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Abstract. We establish a fundamental result in the theory of con-
tinuous-time neural computation, by showing that so called continuous-
time symmetric Hopfield nets, whose asymptotic convergence is always
guaranteed by the existence of a Liapunov function may, in the worst
case, possess a transient period that is exponential in the network size.
The result stands in contrast to e.g. the use of such network models in
combinatorial optimization applications.

1 Introduction

Continuous-time recurrent neural networks are an attractive class of computa-
tional models with applications in, e.g., control, optimization, and signal pro-
cessing (cf. [1,5]). Recently there has also been increasing theoretical interest
towards achieving a general understanding of the capabilities and limitations
of these and other continuous-time computation models. (For overviews of this
work, see e.g. [6,7].)

Probably the best-known, and most widely-used continuous-time recurrent
network model is that popularized by John Hopfield in 1984 [4], and known as
the “continuous-time Hopfield model”.! A fundamental property of this model
is that if a given network has a symmetric coupling weight matrix, then its dy-
namics is governed by a Liapunov, or energy function [2,4]. In particular, such a
symmetric network always converges from any initial state towards some stable
equilibrium state. This is a very useful property for obtaining guaranteed be-
havior in practical applications, but would at first sight seem to severely limit
the networks’ general dynamical capabilities. For instance, nondamping oscilla-
tions of the network state obviously cannot be created under this constraint,
whereas such oscillations are easily obtained in networks with asymmetric cou-
pling weights.
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! Although in fact the dynamics of this model were already analyzed earlier by Cohen
and Grossberg in a more general setting [2].



Because of the apparent simplicity of symmetric Hopfield network dynamics,
one might also assume that they always converge rapidly—an assumption that
seems to often be implicitly made in e.g. discussing the potential of such networks
as “fast analog solvers” for optimization problems. Contrary to this expectation,
we shall in this paper construct for every n a Hopfield network C, of 6n + 1
units with a symmetric coupling weight matrix and a saturated-linear “activa-
tion function” that simulates an (n + 1)-bit binary counter and thus produces a
sequence of 2 — 1 well-controlled oscillations before it converges. Besides sug-
gesting some caution in applying neural networks to optimization problems, this
result provides to our knowledge the first known example of a continuous-time,
Liapunov-function controlled dynamical system with an exponential transient
period. Such an exponential-transient oscillator can also be used to support a
general Turing machine simulation by symmetric Hopfield networks [9].

In terms of bit representations, our convergence time lower bound can be
compared to a general upper bound for discrete Hopfield networks [10]. It turns
out that the continuous-time system C,, converges later than any discrete sym-
metric Hopfield network of the same description length, assuming that the time
interval between two subsequent discrete updates corresponds to a continuous
time unit. This suggests that continuous-time analog models of computation may
be worth investigating more for their gains in representational efficiency than for
their (theoretical) capability for arbitrary-precision real number computation [8].

2 A Simulated Binary Counter

A (symmetric) Hopfield network? consists of m computational units or “neurons”
p=1,...,m, whose states are represented by real variables y1,...,ym € [0,1].
The dynamics of such a network is given by a system of m symmetrically coupled
ordinary differential equations:

Wo (1) = o) +o (6, p=1,....m, 1)
where &,(t) = E;"ZG v(p, @)y, (t) is the real-valued ezcitation for unit p = 1,...,m.
Here, the real coupling coefficient v(p,q) = v(g,p) corresponds to the weight
on an edge connecting unit p to unit ¢ whereas v(0,p) is a local bias v(0, p),
associated with a formal constant variable yo(t) = 1. Further, o is some nonlinear
actiation function, which we fix to be the saturated linear map: o(§) = 1 for
E>1,0() =&for 0< €< 1, and (&) =0 for £ < 0. The initial network state
y(0) € [0,1]™ determines the boundary condition for the system (1).

A Hopfield network C = C,, with m = 6n+ 1 neurons will now be constructed
which simulates an (n + 1)-bit binary counter, and thus has a transient period
that is exponential in the parameter m. The original idea for a corresponding
discrete-time counter network stems from [3]. In our simulation, the binary states
of the counter will be represented by excitations of the corresponding real-valued

2 We shall henceforth discuss only symmetric networks.



units in C that are either above the upper saturation threshold of 1 or below the
lower saturation threshold of 0 for the activation function o. For brevity, we shall
simply say that a unit p is saturated at 0 or 1 at time ¢ if its excitation satisfies
&p(t) < 0 or &y(t) > 1, respectively. We also say that p is unsaturated when
0 < &(t) < 1. (Note that we use the excitations, not the actual states of the
units to represent binary values.) The following theorem summarizes the result:

Theorem 1. For every integer n > 0 there exists a continuous-time symmetric
Hopfield net C with m = 6n + 1 neurons whose global state transition from
saturation at 0 to saturation at 1 requires continuous time Q(Qm/ 6/¢), for any
0 < & < 0.05 such that 2™/? < ¢2'/¢. This convergence bound translates to
2209(M)) time units, where M represents the number of bits that are sufficient

for encoding the weights in C and g(M) is an arbitrary continuous function such
that g(M) = o(M), g(M) = Q(M?/3), and M/g(M) is increasing.

Proof. (Sketch.) The construction of symmetric Hopfield net C = C,, with m =
6n + 1 units and zero initial state y(0) = 0™ simulating an (n + 1)-bit binary
counter will be described by induction on n. The operation of the network will
first be discussed intuitively, and its correctness will then be formally verified.
The induction starts with a network Co containing only a single unit cp, with
bias v(0, cp) = € and feedback coupling v(cg, co) = 1+¢. This represents the first
counter bit of “order 0”. Because of its positive feedback the state of ¢y gradually
grows from initial 0 towards 1. Eventually ¢¢ saturates at 1, at which point we
say that the unit ¢y becomes active or fires. This trick of gradual transition from
0 to 1 (see Lemma 3 below) is used repeatedly throughout our construction of C.

For the induction step depicted in Figure 1 (the edges in this graph drawn
without an originating unit correspond to the biases), assume that an “order
(k—1)” counter network Cr—1 (1 < k < n) has been constructed, containing the
first k counter units cy,...,cx—1, together with auxiliary units ag, x¢, be, dy, 2¢
(¢t=1,...,k—1), for a total of my = 6k—5 units. Then the next counter unit cg
is connected to all the my units p € C;_; via unit weights which, together with
cr’s bias, make ¢ to fire shortly after all these units are active, i.e. when the
simulated counting from 0 to 2¥ —1 has been accomplished. In addition, unit ¢y, is
connected to a sequence of five auxiliary units ag, Tx, bg, dg, 2k, which are being,
one by one, activated after ¢ fires (Lemma 3). The purpose of the auxiliary
units ag, b, dy, is only to slow down the continuous-time state flow. The unit xy,
is used to reset all the lower-order units in C;_1 back to values near 0 after ¢, fires
(Lemma 2.2b). To achieve this effect, zj, is linked with each p € Cy_; via a large
negative weight v(zy,p) = —[v(ck,p) + quCk_l;v(q,pbo v(g,p)] that exceeds
the mutual positive influence of units in Cy—1 U {ci}. The value of parameter
Vi =1=3% cc,_, v(zk,p) is determined so that the state of z}, is independent of
the states of p € Cr—_;1. Finally, unit z; balances the negative influence of z on
Cr—1 so that the first k counter bits can again count from 0 to 2¥ —1 but now with
¢k being active. This is achieved by exact weights v(zg,p) = —v(xg,p) — 1 for
p € Cr_1 in which the —1 compensates for v(cg,p) = 1. Clearly, units p € Cy_1
cannot reversely affect z; since their maximal contribution }° ¢~ v(p,2k) =



Fig. 1. Inductive construction of Cy,

—my, — ZPECk_l v(zk,p) = Vi —my — 1 to the excitation of zp cannot overcome
its bias. This completes the inductive step of the counter network construction.

Now the correct state evolution of the Hopfield network C described above
needs to be verified. Thus, a sequence of lemmas analyzing the corresponding
system (1) is presented. Due to lack of space, the proofs are only sketched here.
Lemma 1 first upper bounds the maximum sum of absolute values of weights
incident on any unit in C. Lemma 2 then describes explicitly the continuous-time
state evolution for saturated units. An analysis of how the decreasing defects, i.e.
distances from limit values in the states of saturated units, affect the excitation
of any other unit reveals that the units in C actually approximate the discrete
update rule of corresponding threshold gates after a certain transient time. The
proof of Lemma 2 follows from the dynamics equations (1) and Lemma 1. Fur-
thermore, the transfer of the activity in C from a unit to a subsequent one, when
all the incident units are saturated, will be analyzed explicitly and its duration
time will be calculated in Lemma 3. (But note that the analysis for ¢o at t =0
slightly differs.) The result is also generalized to the case when some of the
incident units may become unsaturated.

Lemma 1. For any unit p € C in the Hopfield network constructed above, the
sum of absolute values of its incident weights (excluding its local bias) is upper
bounded by =, = Y7, [v(q,p)| < e2'/°.

Proof. (Sketch.) The maximum value of =, among p € C is reached by unit z,, of
the highest order n, that is =, = 2V, +1+e¢. Parameter V,, = 2(11-7"~1 —5)/3
is computed by induction on n in which recursive formula v(zy, p) = 2v(zk—1,D)
for p € Cy_2 (k > 1), and Figure 1 are employed. Hence, =, < 4(11- 7771 —
5)/3 4 1+ < €2'/ by assumptions on ¢ in Theorem 1. O



Lemma 2.

1. Let p € C be a unit saturated at b € {0,1} with a defect 6,(t) = |y,(t) — b|,
for the duration of a continuous time interval T = [to,ts] for some tg > 0. Then
the state dynamics of p converging towards value b can be explicitly solved as
yp(t) = |b— Spe~=4)| for t € 7, where 5, = 6,(to) is p’s initial defect.

2a. Let ) C C be a subset of units saturated for the duration of time interval
T = [to,tf]. Then the dynamics of &,(t) for any unit p € C can be described as

G =v0,p)+ D w(gp)+ D 0(@p)ye(t) + Apge™ T (2)
9€Q; £4(1)>1 T

for t € T, where Ayg = quQ; §q(to)sov(q,p)ép - quQ; £, (to)>1 v(g,p)d, is the
initial total weighted defect of Q affecting &,(to).

2b. In addition, let ty > to + t1 where t1 = (In2)/e, and assume the respective
weights in C satisfy either v(0,p)+3 " cos e, (t)>1 V(D P)+20¢0; v(g,p)>0 V(G P) <

—e orv(0,p)+3_,co. £4(t0)>1 v(q,p)—f—zqu;v(q’pKO v(q,p) > 1+¢. Then p is sat-
urated at either 0 or 1, respectively, for the duration of time interval [to +t1,1y].

Lemma 3.

1. Consider o situation where a unit p € C (e.g. cq,Ck,ak, by, dg, 2zx for 1 <
k < n) with fractional part of bias €' € {e,e/3} and feedback weight v(p,p) =
1+ ¢ is supposed to activate and transfer a signal to the subsequent unit r (i.e.
Ck, Ok, Tk, di, 2k, Co, TeSpectively) with bias fraction € and v(r,r) = 14¢ via weight
v(p,r) > 1. Let all the units incident on p,r excluding p,r be saturated for the
duration of some sufficiently large time interval T = [to,ts] (e.g. ty > to + to
where to is defined below), starting at a time to > 0 when &y(to) = 0. Assume
that the initial defects 0p + Arg < € for @ = C\ {p} are bounded. Further
assume that the respective weights satisfy v(0,p) + quQ; £4(t0)>1 v(g,p) = €
and v(0,7) + X cqie, (t)>1 V(@) =€ —v(p,7). Then p is unsaturated with the
state dynamics

E.I (es(t—to) _ 1) EI + Aerf(tfto)
e(l+e¢) B l1+e¢

yp(t) = 3)
exactly for the duration of time interval (to,to +t}), where ) = (In(1 +¢/¢’))/e
(note ty =t for €' =€ and t} = 2ty for €' =¢/3), while r is saturated at 0. In
addition, p is saturated at 1 for the duration of [to + t},tf], while r unsaturates
from 0 at time to+t2 where ty = In((v(p,7)d,(to+1,) (1+e/") /s = ALg) Je) > t).
2. Consider a situation in C where unit x, (1 < k < n) is supposed to receive
a signal from preceding unit ay, activate itself, and further transfer the signal
to subsequent unit by, while units in Cr—1 incident on x may unsaturate from 1
after xy unsaturates from 0. Let all the other units incident on xy, by excluding
Zr, b and Cr_1 be saturated for the duration of a sufficiently large time interval
T = [to,tf] (e.g. at least until by unsaturates from 0) starting at a time tg > 0
when &, (to) = 0. Assume that the initial defects meet 0y, , Ap,qr < €271/ for
Q" = C\(Cr-1U{zx}), and also (1+€)05, =3 cc,_, v(P,2k)dp < £271/¢ outside



Q', are bounded. Further, assume that the respective weights satisfy v(0,zy) +
2geQia(t)>1 UG T) + Xpec, v wr) = € and 3 ocqrig, (t0)>1 0(0, k) = 0.
Then xj, saturates at 1 in time at most to + 2t1, remaining then saturated until
time at least ty, and by, unsaturates from 0 only after xy is saturated at 1.

Proof. (Sketch.)

1. Excitation &,(t) = &’ + (1 + &)y, (t) + Apge= (%) of p for t € [to,to + t2]
is obtained from (2) which determines p’s state dynamics (1) by differential
equation (dy,/dt)(t) = —y,(t) +&' + (1 +€)y,(t) + Apge %) when p is unsat-
urated. The corresponding initial condition y,(to) = (—&' — Apg)/(1 +¢) = 4§,
comes from &,(ty) = 0 which also bounds the initial defect as —1 —e¢ — ¢’ <
Apg < —¢' <0, due to 1 > 6, > 0. Hence solution (3) follows, which pro-
vides dynamics &,(t) = &'(ef{t=%) — 1)/e > 0, ensuring that p is unsaturated
exactly for the duration of (to,%o + t{), even though its state y,(¢) is initially
decreasing for ¢ € (to,to +1t,) where t, = (In(—A,g/e"))/(1+¢) < t}. Excitation
& (1) = e—v(p, ) +v(p,7)yp(t) + A,ge~ (¢t should prove to be nonpositive for
all ¢ € (to,to+t}). By using v(p,r) > 1, dp+ A < €, and dynamics (3) in which
—Apg = €'+(1+€)d,, this reduces to e(e'+&(1+¢))e~(t7t0) ¢/ (eslt—t0) 1) —¢ <
e(e' —€?). For t € [to,to+t.] where t. = In((¢' +e(1+¢))/(¢' —€?)), term e=(¢—to)
reaches its maximum at ty + t. which implies the underlying inequality. For
t € [to+te,to+t1], term e(e’ + (1 +¢))e~(**0) achieves its maximum e(e’ —2)
at to +t. while &'(e5(*=*) —1) — ¢ < 0. Hence, r is saturated for the duration of
(to,to + t}). Furthermore, &,(t) = 1+ (¢ + &')(1 — e~(t=to=t)) > 1 of saturated
p derived from Lemma 2.1 ensures that p stays saturated at 1 at least for the
duration of [tg + t},to + t2], where t5 comes from &, (g + t2) = 0. It must also
be checked that &,(t) = &' + 1+ &+ v(p, 1)y, (t) — (1 4+ €)8,(to + ta)e~(E-to—t2) 4
(Apg —v(p,7)d,) e t=%) > 1 for all t € [ty + ta,ts]. Here, v(p,7)y,(t) > 0
whereas the respective defect terms having the least value at tg +t2 can be lower
bounded by —&’ — e when the explicit formulas are substituted for d,(to + t2),
t2, Apg, and inequalities §, + Arg < &, 6, < 1, v(p,r) > 1, &' > £/3 are applied.
2. Notice that unit ay, saturates at 1 before zj, is unsaturated from 0 according to
Lemma 3.1. Excitation &, (t) > &+ (14 €)yz, (t) + Ap,or e~ ¢80 of 2, for t € 7
is lower bounded from formula (2) and v(p, zx) < 0 for all p € Cy—1, which gives
(Ayz, [dt)(t) > Yz, (1) + €+ Ag,or e~ 1) for zy, unsaturated, according to (1).
In the beginning of interval 7, state y,, () is determined by (3) before the first
p € Cj_1 unsaturates, since the assumption of Lemma 3.1 concerning the weights
incident on z}, coincides with that of Lemma 3.2 due to &' = ¢ and ,(to) > 1 for
all p € C_1. Hence, A;, ¢ can appropriately be expressed in terms of Ay, o =
—e—(1+¢)d,, for Q@ = C\ {zx} from Lemma 3.1 so that the bound assumed on
the initial defect outside ' can be used to lower bound A,, o > —e(1 +271/%)
which gives (dy,, /dt)(t) > eys, (t) + € — e(1 + 271/%)e=(t=%0) Tt follows that
(dys, [dt)(t) > e —? > 0 for t > tg + t4 where tg = In((1 4+ 27'/)/¢), provided
that zy, is still unsaturated. This implies that y,, (t) grows at least as fast as the
straight line with equation (¢—&2)(t—to—t4)—y = 0 until =, saturates at 1. Thus,
T, saturates at 1 certainly before to +t4+ts < to +2t; where t; = 1/(e —?) be-
cause &z, (t) > yg, (t) from (1) due to its state derivative is positive for ¢ > to+tq.



Similarly, &, (t) = —1 + €/3 + Yz, (t) + Ap, g e (770 for by saturated at 0. Let
t, > 0 be the least local time instant at which y,, (to+1t,) = 1—¢/3— A, et
when by, is still saturated at 0 since &, (to + t,) = 0. Excitation &, (to + t,) >
e+(1+e)(l—¢/3 - Aka: e t) + Ay et of zy at to + t, can be lower
bounded by 1 from A,, o > —&(1+ 27Y/¢) and Ay, < €27/¢, ensuring zy
is already saturated at 1 at to + ¢,. Finally, it must be checked that &, (¢)

e+ (148)(1— (/3 + Apygr =)o (=1080) by (1) + (Apy r — By, )~ 10) >
for all t € [ty + t,,tf] when by may unsaturate, which follows from y, (t) >
and the respective defect bounds for d, , Ap, g, and Az, gr.

The correct timing of the counter simulation must ensure a sufficiently fast
decrease of the defects as assumed in Lemma 3. According to Lemma 2.2b, the
absolute value of the total weighted defect affecting any unit in C is bounded by
¢ after time t;, decreasing further to €271/¢ by time 2t;. On the other hand, ¢;
lower bounds the time necessary for activating unit p in Lemma 3.1. Hence, the
subsequent unit r has always time at least ¢; for decreasing the defect induced
by its incident saturated units below € even before unit p starts its activation.
Similarly, the stronger defect bounds in Lemma 3.2 are met since time 2t¢; is
guaranteed before unit z;, unsaturates. The lower bound 2(2"/¢) = 2(2™/%/¢)
on the total simulation time follows immediately from the previous time analysis.

From the proof of Lemma 1, the maximum integer weight parameter in C is
of order 2°(™) _ This corresponds to O(m) bits per weight that is repeated O(m?)
times, and thus yields at most O(m?) bits in the representation. In addition, the
biases and feedbacks of the m units include fraction € (or £/3), and taking this
into account requires ©(mlog(1/¢e)) additional bits, say at least kmlog(1/e) bits
for some constant k& > 0. By choosing & = 2=F(m)/(sm) in which f is a continuous
increasing function whose inverse is defined as f~!(u) = u/g(u), where g satisfies
g(p) = 2(p*/?) (implying f(m) = 2(m?)) and g(u) = o(y), it follows that M =
O(f(m)), especially M > f(m) from M > kmlog(1/¢). The convergence time
2(2™/6 [¢) can be translated to 2(2f(m)/(km)+m/6y — 92(F(m)/m) which can be
rewritten as 29(M/F7 (M) = 22(9(M)) since f(m) = 2(M) from M = O(f(m))
and f~Y(M) > m from M > f(m). This completes the proof of the theorem. 0O

3 A Simulation Example

A computer program HCOUNT has been created to automate the construction
from Theorem 1. For input n > 0, the program generates system (1) describing
the Hopfield net dynamics in the form of a FORTRAN subroutine corresponding
to the (n + 1)-bit binary counter to be simulated. This FORTRAN procedure is
then presented to a solver from the NAG library that provides a numerical solu-
tion for the system. For example, implementing a 4-bit counter on the HCOUNT
generator results in a continuous-time symmetric Hopfield net C3 with 19 vari-
ables. Figure 2 shows the state evolution of counter units cg, ¢1, ¢z, ¢3 for a period
of 23 —1 = 7 simulated discrete steps confirming the correctness of the construc-
tion. A parameter value of ¢ = 0.1 was used in this numerical simulation, showing
that the theoretical estimate of € in Theorem 1 is actually quite conservative.
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Fig. 2. Continuous-time simulation of 4-bit binary counter for £ = 0.1
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