Instance Complexity

PEKKA ORPONEN
University of Helsinki, Finland

KER-1 Ko
State University of New York at Stony Brook, New York, USA

UWE SCHONING OsAMU WATANABE
Unwersitat Ulm, Germany Tokyo Institute of Technology, Japan

Abstract

We introduce a measure for the computational complexity of individual instances of a
decision problem and study some of its properties. The instance complexity of a string
x with respect to a set A and time bound t, ic'(z : A), is defined as the size of the
smallest special-case program for A that runs in time t, decides x correctly, and makes no
mistakes on other strings (“don’t know” answers are permitted). We prove that a set A
is in P if and only if there exist a polynomial t and a constant ¢ such that ic'(x : A) < ¢
for all z; on the other hand, f A is NP-hard and P # NP, then for all polynomials t
and constants c, ic'(x : A) > clog|z| for infinitely many . Observing that K'(z),
the t-bounded Kolmogorov complezity of x, is roughly an upper bound on ic'(z : A), we
proceed to investigate the existence of individually hard problem instances, i.e. strings
whose instance complezity is close to their Kolmogorov complexity. We prove that if
t(n) > n is a time constructible function and A is a recursive set not in DTIMFE(t),
there then exist a constant ¢ and infinitely many x such that ic'(z : A) > Ktl(r) —c, for
some time bound t'(n) dependent on the complexity of recognizing A. Under the stronger
assumptions that the set A is NP-hard and DEXT # NEXT, we prove that for any
polynomial t there exist a polynomialt’ and a constant ¢ such that for infinitely many z,
ic!(z : A) > K'(2) — c. If A is DEXT-hard, then the same result holds unconditionally.
We also prove that there is a set A € DEXT such that for some constant ¢ and all x,
ic™P(z 1 A) > Ke"pl(:b) —2log Ke"pl(r) — ¢, where exp(n) = 2" and exp’(n) = cn2? + c.

°Preliminary versions of parts of this work have appeared under the titles “What is a
hard instance of a computational problem?” in Proceedings of the Conference on Structure
in Complexity Theory (Berkeley, Ca., June 1986), and “On the instance complexity of NP-
hard problems” in Proceedings of the 5th Annual Conference on Structure in Complexity
Theory (Barcelona, July 1990). These Proceedings have been published by Springer-
Verlag, Berlin, and IEEE, New York, respectively.

Authors’ present addresses: P. Orponen, Department of Computer Science, University
of Helsinki, SF 00510 Helsinki, Finland. K. Ko, Department of Computer Science, State
University of New York at Stony Brook, Stony Brook, NY 11794, USA. Uwe Schoning,
Abteilung Theoretische Informatik, Universitat Ulm, D-7900 Ulm, Germany. Osamu
Watanabe, Department of Computer Science, Tokyo Institute of Technology, Tokyo 152,
Japan. The research of P. Orponen was supported by the Academy of Finland, and the
research of K. Ko in part by NSF grant CCR 8801575.

1 Introduction

One can try to understand the computational intractability of decision problems from two,
perhaps complementary, points of view. A “distributional” view holds that the positive and
negative instances of a difficult problem are distributed in some very irregular manner, and
feasible algorithms can only determine simple distributions. This is the customary mode of
thought in complexity theory, where the asymptotic behaviour of algorithms is emphasized.
An alternative view is suggested by the intuition that also individual problem instances can
be in some sense inherently hard, i.e., hard independent of any particular algorithm used to
decide the problem. Such ideas of “instance complexity” have been discussed by, for instance,
Hartmanis in [11].

One proposed approach to studying this dichotomy has been via the notion of complexity
cores, introduced by Lynch in [21]. Let us consider decision problems encoded as sets of
strings. A (polynomial) complezity core for a set A is a set C such that for every algorithm
M that decides A, and every polynomial ¢, M needs more than ¢(|z|) time on all but finitely
many z in C. Thus, one could plausibly interpret a complexity core as an inherently hard
collection of problem instances. It is known that any recursive set not in P has an infinite
polynomial complexity core [21], and that if P # NP, then NP-complete sets have cores
whose density, i.e., the number of strings of each length in the core, is not bounded by any
polynomial function [26]. (For an overview of recent work on complexity cores, see [6]).

Nevertheless, the notion of a complexity core does not seem to lead to any useful for-
mulations of the idea of single instance complexity. Because of the “all but finitely many”
provision in the definition, any finite variation to a core is still a core, and the provision
cannot be removed because any finite set of instances can be decided in constant time by
table look-up. This possibility of patching algorithms by finite tables is the main difficulty
in formulating a satisfactory notion of single instance complexity.

However, the difficulty can be overcome by taking also the sizes of algorithms into account.
Here we propose the following approach. Consider the class of Turing machines that on each
input can output either 1 (accept), 0 (reject), or L (don’t know). A machine M in this class
is consistent with a set A if for all inputs z such that M(z) # L, M(z) = 1 if and only if
z € A. Given a set A and a time bound ¢, the t-bounded instance complezity of x with respect
to A is defined as

ict(z : A) = min{|M| : M is consistent with A,
timeps(y) < t(|y|) for all y, and M(z) # L}.

Actually, the measure | M| used here, “the size of Turing machine M7, is not a well-defined
notion, and the definition should really be framed in terms of programs to some fixed, suffi-
ciently efficient universal machine. In the body of the paper we will use the correct definition,
but the above suffices for purposes of discussion.

Technically, our definition is obviously inspired by the notion of Kolmogorov complex-
ity [10, 18, 19], which provides a measure for the complexity of an individual string. Recall
that the t-bounded Kolmogorov complexity of a string x is defined (roughly) as

K'(z) = min{|M]| : timep;(A) < t(|z|), and M()\) = z},

where A denotes the empty string. There is also an interesting variant of this, introduced by
Sipser in [29]:

KD'(z) = min{|M]| : timeps(y) < {(]y|) for all y, and M(y) = 1if and only if y = 2}.

It is easy to see that KD'(z) < K'(z) for all ¢ and z.

Although formally similar, the issues addressed by the instance complexity and Kol-
mogorov measures are rather different. The Kolmogorov measures are concerned with the
combinatorial complexity of a string = as such, whereas the ic measure indicates the com-
plexity of determining whether a given string = has a certain property A — although Sipser’s
KD measure can be viewed also as a special case of instance complexity, because KD'(z) =
ict(z : {#}). An early variant of Kolmogorov complexity that is somehow close in spirit to
instance complexity is Loveland’s uniform complezity K(A;z) [20]. (A time-bounded version
of this is discussed in [15].) In our notation, Loveland’s definition can be formulated as:

K(A;z)=min{|M|: forall y <z, M(y) # L and M(y) =1iff y € A}.

In the following, we first in Section 2 formulate the proper definitions of instance com-
plexity and related notions. Then, in Section 3, we map out some elementary properties
of the new measure. For instance, we show that a set A is in P if and only if there exist
a polynomial ¢ and a constant ¢ such that ic’(z : A) < ¢ holds for all z. We also give a
simple characterization of complexity cores in terms of instance complexity, and consider the
behaviour of the ic measure under polynomial time reductions.

In Section 4 we study the very interesting class of sets

IC[log, poly] = {A : for some constant ¢ and polynomial ¢,
icl(z : A) < clog|z| + ¢ for all z}.

We show that for any polynomially self-reducible [23, 28] set A, and also for any set that is
<p-hard for NP, A € IC[log, poly] if and only if A € P. We also relate the new class to the
advice complexity classes P /log and P/poly defined by Karp and Lipton [14] by showing that

P/log € ICllog, poly] € P/poly.

Thus, our result about the instance complexity of self-reducible or NP-hard sets is a provable
improvement to Karp’s and Lipton’s result that SAT € P/log if and only if P = NP.

In the most fundamental Section 5, we study the existence of intrinsically hard problem
instances. Note that Kolmogorov complexity provides an upper bound for instance complex-
ity, because size KD'(z) is sufficient to recognize, by table look-up, the string . Thus, an
instance z may be considered to be “intrinsically hard”, with respect to a problem A and
time bound ¢, if the value of ic!(z : A) is close to KD'(z). Intuitively, this means that no
method for deciding any subproblem of A in time ¢ can do substantially better on z than
simply treat it as an individual special case, and store a description of z in a table. Based on
this technical formulation of the intuitive idea of instance hardness, we propose the following
very strong “instance complexity conjecture”: that for all appropriate time bounds ¢, if a
set A is not in DTIME(?), there then exist a constant ¢ and infinitely many z such that
icl(z : A) > KDYz) — c. (Technically, we may have to allow for a log¢ factor of slack
between the time bounds for the instance and Kolmogorov complexities — cf. Theorem 2.1
in the next section.)

As partial support for the conjecture, we prove in Section 5 that if {(n) > n is a time
constructible function and A is a recursive set not in DTIME(?), there then exist a constant
¢ and infinitely many z such that icf(z : A) > KD!(z) — ¢, where the time bound #/(n)
depends on the complexity of recognizing A. (We actually prove the result in the slightly

stronger form that for infinitely many z, ict(z : A) > K*(2)—c.) The dependency of the time
bound #(n) on the complexity of A is unfortunate, but with a more involved construction
we are able to essentially remove it in many interesting special cases. Namely, we prove that
if DEXT # NEXT, then for any set A that is </_,,-hard for NP, and for any polynomial
t there exist another polynomial ¢' and a constant ¢ such that for infinitely many =, ic’(x :
A) > K'(z) — c. For DEXT-hard sets A, the same result holds even without the assumption
DEXT # NEXT. Yet another result in Section 5 shows that there exists a set A € DEXT
such that for some constant ¢ and all x,

€™ 4) 2 KO (2) - 21og K% (x) - .

where exp(n) = 2" and exp’(n) = en2"+c¢. As a corollary, we obtain that all DEXT-complete
sets have exponentially dense sets of instances with a similar property.
Section 6 provides a brief summary and suggests some further research directions.

2 Preliminaries

We consider decision problems coded as sets of strings over the alphabet ¥ = {0,1}. The
length of a string z € ¥* is denoted |z|; A denotes the empty string. We define a pairing
function on strings as follows: given strings z, y, let the binary representation of |z|, without
leading zeros, be by ...bg; then (x,y) = b1by ... brbr10zy. Clearly both the pairing function,
and the associated projection functions can be computed by multitape Turing machines in
linear time, and for all = and y, [{(z,y)| < |z| + |y| + 2log|z| + 41.

An interpreter is a deterministic Turing machine M with two input tapes (a “program”
tape and a “real input” tape) and an arbitrary number of work tapes, one of which is des-
ignated as the output tape. The input and output tape alphabets of M are ¥. M accepts
its input if at the end of a computation the output tape contains the string “1”, rejects if
the output tape contains a “07, and is undecided if the computation does not halt or if at its
end the output tape contains something else — we denote both of these outcomes generically
as “L”. The partial mapping from ¥* x ¥* to ¥* computed by M is denoted M(p,z), and
the time requirement of M on input (p,z) is denoted timeps(p,z). The partial mapping
computed by M on a fixed program string p from X* to ¥* is denoted féw(:v) Program p is
total (w.r.t. interpreter M) if fM(z) # L for all z.

For a set of strings A, we use the notation A(z) for the characteristic function of A, i.e.,
A(z)=1ife € Aand A(z) =0ifz ¢ A. Forb € {0,1}, we denote M(p,z) ~ b (read M(p,)
is consistent with b) if M(p,z) = b or M(p,z) = L. In particular, for a set A and strings
p,x, M(p, o)~ A(x) means that if M(p,z)# L, then M(p,x)=1if and ounly if z € A.

Definition 2.1 Let M be an interpreter, A a set of strings, and ¢ a function on the nat-
ural numbers. A string p is an (M,t)-program for A if for all strings y, timeas(p,y) <
t(|ly]) and M(p,y) ~ A(y). Program p decides x if M(p,z) # L. The t-bounded instance
complexily of a string x with respect to A using M is defined as

ich;(z : A) = min{[p| : p is an (M, t)-program for A deciding x}.

If no (M, t)-program for A decides z, ich;(z : A) is taken to be infinite.

! All the log’s in this paper are to base 2. For the purposes of this paper, it is convenient to define log 0 = 0.

Definition 2.2 Let M be an interpreter, ¢ a function on the natural numbers, and z a string.
A string p is an (M, t)-program for producing z if timeps(p,) < #(|z]) and féw()\) = 2. The
t-bounded Kolmogorov complexily of x using M is defined as

K!;(z) = min{|p| : pis an (M, t)-program for producing z}2.
If no (M, t)-program produces z, K, (z) is taken to be infinite.

The fundamental property of these notions is that they can actually be defined very
robustly by means of a universal interpreter.

Theorem 2.1 (Invariance) There exists an interpreter U such that corresponding to any

other interpreter M there is a constant ¢, such that for all sets A, time bounds t and strings
x}

ict(z: A)

Kh(z)

ich;(z: A) +e,
Kpy(z) + ¢,
where t'(n) = ct(n)logt(n) + c.

Proof. See [10, 18, 19]; this is the standard result on the invariance of time-bounded Kol-
mogorov complexity, using the efficient Hennie-Stearns simulation (see [12, Sec. 12]) of mul-
titape machines by two-tape machines. O

Because the complexities obtained using U essentially minorize the complexities obtained
using any other interpreter, we define absolutely the t-bounded instance complexity of x with
respect to A as ic'(z : A) = icj(z : A), and the t-bounded Kolmogorov complezily of
v as K'(z) = K}(z). We then call a (U,t)-program p simply a {-program, and denote
fp(x) = fY(x), and time,(z) = timey(p, x).

We define the deterministic time complexity classes with respect to programs on U, not
arbitrary Turing machines. This results in slightly nonstandard definitions for the more
sensitive classes, but has no effect on classes such as P, DEXT, etc. Let us denote L, =

/7 1(1). Then

2
DTIME(t(n)) = {L,:timey(z) < ct(|z|) for some constant c},
P = [JDTIME(n® +),
c>0
DEXT = | JDTIME(Q2™ + ¢).
c>0

In order to guarantee that the classes DTIME(?), as defined above, are closed under the
Boolean operations and simple transformations on %*, we assume w.l.o.g. that the program-
ming system determined by U is efficiently closed under Boolean operations and composition.
By this we mean that there exists a constant v such that for any pair of everywhere halting
programs p, ¢ there exist programs p U ¢, =p, and p o ¢ such that

1, if f(z)=1, or fy(z) = L and f,(z) =1,
frug(z) = 0, if fp(x) =0, or fy(z) = L and fy(z) =0,

1, otherwise;

20nly this version of Kolmogorov complexity is used in the body of the paper.

17 lf fp(w) = 07
f"p(x) = 07 lf fp(x) = 17

1, otherwise,

Joog(@) = [fo(fo(2)),

and

lpUgl < Ipl+ gl + 2log|p| + 7,
[-pl < Ipl+2log|pl+ 7,
lpogl < |pl+ gl + 2logp| + 7,

{ time,(z) + v|pU ¢, if fy(z) #
- timep(2) + time,(z) + y[pUq|, if fp(z) =
time,(z) + 7|=pl,

timey(2) + time,(fy(2)) + v[po ql.

. 4
time,yu,(z) J_:

time_,(z) <
<

time,qq(2)

Such structure can be imposed on the programming system by using a pairing function
similar to the one described above to encode pairs of elementary programs, together with
some information as to how the pair is to be interpreted. The operations can naturally be
iterated; in particular, we define

prUpz...Upr=prU(paU...(pk—1 Upk)...)
An important property of this iterated union is that for any fixed set of programs py, ..., pg,

timey, up,..up, (7) = 0(121% timey, (2)).

3 Elementary Properties

Using table look-up, the Kolmogorov complexity of a string is easily seen to be an upper
bound on its instance complexity with respect to any set.

Proposition 3.1 For any time constructible function t, there exists a constant ¢ such that
for any set A and string z,

ict'(:v tA) < Kt(x) + ¢,
where t'(n) = ct(n)logt(n) + c.

Proof. Given a time constructible ¢, consider an interpreter M that works as follows: on
input ((b,p),y), where b € X,p € ¥*,y € ¥*, M simulates U(p, A) for t(|y|) steps. If U(p, N)
halts in this time with output y, M outputs b and halts, otherwise M outputs A and halts.
Clearly there is a constant d such that for any b, p, and y, M halts in time bounded by
t(]y|) +d. Let then A be any set, and z a string. Let b = A(z), and let p be a minimal length
t-program for producing . Then (b, p) is an (M, 1 + d)-program for A deciding z, and so

ichk (e A) < |(b,p)] = |p| + 5 = K'(z) + 5.

By invariance (Theorem 2.1), then, there is a constant ¢, independent of A and z, such that
ic(z:A) < K'(z) +c,

where t'(n) = ct(n)logt(n) + ¢. O

The notion of instance complexity allows for very simple and elegant characterizations of
many fundamental complexity-theoretic properties, as the following examples show.

Proposition 3.2 A set A is in P if and only if there exist a polynomial t and a constant c
such that for all z, ict(z : A) < c.

Proof. Assume first that A is in P. Let ¢’ be a polynomial and p a ¢'-program such that
for all #, 2 € A if and only if U(p,z) = 1. Let ¢ = x o p, where x is a constant-time program
such that f, (1) = 1, fi,(y) = 0 for y # 1. Then U(q,z) = A(z) for all z, and there is a
constant d such that |¢| < |p| + d and time,(z) < ¢/(|z|) + 2log|p| + d for all z. Hence,
denoting ¢ = |p| + d, t{(n) = t'(n) + 2log |p| + d, we obtain that ic’(z : A) < |¢| < ¢ for all z.

Conversely, assume that there are a polynomial ¢ and a constant ¢ such that for all z,
icl(z : A) < ¢. Then among the finitely many programs of size at most ¢ there is a set,
say pi,...,DPk, of t-programs for A, such that for every z, U(p;,z) # L for at least one
i € {1,...,k}. But then p = p; U...U py is a total O(¢)-program for A, witnessing that
AeP.O

Definition 3.1 Let A be a recursive set. A set C'is a polynomial complexity core for A if C
is infinite, and for every total program p for A and polynomial ¢, time,(z) > ¢(|z|) for almost
all z in C (i.e., for all but finitely many z in C'). A set A is p-immune if it is a polynomial
core for itself, and bi-immune if both A and A are cores for A.

The notion of a polynomial complexity core was defined by Lynch [21] and further studied
by various authors in, e.g., [8, 26]. The idea of immunity was transported from its original
recursion theoretic setting (cf. [27, §8.2]) to complexity theory by Flajolet and Steyaert in [9],
although the idea was already anticipated by Chaitin in [7]. Bi-immunity was introduced by
Balcdzar and Schoning in [3]. We obtain the following characterizations:

Proposition 3.3 Let A be a recursive set.

(i) A set C is a polynomial complexity core for A if and only if for every polynomial t and
constant ¢, ic'(x : A) > ¢ for almost all « in C.

(i1) The set A is p-immune (resp. bi-immune) if and only if for every polynomial t and
constant ¢, ic(z : A) > ¢ for almost all x in A (resp. ¥*).

Proof. Let us prove part (i); part (i) then follows as a corollary. Assume first that for
some polynomial ¢ and constant ¢ there are infinitely many z in C' such that ic’(z : A) < c.
Then among the finitely many {-programs for A of size at most ¢ there must be at least
one, say ¢, for which U(g,z) # L for infinitely many z in C. Let p4 be some fixed total
program for A. Then p = g U p4 is a total program for A, and for infinitely many « in C,
time,(z) < time,(z) 4+ v|p| = O(t(|z|)), showing that C' cannot be a polynomial core for A.

Conversely, assume that C' is not a polynomial core for A. Then there exist a total
program p for A and a polynomial ¢ such that for infinitely many « in C, time,(z) < t(|z|).

By adding a step counter, one can easily construct from p an interpreter M such that for
some polynomial ¢ and all z, timeps(A, 2) < ¢'(|z|), M(X,2) ~ A(z), and if time,(2) < #(|z]),
then M(X,z) # L. Then for infinitely many z in C, ic};(z : A) = 0, and by invariance there
exist a polynomial ¢ and a constant ¢ such that for these =, ict”(x :A)<e. O

Although the ic measure appears to be uncomputable (this is actually an open question),
for recursive sets it can be approximated arbitrarily well. For any function » on the natural
numbers, let us denote r~!(n) = min{k : r(k) > n}, and define an r-bounded instance
complexity measure as follows:

r-ic!(z : A) = min{|p| : U(p,z) # L, and
for all y, |y| < r(r=*(|z|)), timey (p, y) < #(|y]) and U(p,y) = A(y).}

Clearly r-ic'(z : A) <ic(z : A) for all r, A, ¢, and z. Also, if there is a total T-program
for A, and all of r(r=!(n)), ¢{(n), and T(n) are time-constructible and nondecreasing, then
r-ic’(z : A) can be computed in time O(n2"" ") T(n)). (Note that if £(n) = w(T(n)), then
ict(z : A), and hence also r-ic(z : A), is bounded by a constant.)

Proposition 3.4 For any nondecreasing time constructible function r(n) > n, there is a
constant ¢ such that for all A, nondecreasing t(n) > n, and z,

it (z 2 A) < rict(z : A) + 7Y (|z)) + ¢,
where t'(n) = ct(n)logt(n) + c.
Proof. Let r be as stated, and consider an interpreter M that computes the following®:

M((n,p),y) :{ Up,y), if |yl < r(n),

A, otherwise.

Such an interpreter can easily be constructed so that for some small constant d, timeaps((n, p), y) <
d(ly| + timep(p,y)). Given then A, ¢, and z, let p, be a minimal length r-ic*-program for
A deciding z, and let p = (r~1(|z|),ps). Then M(p,z) = U(p,,z) # L, and for all y,
M(p,y)~ A(y) and

timens (p, y) < d(lyl + U(lyl)) < 2di(]y|)

Thus,

GACEPY Ipl = 1{r="(lz]), pa)l
[r (2 D)+ [ps| + 2log [r~H(|2])] + 4

’I'-i(lt(.’L' CA)+ 7'_1(|.’L'|) + 7.

IAIACIA

The result follows by invariance. O

We conclude this section with a simple, but very useful proposition on the behaviour of
the ic measure under polynomial time reductions.

*Here, and also later in this paper, we occasionally equate natural numbers with their binary representations
without leading zeros. Note that in this representation, |n| <logn + 1.

Proposition 3.5 Let [be a <[_,, -reduction from a set A to a sel B (more precisely, let f
be the function mapping a string x to the one string queried in the reduction for z). Then
there exists a constant ¢ such that for any polynomial t there is a polynomial ' such that for
all x,

ic'(z: A) <ic(f(z): B) + .

Proof. A <] _,,-reduction from a set A to a set B consists of two polynomial time mappings
Y — X% and b : ¥* — X, such that for all 2, € A if and only if B(f(z)) = b(z).
Assume that in the case under consideration, both of these mappings can be computed in
time bounded by a nondecreasing polynomial r(n). Let M be an interpreter implementing
the following algorithm:

M(q,z):

compute y = f(z),b = b(z);
compute z = U(q, y);

if z = L, then output A,
else if z = b, then output 1,
else output 0.

Let ¢t be any polynomial and z any string; w.l.0.g. assume that ¢ is nondecreasing. It
can be seen that if ¢ is a t-program for B deciding f(z), then ¢ is also an (M, ?")-program
for A deciding x, where 1"(n) = r(n) + t(r(n)). Hence ich;(z : A) < ic’(f(z) : B) for all
x. But by invariance, there is a constant ¢, independent of ¢ and ¢”, such that for all z,
ic(z: A) <ic'(z: A) + ¢, where /(n) = ¢t"(n)log t"(n) + ¢. O

It is quite straightforward to extend the above proof to yield also:

Proposition 3.6 Let [be a <], -reduction from a set A to a set B (precisely, let f be the
function mapping a string x to the set of strings queried in the reduction for x). Then there

exists a constant ¢ such that for any polynomial t there is a polynomial t' such that for all x,

ic’(z: A) < ¢ max ic!(f(z): B).
yEf(=)

4 Sets with Logarithmic Instance Complexity

Recall that the class P can be characterized as the class of sets with constant-bounded instance
complexity (w.r.t. polynomial time bounds); on the other hand, the instance complexity of any
set can grow at most linearly. In this section, we study the class of sets with logarithmically
bounded instance complexity. Our main result is that if a polynomially self-reducible set [23,
28] has logarithmic instance complexity then it is in P. Consequently SAT, and by application
of Propositions 3.5 and 3.6, any set that is <}, -hard for the class NP, can have logarithmic
instance complexity only if P = NP. We also show that our class of sets lies properly between
the advice complexity classes P /log and P /poly introduced by Karp and Lipton in [14], and
is incomparable with the class P /lin.

Let us define, for functions s(n),#(n),

IC[s(n),t(n)] = {A:ic'(z:A) < s(n) for all 2},
IC[log, poly] = U{IC[C logn + ¢,t(n)] : constant ¢, polynomial #(n)}.

A set A C X* is polynomially self-reducible [23, 28] if there exist a well-founded partial order?
< on ¥*, and a polynomial time deterministic oracle Turing machine M, such that M with
oracle A recognizes A, and M on any input z queries only strings that strictly precede z in
the order <. (For definitions of oracle machines and related notions see, e.g., [2].) Moreover,
we require that there is a polynomial r such that if g > @1 > - -+ > 2} is a descending chain
in the query ordering, then k& < r(|z¢|), and |z;| < r(|zg|) for every i = 1,..., k.

Theorem 4.1 Let A be a polynomially self-reducible set. Then A € 1C[log, poly] if and only
if AeP.

Proof. The “if” direction follows from Proposition 3.2. For the “only if” direction, let M
be the self-reducing machine for A, and let r be the associated chain-bounding polynomial.
Assume that there are a constant ¢ and a polynomial ¢ such that for all z € X%, ic'(z : A) <
clog|z| + ¢. We claim that the recursive tree-pruning procedure given in Figure 1 is then a
polynomial time algorithm for deciding membership in A.

To verify the correctness of the algorithm, consider a computation of it on an input z.
Note that, by the assumption A € IC[clogn+¢,t(n)], and the polynomial boundedness of the
query chains, the global variable II initially contains a set of polynomially many programs p
such that for any string y queried by M during the computation, and for the original input
z, there is some p € II such that time,(y) < ¢(|y|) and U(p,y) = A(y). By induction on the
recursion depth of the computation, one can then show that:

(i) whenever either one of the procedures decide(y) and reduce(y) returns a decision on
whether a string y belongs to A, that decision is correct;

(ii) no t-programs for A are ever deleted from II, so it is actually true throughout the
computation that the programs in II cover all the relevant strings, in the sense described
above;

(iii) any call to either one of the procedures terminates.

The correctuness of the algorithm follows from (i) and (iii); (ii) is an auxiliary observation
needed for the induction.

To see that the computation actually terminates in polynomial time, note that whenever
a call to decide(z) results in both the sets Ilg and II; becoming nonempty, the algorithm
proceeds down a query chain, until at some level no further recursion is needed. Backing
up from this point, the algorithm is able to eliminate at least one incorrect program from
II. Hence within a polynomial time of any moment that the routine decide(z) obtains an
ambiguous answer from II, at least one offending program from II will be deleted. Since II
contains only polynomially many programs to start with, eventually decide(z) will obtain
only unambiguous answers, and the procedure will terminate in polynomial time. O

*A partial order < is well-founded if there are no infinite descending chains zo > z1 > z3 > ---, where
z; > z; means r; = z; and z; # z;.

10

On input z:

set 0= {p: |p| < clogr(ja]) + c};
return decide(z).

decide(z):

for every p € II, try to compute U(p,z) in #(|z|) steps;
if this fails, set Il :=II — {p};

let Il and II; be two variables local
to this instantiation of decide(z);

set Ilg:={pell:U(p,z) =0},
I :={pell:U(p,z) =1}

if Iy = @ then return 1,

else if II; = () then return 0,

else compute a := reduce(x);

if a =1 then
set II := I — Iy,
return 1;
else
set II := I — Iy,
return 0.
reduce(x):

simulate M on input x;
whenever M queries a string v,
compute an answer to the query
by recursively calling decide(y);

if M accepts x, then return 1,

else return 0.

Figure 1: A tree-pruning algorithm for a self-reducible set.

11

Corollary 4.2 Assume P # NP, and let A be a sel that is <}_, -hard for NP. Then
A ¢ IC[log, poly].

Proof. By Theorem 4.1, SAT € IC[log, poly] implies that P = NP. Let us assume that some
<i]_,-hard set A is in IC[log, poly]; we show that this implies that also SAT € IC[log, poly].
Let ¢ be a constant and ¢ a polynomial such that for all z, ic’(z : A) < clog|z|+ ¢. Let f be
a <P_,-reduction from SAT to A, and let d be a constant such that | f(¢)| < |¢|? for all ¢.
Then, by Proposition 3.5, there exist a polynomial ¢’ and a constant ¢’ such that for all ¢,

ic”(¢: SAT) < icl(f(¢): A)+¢
< clog|f(¢)|+ec+c
< edlog|é|+c+ ¢
< log ol + ¢,

where ¢ = max{cd,c+ ¢'}. O

Using Proposition 3.6, the result can be extended also to sets that are NP-hard with
respect to gfﬁ—reductions.

Interestingly, we can show that the class IC[log, poly] is located properly between the
advice complexity classes P/log and P/poly introduced by Karp and Lipton in [14]. Thus,
Theorem 4.1 yields a provable strengthening of Karp’s and Lipton’s result that SAT € P/log

if and only if P = NP.
Definition 4.1 (Karp, Lipton) Let f be a function on the natural numbers. A set A

belongs to the class P/ f if there exist another set B € P and a function h : NV — ¥*, such
that for all n, [h(n)| < f(n), and for all z, z € A if and only if (z,h(]z])) € B. We define

P/log = U P/clogn,

c>0
P/lin = UP/cn,
c>0
P/poly = UP/nc.
c>0

Theorem 4.3 (i) P/log C IC[log, poly] C P/poly;

(i7) P/lin ¢ IC[log, poly];
(iii) 1C[log, poly] € P/n® for any fized ¢ > 0.

Proof. (i) Given A € P/log, let B € P and h : N — X*, |h(n)| < clogn, be such that
for all z, A(z) = B({x,h(]z|))). Let M be an interpreter that on input ((n,z),z) outputs
the value B((z,z)) if |z| = n, and A otherwise. Clearly, for some polynomial ¢ and all z,
lz| = n, ich(z : A) < |n| + clogn + 2log|n| + 4 = O(logn). By invariance, then, there
exist a polynomial ¢’ and a constant ¢’ such that for all , ic” (2 : A) < ¢'log|z| + ¢’. Hence
A € IC[log, poly].

Let then A be a set in IC[log, poly], and let ¢ be a constant and ¢ a polynomial such
that for all z, ic’(z : A) < clog|z| + ¢; w.l.o.g. assume that ¢(n) > n°logn. For any given

12

n, let py,...,pr be a listing of all the {-programs for A of size at most clogn 4+ ¢. Then
p=p1U...Upy is a program for A such that U(p,z) # L for all z, || < n. For the size of
p, we obtain the bound

k k
Pl < D lpid +2) loglpd + ky

2°n(clogn + ¢+ 2log(clogn + ¢) + 7)
O(n‘logn),

INA

and for its time complexity the bound

k
time,(z) <3 timen () + vl
=1

< 2%(U(n) +7[pl)
= O(n(n)).

For a given n, let p(™) denote the program defined above, and let r be a polynomial
bounding the running times of all such p(®). Define h(n) = p™, and let B((z,p)) = 1 if
U(p,z)=11in r(|x|) steps, and 0 otherwise. Then clearly h and B satisfy the conditions of
Definition 4.1 for showing that A € P/poly.

(ii) To see that P/lin ¢ IC[log, poly], let A be a set that for each n contains exactly one
string « of length n, and this « is such that K(z) > n. (Here K(z) denotes the standard time-
unbounded Kolmogorov complexity of z.) Clearly A € P/lin; to show that A ¢ IC[log, poly],
assume to the contrary that there are a constant ¢ and a polynomial ¢ such that for all z,
U(pz,z) = A(z) in time {(|z|) for some program p, for A, |p;| < clog|z| + ¢. Let M be an
interpreter implementing the following algorithm:

M((n,p), A):

for all z, |z| = n, do:
simulate U(p,) for ¢(n) steps;
if in this time U(p,z) = 1,
then output z and halt.

Now if 2 € A, |z| = n, then M((n,p;),A) = z, and so Kpr(z) < [(n,pz)| = O(logn).
Hence, by invariance, also K(z) = O(logn). But by the construction of A, for large enough «
this is not possible. (In fact, doing the argument in a little more detail shows that for every
polynomial ¢, ic’(z : A) > |z| — 2log|z| for almost all z € A. Also, the class P/lin can, with
minor modifications, be replaced by any class P/ f, where f(n) = w(logn).)

(iii) Let some fixed ¢ > 0 be given; for simplicity, assume that ¢ is an integer. We show
how to construct by diagonalization a set A such that A € IC[log, poly], but A ¢ P/ [for
any f(n) < n°. Let By, By,... be some enumeration of all sets in P in which every set
appears infinitely often. At stage n of the construction, we diagonalize against basis set B,
and all advice strings w, |w| < n®, as follows. Let X" denote the set of strings of length n;
w.l.0.g. assume that 2" > n¢. Let x1,2,,...,29n be an enumeration of the strings in X" in
lexicographic order, and let S, denote the set {z1,z5,...,2,c}. For each string w, |w| < n¢,
let Ay, ={z € 5, :(z,w) € B,}. Since 59, has 27 different subsets, but there are fewer than

13

this number of sets A,,, there is some A" C G, such that A" # A, for all w, |w| < nf.
Define A as the union of the A sets from each stage, A = U,>0 Aln),

By construction, A € P/n¢; let us show that A € IC[log, poly]. Consider an interpreter
M implementing the following algorithm:

M((n,(k,d)),z):

if || # n then output A and halt;

let z = x; in the enumeration of X";

if © > n° then output 0,

else if 1 = k then output d, else output A.

Given an z such that |z| = n, and z = 2 in the enumeration of ¥", define

| An,(k,A(k))), if k< nf,
Pe = { (n,(0,0)), if k> nf.

Clearly there is some (low-order) polynomial ¢ such that for every z, p, is an (M, t)-program
for A deciding @. Moreover, for x such that |z| = n,

el < I+ [n° + 1+ 2log|n| + 2log|n°] + 8

= O(logn).

The result follows by invariance. O

Corollary 4.4 (i) P/log C IC[log, poly] € P/poly;
(i7) P/lin ¢ IC[log, poly] and IC[log, poly] € P/lin. O

5 Hard Instances

In this section, we prove three theorems in partial support of the “instance complexity con-
jecture” outlined in the Introduction, claiming that any set A not recognizable within a given
time bound ¢ will have infinitely many strings whose instance complexity with respect to A
and ¢ will be close to their Kolmogorov complexity. Our first theorem applies to an arbitrary
recursive set A, but leaves a rather large gap between the time bounds for the respective
instance and Kolmogorov complexities — moreover, the size of the gap depends on the com-
plexity of recognizing A. The second theorem, using a more involved construction, narrows
the time bound gap to a polynomial in the interesting special cases of NP-hard and DEXT-
hard sets. The third result proves the existence of sets with respect to which all strings have
instance complexity close to their Kolmogorov complexity.

Theorem 5.1 Let s(n) > {(n) > n be nondecreasing time constructible functions, and let A
be a set in DTIME(s) — DTIME(¢). Then there exists a constant ¢ such that for infinitely
many ,

icl(z: A) > K*(z) — ¢,

where s'(n) = ¢2*"s(n)(n + log s(n)).

14

Proof. The basic idea of the proof is to use the ic’-complexity of a string to upper bound its
K-complexity. A straightforward approach to doing this would be to take a t-program p for
A, and convert it to a program p’ that produces some string @ for which p is minimal, i.e.,
such that no smaller t-program for A decides z. This direct scheme, however, fails due to the
fact that it is undecidable whether a given program is a t-program for A; instead, we have to
resort to an indirect argument via bounded ic'-programs.

For any string z, let p, denote the minimal lin-ic'-program for A deciding z, i.e.

Pz = lexicographically first p such that U(p,z) # L, and
for all y, |y| < |z|, timey(p,y) < U(|y|) and U(p,y) = A(y).

Correspondingly, let p, denote the true minimal ¢-program for A deciding z; then [p,| <
|pz| = icf(z : A). Let M be an interpreter that computes:

M(p, X) = lexicographically first z, [z] > |p|, such that p, = p (if such a z exists).

It is fairly straightforward to construct M so that timeps(p,A) < 227s(n), where n is the
length of the output z = M(p,). Hence if M produces output z from program p, we have

722n
K3 () < ol
By invariance, there is a constant ¢ such that for all z,

S(n)(z) + ¢,

,22n

KSM(z) < Ky,

where s'(n) = ¢2*"s(n)(n + log s(n)).
Assume then that the statement of the theorem does not hold, so that there is some zg
such that for all > o (in the lexicographic ordering),

icl(z: A) < K*'(z) - c.

Denote
II = {jr : & < z0}.

We claim that for some x > xg, p, & II. This is because otherwise the programs in II could
decide all strings correctly in time ¢, contrary to the assumption that A ¢ DTIME(¢). More
precisely, assume that the claim does not hold, and denote

o>~ = {pell:p=p, for infinitely many z},
X = {z:p, g U}

Then every program p, € II*° is in fact a t-program for A (because it is a lin-ic'-program
deciding arbitrarily long strings z), and the set X is finite. Let py,..., px be the programs in
I1°°, and let px be an O(n)-program for X. Now the program

prU...UprUpx

is an O(t)-program for A.
But let > z¢ be such that p, ¢ II, and denote z = M (p;, A). Then p, = p,, and because
p. € 11, also z > xg. Hence

K¥(2) < |po) +c < |ps| + e =ici(z: A) + ¢ < K'(2).

15

From the contradiction it follows that for the chosen value of c,
ict(z: A)> K% (2) — ¢

holds for infinitely many x. O

Corollary 5.2 Let A be a set in DEXT — P. Then there exists a constant ¢ such that for
any polynomial t there exist a constant c; and infinitely many x, such that

icl(z: A) > K*"(z) — ¢y

Before presenting the next theorem, on intrinsically hard instances for NP-hard and
DEXT-hard sets, we need to introduce a new “structural complexity” property.

Definition 5.1 Let ¢ be a time bound. A set S is t-coverable within a set A if there is a set
E € DTIME(?) such that AN S C E C A. A set S is almost t-coverable within A if there
is aset £ C A, F € DTIME(t), such that for any other E/ C A, E' € DTIME(t), the set
(E'— E)n S is finite.

The notion of almost ¢-coverability is a generalization of the notion of almost ¢-immunity
discussed (for polynomial ¢) in [24], and under the name “non-t-levelability” in [25]. A set A
is almost -immune if it contains a DTIME(¢) subset E that is maximal in the sense that for
any other E' C A, E' € DTIME({), the set E' — E is finite. Hence A is almost {-immune if
and only if it is almost ¢-coverable within itself.

A set A is paddable if there is a polynomial time computable one-to-one function pad(z,y)
such that for any strings z,y, pad(z,y) € A if and only if 2 € A. A is honestly paddable
if for some constant k, |pad(z,y)| > (|z| + |y[)/* for all z,y. A is linearly paddable if for
some constant k, k=1(|z| + |y|) < |pad(z,y)| < k(|z| + |y|) for all z,y. We note that many
natural NP- and DEXT-complete sets are linearly paddable (e.g., the NP-complete set SAT,
and the DEXT-complete set of circular attribute grammars [13]).

The main rationale for Definition 5.1 lies in the following result, essentially due to Hart-
manis [10]. For functions s(n),{(n), define

Kls(n), ((n)] = {o : K'(2) < s(J2])}.

Lemma 5.3 (Hartmanis) If DEXT # NEXT, then K[clogn,n] is not t-coverable within
SAT, for any constant ¢ > 2 and polynomial t.

Proof. Using the honest (in fact, linear) paddability of SAT, it is easy to show that for
any ¢ > 2, the set SAT N K[clogn,n] is <§,-hard for the class of tally sets in NP. If
there is a set £ € DTIME(¢) C P such that SAT N K[clogn,n®] C E C SAT, then in fact
SAT N K[clogn,n°] € P, and so there cannot be any tally sets in NP — P; hence DEXT =
NEXT [5]. O

One can also easily show that if A is honestly paddable and <},-hard for DEXT, then
AN Klclogn,nf],c > 2, is <h,-hard for the class of tally sets in DEXT. Since tally sets
provably exist in DEXT — P, this establishes without any assumptions that K[clogn,nc]
cannot be {-covered within A for any polynomial {.

By our next lemma, we can improve the above results from “not ¢-coverable” to “not
almost t-coverable” for any linearly paddable set A.

16

Lemma 5.4 Let A be a linearly paddable set. Then for all sufficiently large constants c
and polynomials t, K[clogn,n] is almost t-coverable within A if and only if il is t-coverable
within A.

Proof. The “if” direction is trivial. To prove the “only if” direction, we apply a construction
from [25]. Let A be a linearly paddable set, with a padding function pad(z,y) that is com-
putable in time O((|z| + |y|)), and is such that k='(|z| + |y|) < |pad(z,v)| < k(|z| + |y]).
Consider a function f(z) defined as f(z) = pad(z,1%**). Clearly f(z) can be computed
in time O(|z|'), and has the property that |f(z)| > 2|z|. For definiteness, let us assume
w.lo.g. that f = f, for some program p such that time,(z) < |z| for all z.

Assume, for a contradiction, that for arbitrarily large ¢, d, K[clogn,n¢] is almost nd-
coverable within A, but not n?-coverable within A. Choose some ¢, d with this property large
enough so that

|p|+clogg+21og|pl+7 < clogn,
(50 +(5) +7clogn < ',

and d > [. Let E be a maximal partial DTIME(n?)-cover (as per Definition 5.1) for
K = K|clogn,n®] within A. Since K is not n?-coverable within A, the set (AN K) — E is
infinite.

Consider a string z € K, z # A, and let ¢ be a program of size at most clog|z| that
computes & from A in time |z|°. Then the image y of 2 under f = f, can be computed from
A by the program p o ¢, for which

lpogl < |p|+cloglz|+ 2log|p| + 7,
timepog(A) < |2+ |2|" +v[po gl

Since |y| > 2|z|, it follows from our assumptions on ¢ that also y € K[clogn,n’] = K. Hence
for any . € AN K, z # A, the set

By =z, f(2), [(f(2)),..}

is an infinite subset of A N K. Moreover, there is a program that decides whether a string
y is in E, in time O(]y|'log|y|) = O(|y|?), so E, € DTIME(n?). By the maximality of E,
then, F, — F is finite. In particular, for each of the infinitely many z € (AN K) — E there is
ay, |yl > |z|, such that y € (AN K) — E and f(y) € E. Hence, the set

B={y:y¢ E, f(y) € E}

contains infinitely many strings that are in A N K but not in £. But B is a subset of A
(because y € A if and only if f(y) € A), and B € DTIME(n?) (by the closure of DTIME(n?)
under Boolean operations and the fact that |f(z)] = O(|z|)); this contradicts the assumed
maximality of F. O

Now we are in a position to state and prove our second main theorem. As the statement
of the theorem is rather technical, the reader may wish to glance at the several corollaries
following the result for motivation.

17

Theorem 5.5 Let A be a recursive set, and let s(n),u(n), and t(n) be nondecreasing func-

tions such that 2°(") u(n), and t(n) are time constructible. Assume that the set K[s(n),u(n)]

is not almost t-coverable within A. Then for any time constructible t'(n) = w(n 250 (#(n) 4+ u(n))),
there exists a constant ¢ such that for infinitely many x,

ich(z: A) > K" (2) — ¢,
where 1"(n) = ct'(n)logt'(n) + c.

Proof. Let p be any program for A, and 7 a time bound. Let p7(p) denote the set of strings
for which p is “7-minimal” in the following sense:

p(p) =A{z: Ulp,z) # L, timey(z) < 7([z]),
U(g,z) = L for all ¢ < p that are 7-programs for A.}

Note that if @ € p"(p), then ic"(z : A) > |p|.

In outline, the proof now proceeds as follows. Assume first that pis a dt-program for A for
some constant d > 1, and that u?(p) has infinite intersection with the set K = K[s(n), u(n)].
We show that in this case p can be turned, with a constant ¢ increase in size, into a t"-program
for producing some string « € u?*(p) N K, for some 1 < d’ < d. For such an z, it is then the
case that

K"(z) < |pl+e<ic?(z: A)+ e <icl(z: A) +c.

To conclude our result, we finally argue that if K is not almost {-coverable within A, there
must exist infinitely many O()-programs p for A such that the associated u%(p) N K sets
are infinite.

Let pa be some fixed total program for A. We claim that the algorithm presented in
Figure 2 produces, whenever it halts, from a given di-program p for A a string z € ,udft(p) NK,
for some 1 < d' < d. Let M be an interpreter implementing the algorithm. To verify that
M behaves as desired, observe first that if M(p, \) halts and prints out some string z, then
it does so in at most |2|2°0zD+1¢,(|z|) = #(|z|) steps. Hence for any such z, K% (z) < |pl.
Moreover, if p is a dt-program for A deciding z, then the check performed in the innermost
loop of the algorithm ensures that for some d’, 1 < d’ < d, no ¢ < p can be a d't-program
for «; thus z € p?*(p) and icdlt(w : A) > |p|. Hence, by invariance there is a constant c,
independent of z, such that

K" (x) Ki(z)+c
icdt(z: A) + ¢

< | + ¢
< icl(z : A) + ¢,
where t"(n) = ¢t’(n)logt'(n) + c.

Let us then show that the computation M(p, A) indeed does halt for any p such that pis
a di-program for A and p%(p) N K is infinite. Note that since #;(n) = w(t(n)), the function
Vt1(n)/t(n) tends to infinity, and so for large enough n, the appropriate value of d is always
tried out in the second-innermost loop of the algorithm. For each of the finitely many ¢ < p
that are not di-programs for A, there is some string z, such that either timegs (g, z;) > dt(|z,])
or U(q,zq) # U(pa,z4). Let 6 be a nondecreasing function such that time,,(2) < 6(|z]) for
all z, and let

no = max{|z,| : ¢ < p is not a dt-program for A}.

18

M(p,A):

forn =0,1,2,... do:
for all y, |y| < s(n), do:
for to(n) = t'(n)/n25(+1 steps, try to do the following:

{find a string 2 € K of length n}
in u(n) steps, try to compute @ = U(y, A);
if time runs out or |z| # n, go to next y;

{verify that € u%(p), for some d}

let t1(n) = to(n) — u(n);

ford=1,2,...,y/t1(n)/t(n), do:
for \/t1(n)t(n) steps, do:

{verify that U(p,z) # L in time di(n)}
in dt(n) steps, try to compute U(p, z);
if time runs out, go to next d;

if U(p,z)= L, go to next y;

{verify that p is dt-minimal for z}
in the remaining time, try to do the following;:
for all ¢ < p do:
if timey (g, z) < di(|z|) and U(q,z) # L
then check, in lexicographic order, that
for some string z either timey (g, z) > di(|z|) or

U(g,2) # U(pa, 2)-

if the last check can be successfully completed,
then output 2 and halt.

Figure 2: An algorithm for producing a “hard instance” for a set.

19

Then the time required to complete the minimality check in the innermost loop is, for |z| = n,
O2PI(dt(n) + 270+ (di(ng) + 0(no)))) = O(1(n)).
But the time available for the check is \/#1(n){(n) — di(n) = w({(n)), so for some sufficiently

large z € ,udt(p) N K the test will be successfully completed, and z printed — unless some
e € u¥t(p)N K, d < d, gets printed first.

It remains to be shown that if K = K[s(n),u(n)] cannot be almost ¢-covered within A,
then there will be infinitely many programs p of the desired type. Assume to the contrary
that there is some pg such that for any constant d > 1 and any p > pg that is a dt-program
for A, the set u%(p) N K is finite. Let ¢q,...,q be all the O(t)-programs for A up to, and
possibly including, pg. Define g = ¢4 U...U gx. We claim that then L, = fq_ol(l) almost
t-covers K within A.

Clearly f,,(z) ~ A(z) for all z, and by the efficient closure under union of our program-
ming system, time, (z) = O(¢(|z|)). Hence L,, C A, and L,, € DTIME(¢). Assume, for a
contradiction, that for some program r such that L, C A and time,(z) < dt(|«|) for some
constant d > 1, there are infinitely many strings in (L, — L,) N K. W.lLo.g., assume that
fr(z)= L forall « ¢ L,. Then r is a di-program for A such that for infinitely many « € K,
U(go,) = L but U(r,z) # L. Each of these 2 € ANK belongs to u%(r') for some di-program
r' for A, po < r' < r. Hence there must exist some di-program 7’ for A, pg < v’ < r, such
that u? (') N K is infinite. But by the definition of pg, this is impossible. O

For brevity, let us say that a set A has p-hard instances if for any polynomial ¢ there exist
a polynomial ¢’ and a constant ¢ such that for infinitely many «, icf(z : A) > K'(z) — c.
The theorem immediately implies the following corollaries:

Corollary 5.6 If DEXT # NEXT, then SAT has p-hard instances.
Proof. By Lemma 5.3, Lemma 5.4, and Theorem 5.5. O
Corollary 5.7 Any linearly paddable DEXT-complete set has p-hard instances.

Proof. By the discussion following Lemma 5.3, Lemma 5.4, and Theorem 5.5. O

We can translate these results upwards using the following lemma:
Lemma 5.8 If A has p-hard instances, and A <[_,, B, then B has p-hard instances.

Proof. Assume that A has p-hard instances, and let f be a <[, -reduction from A to B
(precisely, f is the function mapping a string @ to the string queried in the reduction for z).
Observe that because f is polynomial time computable, there is a constant e such that for
any polynomial u there is a polynomial u’ such that for all z,

KY(f(z)) < K¥(z) +e. (1)

This follows from the efficient closure under composition of our programming system (or also
just by invariance).

To show that B has p-hard instances, fix some polynomial ¢. Then, by Proposition 3.5,
there exist a polynomial ¢ and a constant ¢ such that for all ,

ic(z: A) <icl(f(z): B) +c.

20

The assumption that A has p-hard instances, on the other hand, implies that for some
polynomial ¢ and constant d, there exist infinitely many x such that

ic(z:A)> K" (z)—d.
Combining these, we see that for infinitely many =z,
icl(f(2): B) > K(2) - (c +d). (2)

Applying now inequality (1), we obtain that for some polynomial ¢/ and constant e, and for
infinitely many x,

i(f(x): B) > K" (J(2)) - (c+ d+)

Our result is complete, when we observe that inequality (2) implies that for the infinitely
many z’s we are considering, there must also be infinitely many different values of f(z). O

Corollary 5.9 If DEXT # NEXT, then any set that is <|_,,-hard for NP has p-hard in-
stances.

Proof. By Corollary 5.6 and Lemma 5.8, O
Corollary 5.10 Any set that is <|_,,-hard for DEXT has p-hard instances.

Proof. By Corollary 5.7 and Lemma 5.8, and the fact that linearly paddable DEXT-complete
sets exist. O

Our third main theorem, and its corollary concern the existence of dense sets of relatively
hard instances for sets in DEXT.

Theorem 5.11 There exists a set A € DEXT such that for some constant ¢ and all z,

i%P(z : A) > Ko (z) — 2log K (z) — ¢,

where exp(n) = 2" and exp’(n) = cn2*™ + c.

Proof. The set A is constructed by a “weighted diagonalization” [22, 31] over all 2" time
bounded programs. The construction proceeds in stages corresponding to all strings « € ¥*,
in lexicographic order. Initially A = (), and it is then decided at stage x whether z € A.

Conceptually, each program p is initially assigned a weight of w(p) = 2=(2Ipl+1) At each
stage z in the construction, some set I of the programs are “alive”; initially, the set II contains
all programs. In the course of the construction, the weights of some programs are increased,
but at the same time programs are eliminated from II so that at all stages, EpEH w(p) < 1.
(Note that this is true in the beginning.) The algorithm for stage z is given in Figure 3.

Clearly A € DEXT. (In fact, computing the construction up to stage z, |z| = n, can be
done in time O(23"); by invariance, there is then a total O(n2°")-program for A.) Note also
that the upper bound on the total weight of programs in II is maintained: at each stage,
a total weight equal to min{wg, w;} is added, but before this, a set of programs with total
weight equal to or greater than this has been eliminated.

Let TI(*) denote the set of programs in II at the completion of stage z, and let M= N.),

21

Stage x:

let n = |z|;
set lg:={peIl:|p| <n,U(p,z)=01in 2" steps},
Iy :={pell:|p| <nU(p,z)=1in 2" steps};

set wo 1= Y ey, w(p)
wy =Y e, w(Pp)
if wg > w1, then
set A:= AU {z};
set I1 := 1T — Tp;
for every p € IIy, set w(p) := 2w(p)
else
set I ;= II — IIy;
for every p € Il, set w(p) := 2w(p).

bl
?

Figure 3: Stage construction for an everywhere-hard set.

We claim that
(i) if p is a program for A, then p € 1T; and

(ii) if p € 10, then the set E(p) = {z : |z| > |p|,time,(z) < 2I*1} has at most 2|p| + 1
members.

To see (i), assume that p ¢ II. Then p must have been eliminated from II at some stage
z. But by construction, then, U(p,z) % A(z). For (ii), note that for every z, |z| > |p|, such
that U(p,z) = A(z) in 21l steps, the weight of p is doubled. Because the initial weight of |p|
is 27 I+ and the total weight of all programs is bounded by 1, this doubling can occur at
most 2|p| + 1 times.

Consider then an interpreter M that on input ((k, p), A) outputs the lexicographically kth
string « in E(p), whenever E(p) contains at least & strings, and does not halt otherwise. Such
an M can easily be implemented so that when M halts with output «, then timeas({k, p), A) <
2217, Since k < 2|p| + 1 for every p € Il and & € E(p), it follows that in this case

|k| <logk + 1 < log(2

pl+1)+1<log|p| + 3,
and hence

,22n

Ki (2) (B, p)| < |k + [p| + 2log [k[+ 4

<
< |p|+1log|p| + 2loglog |p| + 11.
By invariance, then, there is a constant ¢ such that for all p € II, z € E(p),
K™(x) < [pl + 2logp| + ¢, (3)
where T(n) = ¢/n2?" + ¢'. Let ¢ > ¢ be a constant such that for all strings z,

2| > K% (2) - 2log K (2) — ¢, (4)

22

where exp/(n) = en2?" + c. Note that because ¢ > ¢ and exp/(n) > T(n), by (3) it is also
true that for all p € II, = € E(p),

K% (2) < [p| + 2log |p| + c. (5)

Let then z be any string, and let p be a minimal length exp-program for A deciding z.
To establish our result, we need to consider two cases.

(i) If [z < [pl, then by (4),

iCeXp(w . A) — |p| > |£I?| Z I(expl(w) _ 210g Ig’expl(x) —C.

(i) If |z| > |p|, then « € E(p), and (5) easily implies that

ic™P(z: A) = |p| > KGXPI(:L') — 2log KGXPI(:L') —c¢. O

Let ©(") denote the set of strings of length at most n. A set of strings C' is ezponentially
dense if there is a constant € > 0 such that for all n > 2, |C N ()| > 27°. Combining the
construction in the previous proof with techniques from [3], we obtain the following corollary.

Corollary 5.12 For every DEXT-complete set B there exist an exponentially dense set of
strings C' and a constant ¢ such that for every polynomial t and almost all x € C,

ict(z: B) > KGXP/(m) —2log KeXpl(x) —c,
where exp’(n) = en2?" 4 .

Proof. Tt follows by Proposition 3.3 (ii) that the set constructed in the previous proof is
bi-immune. In fact, the diagonalization can easily be interleaved with a construction from [3]
to obtain a set that is sirongly bi-immune, a condition implying that every <%,-reduction from
A to any other set is one-to-one almost everywhere. Let B be any DEXT-complete set, and
let f be a reduction from A to B. Then f is almost everywhere one-to-one, and consequently
the set C' = f(¥*) is exponentially dense. Furthermore, we may assume that f is length-
increasing, because all DEXT-complete sets are related by length-increasing reductions [4, 30],
honestly paddable DEXT-complete sets exist, and reductions to honestly paddable sets can
always be made length-increasing.

By Proposition 3.5, there is a constant ¢; such that for almost all z € ¥*, and hence for
almost all f(z) € C,

ic™P(z: A) <ic'(f(z): B) + 1. (6)

By the properties of A, on the other hand, there is a constant ¢y such that for all z,
P (2 A) > K" (2) — 2log K& (2) — ¢, (7)
where exp”(n) = ¢an2?" + ¢;.

Let then p be a program computing the reduction f = f, in time bounded by a nonde-
creasing polynomial r. Denote ¢35 = |p| + 2log|p| + 7. Given any string z € ¥*, let ¢ be a

23

minimal size program for producing z in time exp”(|z|). Then the program p o ¢ produces
f(z) =y, and we obtain the following size and time bounds:

lpogl < [pl+ gl +2log|p|+~

= |ql+e3
K" (Ja]) + es,
exp”(|z|) + r([z|) + v(l¢| + ¢3)
exp”([yl) + r(|y|) + const - |y|
caexp”(|yl),

time,oq(A)

VAN VAN VAN

for some constant c4. Let us denote ¢ = c4¢q and exp/(n) = cn2?" + c. Because f is almost
everywhere one-to-one, we see that for almost all f(z) € C,

K™ (f(2)) < K™ (2) + 3. (8)

Combining inequalities (6), (7),and (8), and observing that the function £—2log & is monoton-
ically increasing for & > 4, we then obtain the result that for any constant ¢ > ¢; + ¢5 + max{c3, 6}
and for almost all y = f(z) € C,

icl(y : B) > K™ (y) — 2log K (y) — ¢. O

6 Conclusion and Further Research

We have introduced a program-size based measure for the complexity of individual instances
of a decision problem, and studied the properties of this new notion. The most fundamental
questions here concern the existence of instances with high instance complexity, relative to
their Kolmogorov complexity. We are putting forth an “instance complexity conjecture”,
which attempts to formalize the intuitive idea that problems are hard if and only if they
have infinitely many intrinsically hard instances. Formally, the conjecture states that if
a set A is not in the class DTIME(¢), then for infinitely many strings z, the ¢-bounded
instance complexity of z with respect to A is within a constant of the ¢-bounded Kolmogorov
complexity of z, where ¢ = O(tlogt).

The results in Section 5 of this paper provide support for this conjecture, and come fairly
close to proving it in the case of many natural intractable sets. Obviously, any further results
on the conjecture would be extremely interesting — including any results pointing in the
opposite direction.

From past experience, resolving the conjecture should be within reach in the limiting,
recursive case. Precisely, one would like to prove or disprove the following: for any recursively
enumerable, nonrecursive set A, there exist a constant ¢ and infinitely many strings = such
that

ic(z: A) > K(z) — ¢,

where ic and K denote the time-unbounded versions of instance complexity and Kolmogorov
complexity, respectively. Surprisingly, even this seems to be a nontrivial problem.

At present we have no lower bounds on the absolute instance complexity of the “hard
instances” provided by the results in Section 5. The construction in the proof of Theorem 5.5
seems to suggest that at least a bound of Q(loglogn) on the complexity of the produced in-
stances could be achieved, but we have not been able to establish this conclusively. Optimally,

24

one might even hope to match the Q(logn) lower bound on absolute instance complexities
for NP-hard sets from Section 4.

A Note on Recent Work

Since this paper was completed, Arvind et al. [1] have characterized our class IC[log, poly] as
consisting of exactly those sets that can be both conjunctively and disjunctively reduced to
tally sets, and proved that the class is downward closed under < -reductions. These results
then yield easy “structural complexity” proofs of our Theorem 4.1 and its corollaries. In
another development, Ko [17] has proved that if one-way functions that are secure against
polynomial size circuits exist, then any NP-hard set will in fact have a nonsparse set of
instances witnessing its noninclusion in the class IC[log, poly]. This result is obtained as a
corollary to results on the instance complexities of random and pseudorandom sets.

Acknowledgments

The authors wish to thank Ronald Book for hosting a June 1985 workshop at the University
of California, Santa Barbara, where many of the initial results in this work were obtained.
The third author would also like to thank Thomas Thierauf for several comments on an
earlier version of this paper.

References

[1] ArvIND, V., HAN, Y., HEMACHANDRA, L., KOBLER, J., MUNDHENK, M., SCHONING,
U., THiERAUF, T., LozAaNO, A., OGIWARA, M., AND SILVESTRI, R. Reductions to
sets of low information content. In Proceedings of the 19th International Colloquium on
Automata, Languages, and Programming (Vienna, July). Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 1992.

[2] BaLcAzar, J. L., Diaz, J., AND GABARRO, J. Structural Complexity I. Springer-
Verlag, Berlin Heidelberg, 1988.

[3] BaLcAzARr, J. L., AND ScHONING, U. Bi-immune sets for complexity classes. Math.
Systems Theory 18 (1985), 1-10.

[4] BERMAN, L. Polynomial reducibilities and complete sets. Ph.D. Thesis, Cornell Univ.,
1977.

[5] Book, R.V. Tally languages and complexity classes. Info. Control 26 (1974), 186-193.

[6] Book, R., Du, D.-Z., AND Russo, D. A. On polynomial and generalized complexity

cores. In Proceedings of the 3rd Annual Symposium on Structure in Complexity Theory
(Washington, D.C., June). IEEE, New York, N.Y., 1988, pp. 236-250.

[7] CHAITIN, G. J. On the simplicity and speed of programs for computing infinite sets of
natural numbers. J. Assoc. Comput. Mach. 16 (1969), 407-422. Reprinted in CHAITIN,
G. J. Information Randomness & Incompleteness — Papers on Algorithmic Information
Theory. World Scientific, Singapore, 1987, pp. 256-272.

25

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Even, S., SELMAN, A. L., AND YAcoOBI, Y. Hard core theorems for complexity classes.
J. Assoc. Comput. Mach. 32 (1985), 205-217.

FrajorLer, P., AND STEYAERT, J. M. On sets having only hard subsets. In Proceedings
of the 2nd International Colloguium on Automata, Languages, and Programming (Saar-
briicken, July). Lecture Notes in Computer Science 14. Springer-Verlag, Berlin, 1974,
pp- 446-457.

HArRTMANIS, J. Generalized Kolmogorov complexity and the structure of feasible compu-
tations. In Proceedings of the 24th Annual Symposium on the Foundations of Computer
Science (Tucson, Az., November). IEEE, New York, N.Y., 1983, pp. 439-445.

HarTMANIS, J. On sparse sets in NP. Info. Proc. Letters 16 (1983), 55-60.

HorpcrorT, J. E., AND ULLMAN, J. D. Introduction to Automata Theory, Languages,
and Compulation. Addison-Wesley, Reading, Ma., 1979.

Jazaveri, M., OepeEN, W. F., AND RounDs, W. C. The intrinsically exponential
complexity of the circularity problem for attribute grammars. Comm. Assoc. Comput.

Mach. 18 (1975), 697-706.

Karp, R. M., AND LirTON, R. J. Some connections between nonuniform and uniform
complexity classes. In Proceedings of the 12th Annual ACM Symposium on Theory of
Computing (Los Angeles, Ca., April). ACM, New York, N.Y., 1980, pp. 302-309.

Ko, K.-I. On the notion of infinite pseudorandom sequences. Theoret. Comput. Sci. 48
(1986), 9-33.

Ko, K.-I. Non-levelable and immune sets in the accepting density hierarchy for NP.
Math. Systems Theory 18 (1985), 189-205.

Ko, K.-1. A note on the instance complexity of pseudorandom sets. In Proceedings of the
7th Annual Symposium on Structure in Complexily Theory (Boston, Ma., June). IEEE,
New York, N.Y., 1992.

KorLmoGgorov, A. N. Three approaches to the quantitative definition of information.
Prob. Info. Transmission 1 (1965), 1-7.

L1, M., AND VITANYI, P. M. B. Kolmogorov complexity and its applications. In
Handbook of Theoretical Computer Science. Vol. A: Algorithms and Complexity. J. van
Leeuwen, Editor. Elsevier, Amsterdam, 1990, pp. 187-254.

LovELAND, D. W. A variant of the Kolmogorov concept of complexity. Info. Control
15 (1969), 510-526.

LyncH, N. On reducibility to complex or sparse sets. J. Assoc. Comput. Mach. 22
(1975), 341-345.

MEeYER, A. M., aND McCrErIGHT, E. M. Computationally complex and pseudo-

random zero-one valued functions. In Theory of Machines and Computations. 7.. Kohavi
and A. Paz, Eds. (Haifa, August). Academic Press, New York/London, 1971, pp. 19-42.

26

[23] MEYER, A. M., AND PaTERsonN, M. P. With what frequency are apparently in-
tractable problems difficult? Tech. Rep. TM-126, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, Ma., 1979.

[24] OrRPONEN, P. A classification of complexity core lattices. Theoret. Compul. Seci. J7
(1986), 121-130.

[25] OrPONEN, P., Russo, D. A., AND ScHONING, U. Optimal approximations and poly-
nomially levelable sets. SIAM J. Comput. 15 (1986), 399-408.

[26] OrRPONEN, P., AND SCHONING, U. The density and complexity of polynomial cores for
intractable sets. Info. Control 70 (1986), 54-68.

[27] RoGERs, H., Jr. Theory of Recursive Functions and Effective Computability. McGraw—
Hill, New York, N.Y., 1967.

[28] ScHNORR, C.P. Optimal algorithms for self-reducible problems. In Proceedings of the
3rd International Colloquium on Automata, Languages, and Programming (Edinburgh,
July). Edinburgh Univ. Press, Edinburgh, 1976, pp. 322-337.

[29] SipsER, M. A complexity theoretic approach to randomness. In Proceedings of the 15th
Annual ACM Symposium on Theory of Computing (Boston, Ma., April). ACM, New
York, N.Y., 1983, pp. 330-335.

[30] WATANABE, O. On one-one polynomial time equivalence relations. Theoret. Comput.
Seci. 38 (1985), 157-165.

[31] WILBER, R.E. Randomness and the density of hard problems. In Proceedings of the 24th
Annual Symposium on the Foundations of Computer Science (Tucson, Az., November).
IEEE, New York, N.Y., 1983, pp. 335-342.

27

