Tietojenkdsittelytiede 3 (November 1992)

11

NEULA: A hybrid neural-symbolic
expert system shell

Patrik Floréen, Petri Myllymaki, Pekka Orponen, Henry Tirri

University of Helsinki, Department of Computer Science

Teollisuuskatu 23, 00510 Helsinki, Finland*

Abstract

Current expert systems cannot properly han-
dle imprecise and incomplete information. On
the other hand, neural networks can per-
form pattern recognition operations even in
noisy environments. Against this background,
we have implemented a neural expert sys-
tem shell NEULA, whose computational mech-
anism processes imprecisely or incompletely
given information by means of approximate
probabilistic reasoning.

1 Background

Most current artificial intelligence sys-
tems are incapable of handling impre-
cise and incomplete information. This
is a serious drawback, as in most cases
it is a totally hopeless task for a pro-
grammer to capture all knowledge of the
environment. Much research effort has
been expended to improve the robust-
ness of artificial intelligence programs,
but very little progress has been made.

On the other hand, current neural
network research indicates that it is
possible to perform pattern recogni-
tion operations, such as categorization,
even in very noisy environments. We

*Email: Firstname.Lastname@Helsinki.FI

have therefore investigated the interest-
ing question of whether the robustness
problem of traditional artificial intelli-
gence applications can be attacked by
neurally inspired techniques for knowl-
edge representation.

Inspired by the general idea of hy-
brid neural-symbolic systems (e.g. [4]),
we have introduced in the NEULOG!
project a knowledge representation
scheme for robust storing of hierarchi-
cally related concepts. The scheme is
based on a neural representation struc-
ture, which bears resemblance to a se-
mantic network. However, instead of
the traditional artificial intelligence in-
terpretation of the network as a purely
syntactic variant of first-order predicate
calculus, the network performs compu-
tations implementing a Bayesian rea-
soning model, which is capable of infer-
ence in the presence of incomplete, im-
precise and even inconsistent informa-
tion.

'The NEULOG project was supported by
the Finnish Technology Development Center
(TEKES) under its FINSOFT program, and
by the Academy of Finland.
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2 Representing probabilistic
knowledge in the NEULA
language

The prototype programming environ-
ment consists of a high-level knowledge
representation language NEULA (NEU-
ral LAnguage), a compiler that is capa-
ble of realizing the symbolic syntax as
a neural network, and a neural network
simulator. The NEULA system works
as an expert system shell. There are
two types of users: expert users who
provide the knowledge, and end users
who make queries against that knowl-
edge. The expert users write NEULA
programs. A NEULA program consists
of a hierarchically organized set of con-
cept descriptions. As a simple example,
consider the following description of the
inhabitants of a zoo:

concept animal (100) is basic with
offspring : [ living (20), eggs (80) ;
can

concept mammal (20) is animal with

offspring : [ living (20) ];

can : { swim (10), fly (1), walk (19) };
concept bird (30) is animal with

offspring : [ eggs (30) ;

can : { swim (10), fly (29), walk (30) };

concept fish (50) is animal with

offspring : [ eggs (50) ;

can : { swim (50), fly (0), walk (0) };
concept dolphin (2) is mammal with

can : { swim (2), walk (0) };
concept penguin (6) is bird with

can : { swim (6), fly (0), walk (6) }.

Here, a description of a concept con-
sists of a reference to its immediate
ancestor (if any), together with a list
of attributes and their value distribu-
tion for objects belonging to this con-
ceptual class. There are two types of
attributes: exclusive (indicated by the
square brackets “[ ] enclosing the list
of possible values) and multi-valued (in-
dicated by the curly braces “{ }”). Ex-
clusive means here that any individual
realization of a concept has to possess

: { swim (70), fly (29), walk (49) };
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exactly one value of the given attribute:
for example, the offspring of any partic-
ular animal in the zoo has to be either
living or eggs.
The parenthesized numbers indicate the
“frequency” of a given value for an at-
tribute, or at the header of a concept
declaration, the “frequency” of all ob-
jects in that concept class. For example,
the sentence “concept animal (100) is
basic” defines the total number of all
the animals in the zoo to be 100. This
may be the actual number of the ani-
mals, or just a relative proportion (i.e.,
denoting 100% with 100). Similarly,
the definition “concept mammal (20)
is animal” states that 20% (20/100)
of the animals are mammals. Fur-
thermore, in the definition “offspring :
[ living (20) |;7 it is stated that 100%
(20/20) of the mammals give birth to
living offspring (0% lay eggs), and from
the definition “can:{ swim (10), fly (1),
walk (19) }7, it is concluded that 50%
10/20) of the mammals can swim, 5%
1/20) of them can fly, and 95% (19/20)
can walk. Hence, we have implicitly
defined probablhstlc rules which state
that, for instance, the probability of a
randomly plcked animal in the zoo be-
ing a mammal is 0.20, and on the other
hand, if we randomly choose one mam-
mal among all the mammals, the proba-
bility of this mammal being able to walk
15 0.95. We could of course easily change
the syntax to have the actual probabil-
ities in the code instead of the relative
numbers, but we have found the cur-
rent indirect way to express the prob-
abilities more user friendly, because it
is easier for people to think in terms of
numbers of instances than to estimate
relative frequencies.

3 Compiling the NEULA code

The probabilistic rules given in the
NEULA program are transformed to a
neural network using the NEULA com-
piler. The compiler first creates a de-
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scription of the code as a belief network
representation [22], which consists of a
set of random variables and probabilis-
tic dependencies between these vari-
ables. In our scheme, each concept and
(attribute:value) pair in the NEULA
code is regarded as one variable in the
belief network. The conditional prob-
abilities attached to the dependencies
are calculated from the numbers given
in the code. The belief network is then
transformed to a harmonium-type neu-
ral network [25]. The interconnection
weights in the neural network are calcu-
lated from the conditional probabilities
in the belief network. For each variable
in the belief network, there will be a cor-
responding node in the neural network:
these are called wisible units. There
is also a large number of other nodes,
which have no such direct interpreta-
tion; these hidden units are invisible to
the user. In general, the number of hid-
den units could be exponential in the
size of the belief network, which would
make practical applications of this sys-
tem impossible. However, the fact that
a NEULA description consists of a hier-
archy of concepts enables us to reduce
the number of hidden units to grow just
linearly in the size of the description

(see e.g. [21]).

4 Query processing

The neural network created from the
compilation can be seen as a model
of the world described in the NEULA
code. Each visible node, corre-
sponding to an (attribute:value) or
(class:instance) pair in the actual world
described, has an activity value, which
represents the likelihood of the corre-
sponding fact being true in the present
world. Changing the activity values
(“truth values”) of the nodes corre-
sponds to changing our expectations of
the facts in our world. The end user can
make queries against the knowledge en-
coded in the neural network. The user
states a query to the network by perma-

nently setting (“clamping”) the activ-
ity values of a selected set of nodes. In
the NEULA system, this can be accom-
plished by using a graphical point-and-
click interface called NeulaTool [20]. For
example, the question “Which animal
is in question if we know that it can-
not walk and it has living offspring?”
can be performed by clamping the value
of the node (offspring:living) to 1.0 —
which implicitly clamps the node (off-
spring:eggs) to 0.0 — and the value of
the node (can:swim) to 0.0 (see the win-
dow titled “Clamped” in figure 1).

The network processes the query by per-
forming iterative computations which
change the activity values of the un-
clamped nodes in the neural network,
according to the given model of the
world. After the computation, the an-
swer to the query may be retrieved by
examining the activity values of the vis-
ible nodes, i.e. the truth values of the
corresponding variables (see the window
titled “Focused” in figure 1). It is im-
portant to notice here that the user does
not have to specify all the attributes of
the corresponding animal, in this case
the dolphin, to get the correct answer.
What is more, some of the given de-
scriptors might even be incorrect or in-
consistent with each other or with the
original description.

During query processing, the system is
going through a large number of differ-
ent worlds, trying to find the best com-
bination of nodes and their activity val-
ues consistent with the clamped vari-
ables, according to some goodness mea-
sure. In an abstract sense, the compu-
tation scheme can be seen as a search
algorithm. However, this search proce-
dure is very complicated as all the nodes
affect the result of the computation dur-
ing the iterative process. On the other
hand, the result of the computation is a
complete model of the world with truth
values for all the variables. This makes
it possible to study correlations between
different variables: for example, it is
possible to get an answer to the ques-
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FIGURE 1. Base window of the Neula-
Tool program after processing a query.

tion “what can an animal which cannot
swim but has living offspring do?” by
studying the activity values of the nodes
(can:swim) and (can:fly) in the Focus
window.

In addition to the concept recognition
queries, it is possible to perform ques-
tions where the concept is given, and
the properties are asked. For exam-
ple, the question “Assuming that we are
dealing with a dolphin, what can this
kind of animal do?” is done by clamping
the node (animal:dolphin) to 1.0, and
studying the values of the nodes (can:*).
Although not all the properties of the
dolphins are described in the NEULA
code (e.g., whether they can fly or not),
the system is able to provide an answer.
The two types of queries may also be ar-
bitrarily mixed with each other, allow-
ing very powerful forms of queries. For
example, sometimes it could be useful to
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be able to ask: “Assuming that we are
dealing with a dolphin that can walk,
what can this kind of animal do?”. In
some sense, answering a query resem-
bles an analogical reasoning process: the
system first identifies the object that is
most consistent with the given input,
and then provides an answer using the
properties of this object.

5 The computational model for
probabilistic reasoning

In the previous section, we described
the queries that can be performed in
the network. But we still need some
kind of “goodness of fit” measure for
the different states of the network, some
kind of a mathematical model for the
calculations. In earlier versions of the
system [6, 7], we used a heuristic com-
putational scheme. This scheme was
not satisfactory, however, as we wanted
to have an exact interpretation of the
truth values given to the user. This
can be done: neural network models
are, due to their ability to use mas-
sive parallelism in the computations,
an ideal tool for implementing the so
called Monte-Carlo family of Bayesian
reasoning methods, especially a method
called Gibbs sampling. We have devel-
oped two different techniques for im-
plementing efficient approximations of
this kind of reasoning by our neural net-
work models. The methods are based
on the theory of Markov random fields
[8, 13], and their close relationships
to Bayesian networks, as discussed in
[12, 14, 15, 26]. The techniques devel-
oped provide a sound basis for the prob-
abilistic interpretation of the truth val-
ues given as the result of a query.

In both our models, all the nodes are
actually binary, being at any iteration
step either in state 1 (representing the
value “true”), or 0 (“false”). In the
first technique, described in [21], we are
able to approximate the probability of
each of the variables by the frequency
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of the corresponding node having been
in the state 1, resulting in an estimate
of the conditional Bayesian probabili-
ties for each of the objects and (at-
tribute:value) pairs, given the current
input. According to Pearl [22] and Ge-
man&Geman [8], the estimates given
by the network converge to the correct
probability as the simulation continues.
Consequently, the accuracy of the an-
swer becomes better and better with in-
creased running time. When no signif-
icant changes occur any more, it may
be assumed that the result is very close
to the exact answer, and the computa-
tion may be stopped. The main prob-
lem with this approach is the fact that
it is very difficult to a priori find out
how long time this kind of convergence
will take. On the other hand, instead
of simulating the neural network model
in a conventional computer, the com-
putation may be performed in a special
parallel environment (neural net emu-
lator or chip), which enables enormous
speed-ups in performance.

The second model, described in [17],
uses the simulated annealing scheme
(see e.g. [1]). The simulated annealing
technique forces the network to eventu-
ally settle down to the “maximum en-
tropy” state, which is the most proba-

time
FIGURE 2. Node activity values during the “dolphin query” processing.

ble state of the network consistent with
the given input query. A typical plot
of the state 1 occurrence frequencies of
the nodes during the “dolphin query”
processing is shown in figure 2.

The neural network model used in the
second model is the harmony network
[25], which is a kind of a generaliza-
tion of the Boltzmann machine model
[10, 11]. In this scheme, the user is given
as output only either of the judgements
“true” or “false” for each of the vari-
ables. This kind of behaviour is very
useful in environments where the sys-
tem is expected to make a definite deci-
sion, even under uncertainty.

6 Conclusions and future devel-
opment

Although the NEULA system uses a
neural network as the implementational
platform, this representation is com-
pletely hidden from the user. Hence,
from the user’s point of view, NEULA
is just a sophisticated expert system
shell, which is able to process compli-
cated types of queries. The main ad-
vantage of the NEULA system over tra-
ditional uncertainty management in ex-
pert systems is in its strong theoretical
background: the truth values given to
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the user are approximations of actual
Bayesian probabilities, not heuristical
certainty factors, as in many current
expert systems. The Bayesian frame-
work is an attractive theoretical model
for reasoning with uncertainties, but so
far it has had one major drawback: in
general, it seems to be impossible to
calculate the conditional probabilities
exactly in reasonable time [5], so in
practice some kind of approximation is
needed. The new sampling methods de-
veloped offer powertful tools for this kind
of approximation. As neural nets allow
parallelization of such models, they are
a natural choice as the implementation
platform.

Compared to other neural network
packages, the NEULA system offers the
user an opportunity to be able to specity
the structure of the network and initial
interconnection weights explicitly, with-
out recourse to a time-consuming learn-
ing process. If needed, the intercon-
nection weights may then be fine-tuned
with a learning algorithm, although this
feature is not implemented in the cur-
rent version of the NEULA system. It
is important to notice that the expert
is not required to give all the proba-
bilistic dependencies of the framework
— only the very simple, and natural de-
pendencies between an object and its
attributes.

The neural network model behind the
NEULA system is structurally simple
and uniform. This is a clear advan-
tage over many other hybrid knowl-
edge representation schemes (see e.g.
[4, 9, 24]), which require fairly compli-
cated computing elements and control
regimes. Consequently, the NEULA
system would be much easier to im-
plement in a real neural system. The
mathematical models behind other hy-
brid systems are also usually more or
less heuristic by nature, in contrast to
the sound Bayesian interpretation of the
NEULA computational model.

Section 4 demonstrates how our system
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can be used as a stand-alone expert sys-
tem. However, after the NEULA code
has been compiled, it is also possible to
extract the generated network module,
and integrate it with other software. As
an example, we have implemented a sys-
tem [18], where the NEULA module is
integrated with a Prolog inference en-
gine. This kind of system allows the
user to mix probabilistic and logical rea-
soning.

The current NEULA system is able to
handle only discrete values of the at-
tributes. Although this form of knowl-
edge is common in many application ar-
eas, the current NEULA system can-
not be used in, e.g., low-level image
or speech processing, which are deal-
ing with raw numerical data. There-
fore we are also studying methods for
linking NEULA with a front-end mod-
ule that transforms numerical data into
discrete values, which can then be fed
to the NEULA system as input. One
possible technique for this kind of data
discretization was studied in coopera-
tion with AT&T Bell Laboratories by
implementing a program for object ori-
entation detection [16]. Another ap-
proach using instance-based reasoning
techniques is described in [19].

The main problems with the current
system concern its efficiency: simulated
annealing techniques require a lot of
iterative processing, and consequently
their implementations on conventional
serial computers can be excruciatingly
slow. A parallel implementation of
the NEULA simulator is currently un-
der construction for the 100-transputer
Hathi-2 system at Abo Akademi [3]. On
the algorithmic front, we are also study-
ing more sophisticated annealing tech-
niques, such as self-adjusting annealing
schedules [2] and the mean field anneal-
ing algorithm [23].
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