nection networks. Complex Systems 2 (1988), 191 196.

Hartley, R., Szu, H. A comparison of the computational power of neural networks.
In: Proc. of the 1987 Internat. Conf. on Neural Networks, Vol. 3. IEEE, New York,
1987. Pp. 15 22.

Hastad, J. Almost optimal lower bounds for small depth circuits. In: Randomness
and Computation. Advances in Computing Research 5 (ed. S. Micali). JAI Press,
Greenwich, CT, 1989. Pp. 143-170.

Hastad, J. On the size of weights for threshold gates. STAM J. Discr. Math., to
appear.

Hastad, J., Goldmann, M. On the power of small-depth threshold circuits. Compu-
tational Complexity 1 (1991), 113-129.

[58]

[59]

[60]

[61]

[62]

COMPUTATIONAL COMPLEXITY OF NEURAL NETWORKS: A SURVEY 15

Hebb, D. O. The Organization of Behavior. John Wiley & Sons, New York, NY,
1949.

Hertz, J., Krogh, A., Palmer, R. G. Introduction to the Theory of Neural Computa-
tion. Addison-Wesley, Redwood City, CA, 1991.

Hinton, G. E., Sejnowski, T. E. Learning and relearning in Boltzmann machines.
In [86], pp. 282 317.

Hong, J. On connectionist models. Comm. Pure and Applied Math. XLI (1988),
1039-1050.

Hopfield, J. J. Neural networks and physical systems with emergent collective com-
putational abilities. Proc. Nat. Acad. Sci. USA 79 (1982), 2554-2558.

Hopfield, J. J., Tank, D. W. Neural computation of decisions in optimization prob-
lems. Biological Cybernetics 52 (1985), 141 152.

Hornik, K., Stinchcombe, M., White, H. Multilayer feedforward nets are universal
approximators. Neural Networks 2 (1989), 359-366.

Judd, J. S. On the complexity of loading shallow neural networks. J. Complexity 4
(1988), 177-192.

Judd, J. S. Neural Network Design and the Complexity of Learning. The MIT Press,
Cambridge, MA, 1990.

Kamp, Y., Hasler, M. Recursive Neural Networks for Associative Memory. John
Wiley & Sons, Chichester, 1990.

Karp, R. M., Lipton, R. J. Turing machines that take advice. L’Enseignement Math-
ématique 28 (1982), 191-209. (Preliminary version in: Proc. of the 12th Ann. ACM
Symp. on Theory of Computing. ACM, New York, 1980. Pp. 302-309.)

Kearns, M., Valiant, L. G. Cryptographic limitations on learning Boolean formulae
and finite automata. J. Assoc. Comput. Mach. 41 (1994), 67-95. (Preliminary version
in: Proc. of the 21st Ann. ACM Symp. on Theory of Computing. ACM, New York,
1989. Pp. 433-444.)

Kleene, S. C. Representation of events in nerve nets and finite automata. In: Au-
tomata Studies (ed. C. E. Shannon and J. McCarthy). Annals of Mathematics Studies
n:o 34. Princeton Univ. Press, Princeton, NJ, 1956. Pp. 3-41.

Kohonen, T. Correlation matrix memories. I[EEE Trans. on Computers 21 (1972),
353-359. Reprinted in [6], pp. 174-180.

Kohonen, T. Self-Organization and Associative Memory. 3rd Ed., Springer-Verlag,
Berlin, 1989.

Kohonen, T., Ruohonen, K. Representation of associated data by matrix operations.
IEEE Trans. on Computers 22 (1973), 701-702.

Komlés, J. On the determinant of (0,1) matrices. Stud. Sci. Math. Hungarica 2
(1967), 7-21.

Kuh, A., Dickinson, B. W. Information capacity of associative memories. IFEF
Trans. on Information Theory 35 (1989), 59 68.

Lepley, M., Miller, G. Computational power for networks of threshold devices in an
asynchronous environment. Unpublished manuscript, Dept. of Mathematics, Mas-
sachusetts Inst. of Technology, 1983.

Lin, J.-H., Vitter, J. S. Complexity results on learning by neural nets. Machine
Learning 6 (1991), 211-230.

Maass, W. Bounds for the computational power and learning complexity of analog
neural nets. In: Proc. of the 25th Ann. ACM Symp. on Theory of Computing. ACM,
New York, 1993. Pp. 335-344.

Maass, W., Schnitger, G., Sontag, E. D. On the computational power of sigmoid
versus Boolean threshold circuits. In: Proc. of the 32nd Ann. IEEE Symp. on Foun-
dations of Computer Science. IEEE, New York, 1991. Pp. 767-776.

McClelland, J. L., Rumelhart, D. E., et al. (eds.) Parallel Distributed Processing:
Ezxplorations in the Microstructure of Cognition, Vol. 2. The MIT Press, Cambridge,
MA, 1986.

McCulloch, W. S., Pitts, W. A logical calculus of the ideas immanent in nervous
activity. Bull. Math. Biophys. 5 (1943), 115-133. Reprinted in [6], pp. 18-27.

16

[63]

PEKKA ORPONEN

McEliece, R. J., Posner, E. C., Rodemich, E. R., Venkatesh, S. S. The capacity of
the Hopfield associative memory. IEEE Trans. on Information Theory 33 (1987),
461 482.

Minsky, M. L. Computation: Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs, NJ, 1967.

Minsky, M. L., Papert, S. A. Perceptrons: An Introduction to Computational Geom-
etry. The MIT Press, Cambridge, MA, 1969 (expanded edition 1988).

Muroga, S. Threshold Logic and Its Applications. John Wiley & Sons, New York,
1971.

Muroga, S., Toda, 1., Takasu, S. Theory of majority decision elements. J. Franklin
Inst. 271 (1961), 376-418.

Myhill, J., Kautz, W. H. On the size of weights required for linear-input switching
functions. IRE Trans. Electronic Computers 10 (1961), 288-290.

Nakano, K. Associatron — a model of associative memory. IEEE Trans. on Systems,
Man, and Cybernetics 12 (1972), 380 388. Reprinted in [7], pp. 90 98.

Obradovic, Z., Parberry, I. Analog neural networks of limited precision I: Computing
with multilinear threshold functions (Preliminary version). In: Advances in Neural
Information Processing Systems 2 (ed. D. S. Touretzky). Morgan Kaufmann, San
Mateo, CA, 1990. Pp. 702-709.

Orponen, P. On the computational power of discrete Hopfield nets. In: Proc. 20th
International Colloquium on Automata, Languages, and Programming (eds. S. Carls-
son, R. Karlsson, A. Lingas). Lecture Notes in Computer Science 700, Springer-
Verlag, Berlin, 1993. Pp. 215 226.

Parberry, I. A primer on the complexity theory of neural networks. In: Formal
Techniques in Artificial Intelligence: A Sourcebook (ed. R. B. Banerji). Elsevier —
North-Holland, Amsterdam, 1990. Pp. 217 268.

Parberry, 1. Circuit Complexity and Neural Networks. Report CRDPC-91-9, Center
for Research in Parallel and Distributed Computing. Univ. of North Texas, Denton,
TX, 1991. 24 pp.

Parberry, 1. Circuit Complexity and Neural Networks. The MIT Press, Cambridge,
MA, to appear in 1994.

Parberry, L. (ed.) The Computational and Learning Complexity of Neural Networks:
Advanced Topics. In preparation.

Parberry, 1., Schnitger, G. Relating Boltzmann machines to conventional models of
computation. Neural Networks 2 (1989), 59-67.

Personnaz, L., Guyon, 1., Dreyfus, G. Collective computational properties of neural
networks: New learning mechanisms. Physical Review A 34 (1986), 4217 4228.
Pollack, J. On Connectionist Models of Natural Language Processing. Ph. D. Thesis,
Univ. Illinois, Urbana, 1987.

Porat, S. Stability and looping in connectionist models with asymmetric weights.
Biol. Cybern. 60 (1989), 335-344.

Raghavan, P. Learning in threshold networks. In: Proc. of the 1988 Workshop on
Computational Learning Theory (ed. D. Haussler, L. Pitt). Morgan Kaufmann, San
Mateo, CA, 1988. Pp. 19-27.

Razborov, A., Wigderson, A. n1°6 %) Jower bounds on the size of depth-3 threshold
circuits with AND gates at the bottom. Info. Proc. Letters 45 (1993), 303 307.
Reif, J. H., Tate, S. R. On threshold circuits and polynomial computation. STAM J.
Comput. 21 (1992), 896-908.

F. Rosenblatt. Priciples of Neurodynamics. Spartan Books, New York, 1962.
Roychowdhury, V., Siu, K. Y., Orlitsky, A., Kailath, T. A geometric approach to
threshold circuit complexity. In: Proc. of the 4th Ann. Workshop on Computational
Learning Theory (ed. L. G. Valiant, M. K. Warmuth). Morgan Kaufmann, San Ma-
teo, CA, 1991. Pp. 97-111.

Rumelhart, D. E., Hinton, G. E.;, Williams, R. J. Learning internal representations
by error propagation. In [86], pp. 318-362.

COMPUTATIONAL COMPLEXITY OF NEURAL NETWORKS: A SURVEY 17

Rumelhart, D. E., McClelland, J. L., et al. (eds.) Parallel Distributed Processing:
Ezplorations in the Microstructure of Cognition, Vol. 1. The MIT Press, Cambridge,
MA, 1986.

Schaffer, A. A., Yannakakis, M. Simple local search problems that are hard to solve.
SIAM J. Comput. 20 (1991), 56-87.

Schrijver, A. Theory of Linear and Integer Programming. John Wiley & Sons, Chich-
ester, 1986.

Siegelmann, H. T.] Sontag, E. D. On the computational power of neural nets. In:
Proc. of the 5th Ann. ACM Workshop on Computational Learning Theory. ACM
Press, New York, NY, 1992. Pp. 440-449.

Siu, K.-Y., Bruck, J. Neural computation of arithmetic functions. Proc. of the IEFEFE
78 (1990), 1669 1675.

Siu, K.-Y., Bruck, J. On the power of threshold circuits with small weights. STAM
J. Discr. Math. 4 (1991), 423-435.

Siu, K.-Y., Roychowdhury, V. Optimal depth neural networks for multiplication and
related problems. In: Advances in Neural Information Processing Systems 5 (ed. S.
J. Hanson, J. D. Cowan, C. L. Giles). Morgan Kaufmann, San Mateo, CA, 1993. Pp.
59-64.

Sontag, E. D. Feedforward nets for interpolation and classification. J. Comput. Syst.
Sci. 45 (1992), 20-48.

Venkatesh, S. S.; Psaltis, D. Linear and logarithmic capacities in associative neural
networks. IEEE Trans. on Information Theory 35 (1989), 558-568.

Wegener, 1. The Complexity of Boolean Functions. John Wiley & Sons, Chichester,
and B. G. Teubner, Stuttgart, 1987.

Wiedermann, J. Complexity issues in discrete neurocomputing. In: Aspects and
Prospects of Theoretical Computer Science. Proc. of the 6th Meeting of Young Com-
puter Scientists (ed. J. Dassow, J. Kelemen). Lecture Notes in Computer Science
464, Springer-Verlag Berlin Heidelberg 1990. Pp. 93-108.

Wilson, G. V., Pawley, G. S. On the stability of the travelling salesman problem
algorithm of Hopfield and Tank. Biological Cybernetics 57 (1988), 63-70.

Yao, A. C. Separating the polynomial-time hierarchy by oracles. In: Proc. of the 26th
Ann. IEEFE Symp. on Foundations of Computer Science. IEEE, New York, 1985. Pp.
1-10.

