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We describe a method whereby micro-scale spatial information such
as the relative positions of biomolecules on a surface can be trans-
ferred to a sequence-based format and reconstructed into images
without conventional optics. Barcoded DNA polony amplification
techniques enable one to distinguish specific locations of a surface
by their sequence. Image formation is based on pairwise fusion of
uniquely tagged and spatially adjacent polonies. The network of
polonies connected by shared borders forms a graph whose topol-
ogy can be reconstructed from pairs of barcodes fused during a
polony crosslinking phase, the sequences of which are determined
by recovery from the surface and next-gen sequencing. We devel-
oped a mathematical and computational framework for this principle
called Polony Adjacency Reconstruction for Spatial Inference and
Topology and show that Euclidean spatial data may be stored and
transmitted in the form of graph topology. Images are formed by
transferring molecular information from a surface of interest, which
we demonstrated in silico by reconstructing images formed from
stochastic transfer of hypothetical molecular markers. The theory
developed here could serve as a basis for an automated, multiplex-
able, and potentially super resolution imaging method based purely
on molecular information.
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M icroscopic imaging has traditionally relied on optics to1

amplify signals derived from initially confined spatial2

regions. Exceptions include atomic force microscopy which im-3

ages by utilizing a probe to interact with the sample. DNA has4

a high information density, with storage levels of 5.5 petabits5

per cubic millimeter achieved (1), making it an attractive6

medium for encoding spatial information at microscales. In7

this paper, we present a theoretical foundation for a spatial8

information encoding approach that utilizes DNA sequencing9

and graph theory that could be used to generate whole images.10

DNA-driven reactions can be coupled to optically-acquired11

spatial information such as with proximity ligation assay12

(PLA) (2), and DNA-PAINT (3) where molecular interactions13

mediated by DNA are discovered using fluorescence. There is14

also a family of techniques for connecting spatial locations with15

single cell RNA sequencing data: using a priori knowledge of16

spatial marker genes to associate unknown genes to approxi-17

mate locations, the a priori data being in most cases obtained18

by microscopy such as with in situ hybridization or modelling19

of spatial expression patterns to retrieve locations of associ-20

ated genes (4–9). Alternatively, direct microscopy-based in21

situ sequencing methods achieve precise context-sensitive spa-22

tial transcriptomic information without needing to scramble23

spatial data by dissociation prior to sequencing (10, 11).24

Encoding spatial information in a way that is preserved25

in the scrambling during isolation and recovery from in situ26

contexts that can then be read and recovered with sequencing 27

is a major challenge. A few techniques achieve this by encoding 28

spatial information directly into a molecular format, e.g. in the 29

form of DNA read during sequencing along with transcriptomic 30

data. These methods are based on artificial generation of an 31

addressable surface using printing or lithography (12–14). 32

Herein, we describe a computational framework for a 33

method called Polony Adjacency Reconstruction for Spatial 34

Inference and Topology (PARSIFT), for the purpose of encod- 35

ing images, for example of the positions of specific molecules 36

relative to others on a 2D plane, directly into a DNA-based 37

format without transduction of information through any other 38

medium without a priori surface addressing. PARSIFT uti- 39

lizes the connectivity of vertices in a graph of paired DNA 40

sequences to infer Euclidean spatial adjacency and next-gen 41

sequencing to recover that information a posteriori. 42

Encoding of topological data in DNA sequence format is 43

possible by using DNA barcodes (unique molecular identifiers), 44

i.e. randomized stretches of bases within a sequence of synthetic 45

DNA. Barcodes associated with spatial patches can establish 46

an identity for those locations, each patch distinguishable from 47

another by sequence. A DNA barcode with 10 bases has over 48

a million possible sequences, and larger barcodes can be used 49

to create effectively unique labels in a system. The basic 50

unit of topological data is an edge or association between two 51

adjacent patches by physically linking between their barcodes. 52

Topological mapping with barcoding has been used to infer 53

neural connectomes by building a network from cells sharing 54

common barcodes left by cell-traversing viruses (15) as well 55

as features of DNA origami (16). 56

We can barcode surface patches using polony generation 57

methods like bridge amplification (17), a 2-primer rolling 58
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Fig. 1. Encoding and recovering metrics through polony adjacency. (a) Seed
molecules with unique barcode sequences land randomly on a surface of primers.
(b) Local amplification of seed molecules produces sequence-distinct polonies. (c)
Saturation of polonies occurs when polonies are blocked from further growth by en-
countering adjacent polonies, forming a tessellated surface. (d) Random crosslinking
of adjacent strands leads to pairwise association of nearby barcodes. (e) Recovery
and sequencing of barcode pairs enables reconstruction of a network with similar
relative positions of polonies as the original surface.

circle amplification (18), template walking amplification (19),59

or packing of barcoded beads (20). Unique “seed” strands are60

captured by primer strands on the surface (Figure 1a) and61

locally amplified in the immediate vicinity where they landed.62

This generates numerous distinct patches, or “polonies”, of63

amplified DNA (Figure 1b). Within each, all DNA is derived64

from a single seed molecule. Any of the above techniques65

could be applied to our method, though we focus herein on66

the polony-amplification-by-surface-primers approach.67

By growing polonies on a surface of primers to saturation68

(Figure 1c), i.e. when growing polonies encounter the bound-69

aries of other adjacent polonies, a tessellation of neighboring70

polonies forms. Each polony has a limited number of immedi-71

ately adjacent neighboring polonies with their own respective72

barcodes. Though each patch is associated with a unique73

sequence according to its parent seed molecule, isolation of74

this DNA and subsequent sequencing would scramble informa-75

tion about the polony’s position and its neighboring polonies.76

Thus the critical step is to crosslink strands (SI Appendix Fig.77

S1) from each polony to strands from adjacent polonies (Fig-78

ure 1d) in a way that enables both barcodes to be sequenced79

together in a single read. Recovery of the strands, i.e. strip-80

ping them from the surface followed by next-gen sequencing81

(by any means including non-optical approaches such as Ox-82

ford Nanopore) thus preserves topological association between83

neighboring polonies as pairs of barcodes — a complete set of84

which constitutes the whole topological network of adjacent85

polonies (Figure 1e). For random seed distributions we show86

that topological information alone, constrained by being a87
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Fig. 2. Encoding and recovering metrics via topology. (a) Nine seed molecule
points distributed randomly on a plane, the induced Voronoi tessellation T (gray
lines), its Delaunay diagram D (blue lines), and the untethered graph G. (b) The
distribution of Euclidean distances associated with a given topological distance (path
with the fewest edges between two points) sampled for random Poisson Delaunay
triangulations (5000 samples per topological distance value). (c) Euclidean distances
normalized to the average length of a typical Poisson Delaunay edge (Equation 9.9
(21)) plotted versus topological distance for different Poisson intensities, exhibiting
linearity between topological and Euclidean distance. (d) The untethered graph: a
set of nodes (black) and edges (red) that constitutes the information preserved after
dissociation from spatial context. (e) Reconstructed planar embedding of the initially
untethered graph (red lines) using the Tutte embedding approach and corresponding
Voronoi tessellation (gray lines). (f) Alignment of reconstructed embedding from e
with the original Delaunay diagram from a.

2D planar network with known boundary geometry, retains 88

significant spatial metrics of the original distribution. By gen- 89

erating such a mappable surface, we propose that localization 90

of molecules bound to the surface can be done by covalent 91

association with polonies, enabling inference of molecular spa- 92

tial distributions and construction of images with polonies as 93

pixels. 94

1. Results and Discussion 95

A. Voronoi Tessellation as a Model of Polony Saturation. The 96

spatial distribution of polonies on a surface, the a priori Eu- 97

clidean information that is not explicitly accessible after isola- 98

tion, can be preserved by associations between adjacent polony 99

sequences and recovered with sequencing. Information that is 100

available after sequencing and subsequent transformations of 101

that data are then referred to as a posteriori. 102

Assume that seed molecule amplification on a bounded 2D 103

surface, say in the shape of a disk, takes the form of uniform 104
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circular growth. At the point of saturation, polonies have105

amplified to the extent that their expanding boundaries are106

restricted from further growth, having encountered neighboring107

polonies. The system of polonies then forms a planar Voronoi108

tessellation T (SI Appendix A), appearing as a characteristic109

mosaic of polygons with the property that every point within110

a given cell is closer to its parent seed point than any others.111

T can also be represented by its plane dual Delaunay diagram112

D = (P,L) whose vertices P are the seed points of T and113

edges L are the line segments connecting the seed points of114

adjacent cells (polonies). By the geometric characteristics of115

T , all the faces of D are triangles (22)(Section 9).116

We refer to the graph defined purely by its vertices and117

edges without spatial considerations as the untethered graph.118

Figure 2a presents a miniature Voronoi tessellation T formed119

from 9 seed points within a square and its Delaunay diagram120

D. The untethered graph G = (V,E) (Figure 2d) is obtained121

from D by omitting all geometric information, retaining only122

topological characteristics of the Delaunay diagram D. This123

includes a topological distance function t(i, j) defined as the124

fewest number of edges that must be traversed to get from125

one vertex i to another j, but no other information about126

the spatial origins of G is explicitly stored (e.g. no Euclidean127

coordinates of the original points).128

B. Topological Metrics as a Proxy for Euclidean Metrics. Let
P = {pk | k = 1, . . . , N} be a planar placement of N seed
points, resulting from a Poisson-distributed seeding with in-
tensity (i.e. polony density) λ over an area A. Thus N ≈ λA,
and an untethered graph representation G = (V,E) of the
true Delaunay diagram D can be obtained by:

V = {1, . . . , N},
E = {{i, j} | barcodes wi and wj co-occur, i, j = 1, . . . , N}

Since sufficiently long barcodes are with high probability129

unique (SI Appendix B), we treat pairs of barcodes as unique130

markers of polony adjacency. We postulate that with a suffi-131

ciently dense Poisson-distributed placement P , the topological132

metric on G (with an appropriate linear scaling) approxi-133

mates well the actual Euclidean metric of the points in P134

(SI Appendix D-E). Figure 2b shows the Euclidean distance135

distributions for increasing topological distances from a refer-136

ence vertex, for a large collection of Delaunay triangulations137

of Poisson random point sets. Figure 2c then plots the scaled138

(Equation 9.9 (21)) average Euclidean distances as a func-139

tion of topological distances for Delaunay triangulations of140

random point sets generated by Poisson processes of increas-141

ing intensity λ, showing crucially that the two variables are142

proportional.143

On this basis we propose that by finding a proper straight-144

line planar embedding of the untethered graph G we approxi-145

mate also the metric properties of the underlying Delaunay146

diagram D and the corresponding Voronoi tessellation T . A147

straight-line embedding of G in a plane is determined by the148

placement P ′ of its vertices, from which the line segments149

L′ corresponding to the edges can be deduced, thus denoted150

as 〈G,P ′〉. Our hidden a priori embedding is the Delaunay151

diagram D = 〈G,P 〉, and the goal is to approximate this with152

a good a posteriori embedding 〈G,P ′〉.153

One constraint on our candidate 〈G,P ′〉 is that it must be154

planar, i.e. no two edges may cross each other. This is due to155

the physical assumption that the barcode-pairings correspond 156

to polony adjacencies and thus cannot bridge non-neighboring 157

polonies. There are several efficient algorithms for finding a 158

plane embedding of a planar graph, one of which is the Tutte 159

or barycentric embedding (23), applicable to Delaunay-diagram 160

type graphs. Another quality constraint is that an average 161

spatial density of the a posteriori vertex positions λ′ should 162

be obtained from the final distribution with no systematic 163

variation across the reconstructed area. Finally, if we were to 164

generate a new Delaunay triangulation from the reconstructed 165

points (as can be done from any arbitrary set of points), this 166

should produce a similar set of edges as the original untethered 167

graph that was the basis for reconstruction. 168

Our reconstruction approach (flow diagram SI Appendix 169

Fig. S2) starts by determining the outer or boundary face of 170

the Delaunay diagram D underlying the untethered graph G. 171

This can practically be done by finding the face in any planar 172

embedding ofG that has the most vertices with an intermediate 173

planar embedding, because in D all faces except the boundary 174

face are few-vertex triangles. Fixing the placement of the 175

vertices on the boundary face, we then compute positions for 176

the other vertices of G by Tutte’s algorithm, which simply 177

places each vertex at the average (barycenter) of its neighbors’ 178

positions. In the case of a Delaunay-diagram type graph with 179

the boundary face a convex polygon, this system is guaranteed 180

to be non-degenerate (23), and the result will be a crossing-free 181

straight-line embedding of G. 182

If spatial characteristics of the original Euclidean boundary 183

are known — for instance if we specify that all boundary points 184

must lie on a circle of known radius — then the embedding 185

may also be scaled to match the original Euclidean metrics. 186

Figure 2e shows the Tutte embedding of the untethered graph 187

(Figure 2d) with boundary points arranged uniformly around 188

the unit disk. For comparison, we have aligned the recon- 189

structed graph with the original Delaunay diagram (Figure 2f) 190

by linearly transforming the planar graph to minimize the 191

distance between corresponding vertices. We can see that 192

relative positions are preserved albeit with local distortion 193

that leads to slight displacement of each reconstructed vertex 194

relative to its original seed counterpart. The algorithm thus 195

returns approximate relative spatial positions of polonies from 196

an input of paired polonies. 197

C. Simulation and Reconstruction by Embedding. We simu- 198

late the primer lawn as a hexagonally packed disk of area 199

A with M primer sites as the region of interest (ROI) (Fig- 200

ure 3a). We simulate a random seeding at a polony density 201

λ by selecting N = λA random sites, followed by pairing of 202

adjacent polony primer sites and scrambling of edge data prior 203

to reconstruction. Figure 3b shows how crosslinking leads 204

to random pairing of adjacent sites, some of which are self- 205

pairing events (providing no additional pairing information) 206

and some of which are cross-polony sites that can be used to 207

deduce the presence of a spatial boundary, with the fraction 208

of information-bearing cross-pairs diminishing with the rela- 209

tive site density ρ def= M/(Aλ) or average number of sites per 210

polony (SI Appendix Fig. S3). The probabilistic nature of the 211

pairing opens up the possibility to miss an existing boundary, 212

particularly when the boundary is small or when ρ is low. A 213

2000 polony-simulated surface is shown in Figure 3c, and SI 214

Appendix Fig. S4 shows site-linking and the corresponding 215
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Fig. 3. Simulation of polony adjacency reconstruction. (a) Lattice diagram of primer
lawn and polonies denoted with color and Voronoi cell boundaries. Filled circles
indicate seed locations. (b) Illustration of random site pairing between adjacent primer
sites. (c) Alignment between a priori and a posteriori points from a. (d) Larger
simulated surface with a polony density λ = 2000 polonies/unit area and a relative site
density ρ = 50 sites per polony on average. (e) Reconstructed graph (red lines) and
corresponding Voronoi tessellation (gray lines) computed using the Tutte embedding
approach from scrambled edges derived from the simulated surface in d.

Delaunay triangulation of a 500 polony example.216

We reconstructed the topological network from the scram-217

bled edges and performed intermediate embedding, boundary218

face determination, and Tutte embedding (Figure 3c). For219

this larger reconstruction, spatial uniformity is more appar-220

ent, we see that Voronoi cells take on the approximate size of221

polonies in the a priori surface, observe no obvious systematic222

changes in mesh density across the length of the ROI, and note223

the absence of crossed edges. Besides the Tutte embedding224

strategy, we developed 2 additional approaches for approxi-225

mating Euclidean metrics from the untethered graph. One226

is a non-deterministic spring relaxation (24). This approach227

does not strictly require a crossing-free planar embedding, and228

can thus lead to provably false positions involving non-planar229

adjacency, however this feature could also be advantageous230

if natural interpenetration of adjacent polonies leads to such231

topology. The last approach (SI Appendix F) is based on the232

notion of topological distance t(i, j) and its role as a proxy233

for Euclidean distance. We extend the principle of geometric234

triangulation, whereby the set of distances of a point to other235

points in a plane can be converted to Cartesian coordinates, to236

incorporate t(i, j) as a surrogate for Euclidean distance. In one237

variant of this method, a total topological distance matrix is238

reduced to two principal component vectors approximating the239

x and y coordinate vectors. In the alternative variant, t(i, j)240

of each vertex are only measured out to peripheral vertices, re-241

ducing systematic distortions. A comparison of reconstructed242

meshes from the different approaches is shown in SI Appendix243

Fig. S5-S6.244

D. Stamping and Image Formation. Knowledge of polony loca-245

tions could be exploited to provide spatial information about246

Face Color

e. 30,000
polonies

a. b.

f.

c. d.

Fig. 4. Voronoi image formation. (a) An image is overlaid on a surface of primer sites.
(b) Molecular markers representing different targets (R, G, and B) contact-transferred
to the polony surface and each covalently linked to a polony barcode. (c) Monte Carlo
sampling to determine if a marker is associated with a given site and if so which target
by taking the probability from the RGB value normalized to 1 at the corresponding
position in the image. (d) Tallying of markers and empty sites within a polony/Voronoi
cell determines the color and brightness of that “pixel”. A subsequent image (lower
pane) is formed by coloring each cell accordingly. (e) Larger scale reconstruction
from scrambled edge data using the Tutte embedding approach with 30,000 polonies.
(f) Closeup of e revealing individual Voronoi “pixels”

objects of interest. We devised a basic model of image re- 247

construction from the principle of contact or diffusion-based 248

transfer of molecules of interest to the mapped surface, i.e. 249

a kind of molecular stamp. As proof of concept, we use an 250

image (Figure 4a) as a representation of a hypothetical proba- 251

bility distribution of 3 types of molecular markers labeled with 252

identifying sequences called “red”, “green”, and “blue”. The 253

image represents a surface of interest that we would like to 254

sample from, for example a cell surface covered in oligo-tagged 255

antibodies, each of which would be coupled enzymatically to 256

a given polony upon contact (Figure 4b) or diffusing RNA 257

molecules like in (14). The color of the image corresponds to 258

the density of such markers and thus the probability that a 259

marker of a particular color is placed on the polony surface. 260

To simulate molecule transfer, the overlaid lattice of primer 261

sites denotes points where a Monte Carlo sampling will occur 262

in the corresponding position in the image. If the image pixel 263

at a given primer site location has an RGB value dominated by 264

red and green for example, then there is a higher probability 265

of that site being occupied by either a green or red marker 266

(Figure 4c). Realistically, molecular transfer introduces distor- 267

tion, e.g. from curvature of cell membranes or lateral diffusion 268

of mRNAs. 269

According to the reconstruction procedure, a Voronoi tes- 270

sellation is produced from the final set of vertex positions - 271

each cell of which constitutes a pixel that can be used to form 272

an image. The final RGB value of the cell can be determined 273

by tallying the markers that have associated with the primer 274

sites in the polony as well as the number of un-associated sites 275

(Figure 4d). The Voronoi-images shown in Figure 4e and f 276

were generated with the scrambling step that removes any 277
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spatial information of the original image and reconstructed278

using our algorithm. Note that global rotation and chirality279

are not explicitly preserved from the original image. To place280

this 30,000 pixel image in experimentally relevant terms, we281

point to a recent spatial transcriptomics manuscript (20)282

where circular discs of barcoded 10 µm beads (in their case283

sequenced optically in situ to obtain sequence addresses) are284

used to capture transcriptomic data from tissue slices. Ro-285

driques et al report a typical size of 70,000 10 µm beads per286

3 mm disk and obtain approximate single-cell resolution (see287

also SI Appendix H). Image reconstructions from the four288

approximation approaches are compared in SI Appendix Fig.289

S5-S6.290

E. Assessment of Distortion and Precision. We may charac-291

terize reconstruction quality by defining a distortion metric.292

The a priori seed distribution points have a 1-to-1 corre-293

spondence with points in the a posteriori reconstruction, and294

since we generated the a priori points ourselves, we can di-295

rectly compare corresponding original and inferred positions296

by applying a linear transform Tx(P ) (rotation, mirroring,297

scaling, and translation) to the set of reconstructed points298

that minimizes net displacement between the two distributions.299

Distortion is thus defined as the set of displacements: Df =300

(Dfi, ...DfN ) def= d(P, Tx(P ′)) | min(
∑N

i=1 d(pi, Tx(p′
i))). Av-301

eraged over multiple runs, we obtain 2D histograms (Figure 5a302

and SI Appendix Fig. S7-S8) of distortion as a function of303

position in the ROI. Increasing the polony density (λ) re-304

duces average distortion Df = 1
N

∑N

i=1 Dfi(Figure 5d and SI305

Appendix Fig. S10) whereas changes in the site density ρ (Fig-306

ure 5f and SI Appendix Fig. S11) has a negligible effect on Df307

except at ρ < 100 sites per polony near the point of network308

disconnection from absent edges. Examining a single simula-309

tion (Figure 5b) we can visualize typical distortions, persistent310

over limited local scales and occurring with greater probability311

near the boundaries. Analysis of the radial distribution of312

this instance (Figure 5c) reveals this as a mild systematic313

worsening near the boundary, an artifact introduced by the al-314

gorithm’s treatment of vertices on the boundary. SI Appendix315

Fig. S9 compares single instance distortions for the different316

reconstruction approaches.317

We also characterize reconstruction quality with Leven-318

shtein distance (levG,G′), the number of edits needed to make319

two graphs identical, between the untethered graph and set320

of edges derived from a Delaunay triangulation D′ generated321

from the final reconstructed coordinates. Importantly, this322

metric is based only on a posteriori information, so it can323

be used in an experimental context where knowledge of the324

underlying distribution is unavailable. It weakly but positively325

correlates with distortion for a given λ (SI Appendix Fig. S13).326

levG,G′ grows linearly with λ (Figure 5e and SI Appendix Fig.327

S10), and like distortion is relatively constant as a function328

of ρ with a transient catastrophic breakdown at low ρ (Fig-329

ure 5g SI Appendix Fig. S11). We also measured a classical330

resolution, the full width half maximum (FWHM) of a point331

spread function (Figure 5h), by sampling the inferred posi-332

tion of a single site (taking its position to be the centroid of333

whatever Voronoi cell it lands in). Like distortion, FWHM is334

approximately ∝ 1/
√
λ (Figure 5i) indicating that to halve the335

minimum size of distinguishable features, one should quadru-336

ple λ (SI Appendix Fig. S12). In experimental terms, polonies337

generated from techniques like template walking amplification, 338

which forms polonies from sites that must be near the packing 339

limit of oligo surface immobilization, can be on the order of 340

nanometers (19) (SI Appendix G). 341

2. Discussion and Conclusion 342

The three reconstruction methods (Tutte embedding, spring 343

relaxation, and topological distance matrix) succeed in pro- 344

ducing approximations of the original seed distributions that 345

can be used to generate images. Tutte embedding exhibited 346

the best estimated algorithmic complexity (based on run time 347

scaling with λ, SI Appendix Fig. S14) making it the fastest 348

technique which becomes significant for large reconstruction 349

problems (λ > 10, 000 polonies/unit area). Both Tutte embed- 350

ding and spring relaxation had the lowest distortion levels, with 351

Tutte embedding exhibiting slightly better Df and levG,G′ 352

scaling with λ. Tutte embedding was sensitive to catastrophic 353

failure at low ρ, with singly-connected edges crashing the 354

reconstruction, and all four approaches were sensitive to dis- 355

joint subgraphs - making noisy and unconnected graph data 356

a likely challenge for experimental scenarios. SI Appendix 357

Fig. S13 and SI Appendix I discuss our attempts to move 358

towards an algorithm that optimally exploits the available 359

information, and future research should seek to establish a 360

provably maximum-entropy reconstruction that is efficient and 361

deterministic. 362

Along these lines, utilizing information such as the number 363

of self-pairing events could be useful to extract more informa- 364

tion and weight edges according to estimated polony size and 365

better control point placement. Alternatively, low-information 366

content self-pairing events could be prohibited through a bipar- 367

tite network approach whereby only pairings between A-type 368

and B-type polonies would be allowed (SI Appendix Fig. S15). 369

The bridge amplification approach to polony generation leaves 370

the possibility of doing this with two species of independent 371

primers on the surface and two interpenetrating/overlapping 372

and independently saturated polony surfaces. Another possi- 373

ble approach is series growth of polonies. In the basic concept 374

presented in previous sections, a primer of uniform sequence is 375

assumed, however generation of a saturated layer of polonies 376

that could then be used as primers for a subsequent polony 377

generation step would then result in an overlapping of every 378

2nd-layer polony with multiple 1st-layer polonies. This would 379

result in efficient pairing of barcodes without the need for 380

subsequent crosslinking steps. 381

At the time of publication, we are aware of immediately 382

prior works whose contributions are complementary to ours 383

on development of DNA-sequencing based microscopy (25, 384

26). The former work experimentally demonstrates DNA 385

microscopy with images of mRNA in cells using locally confined 386

cDNA amplifications and polymerase extension-based fusion 387

of barcodes to connect spatial patches. Their approach differs 388

from ours through the fact that fusion events are used as 389

a direct distance metric, whereas our data instead relies on 390

topology as a proxy for Euclidean metrics. The latter work uses 391

series proximity ligation to associate planar spatial patches 392

and form a network, utilizing a spring relaxation approach for 393

reconstruction. 394

A. Conclusion. PARSIFT is a concept for microscopic image 395

reconstruction using spatial information encoding in DNA base 396
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format. We showed an in silico proof of concept by construct-397

ing a pipeline for taking decoupled edge data, generated from398

simulated polony distributions, that are then reassembled into399

a topological network and embedded in a Euclidean plane, re-400

suming spatial characteristics of the original seed distribution.401

We saw that global distortions are low enough to resolve whole402

images. We hold that this framework and pipeline for recon-403

struction could be exploited for image acquisition of micro-404

and nano-scale surfaces with molecular libraries of potentially405

very high multiplicity and with throughput automated in a406

way that would not be possible with most optical approaches.407

Supporting Information (SI). The code is available at408

https://github.com/Intertangler/parsift409
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Fig. 5. Reconstruction quality. (a) 2D histograms of average displacement values
binned by relative position in the unit disk (n = 5000/λ simulations per histogram) for
varied parameters (λ and ρ). (b) Distortion in a single 2000 polony Tutte embedding
with lines connecting a priori and a posteriori vertex locations. Color map indicates
line length (max = unit disk diameter 2.0). (c) Radial profile of distortion in b and 5 point
moving average (red line). (d) Log-log plot of average displacement versus λ (points
single individual simulatoins reconstructions) and fixed ρ = 500 sites per polony
showing displacement approximately ∝ 1/

√
λ. (e) Linear plot of Levenshtein distance

(levG,G′ ) between untethered and a posteriori Delaunay graphs as function of polony.
(d and e: n = 25 simulations per λ value) (f) Plot of average displacement and (g) plot
of levG,G′ each as a function of ρ for two values of λ, error bars represent standard
deviation (f and g: n = 25 simulations per point, error bars: standard dev.) (h) Single
instance of full width half maximum (FWHM) of a posteriori point spread function of a
single site. (i) Log-log plot of FWHM versus λ, scaling approximately according to the
negative square root of polony density.
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