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Abstract

We study the precise conditions under which all optimisation strategies for a given
family of finite functions yield the same expected maximisation performance, when
averaged over a uniform distribution of the functions. In the case of bounded-length
searches in a family of Boolean functions, we provide tight connections between
such “No Free Lunch” conditions and the structure of t-designs and t-wise balanced
designs for arbitrary values t. As a corollary, we obtain a nontrivial family of n-
variate Boolean functions that satisfies the “No Free Lunch“ condition with respect
to searches of length Ω(n1/2/ log1/2 n). Modifying the construction, we also obtain
nontrivial “No Free Lunch“ families of functions with large ranges.

Key words: Theory of computation, combinatorial problems, optimisation, No
Free Lunch theorems, combinatorial designs

1 Introduction

In their seminal paper [20], Wolpert and Macready proved that when averaged
over the uniform distribution on the family of all functions f : X → Y ,
where X and Y are finite sets, all optimisation strategies have exactly the
same expected performance. This Wolpert-Macready “No Free Lunch” (briefly,
NFL) theorem has given rise to much controversy, but has turned out to be
unexpectedly difficult to refute, in the sense of a comprehensive proof that with
respect to some natural nonuniform distribution of functions, some practically
interesting optimisation methods such as variants of local search [1] would
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perform better than, say, simple random sampling of the search space X.
Partial results in this direction are derived in [3,6,7,17].

It was pointed out in [15] that to prove an NFL theorem it suffices for the
family of functions under consideration to be closed under permutations of the
domain X (briefly, c.u.p.). In [16] this result was strengthened to show that
the c.u.p. condition in fact characterises precisely those function families that
satisfy a “Strong NFL” property, requiring that all optimisation algorithms
have the same expected payoff with respect to any performance measure com-
putable from the execution trace of an algorithm. Some consequences of this
characterisation were derived in [9], and the c.u.p. condition has been gener-
alised to versions applicable also to nonuniform distributions of test functions
in [8,17]. 2

In this paper we take a careful look into the NFL conditions specifically for
function maximisation using bounded-length searches. After formulating the
proper definitions and presenting some examples we focus in Section 3 on max-
imising searches of length t in families of Boolean functions. As we shall see,
in this setting the NFL condition is not equivalent to the simple c.u.p. prop-
erty, but is rather intricately connected to notions of design theory [2,4,13]. In
Section 4, we characterise Boolean function families that satisfy the NFL con-
dition with respect to searches of length t in terms of t-wise balanced designs.
Applying a deep result of Teirlinck [18], we then obtain for every n a nontrivial
non-c.u.p. family of n-variate Boolean functions that is NFL with respect to
maximising searches of length Ω(n1/2/ log1/2 n). In Section 5 this construction
is extended to cover also nonbinary functions. Section 6 concludes the paper
with some general remarks and a list of open questions.

2 Background

Our general setting for optimisation problems comprises a fixed finite domain
X and finite range Y , with functions f : X → Y belonging to a finite family
F . An algorithm A is a deterministic mechanism that initially chooses a start
point x1 in the domain X, and is provided with the value f(x1) of the unknown
function at that point. After A is provided with each function value f(xi) it
chooses a new domain element xi+1 based on its known domain-range pairs
(xj , f(xj)), 1 ≤ j ≤ i. We are concerned exclusively with algorithms that
never repeat a domain element and always provide a choice of xi+1 up to
i + 1 = |X|.

2 An alternate viewpoint on the c.u.p. condition and its relevance to (anti-)NFL
arguments is presented in [11]. See also [5] for multiobjective optimisation settings
where the NFL results arguably do not hold.
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The execution trace of algorithm A on function f is the sequence of domain-
range pairs A produces on f . The corresponding range trace (called “perfor-
mance vector” in [16]), denoted η(A, f), consists of just the respective range
elements. A performance measure P is any function mapping range traces to
real numbers.

Definition 1 The (expected) performance PA of algorithm A with respect
to measure P over the family of functions F is defined as:

PA =
1

|F |

∑

f∈F

P (η(A, f)).

Wolpert and Macready [20] defined a notion of No Free Lunch which we can
re-state in the current formalism:

Definition 2 A family of functions F has the Strong No Free Lunch
(briefly, SNFL) property if every pair of algorithms A, B have the same per-
formance PA = PB over F , with respect to any performance measure P and
any trace length 1 ≤ t ≤ |X|.

In other words, when averaged over all functions f ∈ F , no algorithm performs
better than any other.

Theorem 1 (Wolpert and Macready [20]) The family of all functions from
a (finite) domain X to a (finite) range Y has the SNFL property.

The SNFL condition has recently been characterised precisely:

Definition 3 A family of functions F is closed under permutations (c.u.p.)
if for every f ∈ F and every permutation σ of X, the function g defined by
g(x) = f(σ(x)) is also a member of F .

Theorem 2 (Schumacher, Vose, Whitley [16]) A family of functions has
the SNFL property if and only if it is closed under permutations.

3 Uniform sets of functions

For the rest of this paper, we assume that our domains Y are subsets of natural
numbers (or some other linearly ordered set), and restrict our attention to the
maximisation performance measure.

Definition 4 The (expected) maximisation performance of algorithm A
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on function family F is defined as:

MA =
1

|F |

∑

f∈F

max{η̃(A, f))},

where η̃(A, f) is the set of elements contained in the range trace of A on f .

Definition 5 A family of functions F is t-uniform, denoted Ut, if all al-
gorithms working for t steps produce the same maximisation performance
MA = mF,t, where the constant mF,t depends only on F and t.

It is easy to see that closure under permutations is not necessary for an NFL
(or Ut) condition to hold with respect to maximisation performance. Consider,
e.g. the family of three binary-valued functions on a four element domain, with
function values 0,1,1,1 arranged in any three of the four possible ways on the
domain. This family is clearly not c.u.p., yet maximisation in two steps is
achieved equally well by all algorithms; thus the family is U2. (Note, however,
that it is not U1.) For more interesting examples, consider the following two
constructions.

Example 1 The family F of functions is obtained by taking an 8×8 Sylvester-
type Hadamard matrix [13, p. 202], and deleting the first row and first column
(which consist entirely of ones).

X f1 f2 f3 f4 f5 f6 f7

1 0 1 0 1 0 1 0

2 1 0 0 1 1 0 0

3 0 0 1 1 0 0 1

4 1 1 1 0 0 0 0

5 0 1 0 0 1 0 1

6 1 0 0 0 0 1 1

7 0 0 1 0 1 1 0

It is easy to verify that this family F is U1. Furthermore, since in the underlying
Hadamard matrix any two rows agree and disagree at equally many locations,
the family is U2. More specifically, for any two domain elements, the number
of functions in Fwhich yield zero at both points is the same – in this case two.
However, F is not U3, as the strategy of choosing domain elements 5, 6 and 7
may produce all zeros, whereas choosing 1, 2 and 3 always guarantees a one.

Example 2 Consider the set of all functions fi from Example 1 and their
complements 1 − fi:
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f1 f2 f3 f4 f5 f6 f7 f8 f9 ..

0 1 0 1 0 1 0 1 0 ..

1 0 0 1 1 0 0 0 1 ..

0 0 1 1 0 0 1 1 1 ..

1 1 1 0 0 0 0 0 0 ..

0 1 0 0 1 0 1 1 0 ..

1 0 0 0 0 1 1 0 1 ..

0 0 1 0 1 1 0 1 1 ..

This set of functions is U3, as well as U1 and U2, even though the two families
of 7 functions of which it is composed are separately U2 but not U3.

3

4 Binary valued functions and block designs

We now develop a precise characterisation of families of binary valued func-
tions which exhibit the property Ut, for all t ≥ 1.

Definition 6 An oblivious search is an algorithm which does not use infor-
mation about function values already obtained when choosing its next domain
element.

We denote by obUt the property of function families being uniform for obliv-
ious searches of length t. Naturally Ut implies obUt. We use U∗

t to denote
the conjunction of the properties U1, U2, . . . , Ut, and similarly obU∗

t for the
conjunction of all obUs, s ≤ t.

Proposition 3 For binary valued functions and all t ≥ 1, obUt = Ut.

Proof Any non-oblivious algorithm A can be emulated by an oblivious algo-
rithm B which does not look at function values obtained but merely follows
the A-strategy assuming that all function values obtained are zero. These two
strategies will not diverge in their choice until after the first 1 is obtained, so
MA = MB. 2

Corollary 4 obU∗

t = U∗

t .

3 This is due to the general fact that the union of a “regular 2-wise balanced design”
and its complement is a “regular 3-wise balanced design”, an observation attributed
in [10] to R. C. Mullin [14]. These terms are defined in the next section.
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Thus, in order to show that an NFL result concerning maximisation of bi-
nary valued functions holds, it suffices to consider oblivious searches, i.e. pre-
selections of t domain elements. We shall be using the following basic notions
and results from design theory (cf. [2,4,12,13]).

Definition 7 A t-design consists of a set X of points, and a set B of subsets
of X called blocks, satisfying the following conditions: (i) each block contains
the same number k of points, and (ii) for any set T of t points from X the
number of blocks containing T is a constant, denoted λ.

Denoting v = |X|, the pair (X, B) as defined above is then a t-design on
v points with block size k and index λ, or a t-(v, k, λ) design. We require
v ≥ k ≥ t ≥ 0 and λ ≥ 1. A trivial t-design consists of all the t-subsets of a
given point set X. The following is a standard result [13, p. 219]:

Proposition 5 For all s ≤ t, a t-(v, k, λ) design is also an s-(v, k, λs) design,

where λs = λ
(

v−s
t−s

)

/
(

k−s
t−s

)

.

There is a generalisation to the situation where blocks are not necessarily the
same size, using a finite set of positive integers K rather than a single integer
k.

Definition 8 A t-wise balanced design (tBD) of type t − (v, K, λ) is a
pair (X, B) with v = |X|, such that the size of every block is in K and every
t-element subset of X is contained in exactly λ blocks.

In the case where |K| > 1 a tBD is not always an sBD for parameters s < t,
suggesting the following notion:

Definition 9 (Kageyama [10]) A regular t-wise balanced design is a tBD
which is also an sBD for all s < t.

To connect maximisation problems on binary valued functions to design theory
we represent a family F of binary functions as a bipartite graph in the following
way. Elements of X are nodes on the left, functions in F are nodes on the right,
and an edge (x, f) is present if and only if f(x) = 0. By representing the zeros
of each function this graph represents all of F .

Correspondingly, a t-design or a tBD yields a bipartite graph by representing
the domain elements (v of them) as nodes on the left, the blocks as nodes on
the right, and having a connection left to right iff the relevant point is in the
specified block. This graph immediately converts to a collection of functions
F as described above, with |X| = v and |F | being the number of blocks.

In the following theorems we consider this as the standard correspondence for
translating between Boolean functions and block designs.
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Theorem 6 A family of (binary-valued) functions F satisfies Ut, if and only
if its bipartite graph representation corresponds to a t-wise balanced design.

Proof If we perform an oblivious search of length t, i.e. select any set of t
points, the t-uniformity of F guarantees that a (uniformly) randomly selected
function is zero at all t points with a constant probability, say ρ. The functions
of F can be partitioned into a finite number of classes depending on how many
zeros they have; let the different numbers of zeros be k1 < . . . < kn. Now if we
set K = {k1, . . . , kn}, and notice that every set of t points on the left of the
bipartite graph are joined in common to λ = |F |ρ blocks (functions) on the
right, we have a tBD of type t − (|X|, K, λ). The converse claim is similarly
obvious. 2

Corollary 7 From a t − (v, k, λ) design, k ≥ t, we obtain a U∗

t family of
functions.

Proof A t-design is a t-wise balanced design, and hence yields a Ut family
of functions. Since a t − (v, k, λ) design is also an s − (v, k, λs) design for all
s ≤ t, the result follows. 2

We now summarise the above results, abusing the notation somewhat to let
Ut denote not only the t-uniform property but also the set of bipartite graphs
which have this property.

Corollary 8 t-designs ⊆ regular tBDs = U∗

t = obU∗

t ⊆ t-wise BDs = Ut =
obUt.

The inclusions in Corollary 8 are proper: Example 2 presents a family of func-
tions that is U∗

t for t = 3 but is not a t-design, and the following construction
yields for any t ≥ 2 a tBD that is not U∗

t [4, p. 485].

Example 3 Fix an integer n > t. Let X be the set {1, 2, ...n,∞} and let
B = {{1, 2, . . . , n}}∪{S ∪{∞} : S is a (t−1)-subset of {1, . . . , n}}. This is
a tBD, with K = {t, n} and λ = 1, which is not an sBD for any s, 0 < s < t.

The theory of what kinds of t-wise balanced designs, regular tBDs, and tBDs
exist is extensive and complex, and by no means complete. By a fundamental
result of L. Teirlinck [18,19], it is known that non-trivial t-designs exist for all
t. One consequence of his work can be stated as follows.

Theorem 9 (Teirlinck) For all positive integers t there exists a non-trivial
t-design with block size (t + 1) and number of points v = 2t + (t + 1)!(2t+1)

Thus for any search length t, there exists a nontrivial U∗

t family of Boolean
functions on n = O(log v) = O(t2 log t) variables. Conversely, the search length
t as a function of n is Ω(n1/2/log1/2 n). The number of functions in this family

7



equals the number of blocks in the respective design, b = λ
(

v
t

)

/
(

k
t

)

, which

in this case can be bounded as (t!)2t2+O(t) = 2O(t3 log t). Note that the total

number of Boolean functions on n variables is 22n

= 22O(t2 log t)
in this case.

5 Extension to arbitrary ranges

It is possible to see the behaviour of uniform binary valued functions reflected
in ranges of arbitrary size by dilating the function values 1 to some large
constant c, and then judiciously replacing the 0 function values with various
combinations of values from [0, c−1]. For example, based on a 2k×2k Sylvester-
type Hadamard matrix, one can map every function value 1 to (k + 1), and
replace the k zeros in each function with all possible permutations of the
values 1, 2, . . . , k. This yields a non-c.u.p. U∗

2 family of functions with range
{1, 2, . . . , k + 1}, at the cost of increasing the size of the family from (2k − 1)
to (2k − 1) · k!.

We can combine in this manner any family of functions F , such that all f ∈ F
have precisely k zeros, with any family of functions G on a domain of size
k, producing a family of functions H of size |H| = |F ||G|. If there exists a
constant c such that for all f ∈ F , the (binary) range of f is {0, c}, and all
functions in G have ranges contained in the interval [0, c−1], then we call the
family of functions H thus obtained a stratified composition of F and G.

Theorem 10 If H is a stratified composition of F and G, F is U∗

t and G is
c.u.p., then H is U∗

t .

Proof It is implicit in the above that t ≤ k. Let c be the maximal value
for all f ∈ F , and let X be the domain of functions in F and H . Let R
be the union of the ranges of all g ∈ G. Initially, regardless of the choice
of algorithm A and its associated initial point x1 ∈ X, the probability 4 of
immediately obtaining a function value of c is a constant p1 depending only
on the function family H (this is because F is U1). The probability of getting
any specific value f(x1) = r ∈ R is independent of the choice of x1 as G is
c.u.p. (here we don’t know which domain element z1 ∈ [1, k] from the process
of stratified composition is represented by x1, but the conclusion holds in any
case). Conditioning on f(x1) = r1 < c, the probability p2 that the second
domain point x2 satisfies f(x2) = c is again independent of A (as F is U2),
and the probability of obtaining any element r ∈ R is the same for any A and
independent of the choice of x2 given that it doesn’t yield a c.

4 We adopt here a probabilistic point of view, considering H as a sample space
from which the unknown function h is selected, according to a uniform probability
distribution.
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Continuing in this manner we obtain a sequence of probabilities p1, . . . , pt.
For any algorithm A the probability pc of producing a maximum of c is a
simple function of p1, . . . , pt. We note that among the traces produced by any
algorithm, those containing no value c may have any sequence of the values of
R (that is, any sequence that can be produced in a search in G of length t).
Thus the probability of any maximum less than c occurring is independent of
the algorithm, as is the probability that c is the maximum. 2

In fact the condition that G is c.u.p. is unnecessarily strong for the above
proof, and can be replaced by the following: 5 define a family of functions G
to be strongly U∗

t if G is U∗

t , and also for any s ≤ t and for any ordered s-tuple
y1, ..., ys of elements of Y , the number of functions in G mapping x1 to y1,
x2 to y2, . . . , and xs to ys is independent of the choice of the ordered s-tuple
x1, ..., xs of elements of X. It is sufficient in a stratified composition for G to
be strongly U∗

t rather than c.u.p. for Theorem 10to hold.

Iteration of stratified compositions is possible, so that a variety of non-c.u.p.
U∗

t function families of functions with large ranges can be produced.

6 Conclusion and open problems

We have shown that the often-quoted correspondence between NFL and c.u.p.
conditions for function families breaks down when one focuses on the max-
imisation performance of algorithms over bounded-length searches. At this
level, the picture is much more intricate, as we have illustrated by character-
ising simple NFL function families in terms of t-wise balanced designs, and
pointing out that consequently also highly nontrivial non-c.u.p. such families
exist. Whether these Teirlinck families can also be used for practical purposes,
e.g. as a basis for guaranteed “deceptive” test problems for search algorithms,
remains to be seen. (Such use would require at least designing an efficient
procedure to answer queries of the form “determine the value of Teirlinck
function i at domain element j”. It is not immediately clear from Teirlinck’s
construction [18,19] whether such a procedure is feasible.)

A number of fundamental problems for further research are suggested by this
new connection between search and designs, including the following: (1) Char-
acterise the families of functions which are U∗

t , but do not correspond to
t-designs. (2) Give a characterisation of t-uniform families of functions of ar-
bitrary range. (3) Uniform families of functions are not amenable to any kind
of search method, local or global. What concepts of uniformity would arise

5 We are grateful to an anonymous referee for pointing out an error in an earlier
version of the proof, and providing us with this condition.
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from considering only local search algorithms? (4) What can be said about
arbitrary measures on short searches (short traces η), as opposed to the ex-
haustive searches underlying the Strong NFL results?
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