UNORDERED CONSTRAINT SATISFACTION GAMES

Lauri Ahlroth and Pekka Orponen

Department of Information and Computer Science and
Helsinki Institute for Information Technology HIIT
Aalto University, Finland
firstname.lastname@aalto.fi

Abstract. We consider two-player constraint satisfaction games on systems of
Boolean constraints, in which the players take turns in selecting one of the avail-
able variables and setting it to true or false, with the goal of maximising (for
Player I) or minimising (for Player II) the number of satisfied constraints. Unlike
in standard QBF-type variable assignment games, we impose no order in which
the variables are to be played. This makes the game setup more natural, but also
more challenging to control. We provide polynomial-time, constant-factor ap-
proximation strategies for Player I when the constraints are parity functions or
threshold functions with a threshold that is small compared to the arity of the
constraints. Also, we prove that the problem of determining if Player I can satisfy
all constraints is PSPACE-complete even in this unordered setting, and when the
constraints are disjunctions of at most 6 literals (an unordered-game analogue of
6-QBF).

1 Introduction

An instance of a constraint satisfaction problem (CSP) comprises a set of m non-
constant Boolean functions C = {cy,...,c,} over a common set of n variables X =
{x1,...,x,}. In this work we only consider Boolean CSP’s, so that each constraint ¢ € C
is a mapping ¢ : {0,1}" — {0,1}. (The truth values false, true are identified with the
integers 0,1 as usual.) A constraint c is satisfied by a truth assignment x € {0, 1}" if
¢(x) = 1. The most commonly studied versions of CSPs ask whether all of the given
constraints can be satisfied simultaneously (typically an NP-complete problem), or if
not, then what is the fraction of constraints that can be satisfied by a polynomial-time
approximation algorithm.

Another perspective is to consider the combinatorial games [11, 17] defined by CSP
instances. Here two players, I and II, take turns in setting values of the variables in
X, with Player I’s goal being to eventually satisfy as many of the constraints in C as
possible, and Player II’s goal being the opposite. In this framework one can again ask
if Player I has a (comprehensive) winning strategy, i.e. whether she can satisfy all the
constraints, no matter what Player II does. Or if a winning strategy does not exist or is
hard to compute, then what is the fraction of constraints that Player I can satisfy by a
polynomial-time computable approximate strategy against Player II.

Such constraint satisfaction games have applications in e.g. formal methods [1,
16] and adversarial planning [2, 3], but are of course also intrinsically interesting. A

paradigmatic example is QBF, which can be viewed as a two-player version of Satisfia-
bility, where the players take turns in assigning values to the variables in a prespecified
order [17]. As is well-known, QBF is PSPACE-complete [18], similarly to many other
terminating two-player games [9]. Recently there have also been major developments in
developing a taxonomy of such quantified constraint satisfaction games, relating their
complexity to the structure of the constraints involved [5, 6, 15]. This work follows the
example of the quite comprehensive taxonomy on the approximability of CSPs accord-
ing to the structure of their defining constraints, as achieved in [14].

However, to our knowledge, all existing studies of constraint satisfaction games con-
sider the model where players assign values to the variables in a predefined (quantifica-
tion) order. This is a somewhat unnatural restriction if one views CSPs in the general
framework of combinatorial games, and also leads to an overly pessimistic view on the
approximability of games of this type. For instance, the two published studies [8, 12]
addressing the approximability of (ordered) constraint satisfaction games in the sense
of maximising the number of constraints won by Player I both present only negative re-
sults on the existence of approximate strategies. In particular, both of these papers show
that for some € > 0, MAX-QBF is PSPACE-hard to approximate within 1 — € times
optimum. Additionally, articles [4, 7] consider the somewhat different task of optimis-
ing a supplementary objective function across the comprehensive winning strategies for
Player L.

A symptom of the unnaturality of variable-ordered games is that they effectively
allow one of the players to make many consecutive moves, by forcing the other player
to play dummy variables that do not affect the final outcome. In the extreme case, one
can e.g. have all the even-indexed variables be dummies, so that the outcome is totally
indifferent to the moves of Player II. By allowing a free choice of variables neither
player can be discriminated in this way, and for this reason the unordered game has
a more interesting structure than standard QBF, both as a game and in the sense of
approximability.

In this paper, we wish to initiate the study of such unordered constraint satisfac-
tion games and their approximate strategies. We first define the model in Section 2.
In the subsequent Sections we establish our positive results on the approximability of
unordered constraint satisfaction games. In Section 3 we show that in a game where
the constraints are parity functions (linear equations mod 2) with bounded variable co-
occurrences, Player I can always win close to % of the constraints. In Section 4 we show

that if the constraints are threshold functions of arity k and the threshold is y= O (@) s
then Player I can win a fraction of the clauses which approaches 1 exponentially as k
increases. A weaker result holds when u satisfies merely u < % Note that the strong
version of the result applies in particular to games on disjunctive constraints, since dis-

junctions are threshold functions with u = 0.

In Section 5 we establish our fundamental negative result showing that also the
unordered game analogue of the QBF problem, the Game on Boolean Formulas (GBF),
is PSPACE-complete, even when the constraints are disjunctions of at most 6 literals.
We conclude in Section 6 with a summary and suggestions for some further research
directions.

2 The Game on Boolean Formulas

Our generic example of an unordered constraint satisfaction game is the Game on
Boolean Formulas (GBF). An instance of this game is given by a set of m non-constant
Boolean formulas C = {c,...,cy } over a common set of n variables X = {x1,...,x,}.
We refer to the formulas in C as clauses even though we do not in general require them
to be disjunctions. If all the clauses are disjunctions of width < k, i.e. with at most k
literals per clause, then we refer to the game as k-GBF.

A game on C proceeds so that on each turn the player to move selects one of the
previously nonselected variables and assigns a truth value to it. Player I starts, and
the game ends when all variables have been assigned a value. In the decision version
of GBFE, the question is whether Player I has a comprehensive winning strategy, by
which she can make all clauses satisfied no matter what Player II does. In the positive
case we say that the instance is GBF-satisfiable. In the maximisation version MAX-
GBE, the objective of Player I is to maximise the number of satisfied clauses m; :=
[{c € C|c(x1,x2,...x,) =1}, and the objective of Player II is to maximise the number
my = m— m, of unsatisfied clauses, making this a zero-sum game.

Recall that a Boolean formula P(x1,x,,...x,) is QBF-satisfiable if Player I can en-
sure that P becomes satisfied when the players alternate selecting values to xq,xz,...x,
in the given order. The standard (MAX-)QBF problem can be viewed as a version of
(MAX-)GBE, with the additional requirement that the variables must be played in the
predetermined order x1,x2,...,X,.

3 An approximate strategy for even-odd games

In an even-odd game the GBF clauses ¢ € C are of the form } ;¢ ;. x; = d.(mod 2), where
foreachc € C,J. C{1,...,n} and d. = 0 or d. = 1. Without loss of generality one can
assume that there are no negative literals.

Theorem 1. In an even-odd game on n variables and m clauses, Player I has a polynomial-
time strategy that secures her at least a fraction of % — % of all clauses, where & =

max;.y [{c | x; € c,xy € c}|.

Proof. Forl <i< %, denote the number of clauses completing as true (resp. false) due
to Player I's ith move as o; (@;) and completing as frue (false) due to Player II's ith
move as 3 (B,) A clause completes when its last variable is set to a value. The strategy
for Player I is simply to always make a move maximising the difference o; — Q.;.

When Player I is selecting the variable for her ith move, the variable y selected by
Player II on his ith move is also available. Player I's ith move creates at most & new
opportunities for II to complete clauses with y, so by the strategy of I it must be the case
that

o; —0; > P —Bi -8,

which can be rearranged as
0 + B < o+ B+ 6.

Now the total number of clauses has the upper bound

m=Y (o +Bi+0+P) <2Y (04 +Bi) + gsz th—|—gﬁ.

Hence the fraction of satisfied clauses is at least % > % — %.
Corollary 1. In an even-odd game where 8% <y for a constant y < 2, Player I can
secure a constant fraction of all clauses.

4 Approximate strategies for threshold games

In a y-threshold game, the clauses c are subsets of literals from {x,...,x,,%X1,...,Xn},
and a clause ¢ € C is satisfied if and only if it contains at least u+ 1 true literals / € c.
We assume that each clause has at least k literals, that no literal occurs multiple times in
the same clause, and that no literal co-occurs with its negation in the same clause. The
case u = 0 corresponds to disjunctive clauses. When all clauses are exactly of length &
and u+ 1 =k, the clauses correspond to conjunctions.

In the following, we present an efficient approximate strategy for Player I in the
case of small values of u. The potential function approach used to drive the strategy is
inspired by the MAX-SAT approximation algorithm presented in [13], even though the
details are very different.

Theorem 2. Let u € N. In a u-threshold game on clauses of size at least k, Player I has
a polynomial-time strategy that secures her at least a fraction 1 — O(zl,%) of all clauses.

To describe the strategy indicated in Theorem 2 we need some more notation. Given
a clause ¢, denote the number of unset literals present in ¢ by f(c), and the number of
literals already set to true by t(c). Define ¢ as the positive root of ¢> +¢q/k —2 =0,
which gives

1

The weight of a clause is defined as

—f(e)g—t(c) if £(c) <
)4 , HI(C) S U
u(c) = { 0, else.

Also, the weight of a literal [is u(l) := Y ;. u(c), and the potential of a partially played
game is U := Y .ccu(c).

Proof (Theorem 2).

Player I's strategy is to always find a literal / of maximum weight u(/) and set / to
true. We shall prove that this strategy ensures that U is nonincreasing over each pair of
moves by the two players.

Note first that if Player I sets literal x to frue and Player II sets literal y to true then

u(x) = max{u(y),u(x), u(y)}-

Over one move the potential changes by AU < (¢ — 1)u(x) + (q/k — 1)u(x). After
this move the weights change to #'(c), but the new weights still satisfy «'(c) < qu(c)
clause-wise, implying

AU < (q—1)qu(y) + (q/k— D' (y) < (¢* — qJu(x).
Hence
A+A < (g—1+q/k—1+¢ —q)u(x) = (¢° +q/k—2)u(x) = 0.

This and A, < 0 imply that U is nonincreasing over the whole game.
From Eq. (1) one obtains g* > \@ke‘l/ V2 and further

K K 1/\/§
ggme .

Now
—k
k'umf SUeng < Ubegin <mq ",

implying the final claim since

m gk = 2k2
k log2 1
Corollary 2. In a p-threshold game where gk 2 Viegr M > for a constant

Y > 0, Player I can secure a constant fraction of all clauses.

Theorem 2 gives a positive bound up to u < y* for some yu* =6 (@) . For large

threshold values y = Q (@) one can apply an elementary algorithm to improve the

bound.

Theorem 3. Let u € N. In a u-threshold game on clauses of size at least k, Player I has
a polynomial-time strategy that secures her at least a fraction of Zkki—zz’:l of all clauses.

Proof. Any literal / occurs in v(l) = [{c € C | | € c}| clauses, and we define the weight
of a literal as the difference u(l) := v(I) — v(I). The strategy is to always find a literal [
of maximum weight u(/) and set [to true.

Consider the numbers of true and false literal occurrences

T=|{(c,])|ceC,l€c,true}|,
F=|{(c,l)| ceC,l€c,lfalse}|.

The strategy used by Player I always targets a literal with maximum weight. As the
moves never alter the weights of the other literals, the sum of weights of the literals set to
true is always nonnegative. Especially this holds at end of the game. Hence T > F', and
T > k. As each unsatisfied clause contains at most u true literals, T can be bounded
as

@kg T < ymy + k.

Rearranging yields Z—} > % and finally

m,>k—2,u_l_ H

m = 2%k—2u 2 2k-pu)

The result of Theorem 3 yields a positive lower bound on the number of clauses won
by Player I up to a threshold of u < % Actually no strategy can guarantee a positive
fraction of the clauses to her if u > % To verify this, consider an instance that has
different variables in each clause, and Player II always responds by playing a literal
false in the same clause where Player I just played. Independent of Player I’s strategy,
all clauses end up false. Naturally, this observation does not preclude approximation
bounds with respect to the value of an optimal solution, or positive results under more
structural assumptions on the instance.

5 PSPACE-completeness of the GBF problem

We now prove that the decision problem version of GBF is PSPACE-complete. We
present two versions of this result. Theorem 4 is proved by a direct but nontrivial reduc-
tion from QBF. However since this reduction yields a GBF instance with only a single
constraint formula, we present also a second version, Theorem 5, which has a more
complex proof but yields a constraint system consisting of disjunctions of width < 6.

Theorem 4. The problem of deciding GBF-satisfiability of a Boolean formula is PSPACE-
complete.

Proof. The existence of a winning strategy for Player I can clearly be determined in
polynomial space by a systematic depth-first min-max search of all the play sequences.

To show PSPACE-hardness we design a reduction from QBF satisfiability. Fix a
QBF instance, which consists of a Boolean formula P(xj,x;...x,). We construct a
Boolean formula P where Player I has a GBF winning strategy if and only if P is QBF-
satisfiable. The instance P is going to be essentially P embedded with gadgets that force
the players to respect the predefined order of variables.

We present explicitly a gadget that requires Player I to start from playing x;. Given
a Boolean formula R(xy,...x,), consider a GBF with the formula

R’(ai7bi,c;,di,ei,x1, oo Xi—1sXit 1y - - .xn) = (2)

[R(xl, c X1, Q4 Xt - .x,,) Ne;i N\ (a,' \/C,‘) A (b,' \/d,')] vV (a,' /\d,‘) vV (C,’ /\b,‘).

For sake of presentation we omit the subscript i from the variables S; = {a;, b;, c;,d;, e;}.

The idea behind the construction is to have two copies of the variable x; that end

up with equal values, a = b. Also the negation X; is represented by two variables, ¢ =

d # b. e is a dummy variable that switches turn. The structure of the gadget guarantees

that after Player I fixes a value to x;, the players continue filling the remaining gadget

variables S; = {a,b, c,d, e} accordingly. A deviation from this guideline leads to a quick

loss for the deviating player. Also, Player I cannot postpone the decision on the value
of variable x; to a later point without losing the game.

Let us define a generalised version of GBF imposing some restrictions on the order
of variables. In a GBF under queue g = (x;,,Xi,,...%;,), 0 <r < n, the jth move must
be done on the queue variable x;; as long as j < r. For j > r the variables can be chosen
freely among the unset variables as in standard GBF. Also, define a concatenation of
queues as g0 g’ = (Xiy,. . X, X - .xﬁ,r).

Lemma 1. Player I has a GBF winning strategy on R’ if and only if Player I has a GBF
winning strategy on R under queue (x;).

Proof. The proof needs some tedious case-by-case analysis. To prune out obvious infe-
rior moves on R', note that the gadget has no negated variables. We observe that Player
I is always better off by playing a value true than a value false in the gadget variables
S;. The opposite holds for Player II. Further, let us encode game positions by concate-
nating the variables selected by the players, with # denoting any variable outside S;. For
example, the game that started with moves a = 1; x, =0; e = 1; d = 0 in this order
would be compressed as a#ed. We also use * as a wild character with no set restrictions.
Consider all possible first player moves.

Case a: If Player I starts with a, the threat of a*d forces Player II to continue as
ad. Now, the threat of ad * b forces Player I to continue as adb. The threat adb *
c enforces adbc and Player I is forced to continue to adbce. Variables in S get
fixed and the game continues with Player II’s turn on the truncated game R;; =
R(xl,...x,-,l,l,xiJrl,...x,,).

Case b: As Case a with swapping variables as a <+ b, ¢ <+ d. Variables in S; get fixed
and the game continues with Player II’s turn on R; ;.

Case c: As Case a with swapping variables as a <> ¢, b <+ d. Variables in S; get fixed
and the game continues with Player II’s turn on R; o = R(x1,...X%i—1,0,Xi41,...Xy).

Case d: As Case a with swapping variables as a <+ d, b <> c¢. Variables in S; get fixed
and the game continues with Player II’s turn on R; .

Case e: Player Il can continue to ea. ea ¢ would be a loss for Player I, hence the
third move must lead to eac. Player II can reply by each, which enforces eachd.
Variables in S; are fixed and the game continues with Player II's turn on R; ¢. For
ec,eb and ed the analysis is similar with variable swaps, leading to fixed S; and
Player II’s turn on R; . Effectively, Player II decides value for x; on game R and
keeps turn - this is no better for Player I than Case a.

Case #: As Case e, with the exception of sixth move being ¢, yielding a loss for Player
L

Collecting the case-by-case results, we conclude that Player I has a winning strategy on
R’ if and only if Player I wins either of the subgames R; o, R;1 with Player II to move
first. This condition is equivalent to Player I having a winning strategy on R that first
assigns a value to x;, and the proof is finished.

The lemma easily yields the following corollaries.

Corollary 3. Let i 75 J. Given a Boolean formula R(x1,...xn), Player I has a winning
strategy on (—(—R)’)! if and only if Player I has a GBF winning strategy on R under
queue (X;,xj).

Proof. By a simple role reversal observation Player I has a winning strategy in a game
Q if and only if I has no winning strategy in the game —Q that is started by Player II.
By Lemma 1 and role reversal I has a winning strategy on (=(—R)/) if and only if I
has no winning strategy on at least one of the subgames (—R;0)’, (—R;1)’. Applying
the lemma and role reversal again, the previous is equivalent to Player I winning either
both R;p;;0 and R; 1, or both R; 1;;0 and R; 1;; 1. But this is just the condition that
Player I has a GBF winning strategy on R with requirements of Player I playing first x;
and Player II playing x; immediately thereafter.

Corollary 4. Leti# j, x;,x; ¢ q, |q| even. Given a Boolean formula R(x,...x,), Player
I has a winning strategy on (—(—R)’)" under q if and only if Player I has a GBF winning
strategy on R under queue qo (x;,x;).

Proof. Assume there is a winning strategy for either of the cases. This is easily con-
verted to a winning strategy in the other: simply play g as the winning strategy suggests.
Consider each of the subgames after g has been played. One of them is known to have a
winning strategy, whence by Corollary 3 there must be a winning strategy for the other
as well.

Corollary 5. Given a Boolean formula P(x; ...xy), there exists a polynomial-time com-
putable Boolean formula P(y, ...ys,) such that P is QBF-satisfiable if and only if P is
GBF-satisfiable.

Proof. Consider
P=(=(n.. (o=) D)

where n’ = 2|5 |. Using Corollary 4 one can transform two outermost gadgets into a
queue with winning strategies staying equivalent. Repeated use "7/ times implies that
existence of a winning strategy in P is equivalent to existence of a winning strategy in
P under queue g = (x1,x2,...,X,). But this is the same game as QBF play on P with

order xj,x7,...X,.

PSPACE-hardness of the GBF-satisfiability for Boolean formulas follows now di-
rectly from Corollary 5.

Let us then consider the more restricted GBF instances where the constraint system
is in k-conjunctive normal form.

Theorem 5. Deciding GBF-satisfiability of a system of disjunctions of width < 6 is
PSPACE-complete.

Proof. As in Theorem 4, it is straightforward to see that the problem is in PSPACE.

To establish the PSPACE-hardness of the problem we outline a reduction from the
PSPACE-complete Shannon switching game on vertices (SSG) [10]. As we shall see, in
fact any PSPACE-complete game with an unordered set of binary game variables and a
polynomial-time winning predicate would do as a basis for the reduction, but let us for
concreteness focus here on the SSG.

An SSG instance is given by an undirected graph G = (V, E) with two distinguished
vertices s,¢ € V. The players take turns in selecting vertices in the graph, excluding s

and ¢, and Player I wins if she manages to establish an s —¢ path in G through vertices
owned by her. Player II wins if he can keep this from happening until all the vertices
have been played. As proved in [10], it is PSPACE-complete to determine if in a given
graph (G, s,t) Player I has a winning strategy.

We now show how to effectively construct from an SSG instance (G,s,t) a GBF
instance (X,C), where all the clauses in C are disjunctions with at most 6 literals per
clause, and Player I has a winning strategy on (G, s,¢) if and only if she has a winning
strategy on (X,C).

The construction is completely general, and only depends on the high-level charac-
teristics of the SSG game, as indicated earlier. Let the graph G have n vertices, excluding
sand ¢, and let xq,...,x, be binary variables indicating whether each vertex i is selected
by Player I (x; = 1) or by Player II (x; = 0). Let W(x1,...,x,) be a polynomial-time
computable predicate indicating whether the resulting configuration is a win for Player
I (W(x) = 1) or for Player II (W (x) = 0).

For a given SSG instance (G, s,t), the predicate W (x) can be effectively expanded
into a polynomial-size circuit with, say, p gates. Since NAND(x,y) = xAy =%V J is
a universal basis operation for Boolean circuits, we for simplicity and w.l.o.g. assume
that all the gates are NAND gates. Let the gates of the W circuit be topologically sorted
into a sequence (g1,82,...,8p), SO that each gate g computes an intermediate result
Zk < ;i VY, where y; (resp. y;) is either z; for i <k (resp. z; for j < k) or one of the
input variables x1,...,x,, and z, = 1 iff W(x) = 1.

Let now the variables of the corresponding GBF instance (X,C) be the original
input variables xi,...,x,, together with 2p auxiliary variables z1,...,zp, a1,...,a,. For
each gate g; of the form z; < Z; VZ; in the W circuit, we introduce a clause

a = (@=zaVvy)Va=a)V(a=a)V(zj=aj)).

For gates where one or both of the argument literals are input variables, the clauses are
similar except that the disjuncts of the form “x = a” are omitted for an input variable x.

We observe first that because each clause c¢; refers to at most 6 variables, when
it is expanded into conjunctive normal form, it expands into some bounded number
d < 3° of disjunctions (“miniclauses”) ¢y, . . ., cxq With at most 6 literals per miniclause,
satisfying cx = /\ji:l ci.' Altogether these miniclauses thus satisfy

p
N\ e
k=1

and we take as the set of clauses C in our (6-)GBF instance C :={cy | k=1,...,p,l =
1,...,d}.

We now claim that Player I has a winning strategy in the SSG instance (G, s,7) if
and only if she has a winning strategy in the corresponding GBF instance (X,C). Note
that because Player I wins all the clauses ¢ if and only if she wins all the miniclauses
¢, we can argue at the level of the clauses c;. Note also that Player [wins a clause ¢,
if and only if she can satisfy any one of the disjuncts (zx =7 VZ;), (zx = ax), (2 = ai),

p d

A N cu

k=1I1=1

' A more careful analysis shows that in fact ¢, = (z; VzjVzVaivajVvag) NZiVezjVaVa Vv
ajVa) NzVijVagVaVaiVag) NV Vi VaiVa;Va),ie d=4.

(zj = aj). Let us call the first one the “gate term” and the others the “escape terms”,
with correspondingly the z; the “gate variables” and the a; the “escape variables”.

Suppose first that Player I has a winning strategy on the SSG instance (G, s,?). She
will follow this strategy first on the input variables xy,...,x,, and will then assign to
the gate variables z; the values that they would have in the correct evaluation of the
W circuit on the given input vector x. It is not necessary to assign these values in the
topological order of the gates (g1,...,gp), but it is of course natural to do so unless the
actions of Player II require otherwise.

Since Player I has a winning strategy on the SSG instance, she will also win on the
GBF instance unless Player II can make some of the gate variables have different values
than what they would have in a correct evaluation of W (x). Let us consider the first
time in the play where Player II does something else than sets one of the input variables
X1,...,X, OF assigns a gate variable z; to its correct value. There are two similar cases
to consider:

Case a: Player II “cheats” by assigning a gate variable z; to a value which is either
wrong or not yet determined (because the input sequence x has not yet been com-
pletely played out). Then Player I sets the corresponding escape variable gy, to the
same value, and hence wins all the clauses ¢ where variable z; appears by default.
Player I repeats this response as many times as Player II cheats. Eventually Player
II must return to “fair” play (or all the remaining clauses become satisfied by Player
I’s escape responses), and then also Player I can return to her basic strategy.

Case b: Player II assigns one of the escape variables a; to some value. Player I sets the
corresponding gate variable z; to the same value, and wins all the clauses ¢ where
variable z; appears by default. Play continues as in Case a.

Suppose then that Player I does not have a winning strategy in the SSG instance (G, s,1).
How could she nevertheless try to win all the clauses ¢? Let us again consider the first
time in the play where Player I does something else than sets one of the input variables
X1,...,X, OF assigns a gate variable z; to its correct value on a completed input sequence
x. There are again two cases to consider:

Case a: Player I cheats by assigning a gate variable z; to a value which is either wrong
or not yet determined (because the input sequence x has not yet been completely
played out). Then Player II sets the corresponding escape variable a; to the oppo-
site value. This eliminates the escape terms z; = a; from all clauses where variable
zx appears, without changing the satisfiability of those clauses otherwise. Hence
eventually any inconsistency in the gate terms introduced by Player I will be dis-
covered.

Case b: Player I assigns one of the escape variables a; to some value. If the corre-
sponding gate variable z is already assigned, then Player II does nothing, i.e. con-
tinues assigning values to the other gate variables in a consistent way. If z; is still
unassigned, then Player II assigns it to the opposite of a;. Now if @ is the correct
value for z;, then Player I has gained no advantage in the gate variables. If not, then
the present Case b reduces to Case a: again the escape terms z; = a; have been
eliminated from all clauses where variable z; appears, without changing their satis-
fiability otherwise, and the newly introduced inconsistency will eventually lead to
a gate term which Player I cannot satisfy.

Since the reduction from the given SSG instance to the corresponding GBF instance
can be computed in polynomial time, and winning strategies for Player I are preserved,
we thus conclude that the problem of deciding GBF-satisfiability is PSPACE-hard.

6 Conclusion and further work

We have presented what is to our knowledge the first study of constraint satisfaction
games where the order of playing the variables is not restricted. We have established
a number of positive results concerning the existence of polynomial-time approximate
strategies for unordered constraint satisfaction games for specific constraint types. Also
we have proved that GBF — the unordered analogue of QBF — is PSPACE-complete.
Some of the pertinent open questions include:

1. Can one improve the given performance bounds on the strategies for even-odd
games (Theorem 1) or threshold games (Theorems 2 and 3)? Or can the approxi-
mate strategies for threshold games be extended to e.g. bigger monotone constraint
families?

2. Can one prove inapproximability results for unordered games, similar to those
achieved in [8, 12] for quantifier-ordered games?

3. What is the smallest value of k such that k-GBF satisfiability is PSPACE-complete?
In particular, is 3-GBF satisfiability PSPACE-complete?

4. Can one achieve complexity or approximability taxonomies for unordered con-
straint satisfaction games based on the characteristics of the constraints involved,
along the lines of the taxonomies presented in [14] for CSPs or those in [5, 6, 15]
for quantifier-ordered games?

Acknowledgments

This research was supported by the Academy of Finland under grants 128823 (L.A.) and
13136660 (P.O.) Part of the work was done during our visit to the Humboldt-Universitit
zu Berlin in Autumn 2011, and we thank Sebastian Kuhnert from the Institut fiir Infor-
matik of HU Berlin for helpful discussions on the topic.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49(5),
672-713 (2002)

2. Ansétegui, C., Gomes, C.P., Selman, B.: The Achilles’ heel of QBF. In: Proc. 20th Natl.
Conf. on Atrtificial Intelligence and 17th Conf. on Innovative Applications of Artificial Intel-
ligence (AAAI/TAAI 2005). pp. 275-281 (2005)

3. Benedetti, M., Lallouet, A., Vautard, J.: QCSP made practical by virtue of restricted quan-
tification. In: Proc. 20th Intl. Joint Conf. on Artificial Intelligence (IICAI 2007). pp. 38-43
(2007)

4. Benedetti, M., Lallouet, A., Vautard, J.: Quantified constraint optimization. In: Proc. 14th
International Conference on Principles and Practice of Constraint Programming (CP 2008).
Lecture Notes in Computer Science, vol. 5202, pp. 463-477. Springer (2008)

10.

11.

14.

15.

16.

18.

. Borner, F., Bulatov, A.A., Chen, H., Jeavons, P., Krokhin, A.A.: The complexity of constraint

satisfaction games and QCSP. Inf. Comput. 207(9), 923-944 (2009)

. Chen, H.: The complexity of quantified constraint satisfaction: Collapsibility, sink algebras,

and the three-element case. SIAM J. Comput. 37(5), 1674-1701 (2008)

. Chen, H., Pél, M.: Optimization, games, and quantified constraint satisfaction. In: Proc. 29th

Intl. Symp. on Mathematical Foundations of Computer Science (MFCS 2004). Lecture Notes
in Computer Science, vol. 3153, pp. 239-250. Springer (2004)

. Condon, A., Feigenbaum, J., Lund, C., Shor, P.W.: Probabilistically checkable debate sys-

tems and nonapproximability of PSPACE-hard functions. Chicago J. Theor. Comput. Sci.
1995, 4 (1995)

. Demaine, E.D.: Playing games with algorithms: Algorithmic combinatorial game theory. In:

Proc. 26th Intl. Conf. on Mathematical Foundations of Computer Science (MFCS 2001). pp.
18-32 (2001)

Even, S., Tarjan, R.E.: A combinatorial problem which is complete in polynomial space. J.
ACM 23(4), 710-719 (1976)

Fraenkel, A.S.: Complexity, appeal and challenges of combinatorial games. Theor. Comput.
Sci. 303(3), 393415 (2004)

. Hunt III, H.B., Marathe, M. V., Stearns, R.E.: Complexity and approximability of quantified

and stochastic constraint satisfaction problems. Electronic Notes in Discrete Mathematics 9,
217-230 (2001)

. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci.

9(3), 256 — 278 (1974)

Khanna, S., Sudan, M., Trevisan, L., Williamson, D.P.: The approximability of constraint
satisfaction problems. SIAM J. Comput. 30(6), 1863—-1920 (2000)

Madelaine, E.R., Martin, B.: A tetrachotomy for positive first-order logic without equality.
In: Proc. 26th Ann. IEEE Symp. on Logic in Computer Science (LICS 2011). pp. 311-320
(2011)

Ramadge, P., Wonham, W.: The control of discrete event systems. Proc. of the IEEE 77(1),
81-98 (1989)

. Schaefer, T.J.: On the complexity of some two-person perfect-information games. J. Comput.

Syst. Sci. 16(2), 185-225 (1978)
Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Preliminary re-
port. In: Proc. 5th Ann. ACM Symp. on Theory of Computing (STOC 1973). pp. 1-9 (1973)

