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1 Introduction

In recent years, a number of authors have sought to understand the computa-
tional characteristics of “natural” dynamical systems. One much studied class
of systems are those that are defined by various neural network models [3,6,12].
This interest is motivated partly by the quest to understand the fundamental
limits and possibilities of practical neurocomputing, and partly by the realiza-
tion that despite their formal simplicity, neural networks are computationally
quite powerful, and thus may serve as a useful reference model for investi-
gating more complicated systems. In general, the computational properties of
discrete-time systems are by now fairly well understood [12], but in the area
of continuous-time systems much work remains to be done [9,11].

Probably the best-known, and most widely-used continuous-time neural net-
work model is that popularized by John Hopfield in 1984 [7], and known as
the “continuous-time Hopfield model”.® As practical neural networks, pro-
posed uses of Hopfield-type systems include associative memory [7] and fast
approximate solution of combinatorial optimization problems [8], and designs
exist for implementing them in analog electrical [7] and optical [16] hardware.
It is well known [2,7] that the dynamics of any Hopfield-type system with a
symmetric interconnection matrix is governed by a Liapunov, or energy func-
tion. At first sight, the existence of a Liapunov function for a system would
appear to severely limit its dynamical capabilities, because it implies that any
trajectory converges towards some stable equilibrium state. For instance, non-
damping oscillations of the system state obviously cannot be created under
this constraint, whereas such oscillations are easily obtained in systems with
asymmetric coupling weights.

Because of the apparent simplicity of Hopfield system dynamics, one might
also assume that they always converge rapidly—an assumption that seems to
often be implicitly made in e.g. discussing the potential of such networks as
“fast analog solvers” for optimization problems. Contrary to this expectation,
we shall construct for every integer n > 0 a continuous-time Hopfield system
C = C, of 6n + 1 variables with a symmetric interconnection weight ma-
trix and a saturated-linear “activation function” that simulates an (n + 1)-bit
binary counter and thus produces a sequence of 2" — 1 well-controlled oscilla-
tions before it converges. The original idea for a corresponding discrete-time
symmetric counter network stems from [4]. Besides suggesting some caution
in applying neural networks to optimization problems, this provides to our
knowledge the first known example of a continuous-time, Liapunov-function
controlled dynamical system with an exponential transient period. Such an

3 Although in fact the dynamics of this model were already analyzed earlier by
Cohen and Grossberg in a more general setting [2].



exponential-transient oscillator can also be used to support a general Turing
machine simulation by continuous-time symmetric Hopfield systems [13].

In terms of bit representations, this bounds translates to a convergence time of
2U9(M)) time units for Hopfield systems whose interconnection weight matrices
can be encoded within M bits, where g(M) is an arbitrary continuous function
such that g(M) = o(M), g(M) = Q(M?/?), and M/g(M) is increasing. This
convergence time lower bound can be compared to a general upper bound of
20(VN) for discrete Hopfield networks [15]. It turns out that the continuous-
time system C converges later than any discrete Hopfield network of the same
description length, assuming that the time interval between two subsequent
discrete updates corresponds to a continuous time unit. This suggests that
continuous-time analog models of computation may be worth investigating
more for their gains in representational efficiency than for their (theoretical)
capability for arbitrary-precision real number computation [12].

This article is organized as follows. After a brief review of the basic definitions
in Section 2, our main construction of the continuous-time symmetric Hopfield
system C,, simulating an (n + 1)-bit binary counter is described in Section 3
where its dynamics is also informally explained. The formal verification of this
construction, which has the form of a rather tedious case analysis, is given in
Section 4. In Section 5 a numerical simulation example witnessing the validity
of the construction is presented. Section 6 concludes with some open problems.

An extended abstract of this paper appeared in [14].
2 Preliminaries

We first recall the basic definition of a continuous-time (symmetric) Hopfield
system® of dimension m. This system consists of a set of m symmetrically

coupled ordinary differential equations in real variables yi, ..., ym,:
dYp o\ _
Do) = (1) +0(6(0) . p=To s, 1)

where o : ® — R is some nonlinear activation function, and

m

&(t) =D v(a,P)y,(t) (2)

q=0

4 We shall henceforth discuss only symmetric systems.



is the real-valued ezcitation for site p = 1,...,m. The excitation (2) includes
the real weights v(p,q) = v(g,p) for all 1 < p,q¢ < m forming a symmetrical
coupling matrix whereas v(0, p) is a local bias, associated with a formal con-
stant variable yo(¢) = 1. Further, we fix the activation function o in (1) to be
the saturated linear map:

1 for £ >1
o(§)=q¢ for 0<é<1 (3)
0 for £<0

which implies y1, . .., ym € [0,1].

A convenient intuitive way of representing a system of type (1), which we shall
adopt, is to interpret each of the variables y, as the real-valued state (output)
of a computational unit (neuron) p in a Hopfield net evolving in continuous
time, and to represent the symmetric coupling coefficient v(p, ¢) as the weight
on an undirected edge connecting unit p to unit q. The absence of an edge in
the graph indicates a zero weight between the respective units, and vice versa.
The initial network state i(0) € [0,1]™ determines the boundary condition for
system (1).

The dynamics of a continuous-time symmetric Hopfield system of type (1) is
controlled by the following Liapunov or energy function, introduced in [2,7]:

m Yp

i i v(q, P)yqtp — D_ (0, p)yp + i/c‘l(y)dy. (4)

p=1g¢=1 p=1 p=1y

B = -

|~

The characteristic properties of function E(¢) are that it is bounded on the
system’s state space [0, 1]™, and that it is properly decreasing (i.e. dE'/dt < 0)
along any nonconstant trajectory of the system’s dynamics. It then follows
that the system (1) always converges, from any initial condition, towards some
stable equilibrium state with dy,/dt =0 forallp=1,...,m.

3 A Simulated Binary Counter

A continuous-time Hopfield system C), of dimension m = 6n + 1 will now be
constructed which simulates an (n + 1)-bit binary counter, and thus has a
transient period that is exponential in the parameter m. The original idea for
a corresponding discrete-time counter network stems from [4]. In our simula-
tion, the binary states 0 and 1 of the counter will be represented by excitations



(2) of the corresponding real-valued units in C that are either below the lower
saturation threshold of 0 or above the upper saturation threshold of 1, respec-
tively, for activation function (3). For brevity, we shall simply say that a unit
p is saturated at 0 or 1 at time ¢ > 0 if its excitation satisfies &,(¢) < 0 or
&,(t) > 1, respectively. We also say that p is unsaturated when 0 < &,(t) < 1.

Note that we use the ezcitations &,(t) of continuous-time units p € C rather
than their actual states y,(t) to represent the binary values since starting
at any point within the open interval (0,1), the outputs y,(¢) of the units
saturated at 0 or 1 only converge to limit values 0 or 1, respectively, and
never reach these boundaries (see Lemma 3.1 below). The following theorem
summarizes the result:

Theorem 1 For every integer n > 0 there exists a continuous-time symmetric
Hopfield system C = C, of dimension m = 6n+1 whose global state transition
from the zero initial network state to saturation at 1 requires continuous time
Q28 [¢), for any 0 < ¢ < 0.05 such that

o™/ < g2le, (5)

This convergence bound translates to 2¥9M) time units, where M represents
the number of bits that are sufficient for encoding the weights in C and g(M) is
an arbitrary continuous function such that g(M) = o(M), g(M) = Q(M?/?),
and M/g(M) is increasing.

PROOF. The construction of Hopfield system C,, with m = 6n + 1 units
(variables) and zero initial conditions #(0) = 0™ simulating an (n + 1)-bit
binary counter will be described by induction on n. The operation of the cor-
responding Hopfield net will first be discussed intuitively, and its correctness
will then be formally verified in Section 4.

The induction starts with a system Cy that contains only a single unit ¢y €
Cy, with feedback coupling v(cg,co) = 1+ e > 1 and bias v(0,¢) = € >
0 corresponding to its initial positive excitation. This represents the least
significant counter bit of “order 0”. Because of its feedback greater than 1 the
state of ¢y gradually grows from initial 0 towards 1. Eventually ¢, saturates
at 1, at which point we say that the unit ¢y becomes active or fires. Recall
that we associate the simulated discrete counter behavior to the excitations of
the units rather than their outputs. The external state of ¢, of course evolves
smoothly converging to 1, and exhibits no abrupt “firing” transitions. Thus,
co simply implements counting from 0 to 1 as required. This trick of gradual
transition from 0 to 1, formally described in Lemma 4 below, is used repeatedly
throughout our construction of C.



Fig. 1. Inductive construction of C.

For the induction step depicted in Fig. 1 (the undirected edges connecting
units in this graph are labeled with the corresponding symmetric weights
whereas the oriented edges drawn without an originating unit correspond to
the biases), assume that an “order (k—1)” counter network Cy_; (1 < k < n)
has been constructed, containing the first £ counter units ¢y, ...,cx 1 € Cg_1,
together with auxiliary units ag, z¢, by, dg, 20 € Cr 1 (£ = 1,...,k — 1), for a
total of

mk:|C’k,1\:k+5(k—1):6k—5 (6)

units. Then the next counter unit ¢; is connected to all the my units p € C',_1
via unit weights v(p, ¢x) = 1, which, together with its bias v(0, cx) = —my +
e and feedback weight v(ck,cx) = 1 + €, cause ¢ to fire shortly after all
these units are active (Lemma 4). This includes the first k£ active counter bits
Co, - - -  Cx—1, which means that the simulated counting from 0 to 2¥ —1 has been
accomplished, and hence, the next counter bit ¢, must fire. In addition, unit ¢
is connected to a sequence of five auxiliary units ay, Ty, b, dg, 2z with feedback
weights v(ak, ax) = v(zk, x) = v(bg, bg) = v(dk, dx) = v(2k, 2k) = 1 + €, which
are being, one by one, activated after ¢ fires (Lemma 4). This is implemented
by the weights v(ck, ar) = my, v(ag,xx) = Vi, v(xg,bp) = v(bg,di) = 1,
v(dg, z,) = Vy—my, and biases v(0, ag) = —myg+e, v(0, zx) = v(0,dy) = —1+¢,
v(0,b;) = —1+¢/3, v(0, z¢) = my — Vi, +¢, where V. > 0 is a sufficiently large,
positive parameter, whose value will be determined in (8) so that units x, 2
are not directly influenced by the computations occurring in units from Cj_;
except via c.



The purpose of the auxiliary units ay, b, dy, is only to slow down the continuous-
time state flow in order to synchronize the computation.

The unit x;, is used to reset all the lower-order units in C'y_; back to values
near 0 by saturating them at 0 (Lemma 3.2b) after ¢ fires, which is consistent
with the correct counter computation. To achieve this effect, x;, is linked with
each p € Cy_; via a large negative weight

v(zg,p) = — |v(ck, p) + > v(g,p)| <0 (7)
q€Cy—1;0(q,p)>0

that exceeds the positive influence of units in Cy_1 U {cx} on p. The value of
parameter

Ve=1— > w(zgp) >0 (8)
peok—l

is determined so that unit z, fires after a; is activated in spite of the negative
contributions through weights (7) from p € C}_; to the excitation of z.

Finally, unit z; balances the negative influence of x; on C_; so that the first
k counter bits can again count from 0 to 2¥ — 1 but now with ¢, being active.
This is achieved by exact positive weights

v(zk,p) = —v(zK,p) —1 >0 (9)

for p € Ck_1 in which —v(xg, p) eliminates the influence of z; on p whereas —1
compensates for v(cg, p) = 1. Clearly, units p € Cy_; cannot reversely activate
zr since their maximal contribution to the excitation of z,

> vl z) =—mk— Y, v(zg,p)=Vi—mp—1 (10)
pGCk—l PGCk—1

according to (8), (9), cannot overcome its bias v(0, zx) = my — Vi + £. This
completes the inductive step of the counter network construction.

4 Formal Verification

Now the correct state evolution of the continuous-time Hopfield system C
described in Section 3 needs to be verified. This is achieved by a sequence



of lemmas analyzing the behavior of the corresponding system of differential
equations (1). Lemma 2 first upper bounds the maximum sum of absolute
values of weights incident on any unit in C'. Lemma 3 then describes explicitly
the continuous-time state evolution for saturated units. An analysis of how
the decreasing defects, i.e. distances from limit values in the states of satu-
rated units, affect the excitation of any other unit reveals that the units in
C actually approximate the discrete update rule of corresponding threshold
gates after a certain transient time, provided that the incident saturated units
stay saturated. Furthermore, the transfer of the activity in the counter C' from
a unit to a subsequent one, when all the incident units are saturated, will be
analyzed explicitly in Lemma 4. (But note that the dynamics of unit ¢, at
time t = 0 slightly differs from this analysis.) A crucial fact for the proof of
Theorem 1 is that the duration time of this transfer turns out to be constant
and not affected by any initial defect. This introduces a “discrete time” into
the counter operation. In Lemma 4.2 the result is also partially generalized to
the case when some of the incident units may become unsaturated.

Lemma 2 For any unit p € C' in the Hopfield system C constructed in Sec-
tion 3, the sum of absolute values of its incident weights (excluding its local
bias) is upper bounded by

m
Ep = |v(g,p)| < e2'". (11)

g=1

PROOF. Clearly, for n = 0 the only unit ¢, satisfies (11) since =, =
v(co,c0) = 1 +¢& < €2/ due to 0 < & < 0.05. For n > 0 the maximum
value of =, among p € C is reached by unit z,, of the highest order n, that is

Ern =0(Zn, Tn) + V(an, Tn) + 0(n, ) + D [v(g, Tn)]
qECn—l
=2V, +1+e>5, (12)

according to (8) (e.g. compare to =, =2V, —2m, +e <=, ).

Parameter V;, in (12) will be computed by induction on n > 1 starting with
obvious

Vi=1-w(z1,¢0) =1+ [v(er, ) +v(co, )] =4 (13)

from (8), (7). For k > 1 the definition (8) of V} can be rewritten as follows:

Vei=1— > w(wep)— Y,  v(kp) (14)
P60k72 p60k71\0k72



where v(zg, p) for p € Ci_s (k > 1) defined by (7) can be expressed recursively:

v(2k, p) = v(Tp—1,P) — > v(g, p)
7€Ch_1\Cx_2;0(q,p)>0

=v(Tg-1,p) — v(ck-1,P) — V(2k—1,P) = 20(Tf_1, D) (15)

according to Fig. 1 and equation (9). By introducing formula (15) into equation
(14) and using definition (8) the recursive formula for Vj is obtained:

Vi=2Vp1—1— > v(Tk, ) - (16)
P60k71\0k72

The weights v(zy, p) for p € Cp_1 \ Cr—2 = {cx—1, ap—1, Tp—1, bp—1, dx—1, 2x—1}
in (16) can be calculated from Fig. 1 and by definition (7) in which [v(ck, p) +
v(p,p)] = 3 as follows:

—v (g, cp—1) =3 + v(ag—1, Ck—1) + Z v(q, ck—1)
4€C_2;v(g,c5-1)>0
= 2my_1 + 3 (17)
—v(Zg, ap_1) =3+ v(cp_1,ap-1) + V(Tp_1,05_1) = Vi1 + mp_1 + 3 (18)
v(:vk,:vk 1) 3+U(ak_1,$k_1) +’U(bk_1,$k_1) = V}g_1 +4 (19)
—v(@k, by—1) =3 + v(@k—1, bp—1) + v(dk—1,bk—1) =5 (20)
U(.Ik, dk 1) 3+ U(bkfl, dk,1) + U(Zkfl, dkfl) = V;C,1 — Mg_1 + 4 (21)
—v(Tg, 26-1) =3+ v(dg_1,2-1) + Z v(q, 2zx_1)
0€Cx_2;0(g26-1)>0
=W — 2mp g + 2 (22)

where formula (10) has been employed in equation (22). The weights (17)—(22)
are summed up as

- > v(xg,p) = 5Vie1 + 21 (23)
PECk—l\Ck—z

which is plugged in formula (16):
Vie="TVp—1 +20. (24)
It follows from (13) and (24) that

V, = g (1.7 —5). (25)



Hence for any p € C,

Epg§(11-7"1—5)+1+e (26)

according to (12) and (25). For 1 < n < 5, the right side of equation (26) is
clearly less than £2'/¢ from 0 < € < 0.05 whereas for n > 5 it is less than 2°"
implying

2, < 2% < 9m/2 < gole (27)
by assumption (5). O
Lemma 3
1. Let p € C be a unit saturated at b € {0,1} with a defect

Gp(t) = [b—wp(t)], (28)

for the duration of a continuous time interval T = [to,ts] for somety > 0. Then
the state dynamics of p converging towards value b can be explicitly solved as

yp(t) = [b— Gpe 1) (29)

fort € T, where 6, = 0,(ty) is p’s initial defect.

2a. Let QQ C C be a subset of units saturated for the duration of time interval
T = [to, tf]. Then the dynamics of the excitation &,(t) for any unit p € C' can
be described as

&) =v0,p)+ D wap)+ Y2 v(ap)ye(t) + Apge” T (30)
9€Q;&q(1)>1 cC\Q

for t € T, where

Npg= > olg,p)b,— > vlg,p)d, (31)

9€Q;€q(t0)<0 g€Q;€q(t0)>1
is the initial total weighted defect of @ affecting &,(t).
2b. In addition, let t; >ty + t; where
_In2

t, = 32
1 5, ( )

10



and assume that the respective weights in C' satisfy either

v(0,p)+ Y, wlg,p)+ > v(g,p) < —¢ (33)
qEQ; &4 (t0)>1 7€C\Q;v(q,p)>0
or
v(0,p)+ >, v(gp) + > v(g,p) >1+e¢. (34)
q€Q;&q(to)>1 qEC\Q;v(q,p)<0

Then p s saturated at either 0 or 1, respectively, for the duration of time
interval [to + t1,ty].

PROOF.

1. According to (1) and (3) the state y,(t) of unit p saturated at b € {0,1} for
t € 7 is independent of outputs from the remaining units and its continuous-
time dynamics is described by a differential equation

Wy

“2(t) = —yp(t) +b (35)

with a boundary condition

Up(to) = [b— &y (36)
obtained from (28) for initial defect 6,. Hence, its explicit solution (29) follows.

2a. The excitation &,(t) of unit p defined by (2) is split among the contribu-
tions from units outside () and from those in @) saturated at 0 and 1 whose
dynamics for ¢ € 7 is given by (29):

&) =v0,p) + X v(g,p)yt)+ > w(g,p)de” )
€C\Q qEQ; & ()0

+ > v(g,p) (1 - 6qe_(t_t°)) i (37)

geQ;&q(t)>1

By introducing the initial total weighted defect (31) into formula (37) the
dynamics (30) follows.

2b. The defect term A,ge (%) in (30) vanishes quickly as time proceeds and
its absolute value can be bounded for ¢ € [ty + 1, ¢;] as follows

Apge 0| <2 e < ¢ (38)

11



by using Lemma 2 and equation (32). Hence, unit p is saturated at either 0
or 1 for the duration of time interval [ty + ¢1,¢;] when condition (33) or (34),
respectively, is assumed in (30). O

Lemma 4

1. Consider a situation as depicted in Fig. 2, where a unit p € C with frac-
tional part of bias &' € {e,¢/3} and feedback weight v(p,p) = 1 +¢ is supposed
to recewwe a signal from preceding unit o € C, activate itself, and further trans-
fer the signal to a subsequent unit r € C' with bias fraction e and v(r,r) = 1+¢
via weight v(p,r) > 1. Let all the units incident on p,r excluding p,r be satu-
rated for the duration of some sufficiently large time interval T = [to, 1] (e.g.
ty > to + to where ty is defined in (44) below), starting at a time ty > 0 when
& (to) = 0. Assume that the initial defects meet

5;,, + ATQ <e (39)
for @ = C\ {p}. Further assume that the respective weights satisfy

v(0,p)+ Y v(gp) =¢ (40)

9€Q;&q(t0)>1

v(0,7)+ > wv(gr)=ec—v(p,r). (41)

9€Q;&q(t0) 21

Then p is unsaturated with the state dynamics

& (es(t—to) _ 1) ~ o Aer—(t—to)

up(t) = e(l+e¢) 1+¢ (42)
exactly for the duration of time interval (to,to + t}), where
In(1+5
03) .

(note t} =ty for e’ =¢ and t| = 2t; for e’ =¢/3), and r is saturated at 0. In
addition, p is saturated at 1 for the duration of [ty + t},to + t2] and remains
further saturated independently of the output from r, while r unsaturates from
0 at time ty + to where

v(p,7) ((e +e)(1+2) "+ APQ) —(1+6)Ang

e(l+¢) >t (44)

tgzln

2. Consider a situation (see Fig. 1) where unit x;, € C (1 < k < n) is supposed
to receive a signal from preceding unit ay, activate itself, and further transfer

12



o |p |r | unitorder

1+e 1+e z21 | coleg | 2<k<n

V(P,i’)Zl . ze |co e |2<k<n
co |k |ax |1<k<n

P

+E +€ C | @k | T | IS ksn

dip |z o |1 <k<n

Fig. 2. Activity transfer from unit p to unit r in C.

the signal to subsequent unit by while the units in Cy_1 incident on xp may
unsaturate from 1 after x; unsaturates from 0. Let all the units incident on
Tk, by excluding xy, by and Ci_, be saturated for the duration of a sufficiently
large time interval T = [to, ts] (at least until by unsaturates from 0) starting at
a time ty > 0 when &, (t) = 0. Assume that the initial defects meet

Oy, < £271/¢ (45)
Ay g <e27¢ (46)

for Q' =C\ (Cr_1 U{zx}), and

(1+¢)bs, — Z v(p, xk)6p < g2 1/e (47)
Peck—l

outside ()'. Further, assume that the respective weights satisfy

v(0, zx) + > v(g,zp) + Y v(p,ak)=¢ (48)

q€Q’;&q(t0)>1 peCl_y

> (g, b)=0. (49)

9€Q’;&q(t0) 21

Then xy, saturates at 1 in time at most to+ 2t1, remaining then saturated until
time at least ty, and by unsaturates from 0 only after x is saturated at 1.

PROOF.
1. A summary of the dynamics of units p, r under discussion here is presented
in Table 1, which is verified step by step below.

13



t SO | w®) | T | &0 | )

= 1o =0 | =4p <0 =0

€ (to, to +tg)

=tg+1, >0 |eq.(42) | =0

€ (to +tg,to +17) <0 | =ée(t-to)
=19+ t} =1 | eq. (58)

€ (to + 1), to + 12) >0

=ty + t2 >1 | eq. (64) =0

€ (to + to,ty] >0 —

Table 1
The chronology of the dynamics of units p, r.

Excitation

&) ="+ (14 e)y,(t) + Apge 71 (50)

of unit p in time t € [tg, ty + to] is derived from (30) by assumption (40) and
determines p’s state dynamics (1) by differential equation

dyp

g (t) = —yp(t) + &' + (1 4 €)yp(t) + Apge 1) (51)

when p is unsaturated. The corresponding boundary condition

—EI—APQ iy

2
1+¢ P (52)

Yp(to) =

comes from &,(tp) = 0 that is applied to (50) and determines also the initial
defect

Do =&+ (1+2)5, (53)

which can be bounded as

—l—e—-e'<A)p<-£<0 (54)

due to 1 > 46, > 0. The explicit solution (42) for differential equation (51)
follows when initial condition (52) is provided.

14



By plugging solution (42) in equation (51) an explicit formula for p’s state
derivative can be calculated:

gy _ e (1) (cte) 4 A ) 55)
dt V7 1+4¢ :

It follows that before the state y,(t) of unit p starts to grow it is initially
nonincreasing within time ¢ € [to, o + t4] where

In —2z@
t — £ 56
g9 1 € ( )

since p’s state derivative (55) is nonpositive for t € [to,to + t,] and ¢, > 0
according to (54).

Further, by introducing solution (42) into equation (50) the dynamics of p’s
excitation can also be expressed explicitly:

! (es(t—to) _ 1)

9

&(t) = >0. (57)

This ensures that unit p is unsaturated for the duration of the whole time
interval (Zo,%o + t}) even though its state y,(t) is initially decreasing for ¢ €
(to, to+t,). Eventually unit p saturates at 1 exactly at time instant ¢,+t} where
t} is given by formula (43) that is derived from equation (57) for &,(to+t}) = 1.
The state of unit p at ¢y +¢| can be computed by substituting (43) into (42):

1-¢ — Ay (1 + 5)_1/5
1+e¢

Yp(lo + 1) = (58)

Clearly, t} > t, for ¢ < 0.05 which confirms the actual growth of p’s state.
Notice that the length ¢| of the period when p is unsaturated is constant and
independent of the initial defects. This introduces a notion of “discrete time”
into the counter operation based on ¢;. Recall that the detailed chronology of
the dynamics of units p,r during the activity transfer is shown in Table 1.

Similarly, excitation

&) =e—v(p, ) +v(p, r)y,(t) + Age ) (59)

of unit r in time ¢ € [ty,ty + to] is derived from (30) by assumption (41).
In order to verify that the state dynamics of unit p is indeed controlled by
equation (51) for the duration of time interval (to,%o + t}) it must also be
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checked that unit 7 remains saturated at 0 in this period, that is &.(¢) < 0.
Since v(p, ) > 1, according to (59) it suffices to show

&) <edypt) — 14 Apge ) <0 (60)

for all t € [to, to + t}] which can be rewritten as

e(e+ (14e)(0 4+ Arg)) e 70 4 ¢ (es(t_t") - 1) —e<e¢ (s’ - 62) (61)

by substituting solution (42) for y,(¢) in which —A,q is replaced by (53).
Inequality (61) further reduces to

e(e+e(l4¢))e ) 4 ¢ (es(t_to) — 1) —e<e (6' - 52) (62)

due to assumption (39). For ¢ € [ty, ty + t.] where

!
1
W€ +e(l+¢)

te=In————

: (63)

term e*(*~%) reaches its maximum at time instant ¢, + ¢, whereas e~(*=%) < 1,
which implies (62) for ¢ < 0.05. For ¢ € [ty + t.,to + t}], on the other hand,
term (¢’ + (1 +¢))e~ %) in inequality (62) achieves its maximum (¢’ — £2)
at time instant #o + ¢, while &’(e*(-%) — 1) — ¢ < 0 reaches 0 at time instant
to +t|. Hence, unit r is saturated at 0 within the period (%o, o+ t}) when unit
p is unsaturated.

The state y,(t) of unit p saturated at 1 follows further the dynamics equation
(29), that is

yp(t)=1—8,(to + t'l)e_(t_to_tll)
—1/e ’
(5 +e'+ Dy (1+5) / ) e~ (t—to—t)
1+¢

=1-

(64)

for t € [to +t},ts] where the corresponding defect d,(tg +t}) = 1 — y,(to + t})
is calculated from (58). By substituting formula (64) into equation (50) the
dynamics of p’s excitation is obtained:

&) =1+ (e+e) (1—e o) >1 (65)

for t € [to + t},to + to] which confirms that unit p remains saturated at 1 at
least until unit  becomes unsaturated from 0. Also excitation &.(¢) of unit r
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saturated at 0 after p saturates at 1 can be expressed by introducing formula
(64) into equation (59) as follows:

& (t) = & —v(p,7)0y(to + t))e” 071 1 A, pem(tH0) (66)

that reaches 0 at time instant to + t5, i.e. &.(ty + t2) = 0 which gives formula
(44) for t, by using equation (43). Hence, unit r is unsaturated from 0 after
time ¢y + ¢ and the dynamics of r’s state is again described by a differential
equation of the form (51). In this way, the activity of unit p is transferred to r.

Finally, it must be checked that unit p remains still saturated at 1 when r is
unsaturated from 0. For this purpose, excitation (50) of unit p can be rewritten
as

&Et) =" +1+¢e+v(p, )y, (t)
—(1+¢€)d,(to + tg)e*(tft"*h) + (Apg — v(p,7)0y) e (t=to) (67)

for ¢ € [ty + t2,ts] according to (30) in which the subset of saturated units @
is now replaced with ; = C'\ {r} while the initial defects d,, A,g in equation
(67) are still related to time instant ¢y and @ = C'\ {p}. The defect d,(to +t2)
at time instant ¢y 4 to of unit p saturated at 1 can be calculated by equation
(64):

g
(1+€) A
1
(e+e)(1+5) " +2pq

5p(t0 + t2) =1- yp(to + tz) = (68)

v(p,r) =

where formula (44) used. In order to prove that £,(t) > 1 for all t € [to+ 1o, t/]
the underlying negative defect terms in equation (67) having the least value
for ¢t = ty + to will be lower bounded by —¢&’ — ¢ whereas v(p,7)y,(t) > 0 is
neglected assuring that unit p remains saturated at 1 independently of the
output from r. Thus, it is sufficient to prove

—(L+€)dy(to + t2) + (Apg — v(p,7)0r) €™
—e(1+¢) <(6 + &) (1 + 5)1/6 + v(p, r)(S,)

() ((e +e)(1+25)" 4 APQ) —(1+6)An

> —¢' —¢ (69)
where formulas (68), (44) have been employed, which further reduces to
, € 1/e
(1+e)e+€) (e (1-1— Q) +Arg
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<wv(p,r) ((5 +¢')? (1 + 5) B +(e+e)Ap—e(1+ 5)5T) : (70)

According to (39), (53) it suffices to show inequality (70) with A, and A,g
replaced by ¢ and —&' — (1 + ¢)e, respectively. In addition, v(p,7) > 1 and
0, < 1, which leads to

(1+e)e+¢€) (e (1 + §>1/s +s>
<(e+¢€)? (1 + ;)1/6 —e'le+e)—e(l+e)1+e+£). (71)

that holds for € < 0.05. This completes the argument for unit p to be saturated
at 1 after » becomes unsaturated from 0.

2. Note that unit a; saturates at 1 according to case 1 of this lemma before
x; is unsaturated from 0 at time instant ¢y. Excitation of unit x; derived from
(30) can be lower bounded as

Eu, (1) > e+ (14 €)Y, (t) + Ay g e 710 (72)

for t € 7 by assumption (48) because v(p,zx) < 0 for all p € Cy ; from
(7). According to dynamics equation (1) this also provides the following lower
bound on the state derivative of unsaturated x:

%(t) > €Yz, (t) te+ Aka' e (1) (73)
Moreover, in the beginning of time interval 7, the state evolution of unit zj
is determined by (42) before the first unit p € Cj_; becomes unsaturated,
since assumption (40) coincides with (48) due to € = € and ,(¢y) > 1 for all
p € Ci_1. Also the initial total weighted defect A, o for Q' = C\(Cr_1U{zx})
can be expressed in terms of Ay, o = —¢ — (1 +¢)d,, for Q = C'\ {4} from
(53) as follows

Apg =~ 1+ + X o205, (74)
PECk—l

according to definition (31). Hence,

Ngg > — (1+271) (75)
by assumption (47).
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By introducing inequality (75) into (73) the state derivative of unsaturated zy
is further lower bounded as

dy, e\ o
(1) > ey, (8) + & — e (1+2717) e 00, (76)

Since ey, (t) > 0, it follows that

dys
%(t) >e—e?>0 (77)

for t > ty + t; where

14271
In——

o (78)

tg =

provided that zj is still unsaturated. This implies that y,, (¢) for ¢ > ¢y + ¢4
grows at least as fast as the straight line with equation

(e—e)(t—to—ta) —y=0 (79)

until unit x; saturates at 1. Hence, x; saturates at 1 certainly before £y +t4 +
ty < to + 2t; where

fy= — (0)

g —¢g2

because &, (t) > yu, (t) from equation (1) due to p’s state derivative (77) is
positive for ¢ > tq + t4.

In addition, it will be proved that the subsequent unit b is saturated at 0 at
least until x; saturates at 1. Excitation

€

3 T Vo (t) + Ap, g e 0 (81)

& (1) =—1+

of unit by saturated at 0 can be derived from (30) by assumption (49). Let
ty > 0 be the least local time instant at which

9 _
Yo (to +1,) =1 — 3~ Ay e ™ (82)

when by, is still saturated at 0 since &, (to +1t,) = 0 follows from (81). Thus, it
suffices to prove that the excitation of unit z; can be lower bounded at time
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instant ¢, + 7, as

fzk (to + ty) Z €+ (1 + E) (1 — % — Akal e_ty> + Asz’ e_ty Z 1 (83)

according to (72). By substituting the error bounds (46), (75) this reduces to

5—e—3(1+@2+)27) e >0 (84)

which holds for ¢ < 0.05 due to e™% < 1, ensuring that unit z; is already
saturated at 1 at time instant ¢y + 2,.

Finally, it must be checked that unit z, remains saturated at 1 after ¢y + 2,
when unit by may become unsaturated from 0. Inequality (72) reads now as

& () >e+ (1+¢) (1 — (% + Apor et?’) e“t”v)) + Y, (1)
+ (Agyqr — 0,) 1) (85)

since the state dynamics of unit x; saturated at 1 is controlled by equation
(29). In order to prove that &;, (t) > 1 for all ¢t € (to +t,, tf] it suffice to show

6— (1+e)e ) —3(1+ (3+e)27/) e ") >0 (86)

according to inequality (85) in which ys, (¢) > 0 and the error bounds (45),(46),
and (75) have been applied. Inequality (86) follows from e~ (tt) < e=(t—to—t) <
1 for € < 0.05. This completes the argument for unit z; to be saturated at 1
after b, becomes unsaturated from 0. O

The correct ttming of the counter simulation still needs to be verified to ensure
a sufficiently fast decrease in the defects of the continuous-time correlates of
binary states, because the analysis in Lemma 4 is valid only if the defect
bounds (39), (45)—(47) are satisfied. According to (38), the absolute value of
the total weighted defect of saturated units affecting any unit in C' is bounded
by ¢ after transient time ¢;, decreasing further to £2-'/¢ by time 2t;. On the
other hand, ¢; lower bounds the time necessary for activating a typical unit
in p € C (see table in Fig. 2) by Lemma 4.1.

In order to validate assumption (39), consider e.g. a unit o' that has also
been activated according to Lemma 4.1 last before unit p from (39) starts its
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activation. Clearly, unit o’ coincides with unit o in table of Fig. 2 except for
0 = x; whose activation is analyzed in Lemma 4.2 instead, and therefore

ap for p=by, 1<k<n
o= TP SRS (87)

o otherwise.

It follows from Fig. 1 that v(o’,r) > 0. In fact only v(z1, ¢x) = 1 and v(zg, ¢1) >
0 for £ > 1 are positive while the remaining pairs o', r are actually not
connected corresponding to v(o’,7) = 0. In addition, v(p,r) > 1 and hence
the defect in (39) can be upper bounded as follows:

8 + Avg < 0(p,7)0p + Apg +v(0,1)00 = Avg, (88)

where Q2 = C'\ {0’} according to definition (31).

For o' # by all the units in () are saturated when o' is being activated which
takes time ¢;. On the other hand, the activation of o' = by (p = di) takes
time 2t; due to its bias v(0,b;) = —1 + ¢/3, while simultaneously units in
Ck_1 C @, saturate at 0 within a time period of length ¢; by Lemma 3.2b and
then all the units in ), are saturated for the duration of the next t;-period
certainly before unit dj, unsaturates. Hence, A, g, < ¢ from (38) which implies
(39) according to (88).

Analogously, the stronger defect bounds (45)—(47) in Lemma 4.2 are met since
according to Lemma 4.1 the transient time 2t; that is sufficient to decrease
the underlying defects due to (38), is guaranteed by the successive separate
(all the units are saturated but one) activations of the preceding two units
Ck, G, With v(ck, by) = v(ag, bx) = 0 before unit z; unsaturates from 0.

Thus, unit ¢y representing the least significant counter bit activates altogether
2™ times before the Hopfield net C' converges and each such an activation
takes time at least ¢; according to Lemma 4.1 which provides the lower bound
Q(2"/¢) = (2™ /¢) on the total simulation time. From the proof of Lemma 2,
the maximum integer weight parameter in C' is of order 2°(™). This corre-
sponds to O(m) bits per weight that is repeated O(m?) times, and thus yields
at most O(m?) bits in the representation. In addition, the biases and feed-
backs of the m units include fraction ¢ (or £/3), and taking this into account
requires ©(mlog(1/¢)) additional bits, say at least xmlog(1/e) bits for some
constant £ > 0. By choosing ¢ = 27/(m/(=™) in which f is a continuous
increasing function whose inverse is defined as f~'(u) = p/g(u), where g sat-
isfies g(p) = Q(p??) (implying f(m) = Q(m?)) and g(x) = o(u), it follows
that M = O(f(m)), especially M > f(m) from M > kmlog(1/e). The con-
vergence time Q(2"™/6/¢) can be translated to Q(2/(m)/(km)+m/6) — 9O(f(m)/m)
which can be rewritten as 2%M//7 (M) — 999(M) gince f(m) = Q(M) from
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M = ©O(f(m)) and f (M) > m from M > f(m). This completes the proof
of the theorem. O

5 A Simulation Example

A computer program HCOUNT has been created to automate the construction
from Theorem 1. For input n > 0, the program generates continuous-time
Hopfield system (1) in the form of a FORTRAN subroutine corresponding to
the (n + 1)-bit binary counter to be simulated. This FORTRAN procedure is
then presented to a solver from the NAG library [10] that provides a numerical
solution for the system. For example, implementing a 4-bit counter on the
HCOUNT generator results in a continuous-time symmetric Hopfield system
C5 with 19 variables. Fig. 3 shows the evolution of the states of counter units
Co, C1, C2, ¢3 for a period of 2 — 1 = 7 simulated discrete steps confirming the
correctness of the construction. A parameter value of € = 0.1 was used in this
numerical simulation, showing that the theoretical estimate of € in Theorem 1
is actually quite conservative.

6 Conclusions and Open Problems

We have constructed a continuous-time Hopfield net simulating a binary counter
whose convergence time is provably exponential in terms of the network size.
To our best knowledge this provides the first known example of a continuous-
time Liapunov dynamical system with an exponential transient period. The
result has also negative consequences in applying the continuous-time Hopfield
nets as fast heuristic analog solvers to combinatorial optimization problems
since the computational time needed may in the worst case be exponential.
On the other hand, it is unknown whether a matching upper bound on the
convergence time of continuous-time Hopfield nets can be proved.

Also the preceding convergence time lower bound for continuous-time Hopfield
nets exceeds a general upper bound on the convergence time of discrete-time
symmetric networks [15] of the same representation size. This suggests that
continuous-time analog models of computation may gain in descriptional effi-
ciency.

Finally, the presented exponential-transient oscillator was used in [13] to prove
that continuous-time Hopfield nets are computationally Turing universal. How-
ever, this technique is somewhat unsatisfying, since it is based on discretizing
the continuous-time computation. It would be most interesting to develop

22



1 -
Yeo
0.8

0.6

0.4

0.2

Yer

100 200 300 400 500 600

Yes

0 100 200 300 400 500 600

Yes

0.8 -
0.6 -
0.4 -

0.2 -

L | | l
0 100 200 300 400 500 600

Fig. 3. Continuous-time simulation of 4-bit binary counter for ¢ = 0.1.

some theoretical tools (e.g. complexity measures, reductions, universal com-
putation) for “naturally” continuous-time computations that exclude the use
of discretizing oscillations. First steps along this direction have recently been
established [1,5].
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