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Abstract

We prove that polynomial size discrete Hopfield networks with hidden units compute exactly
the class of Boolean functions PSPACE/poly, i.e., the same functions as are computed by
polynomial space-bounded nonuniform Turing machines. As a corollary to the construction, we
observe also that networks with polynomially bounded interconnection weights compute exactly
the class of functions P/poly, i.e., the class computed by polynomial time-bounded nonuniform

Turing machines.

1 Introduction

We investigate the power of discrete Hopfield networks (Hopfield, 1982) as general computational
devices. Our main interest is in the problem of Boolean function computation by symmetric
networks of weighted threshold logic units; but for the constructions, we also need to consider
asymmetric nets.

In our model of network computation, the input to a net is initially loaded onto a set of desig-
nated input units; then the states of the units in the network are updated repeatedly, according to

their local update rules until the network (possibly) converges to some stable global state, at which
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point the output is read from a set of designated output units. We only consider finite networks
of units with binary states, and with discrete-time synchronous dynamics (i.e., all the units are
updated simultaneously in parallel). However, it is known that any computation on a synchronous
network can be simulated on an asynchronous network where the updates are performed in a spe-
cific sequential order (Tchuente 1986; Bruck and Goodman 1988), or indeed even on a network
where the update order is a priori totally undetermined (Orponen 1995).

Following the early work of McCulloch and Pitts (1943) and Kleene (1956) (see also Minsky
1972), it has been customary to think of finite (asymmetric) networks of threshold logic units as
equivalent to finite automata (for recent work along these lines see, e.g., Alon et al. 1991; Horne
and Hush 1994; Indyk 1995). However, in Kleene’s construction for the equivalence, the input to
a net is given as a sequence of pulses, whereas from many of the current applications’ point of
view it would be more natural to think of all of the input as being loaded onto the network in the
beginning of a computation. (This is also the input convention followed in standard Boolean circuit
complexity theory (Wegener 1987).) Of course, this view makes the network model nonuniform, in
the sense that any single net operates on only fixed-length inputs, and to compute a function on
an infinite domain one needs a sequence of networks.

Since a recurrent net of s units converging in time ¢ may be “unwound” into a feedforward
circuit of size s - t, the class of Boolean functions computed by polynomial size, polynomial time
asymmetric nets coincides with the class P/poly of functions computed by polynomial size Boolean
circuits or, equivalently, polynomial time Turing machines with a polynomially bounded number
of nonuniform “advice bits” (Karp and Lipton 1982; Balcdzar et al. 1988)!. On the other hand,
if computation times are not bounded, then a relatively straightforward argument shows that the
class of functions computed by polynomial size asymmetric nets equals the class PSPACE/poly
of functions computed by polynomial space bounded Turing machines with polynomially bounded
advice. Parberry (1990) attributes this result to an early unpublished report by Lepley and Miller
(1983), but for completeness we outline a proof in Section 3.

Thus, general asymmetric recurrent nets are fairly easy to characterize computationally, and
turn out to be quite powerful. On the other hand, as pointed out by Hopfield (1982), networks with

symmetric interconnections possess natural Liapunov functions, and are thus at least dynamically

In a recent paper, Siegelmann and Sontag (1994) prove that also bounded size asymmetric recurrent nets with
real-valued unit states and connection weights, and a saturated-linear transfer function compute in polynomial time

exactly the functions in P/poly.



much more constrained. (The simple dynamics, and the generic form of the Liapunov functions
are also what makes symmetric networks so attractive in many applications.) Specifically, Goles
(1982) and Hopfield (1982) observed that under asynchronous updates, any symmetric net with no
negative self-connections at the units always converges from any initial state to some stable final
state. By analyzing the rate of decrease of the Liapunov functions, Fogelman et al. (1983) further
showed that in a symmetric net of p units with no negative self-connections, and with integer

connection weights w;;, the convergence requires at most a total of
3Z|wm| = p maX|w”|)

unit state changes. Under synchronous updates a similar bound holds also for nets with negative
self-connections (Poljak and Sura 1983; Goles et al. 1985; Bruck and Goodman 1988), but in this
model the network may also converge to oscillate between two alternating states instead of a unique
stable state.

Thus, in particular, symmetric networks with polynomially bounded weights converge in poly-
nomial time. On the other hand, networks with exponentially large weights may indeed require
an exponential time to converge, as was first shown by Goles and Olivos (1981) for synchronous
updates, and by Haken and Luby (1988) for a particular asynchronous update rule. (The former
construction was later simplified by Goles and Martinez (1989).) A network requiring exponen-
tial time to converge under an arbitrary asynchronous update order was first demonstrated by
Haken (1989). The existence of networks with exponentially long asynchronous transients is now
known to follow also from the general theory of local search for optimization problems (Schéffer
and Yannakakis 1991).

In this paper, we prove that despite their constrained dynamics, computationally symmetric
networks lose nothing of their power: specifically, symmetric polynomial size networks with un-
bounded weights can compute all functions in PSPACE/poly, and networks with polynomially
bounded weights can compute all functions in P/poly. The idea, presented in section 4, is to start
with the simulation of space-bounded Turing machines by asymmetric nets, and then replace each
of the asymmetric edges by a sequence of symmetric edges whose behavior is sequenced by clock
pulses. The appropriate clock can be obtained from, e.g., the symmetric exponential-transient net-
work by Goles and Martinez (1989). Obviously, such a clock network cannot run forever (in this
case it is not sufficient to have a network that simply oscillates between two states), but neverthe-

less the sequence of pulses it generates is long enough to simulate a polynomially space-bounded



computation or, in the case of polynomially bounded weights, a polynomially time-bounded one.

For more information on the computational aspects of recurrent threshold logic networks, or
more generally automata networks, see, e.g., the survey articles and books by Floréen and Orponen
(1994), Fogelman et al. (1987), Goles and Martinez (1990), Kamp and Hasler (1990), and Parberry
(1990, 1994).

2 Preliminaries

Following Parberry (1990), we define a (discrete) neural network as a 6-tuple N = (V, 1,0, A, w, h),
where V' is a finite set of units, which we assume are indexed as V ={1,...,p}; ICVand OCV
are the sets of input and outpul units, respectively; A C V is a set of initially active units, of which
we require that ANT = §; w : V x V — Z is the edge weight malriz, and h : V — Z is the
threshold vector. The size of a network is its number of units, |V| = p, and the weight of a network
is defined as its sum total of edge weights, >°; .y |wij|. A Hopfield net (with hidden unils) is a
neural network N whose weight matrix is symmetric.

Given a neural network N, let us denote |I| = n, |O| = m; moreover, let us assume that the
units are indexed so that the input units appear at indices 1 to n. The network then computes a
partial mapping

Iy :{0,1}" — {o0,1}™

as follows. Given an input z, |z| = n, the states s; of the input units are initialized as s; = x;. The
states of the units in set A are initialized to 1, and the states of the remaining units are initialized
to 0. Then new states s, ¢ = 1,...,p, are computed simultaneously for all the units according to

the rule

P
sh=sgn(Y_ wijsj — hy),
=1

where sgn(t) = 1 for ¢t > 0, and sgn(¢) = 0 for ¢ < 0. This updating process is repeated until no
more changes occur, at which point we say that the network has converged, and the output value
fn(z) can be read off the output units (in order). If the network does not converge on input z, the
value fy(z) is undefined.

For simplicity, we consider from now on only networks with a single output unit; the extensions

to networks with multiple outputs are straightforward. The language recognized by a single-output



network N, with n input units, is defined as
L(N)={z €{0,1}" | fn(z) = 1}.

Given a language A C {0,1}*, denote A = AN {0,1}". We consider the following complexity

classes of languages:

PNETS = {A C {0,1}*| for some polynomial ¢, there is for each n

a network of size at most ¢(n) that recognizes A },

PNETS(symm) = {A C {0,1}*| for some polynomial ¢, there is for each n

a Hopfield net of size at most ¢(n) that recognizes A },

PNETS(symm, small) = {A C {0,1}*]| for some polynomial ¢, there is for each n
a Hopfield net of weight at most ¢(n) that recognizes A }.

Let (z,y) be some standard pairing function mapping pairs of binary strings to binary strings
(see, e.g., Balcdzar et al. (1988, p. 7)). A language A C {0,1}* belongs to the nonuniform com-
plexity class PSPACE/poly (Karp and Lipton 1982; Balcazar et al. 1987; Balcdzar et al. 1988,
p. 100), if there exist a polynomial space bounded Turing machine M and an “advice” function
f + N — {0,1}%, such that for some polynomial ¢ and all n € N, |f(n)| < ¢(n), and for all
z € {0,1}%

€A & M accepts (z, f(|z])).

The class P/poly is defined analogously, using polynomial time instead of space bounded Turing
machines. The class P/poly can also be characterized as the class of languages recognized by
polynomial size-bounded sequences of feedforward Boolean circuits (Balcdzar et al. 1988, p. 111).

This includes circuits using threshold logic gates, as any threshold function on k variables can be
implemented as an AND/OR/NOT-circuit of size O(k?log? k) and depth O(log k) (Parberry 1994,
p. 173).

3 Simulating Turing Machines with Asymmetric Nets

Simulating space-bounded Turing machines with asymmetric neural nets is fairly straightforward.

Theorem 3.1 PNETS = PSPACE/poly.
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Figure 1: Simulation of a space bounded Turing machine by an asymmetric recurrent net.

Proof (outline). To prove the inclusion PNETS C PSPACE/poly, observe that given (a descrip-
tion of ) a neural net, it is possible to simulate its behavior in situ. Hence, there exists a universal
neural net interpreter machine M that given a pair (z, N') simulates the behavior of net N on input
x in linear space. Let then language A be recognized by a polynomial size bounded sequence of
nets (N,). Then A € PSPACE/poly via the machine M and advice function f(n)= N,.

To prove the converse inclusion, let A € PSPACE/poly via a machine M and advice function
f. Let the space complexity of M on input (z, f(|z|)) be bounded by a polynomial ¢(|z|). Without
loss of generality (see, e.g., Balcdzar et al. 1988) we may assume that M has only one tape, halts
on any input (z, f(|z])) in time ¢?(#D, for some constant ¢, and indicates its acceptance or rejection
of the input by printing a 1 or a 0 on the first square of its tape.

Following the standard simulation of Turing machines by combinational circuits (Balcdzar et
al. 1988, pp. 106-112), it is straightforward to construct for each n a feedforward threshold logic
circuit that simulates the behavior of M on inputs of length n. (More precisely, the circuit simulates
computations M ((z, f(n))), where |2| = n.) This circuit consists of /(") “layers” of O(¢(n)) parallel
wires, where the {th layer represents the configuration of the machine M at time ¢ (Figure 1, left).
Every two consecutive layers of wires are interconnected by an intermediate layer of ¢(n) constant-
size subcircuits, each implementing the local transition rule of machine M at a single position of

the simulated configuration. The input z is entered to the circuit along input wires; the advice



string f(n) appears as a constant input on another set of wires; and the output is read from the
particular wire at the end of the circuit that corresponds to the first square of the machine tape.
One may now observe that the interconnection patterns between layers are very uniform: all
the local transition subcircuits are similar, with a structure that depends only on the structure of
M, and their number depends only on the length of z. Hence we may replace the exponentially
many consecutive layers in the feedforward circuit by a single transformation layer that feeds back
on itself (Figure 1, right). (As can be seen in the figure, we now use an explicit layer of units
to represent the configuration of machine M, with small positive self-connections to maintain the
representation between successive transformations.) The size of the recurrent network thus obtained
is only O(g(n)). When initialized with input z loaded onto the appropriate input units, and advice
string f(n) mapped to the appropriate initially active units, the network will converge in O(c?(")
update steps, at which point the output can be read off the unit corresponding to the first square

of the machine tape.

4 Simulating Asymmetric Nets with Symmetric Nets

Having now shown how to simulate polynomial space-bounded Turing machines by polynomial size
asymmetric nets, the remaining problem is how to simulate the asymmetric edges in a network by
symmetric ones. This is not possible in general, as witnessed by the different convergence behaviors
of asymmetric and symmetric nets. However, in the special case of convergent computations on

asymmetric nets the simulation can be effected.
Theorem 4.1 PNETS(symm) = PSPACE/poly.

Proof. Because PNETS(symm) C PNETS, and by the previous theorem PNETS C PSPACE/poly,
it suffices to prove the inclusion PSPACE/poly C PNETS(symm).

Given any A € PSPACE/poly, there is by Theorem 3.1 a sequence of polynomial size asymmetric
networks recognizing A. Rather than show how this specific sequence of networks can be simulated
by symmetric networks, we shall show how to simulate the convergent computations of an arbitrary
asymmetric network of n units and e edges of nonzero weight on a symmetric network of O(n + ¢)

units and O(n?) edges.
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Figure 2: A sequence of symmetric edges simulating an asymmetric edge of weight w.

Figure 3: The clock pulse sequence used in the edge simulation of Figure 2.



The construction combines two network “gadgets”: a simplified version of a mechanism due
to Hartley and Szu (1987) for simulating an asymmetric edge by a sequence of symmetric edges
and their interconnecting units, whose behavior is coordinated by a system clock (Figures 2, 3);
and a binary counter network due to Goles and Martinez (1989; see also Goles and Martinez 1990,
pp- 88-95) that can count up to 2" using about 3n units and O(n?) symmetric edges (Figure 4).
An important observation here is that any convergent computation by a network of n units has to
terminate in 2" synchronous update steps, because otherwise the network repeats a configuration
and goes into a cycle; hence, the exponential time counter network can be used to provide a sufficient
number of clock pulses for the simulation to be performed.

Let us first consider the gadget for a symmetric simulation of an asymmetric edge of weight w
from a unit 7 to a unit j (Figure 2). Here the idea is that the two units inserted between the units
¢t and 7 in the symmetric network function as locks in a canal, permitting information to move only
from left to right. The locks are sequenced by clock pulses emanating from the units labeled A and
B, in cycles of period three as presented in Figure 3.

At time 0 clock A is on, setting the first intermediate unit to zero, and clock B is off, permitting
the state of the second intermediate unit to influence the state computation at unit j. At time
1 clock B turns on, clearing the second intermediate unit at time 2 (note that the connection
from unit j is not strong enough to turn this unit back on). This will make the state of unit j
indeterminate at time 3. At time 2, clock A turns off, permitting a new state to be copied from unit
i to the first intermediate unit at time 3 (i.e., just before the state of unit ¢ becomes indeterminate).
At time 3, clock A turns on again, clearing the first intermediate unit at time 4; but simultaneously
at time 4 the new state is copied from the first to the second intermediate unit, from where it can
then influence the computation of the new state of unit j at time 5.

The next question is how to generate the clock pulses A and B. It is not possible to construct a
symmetric clock network that runs forever: at best such a network can end up oscillating between
two states, but this is not sufficient to generate the period 3 pulse sequences required for the
previous construction. However, Figure 4 presents the first two stages in the construction of a
(3n — 4)-unit symmetric network with a convergence time of more than 2" (actually, 2" 4+ 2"~! — 3)
synchronous update steps. (For the full details of the construction, see (Goles and Martinez 1989).)
The idea here is that the n units in the upper row implement a binary counter, counting from all
0’s to all 1’s (in the figure, the unit corresponding to the least significant bit is to the right). For

each “counter” unit added to the upper row, after the two initial ones, two “control” units are



Figure 4: The first two stages in the construction of a binary counter network (Goles and Martinez

1989).

added to the lower row. The purpose of the latter is to first turn off all the “old” units, when the
new counter unit is activated, and from then on balance the input coming to the old units from
the new units, so that the old units may resume counting from zero?.

It is possible to derive from such a counter network a sufficient number of the A and B pulse
sequences by means of the delay line network presented in Figure 5. Here the unit at the upper
left corner is some sufficiently slow oscillator; since we require pulse sequences of period three, this
could be the second counter unit in the preceding construction, which is “on” for four update steps
at a time. (Thus, a 2"T!-counter suffices to sequence computations of length up to 2" — 1.) The
delay line operates as follows: when the oscillator unit turns on, it “primes” the first unit in the
line; but nothing else happens until the oscillator turns off. At that point the “on” state begins
to travel down the line, one unit per update step, and the pulses A and B are derived from the
appropriate points in the line.

The value W used in the construction has to be chosen so large that the states of the units in
the underlying network have no effect back on the delay line. It is sufficient to choose W larger
than the total weight of the underlying network. Similarly, the weights and thresholds in the

counter network have to modified so that the connections to the delay line do not interfere with

the counting. Assuming that W > 3, it is here sufficient to multiply all the weights and thresholds

*Following the construction by Goles and Martinez (1989), we have made use of one negative self-connection in
the counter network. If desired, this can be removed by making two copies of the least significant unit, both with
threshold 0, interconnected by an edge of weight —1, and with the same connections to the rest of the network as the

current single unit. All the other weights and thresholds in the network must then be doubled.
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Figure 5: A delay line for generating clock pulses from the binary counter network in Figure 4.

by 6W, and then subtract one from each threshold.
O
Concerning the edge weights in the above constructions, one can see that in the network imple-
menting the machine simulation (Figures 1, 2), the weights actually are bounded by some constant
that depends only on the simulated machine M in the delay line, the weights are proportional to
the total weight of the underlying network; and the weights in the counter network (Figure 4) are
proportional to the length of the required simulation and, less significantly, to the weight of the
delay line. Thus, we obtain as a corollary to the construction that if the simulated Turing machine
(or, more generally, asymmetric network) is known to converge in polynomial time, then it is suf-
ficient to have polynomially bounded weights in the simulating symmetric network. Formulating

this in terms of nonuniform complexity classes, we obtain:
Corollary 4.2 PNETS(symm, small) = P/poly.

Consequently, anything that can be computed by asymmetric networks, or nonuniform Turing
machines, in polynomially bounded time can also be computed by polynomial weight symmetric
networks, with their guaranteed good convergence properties.

The result also implies that large (i.e., superpolynomial) weights are essential for the computa-
tional power of polynomial size symmetric networks if and only if P/poly # PSPACE/poly. (The
condition P/poly = PSPACE/poly is known to have the unlikely consequence of collapsing the

“polynomial time hierarchy” to its second level (Karp and Lipton 1982).) In asymmetric networks

11



large weights are not needed; in fact even bounded weights suffice, as can be seen by conceptually

replacing each threshold logic unit by a corresponding AND/OR/NOT subcircuit.

5 Conclusion and Open Problems

We have characterized the classes of Boolean functions computed by asymmetric and, more inter-
estingly, symmetric polynomial size recurrent networks of threshold logic units under a synchronous
update rule. When no restrictions are placed on either computation time or the sizes of interconnec-
tion weights, both of these classes of networks compute exactly the class of functions PSPACE /poly.
If interconnection weights are limited to be polynomial in the size of the network, the class of func-
tions computed by symmetric networks reduces to P/poly. This limitation has no effect on the
computational power of asymmetric nets. Although we have considered here only networks with
discrete synchronous dynamics, it can be shown that any computation on such a network can also
be performed on a slightly larger network with a totally asynchronous dynamics (Orponen 1995).

Some of the open problems suggested by this work are the following. In the original associative
memory model proposed by Hopfield (1982), all the units are used for both input and output, and
no hidden units are allowed. Although this is a somewhat artificial restriction from the function
computation point of view, characterizing the class of mappings computed by such networks would
nevertheless be of some interest in the associative memory context.

Of more general interest would be the study of the continuous-time version of Hopfield’s network
model (Hopfield 1984; Hopfield and Tank 1985). It will be an exciting broad research task to define
the appropriate notions of computability and complexity in this model, and attempt to characterize

its computational power.
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