Programming the Harmonium*

Petri Myllymaki Pekka Orponen

Department of Computer Science, University of Helsinki

SF-00510 Helsinki, Finland

Abstract

We show how to synthesize, given a Bayesian network description of a probability distribution, an
imstance of Smolensky’s harmony network that computes mazximum-likelihood completions to partial value
assignments, according to the given distribution. As an application, we present a scheme for translating a
high-level description of a conceptual hierarchy, with default values and exceptions, to a harmony network
representation, which is then inherently capable of quite complicated query processing. Finally, we discuss
our experience from implementing such a translation scheme.

1 Introduction

The work presented in this paper has been motivated by the goal of developing hybrid neural-symbolic
programming systems. Such systems aim at combining the benefits of two complementary approaches
to knowledge representation and reasoning: a neural knowledge representation is used to provide a basic
robustness to the system, whereas standard symbolic techniques are used for complicated high-level inferential
tasks, at which current neural network techniques perform poorly. Some of the related recent work has been
reported in the collections [2, 4].

A pivotal issue in building a hybrid neural-symbolic system is designing the interface between the two
components. In this, we have found the conceptual framework of Bayesian networks, as developed in partic-
ular by Pearl in his book[10], most useful. In an earlier paper [9], we presented a neural implementation of
Pearl’s stochastic simulation method for estimating posterior probabilities on the basis of a given Bayesian
network. In this paper, we show how to explicitly set up a stochastic network conforming to Smolensky’s [12]
harmony theory, or “harmonium” model, corresponding to a given Bayesian network. Such a network can
then be used to answer queries on the basis of the given probabilistic information, in the sense of computing
maximum-likelihood completions to partial value assignments to the variables under consideration.

As an application, we show how conceptual hierarchies, described in a high-level language, can be trans-
lated into a harmony network representation, amenable to processing queries of a quite general form. In
spirit this work is similar to, e.g., Shastri’s [11], but whereas Shastri’s networks are deterministic, and conse-
quently require fairly complicated computing elements and control regimes, the stochastic harmony networks
are structurally very simple and uniform.

2 Bayesian Networks, Harmony Networks, and Markov Random
Fields

We approach the problem of realizing Bayesian networks on the harmonium somewhat indirectly, by first
discussing the relationship of Markov random fields [3, 6] to harmony networks.

Let F = {Xy,...,X,} be aset of binary (+1) valued random variables that form a Markov random field
(MRF) with potential function U. In other words, assume that the joint distribution of the variables X; is

*This work has been partially supported by the Academy of Finland, and by the Finnish Technology Development Center
(TEKES) under its FINSOFT programme.

Figure 1: A harmony network.

the Gibbs distribution determined by U:
P(x) = Z=1eV(®) 1

where Z is a normalization constant; and that there is defined on F a system of cligues C C P(F) such that
U can be decomposed:
Ul) = Ve(e),
ceC
where each cligue potential Vo depends only on the variables in the clique C'. For each clique C', the potential
Ve may be decomposed further by considering all the different value assignments a to variables in the clique,

a:C — {+1,—1}, and writing
VC(‘”) = Z)‘aXa(m):

where the constant A, is the value of the clique potential for the assignment «, and the function x (@)
has value 1 or 0 according to whether the value assignment o “matches” state vector & or not. A value
assignment « can also be thought of as a vector a € {—1,0,+1}", whose 1-norm |« is equal to the size of
the underlying clique C'. In this formulation, the definition of the function xo can be written as

Xoe(m):{ 1, ifa -z/|lal=1,

0, otherwise.

We shall henceforth mostly forget about the functions Vo, and represent the potential U directly in terms
of the elementary potentials associated to the value assignments:

U@) =Y Aaxa(®).

A Markov random field determined by a clique structure and a potential function U can be given an
approximate realization as a harmony network as follows. Consider a network consisting of two layers of
stochastic binary-valued units, a set of feature nodes corresponding to the variables Xi,..., X, and a set of
pattern nodes (Smolensky’s “knowledge” nodes) corresponding to the value assignments o (Figure 1). The
possible activity values for the feature nodes are {—1,+1}, and the values for the pattern nodes are {0, 1}.
A pattern node corresponding to a value assignment « for a clique C' is connected to each of the feature
nodes representing variables in C'. The interconnections are undirected, and the weight of the connection
between pattern node « and feature node ¢ is given by

Weoi = O‘iaa/|a|;

where «;, the sign of the connection is +1 or —1, according to which value the assignment « assigns to
variable X;; | is the number of connections at node «; and o, is the strengih of the node «, defined as

O = /\a/(l - K?oc);

1 Note that we are deviating from standard practice and following Smolensky [12] in the choice of the sign of the function U.

where £, is a parameter that can be given any value satisfying 1 — 2/|a| < ko < 1.

The nodes in the network are updated asynchronously in a random order?, according to the following
rules: if the node selected for updating is a pattern node «, and the current states of the feature nodes are
given by z;, then a net input value of

Iy = § Waili — Oaka
i

is computed, and the node obtains value 1 with probability P(a, = 1) = (1 4+ e~T«/T)=1 where T is the
current computational temperature. For a feature node 7 the net input is computed as

I = 2 Weile,
o

where the a, are the current states of the pattern nodes; the node then obtains value 1 with probability
P(a; =1) = (1 4= 20/T)=1,

Smolensky [12] proves the following fundamental result about the computational behavior of harmony
networks. Consider a partial assignment y to some of the variables, say X;,,..., X;,. Then a state vector @
is a mazimum-likelthood completion of y if it extends y, i.e., if it agrees with y on the variables X;,, ..., X;,,
and if for any state vector @’ extending vy it is the case that P(x) > P(a').

Let H be a harmony network constructed as above from a representation of the distribution

P(x) x exp(z AaXa(®)),

where all the parameters A, are positive.3. Smolensky proves that such a network H computes maximum-
likelihood completions according to the distribution P, in the following sense. Let a partial assignment y
to some variables X;,,..., X;, be given. Initialize H so that the feature nodes iy, ..., %, corresponding to
variables X, , ..., X;,, are assigned the values determined by y, and the other nodes are initialized randomly.
During the subsequent computation by H, the values of nodes 71, ..., are kept fixed, while the other nodes
update their values stochastically, according to the rules given above. If the temperature parameter 7' is
lowered to zero sufficiently slowly during the computation [1, 3], the network will with high probability
converge to a state that, projected to the feature nodes, represents a maximum-likelihood completion of the
initial assignment y.

Let us then consider Bayesian networks. We present here a brief summary of the basic definitions; for
details see [10]. Let P be a probability distribution over the set of variables F = {Xy,..., X}, and let
X,Y,Z C F be sets of variables. Then X is conditionally independent of Y, given Z, if the condition

PX=2Y =y, Z=2)=P(X =2|Z ==2)

holds for all vectors of values ®, y, z such that P(Y = y,Z = z) > 0. (Intuitively, the variables in Z
intercept any causal connections between the variables in X and the variables in Y: knowing the values of
Z renders information about the values of Y irrelevant to determining the distribution of X.)

A Bayesian network for a probability distribution P is a directed acyclic graph D whose nodes correspond
to the variables Xi,..., X,,, and whose topology satisfies the following: each variable X is conditionally
independent of all its non-descendants in D, given its set of parents Fx, and no proper subset of Fx satisfies
this condition. (Here the parent variables F'x may intuitively be thought of as the immediate causes of
variable X.) In a Bayesian network representation, we are typically given for each variable X the matrix of
conditional probabilities P(X = z|Fx = z), from which the joint distribution may then be reconstructed.

The importance of Bayesian networks lies in the way such a structure supports probabilistic reason-
ing about many naturally occurring distributions, where the dependencies between variables arise from a
relatively sparse network of causal influences.

It has been noted by several authors [5, 7, 8, 13] that a Markov random field with the same joint
distribution as a given Bayesian network can be constructed as follows. Take as the cliques of the MRF all

2 Actually, since the network is bipartite, any nodes belonging to the same layer may be updated in parallel.
3This condition is not stated explicitly by Smolensky in [12], but it is required in his proof.

collections of variables of the form C; = {X;} U Fyx,, i.e., a variable together with all its parents, and define
the potential function for clique C; as

VC,(:E) = h’lP(XZ = J,Z|XJ =Ty VXJ € FXI) —|—I{Cl,

where K¢, is an arbitrary constant.

It follows that the realization of MRF’s on harmony networks described above can also be used for
realizing Bayesian networks. Given a Bayesian network D, let the harmony network contain a pattern node
for each value assignment « to a clique of variables C;; and assign to the parameter A, for this pattern node
the value

Ao = h’lP(XZ = O{Z’|Xj = «j VXj € FXZ) — Aoy

where A¢, is some value smaller than any of the In P terms for an assignment « associated to C;. (The shift
by A¢, of all the A,’s associated to a clique Cj is required to make the parameters positive.) By Smolensky’s
theorem, the resulting harmony network computes (with high reliability) maximum likelihood completions
to given initial partial value assignments. We emphasize that, in contrast to Smolensky’s original work [12],
there is no “learning” process involved in our construction: both the structure of the harmony network and
the values of the A, parameters are explicitly determined from the given Bayesian network. Conceivably,
though, the learning algorithm suggested by Smolensky could be used for fine-tuning the parameters on the
basis of observed data.

3 A Translation Scheme for Conceptual Hierarchies

Let us then apply the technique of implementing Bayesian networks on the harmonium to the problem of
translating high-level descriptions of concepts to a neural representation. As a simple example, consider the
following description of the inhabitants of a zoo, presented in a generic high-level knowledge representation
language:

concept animal is basic (100) with

offspring : [living (20), eggs (80)];

can : { swim (70), fly (29), walk (49) };
concept mammal is animal (20) with

offspring : [living (20), eggs (0) |;

can : { swim (10), fly (0), walk (19) };
concept bird is animal (30) with

offspring : [living (0), eggs (30) |;

can : { swim (10), fly (29), walk (30) };
concept fish is animal (50) with

offspring : [living (0), eggs (50) |;

can : { swim (50), fly (0), walk (0) };
concept dolphin is mammal (1) with

offspring : [living (1), eggs (0) |;

can : { swim (1), fly (0), walk (0) };
concept penguin is bird (1) with

offspring : [living (0), eggs (1)];

can : { swim (1), fly (0), walk (1) }.

Here, a description of a concept consists of a reference to its immediate ancestor (if any), together with
a list of attributes and their value distribution for objects belonging to this conceptual class. There are two
types of attributes: exclusive (indicated by the square brackets “[]” enclosing the list of possible values) and
set-valued (indicated by the curly braces “{ }”). For any object, an exclusive attribute must be assigned
exactly one value from its list of possible values; a set-valued attribute may possess any number of values
(including zero) from its list. The parenthesized numbers indicate the “frequency” of a given value for an
attribute, or at the header of a concept declaration, the “frequency” of objects falling into that concept

Figure 2: A Bayesian network for a part of the “zoo” description.

class. These numbers may either be actual objective frequencies, or subjective estimates of the “typicality”
of certain contingencies.

One way of representing such a description as a Bayesian network was presented in our earlier paper
[9]; here we consider another approach. Based on the given conceptual hierarchy, we generate a complete
classification of objects into terminal classes (i.e., leaf nodes in the hierarchy tree). This may require creating
new terminal classes; thus, for instance, parallel to the dolphin we create a new class

concept other_mammal is mammal (19) with
offspring : [living (19), eggs (0) |;
can : { swim (9), fly (0), walk (19) }.

A Bayesian network corresponding to the mammalian part of this enhanced classification is shown in
Figure 2. In the network, a binary variable is assigned to each concept class and attribute—value pair. To
save space in the figure, variable names have been abbreviated in an obvious manner: d for “dolphin”, o:1
for “offspring:living” etc. If variable X is a parent of variable Y in the network, the value of P(Y|X) is
indicated next to the arc representing the dependency.

As can be seen from the figure, groups of mutually exclusive variables, such as the immediate descendants
of a concept variable (m, b, and f for a), or the value variables for an exclusive attribute (0:/ and o:e) give
rise to zero-probability dependencies in the Bayesian network. In theory, such dependencies are not allowed,
since they give rise to infinitary A, values. We have circumvented this problem by simply introducing a
small positive constant 7, and replacing all the probability 0 dependencies in the network by probability 5
dependencies.

For lack of space, we do not show the detailed harmonium implementation of the zoo network. In
addition to what has been said above, the only notable feature of the implementation is that we are leaving
out the very large number of pattern nodes that correspond to conditions with probability 0. Thus, we have
nodes corresponding to the patterns (offspring:living | dolphin) and (offspring:living | penguin), but not for
(offspring:living | dolphin, penguin). The resulting network has 13 feature nodes and 53 pattern nodes.

4 Computational Experience

To empirically test the method developed, we have implemented a simulator, together with a compiler that
realizes a given set of high-level concept descriptions as a harmony network. For the compilation, the pattern

Figure 3: The behavior of selected “zoo” network nodes during query processing.

node parameters k., were set uniformly to the value &,
k=1-2/(max|a|+ 1),
[e3

where « ranges over all the pattern nodes. The parameters A, were first initialized to negative values as
AL, =InP(X; = o;|X; = a; VX; € Fx,), and the smallest value A/,;, of these was stored. The parameters
were then rescaled to positive numbers according to the rule

n

Ao =M, — 1.1 AL, .
The value of the parameter 7, corresponding to the zero probabilities in the Bayesian network, was set to
0.001.

After the compilation the user may perform queries against the knowledge coded in the network. A query
consists of a set of initial values for some subset of feature nodes. The query is performed by clamping the
chosen nodes to the given values, and letting the network settle down to a final state. For example, the

query

assume offspring:living, not can:walk.
query concept.

clamps the feature node corresponding to the variable offspring:living to the value 1, whereas the node
corresponding to the variable can:walk is clamped to the value —1. The parameter after the command
“query” is used only to limit the set of variable values displayed to the user from the final state. Hence
the given query represents the question “which animal in the zoo has living offspring, but can not walk?”.
An example of the behavior of the feature nodes during one simulation run of the “zoo” network, given the
initial state derived from the query above, can be seen in Figure 3. Each data point shows the mean of the
calculated state 1 probabilities for the variables, averaged over 500 iteration steps. The network converges
to the state corresponding to the right classification mammal, dolphin, not other mammal, not bird, etc. In
addition to this, it was concluded that the object in question can swin, but it can not fly.

During the simulation, the computational temperature was lowered according to the simple, but fre-
quently used annealing schedule [1]:
CZ—‘t-l-l = Ccrta

where T; is the temperature after ¢ iterations. In the annealing scheme used, the temperature was lowered
from an initial value of 1000 to a final temperature of 0.1 in 9205 steps, using the value 0.999 for the constant
c.

The proper choice of the cooling schedule is one of the remaining problems in our approach. Lowering
the temperature too fast leads to final states that are not optimal in the sense of the maximum-likelihood
measure. On the other hand, lowering the temperature too slowly leads to computationally intractable
simulations, at least in a non-neural environment. We are currently investigating this problem further.

References

[1] E. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Com-
binatorial Optimization and Neural Computing. John Wiley & Sons, Chichester, 1989.

[2] J. A. Barnden and J. B. Pollack (eds.), Advances in Connectionist and Neural Computation Theory,
Vol I: High Level Connectionist Models. Ablex Publ. Co., Norwood, NJ, 1991.

[3] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of
images. IEEE Trans. on Pattern Analysis and Machine Intelligence 6 (1984), 721-741.

[4] G. E. Hinton (ed.), Special Issue on Connectionist Symbol Processing. Artificial Intelligence 46:1-2
(1990).

[5] T. Hrycej, Gibbs sampling in Bayesian networks. Artificial Intelligence 46 (1990), 351-363.

[6] R. Kinderman and J. L. Snell, Markov Random Fields and their Applications. American Mathematical
Society, Providence, RI, 1980.

[7] K. B. Laskey, Adapting connectionist learning to Bayesian networks. Int. J. of Approzimate Reasoning
4 (1990), 261-282.

[8] S. L. Lauritzen and D. J. Spiegelhalter, Local computations with probabilities on graphical structures
and their application to expert systems. J. Royal Stat. Soc., Ser. B 1989. Reprinted as pp. 415-448 in:
Readings in Uncertain Reasoning (G. Shafer and J. Pearl, eds.). Morgan Kaufmann, San Mateo, 1990.

[9] P. Orponen, P. Floréen, P. Myllymaki, H. Tirri, A neural implementation of conceptual hierarchies with
Bayesian reasoning. Pp. 297-303 in: Proc. of the International Joint Conf. on Neural Networks (San
Diego, CA, June 1990), Vol. I. IEEE, New York, NY, 1990.

[10] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kauf-
mann, San Mateo, CA, 1988.

[11] L. Shastri, Semantic Networks: An Evidential Formalization and Its Connectionist Realization. Pitman,

London, 1988.

[12] P. Smolensky, Information processing in dynamical systems: Foundations of Harmony Theory. Pp. 194-
281 in: Parallel Distributed Processing, Vol. I (D. E. Rumelhart and J. L. McClelland, eds.). The MIT
Press, Cambridge, MA, 1986.

[13] D. J. Spiegelhalter, Probabilistic reasoning in predictive expert systems. Pp. 47-67 in: Uncertainty in
Artificial Intelligence (L. N. Kanal and J. F. Lemmer, eds.). Elsevier—-North-Holland, Amsterdam, 1986.

