
PASM / PDMC 2012

LCT: A Parallel Distributed Testing Tool for

Multithreaded Java Programs

Kari Kähkönen, Olli Saarikivi and Keijo Heljanko

Department of Information and Computer Science
School of Science
Aalto University

PO Box 15400, FI-00076 AALTO, Finland
{Kari.Kahkonen,Olli.Saarikivi,Keijo.Heljanko}@aalto.fi

Abstract

LIME Concolic Tester (LCT) is an open source automated testing tool that allows testing both
sequential and multithreaded Java programs. The tool uses concolic testing to handle input values
and dynamic partial order reduction (DPOR) combined with sleep sets to avoid exploring unnec-
essary interleavings of threads. The LCT tool has been designed for distributed use where the
SMT constraint solving and test execution can be distributed to multiple processes on a network
of workstations. In this paper we describe the architecture behind the tool and how it allows
distributing concolic testing with DPOR and sleep set algorithms. This allows different execution
paths of a given program to be tested in parallel. We evaluate the architecture and distributed
algorithms of the tool on several Java benchmark programs.

Keywords: Concolic testing, distributed testing, symbolic execution

1 Introduction

Automated testing has the potential to improve reliability and reduce costs
when compared to manually written test cases. One technique to automate
testing is to use concolic testing which combines concrete and symbolic execu-
tion to explore different execution paths of a given sequential program. Con-
colic testing can be combined with dynamic partial order reduction (DPOR)
and sleep set algorithms that allow the approach to be used to test multi-
threaded programs as well. Based on these algorithms, we have developed
an open source tool called LCT (LIME Concolic Tester) that can automat-
ically test both sequential and multithreaded Java programs. The tool has
been designed for distributed use where a network of computers can be uti-

Final Draft



Kähkönen, Saarikivi and Heljanko

lized to make the testing approach scale for larger programs than in the non-
distributed case.

We have previously evaluated the distributed nature of our tool by testing
single threaded programs in [7] and since then we have extended our tool
to support multithreaded programs using the DPOR algorithm as described
in [8]. The main contributions of this paper are: (i) a tool oriented description
of the distributed architecture of our system and the modifications needed to
the DPOR and sleep set algorithms to make them usable in this architecture,
and (ii) a new experimental evaluation of the distributed nature of our tool on
multithreaded programs. In particular, the new experiments concentrate on
cases where most of the test executions are generated due to different schedules
that need to be explored. We show that even in this case the testing can be
distributed as efficiently as with single threaded programs. The rest of the
paper is structured as follows. Section 2 briefly describes concolic testing and
dynamic partial order reduction algorithms, Section 3 gives an overview of
LCT together with our modifications to the used algorithms, Section 4 covers
the related work and Section 5 provides an experimental evaluation of the
distributed architecture in the context of multithreaded programs.

2 Concolic Testing and Dynamic Partial Order Reduc-
tion

Concolic testing [6,9,4] (also known as dynamic symbolic execution) is a
method where a given program is executed both concretely and symbolically
at the same time in order to explore the different behaviors of the program.
The main idea behind this approach is to, at runtime, collect symbolic con-
straints at each branch point that specify the input values causing the program
to take a specific branch. As an example, a program x = x + 1; if (x >

0); would generate constraints input1 + 1 > 0 and input1 + 1 ≤ 0 at the
if-statement given that the symbolic value input1 is assigned initially to x.

A path constraint is a conjunction of symbolic constraints that correspond
to each branch decision made in a given execution.To force a test execution
to follow an unexplored execution path, a prefix of a previously explored path
constraint is chosen and the last symbolic constraint in it is negated. To
obtain concrete input values, path constraints are typically solved with SMT-
solvers. The symbolic constraints form a symbolic execution tree and each test
explores one path in this tree. As any two distinct subtrees of the symbolic
execution tree can be explored independently, it is possible to parallelize the
testing process efficiently. For more details on concolic testing, see e.g., [9].

For multithreaded programs the schedule affects the execution path as well.
The nondeterminism caused by the thread interleavings can be handled in
concolic testing by taking control of the scheduler and considering the schedule

2



Kähkönen, Saarikivi and Heljanko

Fig. 1. The architecture of LCT

as an input to the system. To limit the number of thread interleavings that
need to be explored, concolic testing can be combined with dynamic partial
order reduction algorithms [5]. The basic idea behind these algorithms is to
find transitions that are in race in the current execution and then introduce
backtracking points to the execution tree such that the different interleavings
of the transitions in race will eventually be explored.

3 Tool Details

The architecture of LCT follows the client-server model and is shown in
Figure 1. LCT consists of three main parts: the instrumenter, the server
(test selector) and the clients (test executors). To test a given Java pro-
gram, the input locations are first marked in the code. For example, int x =

LCT.getInteger() indicates that an int type input will be generated for the
variable x. After this the program is given to the instrumenter that modifies
the program by adding new code to it that enables symbolic execution. For
this step LCT uses a program transformation framework called Soot [10] and
adds for most statements symbolic counterparts that perform the same op-
erations symbolically. To make the instrumentation of Java programs easier,
a given program is first translated into an intermediate language called Jim-
ple that offers a simplified syntax. After the instrumentation the program is
translated back to bytecode. The resulting program is called a test executor
that works as a client. When the client is run, it sends information (e.g.,
constraints) generated during runtime to the server which in turn constructs
a symbolic execution tree based on this information. When a client finishes a
test execution, it requests new input values from the server. The server then
chooses which path in the symbolic execution tree is explored next and sends

3



Kähkönen, Saarikivi and Heljanko

the corresponding thread schedule and path constraint to the client which
then solves it to obtain the concrete input values. This way the constraint
solving is distributed to the clients and prevents the constraint solving from
becoming a bottleneck for the parallelization of the testing process.

The communication between the server and clients is implemented using
TCP sockets that makes it easy to distribute the testing to multiple work-
stations. The constraints generated during test executions are expressed in
bitvector theory and Boolector [2] is used as the constraint solver. To avoid
exploring unnecessary interleavings when testing multithreaded programs, the
tool uses dynamic partial-order reduction and sleep set algorithms. In order
to use these algorithms in our distributed setting, we have made some modi-
fications to them that are described next.

3.1 Dynamic Partial Order Reduction and Sleep Sets in a Distributed Setting

DPOR is stateless in the sense that previously visited states are not needed
for identifying races. However, for backtracking there does need to be a way
to reach previous states. There are several ways to achieve this [5]. LCT uses
re-execution of the program, as it is a natural fit for combining with concolic
testing. This is because the path constraints in concolic testing encode sets of
concrete states and even though a new path constraint shares a prefix with an
old one, the inputs solved from the new constraint may not drive the program
to any previously visited concrete state. Re-execution is a convenient way
reach a concrete state that satisfies the new path constraint.

At the beginning of each test execution the client retrieves from the server
a sequence of scheduling decisions to be re-executed. Backtracking points need
not be added during the re-execution, as any backtracking points identified
will already have been added by a previous test execution. Otherwise DPOR
is run as normal during re-execution, meaning that the vector clocks and other
bookkeeping data for identifying backtracking points are maintained.

To enable re-execution, the client sends each scheduling decision made to
the server, which adds them to the execution tree and remembers the client’s
current position in it. The backtracking points DPOR identifies are then sent
to the server as indices into the execution tree along the client’s path together
with a set of alternate operations that are to be explored from that state.
On subsequent test executions these alternate operations are explored by sup-
plying a client with the collected scheduling decisions up to the backtracking
state with the alternate operation appended to the sequence.

In model checking the reduced state space explored by a partial order re-
duction algorithm must often satisfy a cycle proviso, which prevents operations
from being ignored in all states of a cycle in the state graph. Implementing
the cycle proviso in a parallel setting is challenging, although some solutions

4



Kähkönen, Saarikivi and Heljanko

have been proposed [1]. However, because DPOR is a stateless method with
an acyclic state space we can avoid the cycle proviso, allowing for easier par-
allelization. Using multiple concurrent clients together with the backtracking
search performed by DPOR is straightforward: when one client discovers a
backtracking point another one may start a test execution to explore it before
the first one has finished. While no client side modifications are required to
enable this, the server has to be properly synchronized.

Sleep sets can be combined with DPOR to provide additional reduction
when DPOR fails to identify accurate sets of operations to explore from back-
tracking states. The sleep set algorithm is based on the observation that after
an operation t has been explored from some state s, then after other opera-
tions independent with t are explored from s it is not necessary to explore t
again. To this end we associate with each reached state a sleep set, which is a
set of operations that are not executed from that state.

To compute sleep sets, when a state s′ is explored from s, the candidate
sleep set for s′ is the union of the sleep set of s and the set of operations
already explored from s. This candidate sleep set is then filtered to only
include operations that are independent with the operation that was executed
to reach s′. The sleep set of the initial state is empty.

Our setting presents two complications to implementing sleep sets: (i) only
the server knows which operations have been explored from a given state and
(ii) only the client knows the dependencies between operations. Therefore we
split the implementation between the server and client as follows.

In the beginning of the execution the server sends the candidate sleep
set for the state the client will reach once it has re-executed the sequence of
operations sent by the server. When the client reaches the state at the end
of the sequence and on each state after that, the sleep set it has received is
filtered of dependent operations. Each new sleep set obtained this way is sent
to the server. Both the client and server respect the sleep set when executing
operations and selecting backtracking points to explore, respectively.

The detailed descriptions of the modifications to DPOR and sleep set al-
gorithms that allow them to be used in a client-server setting can be found in
[8].

4 Related Work

An alternative way to distribute concolic testing is to partition the symbolic
execution tree in such a way that individual workers explore independent parti-
tions of the tree. The partitioning can be done either statically or dynamically.
As the shape of the symbolic execution tree is not known beforehand, static
partitioning rarely results in optimal load balancing between the workers. Dy-
namic partitioning addresses this problem and provides excellent scalability

5



Kähkönen, Saarikivi and Heljanko

Avg. paths Avg. time Avg. speedup

Benchmark 1 client 2 clients 5 clients 10 clients 20 clients1

Indexer (13) 671 285s 1.89 4.68 8.94 16.97

File System (18) 138 47s 1.92 4.55 8.88 14.91

Parallel Pi (5) 1252 250s 1.95 4.73 9.14 18.06

Synthetic 1 (3) 1020 176s 1.99 4.91 9.74 18.13

Synthetic 2 (3) 4496 783s 2.00 4.86 9.61 18.17

Table 1
Results of the experimental evaluation of the distributed architecture of LCT.

to a large number of workers. Dynamic partitioning, however, requires a more
complex implementation when compared to the synchronizing server approach
used in LCT. See [3] for one approach based on dynamic partitioning. In [11]
an approach to distribute DPOR using partitioning is presented. This ap-
proach provides excellent scalability to the number of workers but in some
cases results in exploring a same schedule multiple times. The synchronizing
server approach does not have this problem.

5 Experiments

To evaluate the distributed architecture of LCT (version 2.2.1), we have used
it to test several multithreaded Java programs with varying number of test
executor clients that were run concurrently. We have previously shown that
the distributed architecture works well for single threaded programs. How-
ever, it is not directly evident that the use of DPOR generates enough open
branches fast enough to keep a large number of clients busy. Therefore these
experiments concentrate on cases where most of the test runs are generated
due to backtracking requests of the DPOR algorithm.

The Indexer and File System programs are from [5] where they are used to
evaluate the DPOR algorithm. The Parallel Pi program implements a parallel
algorithm for calculating the value of π. The synthetic programs are simple
examples where a number of threads perform randomly generated sequences
of shared variable accesses as well as local branching on input values. In
the experiments, the server was run on 2.93GHz quadcore Linux workstation
with 4GB of RAM. The clients were run mainly on 3.30GHz dualcore Linux
workstations 1 with two clients per workstation.

The results of the experiments are shown in Table 1. As the order in
which different thread interleavings are explored affects the performance of
DPOR, different runs of our tool can result in different number of test runs

1 In the 20 client case, the additional ten clients were run on varying Linux workstations
that were slightly faster or slower than the workstations used in the rest of the experiments.
The performance differences were small to individual runtimes.

6



Kähkönen, Saarikivi and Heljanko

for the same benchmark. To take this property of DPOR into account, each
benchmark was run five times with a random initial thread schedule. The
table shows the average number of execution paths explored and the number
of seconds needed to test them in the case where only one client was used.
For the cases where multiple clients were run concurrently, the table shows
the average speedup obtained when compared to the single client case.

The results show that the architecture scales well at least up to 20 clients.
This is because the time to run a single test execution, which consists of
restarting JVM to initialize global state, solving paths constraints and running
the program both concretely and symbolically takes significantly more time
than the operations the server needs to do in a synchronized way. Furthermore,
most of the time the number of open paths in the symbolic execution tree is
large enough so that each client has work to do.

6 Conclusions

This paper introduces the LCT tool that is available together with source
code from: http://www.tcs.hut.fi/Software/lime/ as part of the LIME
Interface Test Bench. We have described the distributed architecture of the
tool and our modifications to DPOR and sleep set algorithms required by the
architecture. We have evaluated the distributed nature of the tool on several
Java programs and shown that it improves the scalability of concolic testing
of multithreaded programs. Especially, we have shown that the use of DPOR
does not limit the search of new execution paths to be tested in such a way
that a large number of parallel workers could not be utilized effectively.

Acknowledgement

This work has been financially supported by Tekes - Finnish Agency for Tech-
nology and Innovation, Conformiq Software, Elektrobit, Nokia, Space Sys-
tems Finland, and Academy of Finland (projects 126860, 128050 and 139402),
and Artemis-JU funded project RECOMP (Reduced Certification Costs Using
Trusted Multi-core Platforms).

References

[1] Barnat, J., L. Brim and P. Rockai, Parallel partial order reduction with topological sort proviso,
in: J. L. Fiadeiro, S. Gnesi and A. Maggiolo-Schettini, editors, SEFM (2010), pp. 222–231.

[2] Brummayer, R. and A. Biere, Boolector: An efficient SMT solver for bit-vectors and arrays, in:
Proceedings of the 15th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2009), Lecture Notes in Computer Science 5505 (2009), pp.
174–177.

7

http://www.tcs.hut.fi/Software/lime/


Kähkönen, Saarikivi and Heljanko

[3] Bucur, S., V. Ureche, C. Zamfir and G. Candea, Parallel symbolic execution for automated
real-world software testing, in: C. M. Kirsch and G. Heiser, editors, EuroSys (2011), pp. 183–
198.

[4] Cadar, C., V. Ganesh, P. M. Pawlowski, D. L. Dill and D. R. Engler, EXE: automatically
generating inputs of death, in: Proceedings of the 13th ACM conference on Computer and
communications security (CCS 2006) (2006), pp. 322–335.

[5] Flanagan, C. and P. Godefroid, Dynamic partial-order reduction for model checking software,
in: J. Palsberg and M. Abadi, editors, POPL (2005), pp. 110–121.

[6] Godefroid, P., N. Klarlund and K. Sen, DART: Directed automated random testing, in:
Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language Design and
Implementation (PLDI 2005) (2005), pp. 213–223.

[7] Kähkönen, K., T. Launiainen, O. Saarikivi, J. Kauttio, K. Heljanko and I. Niemel, LCT: An
open source concolic testing tool for Java programs, in: Proceedings of the 6th Workshop on
Bytecode Semantics, Verification, Analysis and Transformation (BYTECODE’2011), 2011, pp.
75–80.

[8] Saarikivi, O., K. Kähkönen and K. Heljanko, Improving dynamic partial order reductions
for concolic testing, in: Proceedings of the 12th International Conference on Application of
Concurrency to System Design (ACSD’2012) (2012).
URL http://users.ics.aalto.fi/osaariki/lct-improving-dpor.pdf

[9] Sen, K., “Scalable automated methods for dynamic program analysis,” Doctoral thesis,
University of Illinois (2006).

[10] Vallée-Rai, R., P. Co, E. Gagnon, L. J. Hendren, P. Lam and V. Sundaresan, Soot - a Java
bytecode optimization framework, in: Proceedings of the 1999 conference of the Centre for
Advanced Studies on Collaborative Research (CASCON 1999) (1999), p. 13.

[11] Yang, Y., X. Chen, G. Gopalakrishnan and R. M. Kirby, Distributed dynamic partial order
reduction based verification of threaded software, in: D. Bosnacki and S. Edelkamp, editors,
SPIN, Lecture Notes in Computer Science 4595 (2007), pp. 58–75.

8

http://users.ics.aalto.fi/osaariki/lct-improving-dpor.pdf

	Introduction
	Concolic Testing and Dynamic Partial Order Reduction
	Tool Details
	Dynamic Partial Order Reduction and Sleep Sets in a Distributed Setting

	Related Work
	Experiments
	Conclusions
	Acknowledgement 
	References

