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Abstract

We investigate the computational properties of finite binary-
and analog-state discrete-time symmetric Hopfield nets. For bi-
nary networks, we obtain a simulation of convergent asymmetric
networks by symmetric networks with only a linear increase in net-
work size and computation time. Then we analyze the convergence
time of Hopfield nets in terms of the length of their bit represen-
tations. Here we construct an analog symmetric network whose
convergence time exceeds the convergence time of any binary Hop-
field net with the same representation length. Further, we prove
that the MIN ENERGY problem for analog Hopfield nets is NP-
hard, and provide a polynomial time approximation algorithm for
this problem in the case of binary nets. Finally, we show that
symmetric analog nets with an external clock are computationally

Turing universal.

1 Introduction

In his 1982 paper (Hopfield, 1982), John Hopfield introduced a very influential
associative memory model which has since come to be known as the discrete-
time Hopfield (or symmetric recurrent) network. The fundamental character-
istic of this model is its well-constrained convergence behavior as compared to
arbitrary asymmetric networks. Part of the appeal of Hopfield nets also stems
from their connection to the much-studied Ising spin glass model in statistical
physics (Barahona, 1982), and their natural hardware implementations using
electrical networks (Hopfield, 1984) or optical computers (Farhat et al., 1985).
Hopfield originally proposed that this type of networks could be used for remov-
ing noise from large binary patterns (Chiueh and Goodman, 1988; Gold, 1986;
Park et al., 1999; Pawlicki et al., 1988), but they have also been applied to, e.g.
the fast approximate solution of combinatorial optimization problems (Hop-
field and Tank, 1985; Aarts and Korst, 1989; Liao, 1999; Mandziuk, 2000;
Sheu et al., 1991; Wu and Tam, 1999). Because of their simple structure,
Hopfield nets are also often used as a reference model for investigating new
analytical or computational ideas, in the same way as Ising spin systems are
used in statistical physics, or Turing machines in theoretical computer science.
Although the basic Hopfield model per se is of limited practical applicabil-

ity, it has inspired such other important neural network architectures as the



Binary Associative Memory (BAM) (Kosko, 1988), and Boltzmann machines
and their further stochastic variations (Ackley et al., 1985; Haykin, 1999; Ro-
jas, 1996). The accumulated knowledge concerning Hopfield nets has often
been an essential prerequisite for understanding the capabilities of these other
models. (For instance, the convergence behavior of the BAM model was ana-
lyzed in (Kosko, 1988) along the lines first established for the Hopfield model
in (Hopfield, 1982).)

In the present paper we investigate a number of issues in the computational
analysis of Hopfield networks, complementing the existing literature in this
area (Floréen and Orponen, 1994; Parberry, 1994; Siegelmann, 1999; Siu et al.,
1995; Wiedermann, 1994). After a brief review of the basic definitions in
Section 2, our first result in Section 3 establishes a size- and time-optimal (up
to constant factors) simulation of arbitrary discrete-time binary-state neural
networks (with in general asymmetric interconnections) by symmetric binary-
state Hopfield nets.

It is a fundamental property of symmetric Hopfield nets that their compu-
tations always lead to a stable network state (Hopfield, 1982), or possibly an
oscillation between two different network states when the neurons are updated
in parallel (Goles et al., 1985; Poljak and Sura, 1983). On the other hand
general asymmetric networks can have arbitrarily complicated limit behavior.
Thus the asymptotic dynamics of symmetric Hopfield nets are considerably
more constrained than those of arbitrary networks. However, it was established
in (Orponen, 1996) that when only convergent computations are considered,
an arbitrary network of n discrete-time binary neurons can be simulated by a
Hopfield net with O(n?) symmetrically interconnected binary units. In Section
3 we strengthen this result by showing that in fact a convergent computation
that takes ¢ steps on a general network of » neurons can be simulated in 4¢ steps
on a Hopfield network consisting of only 6n + 2 symmetrically interconnected
units.

This tight converse to Hopfield’s (Hopfield, 1982) convergence theorem thus
shows that in binary networks it holds in a quite strong sense that “conver-
gence = symmetry”, i.e. not only do all symmetric networks converge, but
also all convergent computations can be implemented efficiently in symmetric
networks. The result also has some practical implications, because it guaran-
tees that recurrent networks with arbitrary asymmetric interconnections can

always be replaced, without much overhead in network size or computation



time, by symmetric networks with their guaranteed convergence properties,
and in some technologies more efficient implementations.

In Section 4 we study the convergence time of both binary- and analog-
state Hopfield networks in terms of the length of their bit representations.
This is to our knowledge the first analysis that takes into account the actual
representation size of the networks. We obtain the curious result that there
exist analog-state symmetric networks whose convergence time is greater than
that of any binary-state symmetric network with the same representation size.
The result shows that although analog-state networks with limited-precision
states are not computationally more powerful than binary-state ones (Casey,
1996; Maass and Orponen, 1998), they may still be more efficient.

In Section 5 we investigate the NP-complete MIN ENERGY or GROUND
STATE problem of finding a network state with minimal energy for a given
symmetric network. (For precise definitions, see Section 2.) This problem
forms the basis of all applications of Hopfield nets to combinatorial optimiza-
tion (Hopfield and Tank, 1985; Aarts and Korst, 1989; Liao, 1999; Mandziuk,
2000; Sheu et al., 1991; Wu and Tam, 1999), and is also of importance in
the Ising spin glass model (Barahona, 1982). In Subsection 5.1 we derive a
new polynomial time approrimation algorithm for this problem in the case of
binary-state networks. In Subsection 5.2 we provide the first rigorous proof
that the MIN ENERGY problem is NP-hard also for analog-state Hopfield
nets, which is the model actually used in practical optimization applications.

Section 6 deals with the computational power of finite analog-state recur-
rent neural networks — a topic that has attracted considerable attention in
recent years (Siegelmann, 1999). At a general level it is known that finite
asymmetric analog networks are computationally universal, i.e. equivalent to
Turing machines (Siegelmann and Sontag, 1995), but that any amount of ana-
log noise reduces their computational power to that of finite automata (Casey,
1996; Maass and Orponen, 1998).

For reasons discussed more fully in Section 6, one cannot reasonably expect
finite symmetric analog networks to be computationally universal. However,
we show that universality can be achieved even in symmetric networks, pro-
vided that they are augmented with an external oscillator that produces an
appropriately sequenced infinite stream of binary pulses. Thus we obtain a full
characterization of the computational power of finite analog-state discrete-time

networks in the form of “Turing universality = asymmetric network = sym-



metric network + oscillator”. Moreover, we give in Section 6 necessary and
sufficient conditions that the external oscillator needs to satisfy in order to
qualify for this equivalence.

An extended abstract of this paper appeared in (Sl’ma et al., 1999).

2 Basic Notions

A finite discrete recurrent neural network consists of n simple computational
units or neurons, indexed as 1,...,n, which are connected into a generally
cyclic oriented graph or architecture in which each edge (7,7) leading from
neuron ¢ to j is labeled with an integer weight w(i,j) = wj;. The absence
of a connection within the architecture corresponds to a zero weight between
the respective neurons. Special attention will be paid to Hopfield (symmetric)
networks, whose architecture is an undirected graph with symmetric weights
w(i, j) = w(y,1) for every 1, j.

We shall mostly consider the synchronous computational dynamics of the
network, working in fully parallel mode, which determines the evolution of
the network state y*) = (y%t), ., y®) € {0,1}" for all discrete time instants
t =0,1,... as follows. At the beginning of the computation, the network
is placed in an initial state y(© which may include an external input. At
discrete time ¢t > 0, each neuron j = 1,..., n collects its binary inputs from the
states (outputs) y{¥

K3

5](-” =20 ’LUjiyz(t) (j =1,...,n) is computed as the respective weighted sum

€ {0,1} of incident neurons i. Then its integer ezcitation

of inputs including an integer bias wjo which can be viewed as the weight of
the formal constant unit input y(()t) =1,t > 0. At the next instant ¢ + 1, an
activation function o is applied to fj(-t) for all neurons 7 = 1,...,n in order to

determine the new network state y*t1) as follows:

=0 j=1,....n (1)

where a binary-state neural network employs the hard limiter (or threshold)

activation function

o(€) = (2)

1 for £€>0
0 for £€<0.

Alternative computational dynamics are possible in Hopfield nets. For ex-

ample, under sequential mode only one neuron updates its state according to



(1) at each time instant while the remaining neurons do not change their out-
puts. Or we shall also deal with the finite analog-state discrete-time recurrent
neural networks which, instead of the threshold activation function (2), employ

some continuous sigmoid function, e.g. the saturated-linear function

1 for £€>1
o§)=9 & for 0<¢<1 (3)
0 for £€<0.

Hence the states of analog neurons are real numbers within the interval [0, 1],
and similarly the weights (including biases) are allowed to be reals.

The fundamental property of symmetric nets is that on their state space a
bounded Liapunov, or ‘energy’ function can be defined, whose values are prop-
erly decreasing along any non-constant computation path (productive compu-
tation) of such a network. For example, consider a sequential computation of
a binary symmetric Hopfield net with, for simplicity, zero biases w;o = 0 and
feedbacks w;; = 0 (negative feedbacks are actually not allowed for sequential
Hopfield nets to have a Liapunov property), and without loss of generality (Par-
berry, 1994) also assume non-zero excitations f](-t) #0,7=1,...,n. Then one
can associate an energy with state y(), t > 0, as follows:

n o n
B () = B0 = -3 3 Y wanl’y”. (@)
j=1i=1
Hopfield (Hopfield, 1982) showed that for this energy function, E(t) < E(t —
1) — 1 for every t > 1 of a productive computation. Moreover, the energy
function is bounded, i.e. |E(t)| < W, where
1.
W=230 3w 5)
j=1i=1
is called the weight of the network. Hence, the computation must converge to a
stable state within time O(W). An analogous result can be shown for parallel
updates, where a cycle of length at most two different states may appear (Goles
et al., 1985; Poljak and Sura, 1983).

3 An Optimal Simulation of Asymmetric Net-

works

The computational power of symmetric Hopfield nets is properly less than that

of asymmetric networks due to their different asymptotic behavior. Because
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of the Liapunov property, Hopfield networks always converge to a stable state
(or a cycle of length two for parallel updates), whereas asymmetric networks
can have limit cycles of arbitrary length. However, it was shown in (Orponen,
1996) that this is the only feature that cannot be reproduced, in the sense
that any converging fully parallel computation by a network of n discrete-time
binary neurons, with in general asymmetric interconnections, can be simulated
by a Hopfield net of size O(n?). More precisely, given an asymmetric network
to be simulated, there exists a subset of neurons in the respective Hopfield net
whose states correspond to the original convergent asymmetric computation
in the course of the simulation — possibly with some constant time overhead
per each original update. The idea behind this simulation is that each asym-
metric edge to be simulated is implemented by a small symmetric subnetwork
which receives “energy support” from a symmetric clock subnetwork (a bi-
nary counter) (Goles and Martinez, 1989) in order to propagate a signal in the
correct direction.

In the context of infinite families of neural networks, which contain one
network for each input length (a similar model is used in the study of Boolean
circuit complexity (Wegener, 1987)), this simulation result implies that infi-
nite sequences of discrete symmetric networks with a polynomially increas-
ing number of binary neurons are computationally equivalent to (nonuniform)
polynomially space-bounded Turing machines. Stated in standard complex-
ity theoretic notation (Balcazar et al., 1995), such sequences of networks thus
compute the complexity class PSPACE/poly, or P/poly when the weights in
the networks are restricted to be polynomial in the input size (Orponen, 1996).

In the following theorem the construction from (Orponen, 1996) is improved
by reducing the number of neurons in the simulating symmetric network from
quadratic to linear as compared to the size of the asymmetric network; this
result is asymptotically optimal. The improvement is achieved by simulating
the individual neurons (as opposed to edges, as in (Orponen, 1996)), whose
states are updated by means of the clock technique. A similar idea was used
for a corresponding continuous-time simulation in (Sima and Orponen, 2000).
Also a quantitatively similar result has been achieved for sequential Hopfield
nets with negative feedbacks in (Goles and Matamala, 1996). However, such
networks lose the Liapunov property, and thus they can simulate any in general

non-convergent asymmetric network relatively easily.

Theorem 1 Any fully parallel computation by a recurrent neural network of n
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B =(5U+4)n
+1

Figure 1: A 3-bit counter network

binary neurons with asymmetric weights, converging within t* discrete update
steps, can be simulated by a Hopfield net with 6n+2 neurons, converging within

4t* discrete-time steps.

Proof: Observe, first, that any converging computation by an asymmetric
network of n binary neurons must terminate within t* < 2" steps. A basic
technique used in our proof is the exploitation of an (n + 1)-bit symmetric
clock subnetwork (a binary counter) which, using 3n + 1 units being initially
in the zero state, produces a sequence of 2™ well-controlled oscillations before
it converges. This sequence of clock pulses will be used to drive the underlying
simulation of an asymmetric network in the remaining part of the Hopfield
net.

The construction of the (n + 1)-bit binary counter will be described by
induction for n. An example of a 3-bit counter network is presented in Fig-
ure 1, where the symmetric connections between neurons are labeled with
corresponding weights, and the biases are indicated by the edges drawn with-
out an originating unit. In the sequel the symmetric weights in the Hopfield
net will be denoted by w whereas w' denotes the original asymmetric weights.

The induction starts with the least significant counter unit ¢q. Its bias
w(0,¢9) = (BU + 4)n + 1 is also denoted by B in Figure 1 and the parameter



U is defined as follows: .

U= jmax 2 Wl - (6)
As it will be seen later this large bias prevents the rest of the network from
affecting the counter computation. Neuron ¢y is initially passive (i.e. its state
is 0). However, at the next time instant ¢y will fire or be active (i.e. its state is
1) according to (2) since its excitation is positive. Hence, ¢y simply implements
counting from 0 to 1.

For the induction step suppose that the counter has been constructed up
to the first k£ (0 < k < n + 1) counter bits cy, ..., cx_1 and denote by Vj the
set of all its ny = 3(k — 1) + 1 neurons, including the auxiliary ones labeled
ag, by for £ = 1,...,k — 1. Then the counter unit ¢; is connected to all ny
neurons v € Vj via unit weights w(v,cx) = 1 which, together with its bias
w(0, k) = —ng, make ¢ to fire if and only if all these units are active. This
includes the first k£ active counter bits ¢y, . .., cx_1 which means that counting
from 0 to 2¥ — 1 has been accomplished and hence, the next counter bit c;
must fire. In addition, the unit ¢, is connected to a; which is further linked to
by so that these auxiliary neurons are, one by one, activated after ¢ fires. This
is implemented by the following weights w(cg, ax) = Wy, w(ag, by) = Wi — ny,
and biases w(0, a;) = —1, w(0,by) = ng — Wy where Wy, > 0 is a sufficiently
large positive parameter whose value will optimally be determined below so
that neurons ayg, by are not directly influenced by a computation of units from
Vi, except via c.

The neuron a;, resets all the units in Vj, to their initial zero states which is
consistent with the correct counter computation when ¢, fires. For this pur-
pose, ay is further connected to each v € Vj via a sufficiently large negative
weight w(ag,v) < 0 such that —w(ax,v) > 1+ X ,ev,00}w(up)>0 W(U; V) = Sky
exceeds their mutual positive influence (including the weight w(cg,v) = 1)
and its possibly positive bias w(0,v) > 0. Thus we can choose the integer
weight w(ay,v) = —Sky, — 1 less only by 1 than the minus right side of the
preceding inequality suggests in order to optimize the weight size. This also
determines the minimal value of above-mentioned large positive weight pa-
rameter Wy =1 — 3, ¢y, w(ag,v) which makes the state of a; (similarly for by
below) independent on the outputs from v € V.

Finally, the unit by balances the negative influence of a; on Vj so that the
first k counter bits can again count from 0 to 2¥ — 1 but now with ¢, being

active. This is achieved by the exact weight w(bg,v) = —w(ag,v) — 1 for each
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Figure 2: Symmetric simulation of neuron j

v € Vi in which —w(ag,v) eliminates the influence w(ag,v) of ax on v and
—1 compensates w(cg,v) = 1. Again, neurons v € Vj cannot reversely affect
by, since their maximal contribution },cy, w(v,by) = —ng — Xyey, w(ag,v) =
Wi — n — 1 to the excitation of by cannot beat its bias w(0,bx) = ng — W.
This completes the induction step. It follows from the preceding description
that the sizes of integer weights in the counter network are as minimal as this
construction allows.

Now, the symmetric clock subnetwork, namely the counter unit ¢y which
outputs the state sequence (0111)?" during the clock operation, will be used
to proceed the underlying simulation of an asymmetric network. Note that
the corresponding weights in the counter have been chosen sufficiently large
so that the clock is not influenced by the subnetwork it drives. In addition, a
neuron c¢g is added which computes the negation of the ¢y output. Then for
each neuron j from the asymmetric network, 3 units p;, g;, 7; are introduced in
the Hopfield net so that p; represents the new (current) state yj(-t) of j at time
t > 1 while g; stores the old state y(-tfl)

J
t — 1, and r; is an auxiliary neuron realizing the update of the old state. The

of j from the preceding time instant

corresponding symmetric subnetwork simulating one neuron j is depicted in
Figure 2. The total number of units simulating the asymmetric network is
3n + 1 (including ¢) which, together with the clock size 3n + 1, gives a total
of 6n + 2 neurons in the Hopfield net.

At the beginning of the simulation all the neurons in the Hopfield net are

passive, except for those units g; corresponding to the original initially active
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neurons j, i.e. y(-o) = 1. Then an asymmetric network update at time ¢ > 1 is

J
simulated by a cycle of four steps in the Hopfield net as follows.

In the first step, unit ¢y fires and remains active until its state is changed
by the clock since its large positive bias makes it independent of all the n
neurons p;. Also the unit ¢, fires because it computes the negation of ¢y that
was initially passive. At the same time each neuron p; computes its new state
yj(t) from the old states yft_l), which are stored in the corresponding units
¢i- Thus each neuron p; is connected with units ¢; via the original weights
w(g;, p;) = w'(4,7) and also its bias w(0,p;) = w'(0,7) is preserved. So far,
unit g; keeps the old state yy*l) due to its feedback.

In the second step, the new state yj(-t)
neuron ¢y makes each neuron p; passive by means of a large negative weight

is copied from p; to r;, and the active

which exceeds the positive influence from units ¢; (¢ = 1,...,n) including its

bias w(0, p;) according to (6). Similarly, the active neuron ¢, erases the old

state y§t71) from each neuron g; by making it passive with the help of a large

negative weight which, together with the negative bias, exceeds its feedback
and the positive influence from units p; (¢ = 1,...,n). Finally, also neuron ¢
becomes passive since ¢y, was active.

In the third step, the current state yj(-t)
remaining incident neurons p; and ¢y are and remain passive due to ¢y being

is copied from r; to g; since all the

active. Therefore also unit r; becomes passive.

In the fourth step, ¢y becomes passive and the state y](-t), being called old
from now on, is stored in ¢;. Thus the Hopfield net finds itself at the starting
condition of the time £+ 1 asymmetric network simulation step, which proceeds
in the same way. Altogether, the whole simulation is achieved within 4t*

discrete-time steps. O

4 Convergence Time Analysis

In this section the convergence time in Hopfield networks, i.e. the number of
discrete updates required before the network converges, will be analyzed. We
shall consider only worst case bounds; an average-case analysis can be found
in (Komlés and Paturi, 1988). Since a network with n binary neurons has
2" different states, a trivial 2" upper bound on the convergence time in sym-
metric networks of size n holds. On the other hand, the symmetric clock

network (Goles and Martinez, 1989) which is used in the proof of Theorem 1
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provides an explicit example of a Hopfield net whose convergence time is expo-
nential with respect to n. More precisely, this network yields a £(2"/3) lower
bound on the convergence time of Hopfield nets, since a (k + 1)-bit binary
counter can be implemented using n = 3k + 1 neurons.

However, the above-mentioned bounds do not take into account the size
of the weights in the network. An upper bound of O(W) follows from the
characteristics of the energy function (see Section 2), and this estimate can even
be made more accurate by using a slightly different energy function (Floréen,
1991). This yields a polynomial upper bound on the convergence time of
Hopfield nets with polynomial weights. Similar arguments can be used for
fully parallel updates.

In the following theorem these results will be translated into convergence
time bounds with respect to the length of bit representations of Hopfield nets.
More precisely, for a binary-state symmetric network which is described within
M bits, convergence-time lower and upper bounds 2%M"*) and 20M'%)  pe.
spectively will be shown. It is an open problem whether these bounds can
be improved. This is an important issue since the convergence-time results
for binary-state Hopfield nets can be compared with those for analog-state
symmetric networks in which the precision of real weight parameters (i.e. the
representation length) plays an important role. For example, in the following
theorem we shall also introduce an analog-state version of the symmetric clock
network from Theorem 1 whose computation terminates later than that of any
other binary-state Hopfield net of the same representation size. To the best of
our knowledge, this provides the first known lower bound on the convergence
time of analog-state Hopfield nets. A similar result can be achieved even for
continuous-time symmetric networks (Sima and Orponen, 2000). Note also
that in this approach we express the convergence time with respect to the full
descriptional complexity of the Hopfield net, not just the usual measure of the
number of neurons, which captures its computational resources only partially.
This suggests that analog Hopfield nets whose parameters are limited in the

size may gain efficiency over binary ones.

Theorem 2 There exist both binary- and analog-state Hopfield nets with en-
coding size of M bits that converge after 2UMY2) g 2a(M) updates, re-
spectively, where g(M) is an arbitrary continuous function such that g(M) =
Q(M?3), g(M) = o(M), and M/g(M) is increasing. On the other hand, any

computation of a symmetric binary-state network with a binary representation
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of M bits terminates within 29 %) discrete computational steps.

Proof: For the underlying lower bounds the clock network with parameter
B =1 from the proof of Theorem 1 can again be exploited. It is sufficient to
estimate its representation length. It can be shown by induction on £ that the
maximum integer weight in the (k+1)-bit counter with n = 3k+1 neurons is of
order 20" This corresponds to O(n) bits per weight which is repeated O(n?)
times, and thus yields at most M = O(n?) bits in the representation. Hence,
the convergence-time lower bound 2™ of the binary-state clock network can
be expressed as 22(M'/?),

In the analog-state case, the underlying weights of the clock with the pa-
rameter B = 1 will further be adjusted as follows. For every analog unit v
in the counter network a feedback weight w(v,v) = 1 + € is introduced and
also each bias is increased by € except for neuron ¢y whose bias is explicitly
set to w(0,cy) = € where € > 0 is a small (e.g. ¢ < 0.1) optional parameter
controlling the convergence rate of the analog clock network. Now, starting
the counter computation at the zero initial state, the state of unit ¢y grad-
ually grows towards saturation at value 1 because of its bias w(0,¢) = ¢
and feedback w(cg,co) = 1 + €. It can be verified that at the least discrete-
time instant greater than log(2 — ¢)/log(1 + ¢) its output is greater than
1 — ¢ which makes the excitation of the next counter unit ¢; positive due to
its bias w(0,¢1) = —1 + . Now, ¢; starts to grow because of its feedback
w(c1, ¢1) = 1+ & which shortly completes the saturation of ¢y at 1. This trick
of gradual state transition from 0 to 1 is applied repeatedly throughout the
analog clock computation by using the introduced feedbacks 1 + €.

It follows that the respective transition for cq takes at least Q(1/log(1+¢))
discrete-time steps which, together with the fact that the unit ¢, fires 2* times
before (k + 1)-bit clock converges, provides the lower bound Q(2%/log(1 +
g)) > Q(2"/3/¢) on the convergence time of analog symmetric networks with n
neurons. Now, we shall express this bound in terms of the size M in bits of the
network representation. The length of the integer part of the weight parameter
representation excluding fractions ¢ has already been upper bounded by O(n?)
bits in the above-considered binary-state case. In addition, the biases and
feedbacks of the n units include the fraction e, and taking this into account
requires ©(nlog(1/¢)) additional bits, say at least xnlog(1/e) bits for some
constant k£ > 0. By choosing an appropriate ¢ = 2-/(/(®") in which f is a

continuous increasing function whose inverse is defined as f~'(u) = p/g(u),
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where ¢ is an arbitrary function such that g(u) = Q(¢?/?) (implying f(n) =
Q(n?®)) and g(u) = o(y), we get M = O(f(n)), especially M > f(n) from
M > xnlog(1/e). Finally, the convergence time Q(2"/3/¢) can be translated to
Q(2/(m)/(sn)4n/3) — 92(/(M)/7) \which can be rewritten as 22(M/f7 (M) = 99(g(M))
since f(n) = Q(M) from M = O(f(n)) and f~'(M) > n from M > f(n).

On the other hand for the upper bound, consider a binary-state Hop-
field network with an M-bit representation that converges after T'(M) up-
dates. A major part of this M-bit representation consists of m binary en-
codings of weights wy, ..., w,, of the corresponding lengths M, ..., M,, where

" M, = 0©(M). Clearly, there must be at least T'(M) different energy levels
corresponding to the states visited during the computation. Thus the under-
lying weights must produce at least S > T(M) different sums Y, 4 w, for
A C{1,...,m} where w, for r € A agrees with w;; for y; = y; = 1 in (4). So,
it is sufficient to upper bound the number of different sums over m weights
whose binary representations form a ©(M)-bit string altogether.

Observe that all the S = 2™ sums over subsets of m weights 1,2,4,8,...,2m"!
are different. At the same time these weights altogether have the least length
m(m+ 1)/2 of binary representation over all the weights that generate 2™ dif-
ferent sums. Since the representation length is at most M we get m = O(M'/?)
upper bound on the number of weights which yields T(M) < 20(M"%) O

5 The Minimum Energy Problem

In this section we investigate the important MIN ENERGY or GROUND
STATE problem of finding a network state with minimal energy for a given
symmetric network. This problem is of special interest, because many hard
combinatorial optimization problems have been heuristically solved by mini-
mizing the energy in Hopfield nets (Hopfield and Tank, 1985; Aarts and Korst,
1989; Liao, 1999; Mandziuk, 2000; Sheu et al., 1991; Wu and Tam, 1999). This
issue is also important for the Ising spin glass model in statistical physics (Bara-
hona, 1982).

It follows from the above-mentioned reductions of optimization problems
to MIN ENERGY that the problem is computationally hard. In particular, for
binary networks the decision version of MIN ENERGY, i.e. the question whet-
her there exists a network state having an energy less than a prescribed value,
is NP-complete (Barahona, 1982). On the other hand, it is known that MIN

14



ENERGY has polynomial time algorithms for binary Hopfield nets whose ar-
chitectures are planar lattices (Bieche et al., 1980) or planar graphs (Barahona,
1982).

We address here two aspects of the MIN ENERGY problem. In Subsec-
tion 5.1 we provide a polynomial time approximation algorithm for the problem
in the case of binary nets. In Subsection 5.2 we analyze the complexity of the
MIN ENERGY problem for analog Hopfield nets, which is the model whose
continuous-time version is usually used for practical optimizations. Surpris-
ingly, to the best of our knowledge this problem has been unresolved so far.
This is possibly because there is a slight technical complication to the issue,
related to the fact that unlike binary networks, analog networks can also con-
verge to an interior point of their state space. To prove the NP-hardness result
we need to ensure that the minimum energy values of the constructed networks
are actually reached close to extremum points of their respective state spaces.
Our proof applies to all continuous non-decreasing sigmoidal neuron activation

functions of a practical interest.

5.1 Polynomial Time Approximation for Binary Nets

Recall that in the definition (4) of the energy function for binary nets we
assumed, for reasons of simplicity, that w;; = 0 and wjo =0forj=1,...,n. In
addition, without loss of generality (Parberry, 1994), we shall work throughout
this section with bipolar states {—1,1} of neurons instead of binary ones {0, 1}
from (2) where 0 is now replaced by —1.

Perhaps the most direct and frequently used reduction to MIN ENERGY
is from the MAX CUT problem (see e.g. (Bertoni and Campadelli, 1994)). In
MAX CUT we are given an undirected graph G = (V, A) with an integer edge
cost function ¢: A — Z, and we want to find a cut V; C V which maximizes

the cut size

c(V1) = ) c({i,j}) - > c({t,5}) - (7)

Note that the standard MAX CUT problem is here generalized by allowing
also the negative edge weights that are needed for the opposite reduction from
MIN ENERGY to MAX CUT. Recently, a new randomized approximation al-
gorithm with a high performance guarantee o = 0.87856 for this MAX CUT

formulation has been proposed (Goemans and Williamson, 1995) and later de-
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randomized (Mahajan and Ramesh, 1995): a fact which we shall exploit for
approximating the MIN ENERGY problem. Namely, we shall observe that
MIN ENERGY can be approximated in a polynomial time within absolute er-
ror less than 0.243W where W is the network weight (5). For W = O(n?), e.g.
for Hopfield nets with n neurons and constant weights, this result matches the
lower bound Q(n? ) which cannot be guaranteed by any approximate polyno-
mial time MIN ENERGY algorithm for every ¢ > 0 (Bertoni and Campadelli,
1994), unless P = NP. In addition, an approximate polynomial time MIN
ENERGY algorithm with absolute error O(n/logn) is also known in a special
case of Hopfield nets whose architectures are two-level grids (Bertoni et al.,
1997).

Theorem 3 The MIN ENERGY problem for binary Hopfield nets can be ap-
proximated in polynomial time within absolute error less than 0.243W where
W is the network weight (5).

Proof: We first recall the well-known simple reduction between MIN EN-
ERGY and MAX CUT problems. For a binary Hopfield network with archi-
tecture G and weights w(i, j) we can easily define the corresponding instance
G = (V, A); cof MAX CUT with edge costs c¢({i,7}) = —w(s, j) for {i,j} € A.
We shall show that any cut V; C V of G corresponds to a Hopfield net state
y € {—1,1}" where y; = 1if i € V] and y; = —1 for i € V' \ Vi, so that the
respective cut size c(V}) is related to the underlying energy F(y). Thus the

energy function (4) can be expressed in terms of cut size (7) as follows:

1

E(y) = =5 w(if)yy, =
i,jEV
1 .. 1 .. 1 .. 1 ..
= —5 2 w5 X wii)+5 3 wig) -5 3 wiig) =
Yi=Y; Yi2Y; YiFY; YiFY;

1 .. o 1 o 1 ..
= g X wi)+ Y wi)=—5 > wii)-35 X wii)+
t,jeV YiFYj w(i,5)<0 w(i,5)>0

.. 1 .. 1 ..
+ > w(i,j) + 3 > w(i,g) - 3 > w(i,g) =

YiFY; w(i,5)>0 w(,5)>0

1 .. 1 .. .. ..
= _5 Z w(l,])+§ Z ’UJ(Z,_])— Z U)(Z,])+ Z w(la]):

w(i,5)<0 w(i,5)>0 w(i,5)>0 YiFY;

=w+2 >  {iih-2 Y i) =
= W —2¢(V5). (8)
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It follows from (8) that the minimum energy state corresponds to the maximum
cut.

Now, the approximate polynomial time algorithm from (Goemans and
Williamson, 1995) can be employed to solve an instance G = (V, A); ¢ of the
MAX CUT problem which provides a cut V; whose size ¢(V7) > ac* is guaran-
teed to be at least o = 0.87856 times the maximum cut size ¢*. Let cut V; cor-
respond to the Hopfield network state y which implies ¢(V;) = 1/2(W — E(y))
from (8). Hence, we get a guarantee W — E(y) > a(W — E*) where E* is
the minimum energy corresponding to the maximum cut ¢* which leads to
E(y) - E* < (1 — a)(W — E*). Since |[E*| < W, we obtain the desired
guarantee for the absolute error E(y) — E* < (1 — )2W < 0.243W. O

5.2 Hardness Result for Analog Nets

In this subsection we consider the MIN ENERGY (o) problem for analog
Hopfield nets with general activation function o. The energy function (4)

can be generalized for analog networks with non-negative feedbacks w;; > 0
(j=1,...,n) as follows (Koiran, 1994):

="3. Z D Wiy — D wioy; + 2/0 "o (y)dy (9)
j=1i=1 j=1 j=1

where the activation function o is continuous and strictly increasing on an

interval [, ] (o < 8, with possibly @« = —oo or 4+ o0), and constant outside,
ie.
a for £ <a
o(§) = (10)
b for £> 7.
For o = —o00 or f = 400, we require that limg_, o, 0(§) = a orlimg_,; 0(§) =

b, respectively. The inverse function ¢! in (9) may not be defined on the whole
interval [0, y;]; in that case we assign it to zero outside of (a,b). In the sequel,
we shall also assume that o is differentiable on (o, 3) (thus we know that
o'(&) > 0 for &£ € (o, B)), and that the respective integrals in (9) are bounded,
ie.

sup
y; €[a,b]

[ o way| < 1. (1)

where 0 < I, < +00. These conditions are satisfied by all the commonly used
continuous activation functions (e.g. the hyperbolic tangent and the saturated-

linear map).
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The decision version of the MIN ENERGY (o) problem for analog Hopfield
nets is the question whether a given analog network possesses a state y € [a, b]"
for which the energy E,(y) has value less than a given constant K. Similarly
as in the proof of Theorem 3, we shall show this problem to be NP-hard
by reduction from the SIMPLE MAX CUT problem which is known to be
NP-complete (Garey et al., 1976). In SIMPLE MAX CUT we are given an
undirected graph G = (V, A) and a positive integer k£, and we want to decide
whether there exists a cut V3 C V whose size ¢(Vi) = [{e € A; enN Vi # 0}
(corresponding to constant unit cost in MAX CUT) is at least k. The idea
of the proof is to exploit the reduction from the bipolar case by forcing the
analog energy (9) to achieve its minimum at a state close to one of the extremal
points {a,b}"™ of the state space. For this purpose we prove the following
lemma concerning a saturation tendency of analog symmetric networks with

large positive feedbacks.

Lemma 1 Let (n,9) be an interval in which § = infecn9)0'(§) > 0 (ie. o
is certainly not saturated on (n,9)) and let wj; > 1/6 for every j = 1,...n.
If y* = (yt,...,y5) € [a,b]™ is a local minimum of energy function (9) then
y; & (0(n),0(V)) for every j=1,...n.

Proof: Suppose that y* € [a,b]" is a local minimum of energy function (9).

Clearly, yr & (a(n),o(9)) for y5 € {a,b}. For yf € (a,b) consider function
Ej(y) = Eo(Yts-- - Y5 1,Ys Yiv1s- - > Yyp) of one variable y. Thus, Ej(y;) = 0

and PE .
E'(y%) = S22 (y*) = —wj; + ——— > 0 12
J (y]) ayJQ (y ) w]] + 0'(y;) - ( )
since y* is a local minimum of E,. Tt follows from (12) that w;; < 1/0'(y7),
and hence y; & (o(n),o(9))- O

Now, we shall prove the hardness result for analog MIN ENERGY (o)
problem which seems to be the first formal verification of this fact although
(continuous-time) analog Hopfield nets have often been exploited to heuristi-
cally solve hard optimization problems (Hopfield and Tank, 1985; Aarts and
Korst, 1989; Liao, 1999; Mandziuk, 2000; Sheu et al., 1991; Wu and Tam,
1999).

Theorem 4 The MIN ENERGY (o) problem for analog Hopfield nets is NP-
hard.
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Proof: We reduce the SIMPLE MAX CUT problem to MIN ENERGY(o).
Given a SIMPLE MAX CUT instance G = (V, A); k with n = |V vertices
and m = |A| edges, a corresponding MIN ENERGY(o) instance, i.e. an analog
Hopfield net N with activation function o and a prescribed energy level K, is
constructed in polynomial time. The architecture of N is GG, except that each
neuron in N has an additional feedback connection. The weights and biases

of N are defined as follows:

=8¢ for {i,jle A
wp = { G Prlbgbed (13)
u for 1= j=1,...,n,
4C(a + b)dega(j)
Wjo = (b — a)2 (14)
where degg(j) = |{i € V; {i,j} € A}| is the degree of vertex j in G,
_ u 2 172
C= ‘n (L, ~ Smax (jaf, 1 )) , (15)
and u is chosen so that
1
u > — where = inf a'(&) >0 16
Y §e(o~ (ate),0(b—¢)) (©) (16)
and ¢ > 0 satisfies
ectzo (17)
8m
Finally, the energy level is prescribed as
4abm
K=2C|-2k+1— —— 18
( - a)?) 1)

In the proof of Theorem 3 the reduction from MIN ENERGY to MAX CUT
is actually the one-to-one correspondence and the respective inverse reduction
from MAX CUT to MIN ENERGY, e.g. restricted even to SIMPLE MAX CUT
instances, provides an NP-completeness proof for bipolar Hopfield nets. As we
have mentioned above we exploit this approach by reducing the underlying
analog minimum energy problem to the bipolar case. For this purpose the
following linear transformation of the analog neuron state y; € [a,b] to y; €
[—1, 1] which preserves the network weights except for biases (Parberry, 1994),

is employed:
! Q(yj — CL)

e —-1. (19)
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With this transformation the energy function (9) can be rewritten as

E,(y) = 2C (——Z Z Wiy — (Zj2>2m>+

1i=1,1#j
+ Z/ y)dy — Zwmyg (20)

where the introduced weights

-1 f ,j} €A
)y = or ) 21)
0 otherwise
coincide with those from the bipolar case.
Furthermore, consider a local minimum y* = (y7,...,y}) € [a, b]" of energy

E,. Tt follows from Lemma 1 whose assumptions are satisfied by (16) that
y; € la,a+¢€]U[b—¢,b] for every j =1,...,n. Hence, y}' € [-1, -1 +2¢/(b—
a)]U[1 —2¢/(b— a), 1] which implies

4de
b—a’
We introduce bipolar states g5 € {—1, 1} into (20) by rounding the correspond-

*! %!

yzyj >1-

(22)

ing analog ones, i.e. 5 = —1 for y;' € [-1,-1+2¢/(b—a)] and g5 = 1 for
yy' € [1-2¢/(b—a),1] (j =1,...,n). By using (22), (21) and (17) the round-
ing error for the underlying term in (20) can be estimated for local minimum

y* as follows:

dem
<

< L
b—a 2

(23)

1 n n
-3 Z_: _12 wh (7555 — vyl

Also the absolute value of the second row of (20) can be upper bounded from
(11) and (15):

<C. (24)

‘Z/ y)dy — o an%

Moreover, the result (8) for the bipolar case can here be applied in which the

network weight W equals m now and V}* is the cut corresponding to bipo-
* = (gt,...,7%) € {-1,1}". Thus, it follows from (23),
(24) that the energy function value (20) at local minimum y* belongs to the

2
1
2C (m—QC(Vl*) —5~ (ij) m) -C<

< E,(y*) < 2C (m —2c(V]) + % - <Zj2) m) +C (25)

lar network state y

following interval:
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which can be rewritten as

o g Aabm
2C (—20(1/1 )—1 L a)2> <
N . 4abm
< Eo’(y ) < 2C <—26(‘/1 ) +1-— m) (26)

According to (26) the analog energy value E,(y*) at local minimum y* deter-
mines uniquely the integer cut size ¢(V}*) of cut V}* associated with y*.

Now, the correctness of the reduction from SIMPLE MAX CUT to MIN
ENERGY (o) can easily be verified. Suppose there exists a cut V3 of G whose
size is at least k. Then the energy (20) of the corresponding analog state
y € {a,b}" of N, which is defined as y; = b for j € V; and y; = a for
j € V'\ V1, can be upper bounded by using (8), (24) as follows:

E,(y) < 2C (m—?k—(ZjZ)Qm)+C<K. (27)

On the other hand, assume that an analog state y € [a, b]" of N with energy
E,(y) < K exists. Then there is also a local minimum y* € [a,b]" of E, with
energy E,(y*) < E,(y) < K. It follows from (18) and (26) that c(V}*) < k. O

6 Turing Universality of Finite Analog Hop-
field Nets

In this section we deal with the computational power of finite analog-state
discrete-time recurrent neural networks with the saturated-linear activation
function (3). For asymmetric analog networks, the computational power is
known to increase with the Kolmogorov complexity of their real weights (Balcdzar
et al., 1997). With integer weights such networks are equivalent to finite au-
tomata (Horne and Hush, 1996; Indyk, 1995; Sima and Wiedermann, 1998),
while with rational weights arbitrary Turing machines can be simulated (In-
dyk, 1995; Siegelmann and Sontag, 1995). With arbitrary real weights such
networks can even have ‘super-Turing’ computational capabilities, so that e.g.
polynomial time computations correspond to the complexity class P/poly and
all languages can be recognized within exponential time (Siegelmann and Son-
tag, 1994). On the other hand, any amount of analog noise reduces the com-
putational power of this model to that of finite automata (Casey, 1996; Maass
and Orponen, 1998).
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For finite symmetric networks, only the computational power of binary-
state Hopfield nets has been fully characterized. Namely, they recognize the
so-called Hopfield languages (Sima, 1995), which form a proper subclass of
regular languages; hence such networks are less powerful than finite automata.
Hopfield languages can also be faithfully recognized by analog symmetric neu-
ral networks (Maass and Orponen, 1998; Sima, 1997), and this provides a lower
bound on the computational power of such networks. A natural question then
concerns improvements of this lower bound: could this model too be Turing
universal, i.e. can a Turing machine simulation be achieved with symmetric
networks and rational weights similarly as in the asymmetric case (Indyk,
1995; Siegelmann and Sontag, 1995)?

The main obstacle here is that under fully parallel updates any analog
Hopfield net with rational weights converges to a limit cycle of length at most
two (Koiran, 1994). Thus the only possibility of simulating Turing machines
would be to exploit finer and finer distinctions among a sequence of rational
network states converging to a limit cycle. Such a simulation seems to be
tricky at best, if possible at all.

A more reasonable approach is to augment the network with an external
clock that produces an infinite sequence of binary pulses, thus providing it with
an “energy source” for e.g. simulating an asymmetric analog network similarly
as in Theorem 1. Indeed, we now prove that the computational power of analog
Hopfield nets with an external clock is the same as that of asymmetric analog
networks. Especially for rational weights, this implies that such networks are
Turing universal. The following theorem also fully characterizes those infinite
binary sequences by the external clock which prevent the Hopfield network
from converging. This way we obtain a complete theoretical characterization
of the symmetry of weights in analog Hopfield nets in the sense that compu-
tational power of analog asymmetric networks equals that of symmetric ones

plus oscillator of a certain type.

Theorem 5 Let N' be an analog-state recurrent neural network with real asym-
metric weights and n neurons working in fully parallel mode. Then there exists
an analog Hopfield net N with 3n + 8 units whose real weights have the same
mazximum Kolmogorov complexity as the weights in N', and which simulates
N', provided it receives as an additional external input any infinite binary se-
quence that contains infinitely many substrings of the form bxb € {0,1}® where

b #b. Moreover, the external input must have this property to prevent N from
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converging.

Proof: First observe that an infinite binary sequence produced by the external
input (clock) ¢ that does not satisfy the assumption of the theorem must
be of the form u(bybe)* where b;,bo € {0,1}, and u € {0,1}* is a prefix
which clearly cannot prevent the network from converging to a limit cycle
of length two. On the other hand we shall prove that if the sequence meets
the respective condition, then it must contain infinitely many substrings of
the form 120 (x € {0,1}) since these strings necessarily accompany infinitely
many substrings Ox1. Thus consider two subsequent occurrences of Ox1. For
x = 1, after 011 possibly followed by several 1’s, at least one 0 must appear
due to the next 0zl which gives 110 as required. For z = 0, the string 001 is
followed either by a 1 which means the previous case with 011 applies, or by a
0 possibly succeeded by several occurrences of 10, which is followed either by
a desired 0 or by 11 which again leads to 011.

The symmetric simulation of an asymmetric network N’ consisting of n
analog neurons is very similar to the binary one (see Theorem 1). Thus each
neuron j in N’ is simulated by 3 units pj, ¢;,7; which are controlled by other
3 central neurons f,g,h (corresponding to cg, ¢ in the binary case) whose
binary states are generated by a small symmetric subnetwork of 5 auxiliary
units a, d, e, r, s transforming the binary external input signal from ¢ to a well-
controlled binary sequence. This gives the desired 3n+8 units of the simulating
analog Hopfield net N. The situation is depicted in Figure 3, including the
definition of the symmetric weights, where U is introduced in (6), and B =
(AW + 1)n + 7 in this case.

Every binary external input bit is copied from clock ¢ to r and further to s
and therefore the states of these neurons s, r, ¢ store the last 3 bits of the input
sequence, respectively. Neuron a detects the underlying strings of the form
120 (z € {0,1}) at the input, i.e. it is active iff s is active and c is passive. It
may happen that two such strings follow each other immediately (also notice
that it is impossible for such a string to appear again at the next step but one).
This case is indicated by the activity of both neurons a, d where d copies the
state from a. Thus unit e copies the state 1 from a iff d is passive. Hence, the
neuron e produces a “noiseless” sequence of zeros containing infinitely many
substrings 100, each being exploited for the simulation of one computational
step of N’ similarly as in the proof of Theorem 1.

(t—
J

Namely, g; stores the old analog state y 2 by its unit feedback according
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(U+1)n+1

—-2B -2

Figure 3: Analog symmetric simulation of analog neuron j

to (3) and also h remains initially active preserving the stability of p;, g;, ;.
After e fires, the unit h becomes passive and f is active, which controls the
computation of a new analog state yj(-t) by p, via the original weights w(g;, p;) =
w'(7,7) and the bias w(f,p;) = w'(0,7). Then the control signal is further
copied from f to g, which enables r; to receive the state y](-t). Finally, h
becomes active and the state of ¢; is updated by y§t), and this is kept until e

fires again to proceed to the next simulation step. O

7 Conclusions

With the results presented in this paper, we now seem to have developed quite
a good understanding of the computational properties of discrete-time sym-
metric Hopfield nets. It is somewhat surprising that these networks turn out
to be computationally essentially as powerful as general asymmetric networks,
despite their Liapunov-function constrained dynamics. As we have seen, in the
binary-state case symmetric networks can simulate asymmetric ones with only
a linear increase in the network size (Section 3), and in the analog-state case
also finite symmetric networks are Turing universal, provided they are supplied
with a simple external clock to prevent them from converging (Section 6). In
addition, we have verified that the MIN ENERGY problem remains NP-hard

also for analog networks (Section 5), a fact which is not immediately obvious
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because of the possibility of analog networks to converge to states in the in-
terior of the state space, complicating the combinatorial coding necessary for
NP-hardness proofs.

It is also interesting to note that analog networks can in some cases be
more efficient with respect to their encoding size than binary ones (Section 4).
This result suggests that analog models of computation may be worth investi-
gating more for their efficiency gains than for their (theoretical) capability for
arbitrary-precision real number computation. Very little is presently known
about the computational complexity aspects of analog computation, and the

area clearly merits more intensive study.
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