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We will show that model heking a �xed CTL formula ontaining nestedtemporal modalities is PSPACE-omplete in the size of a �nite omplete pre-�x of a 1-safe Petri net. Beause model heking a �xed CTL formula is alsoPSPACE-omplete in the size of a 1-safe Petri net [6℄, using a pre�x as input toa model heker does not hange the omplexity of CTL model heking. The�xed CTL formula we use an be expressed in most temporal logis interpretedover interleaved reahability graphs, and we obtain PSPACE-ompleteness re-sults for several of them.Our proof employs a lass of 1-safe Petri nets for whih it is easy to gen-erate a �nite omplete pre�x in deterministi polynomial time. We will showthat the pre�xes generated by urrently employed pre�x generation algorithms(see [10℄) an sometimes be exponentially larger than what is allowed by thesemanti pre�x ompleteness riterion. We do not know whether these pre�xeshave some properties whih would make model heking using them easier thanwith pre�xes ful�lling only the semanti pre�x ompleteness riterion.The rest of the paper is strutured as follows. First in Set. 2 we de�ne thePetri net notation used in this paper, followed by the de�nition of �nite ompletepre�xes. We show in Set. 3 that it is possible to sometimes reate exponentiallysmaller pre�xes than the algorithm of [10℄. Next in Set. 4 we present the mainresult of this work, a proof of model heking PSPACE-ompleteness for severallogis in the size of a �nite omplete pre�x. We give the onlusions in Set. 5.2 Petri Net De�nitionsOur aim is to de�ne �nite omplete pre�xes as a symboli representation ofa reahability graph of a 1-safe Petri net system. Finite omplete pre�xes arebranhing proesses ful�lling some additional onstraints. To de�ne branhingproesses we introdue ourrene nets, whih are Petri nets of a restrited form.We do the de�nitions bottom-up, and begin with basi Petri net notation. Wefollow mainly the notation of [10℄.2.1 Petri NetsA triple hS; T; F i is a net if S \ T = ; and F � (S � T ) [ (T � S). Theelements of S are alled plaes, and the elements of T transitions. Plaes andtransitions are also alled nodes. We identify F with its harateristi funtionon the set (S � T ) [ (T � S). The preset of a node x, denoted by �x, is the setfy 2 S [ T jF (y; x) = 1g. The postset of a node x, denoted by x�, is the setfy 2 S [ T jF (x; y) = 1g. Their generalizations on sets of nodes X � S [ T arede�ned as �X = Sx2X �x, and X� = Sx2X x�, respetively.A marking of a net hS; T; F i is a mapping S 7! IN. A markingM is identi�edwith the multi-set whih ontains M(s) opies of s for every s 2 S. A 4-tuple� = hS; T; F;M0i is a net system if hS; T; F i is a net and M0 is a marking ofhS; T; F i. A marking M enables a transition t 2 T if 8s 2 S : F (s; t) �M(s). Ift is enabled, it an our leading to a new marking (denoted M t! M 0), where



M 0 is de�ned by 8s 2 S : M 0(s) = M(s) � F (s; t) + F (t; s). A marking Mn isreahable in � if there is an exeution, i.e. a sequene of transitions t1; t2; : : : ; tnand markings M1;M2; : : : ;Mn�1 suh that: M0 t1! M1 t2! : : :Mn�1 tn! Mn. Areahable marking is 1-safe if 8s 2 S : M(s) � 1. A net system � is 1-safe ifall its reahable markings are 1-safe. In this work we will restrit ourselves tonet systems whih are 1-safe, have a �nite number of plaes and transitions, andalso in whih eah transition has both nonempty pre- and postsets.2.2 Ourrene NetsWe use <F (�F ) to denote the (re�exive) transitive losure of F . De�ne � =hS; T; F i to be a net and let x1; x2 2 S [T . The nodes x1 and x2 are in on�it,denoted by x1#x2, if there exist t1; t2 2 T suh that t1 6= t2, �t1 \ �t2 6= ;,t1 �F x1, and t2 �F x2.An ourrene net is a net N = hB;E; F i suh that:� 8b 2 B : j�bj � 1,� F is ayli, i.e. the irre�exive transitive losure of F is a partial order,� N is �nitely preeded, i.e. for any node x of the net, the set of nodes y suhthat y �F x is �nite, and� 8x 2 B [ E : :(x#x).The elements of B and E are alled onditions and events, respetively. The setMin(N) denotes the set of minimal elements of <F . In this work the minimalelements will be onditions, and thus Min(N) an be seen as an initial marking.A on�guration C of an ourrene net is a set of events satisfying:� If e 2 C then 8e0 2 E : e0 �F e implies e0 2 C (C is ausally losed), and� 8e; e0 2 C : :(e# e0) (C is on�it-free).A loal on�guration [e℄ of an event e is the set of events e0, suh that e0 �F e.A level of an event e is the length i of the longest sequene e1; e2; : : : ; ei ofevents, suh that ei = e, and e1 <F e2 <F : : : <F ei. Thus level (e) = 1 when�e � Min(N).2.3 Branhing ProessesBranhing proesses are �unfoldings� of net systems and were introdued byEngelfriet [4℄. Let N1 = hS1; T1; F1i and N2 = hS2; T2; F2i be two nets. A homo-morphism h is a mapping S1 [ T1 7! S2 [ T2 suh that: h(S1) � S2, h(T1) � T2,and for all t 2 T1, the restrition of h to �t is a bijetion between �t and �h(t), andsimilarly for t� and h(t)�. A branhing proess of a net system � = hS; T; F;M0iis a tuple � = hN 0; hi, where N 0 = hB0; E0; F 0i is an ourrene net, and h is ahomomorphism from N 0 to hS; T; F i suh that: the restrition of h to Min(N 0)is a bijetion between Min(N 0) and M0, and 8e1; e2 2 E0, if �e1 = �e2 andh(e1) = h(e2), then e1 = e2. Thus h maps the onditions and events of an o-urrene net to the plaes and transitions of the orresponding net system in a



way whih respets the initial marking and the labeling of the transitions andtheir pre- and postsets.The marking of � assoiated with a on�guration C of � is denoted byMark (C) = h((Min(N) [ C�) n �C). A on�guration of the branhing proessalways orresponds to a reahable marking of �. It is shown in [4℄ that a netsystem has a maximal branhing proess up to isomorphism, alled the unfolding.If the net system has some in�nite behavior, the unfolding will also be in�nite.2.4 Finite Complete Pre�xesWe now de�ne �nite omplete pre�xes:De�nition 1. A �nite branhing proess � of a net system � is a �nite ompletepre�x if for eah reahable marking M of � there exists a on�guration C of �,suh that:� Mark(C) =M , and� for every transition t enabled in M there exists a on�guration C [feg of �,suh that e 62 C and h(e) = t.A �nite omplete pre�x ontains all the information about the interleaved reah-ability graph of the net system. Algorithms to obtain a �nite omplete pre�xgiven a (�nite state) net system are presented in [10, 9, 19℄. The algorithms willmark some events of the pre�x � as speial ut-o� events, whih we will denoteby events marked with rosses in the �gures. The intuition behind ut-o� eventsis that they orrespond to repetition of behavior found �earlier� in the pre�x.Due to spae limitations we diret the interested reader to [10, 9, 19℄.3 Compat Finite Complete Pre�xesIt is well known that �nite omplete pre�xes an sometimes be exponentiallymore suint than the reahability graph of the net system [19℄. A simple ex-ample of suh a family of net systems (with the instane n = 4 in Fig. 1) has 2nreahable markings, while the �nite omplete pre�x is polynomial in the size ofthe net system. In fat, the �nite omplete pre�xes of this family of net systemsare isomorphi to the net system itself. The improved pre�x generation algo-
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rithm by Esparza, Römer, and Vogler [10℄ guarantees for 1-safe net systems thatthe number of non-ut-o� events of the generated pre�x is never larger than thenumber of reahable markings. What is not to our knowledge presented in theliterature is the fat that sometimes the pre�x generation algorithm by MMil-lan [19℄ (and also the improved version [10℄) reates exponentially larger pre�xesthan are needed to ful�ll the semanti pre�x ompleteness riterion.For an example of suh a family of 1-safe Petri net systems, see Fig. 2. Thisnet system is an instane of a binary ounter net system with initialization to a�random� initial state (Fig. 2 is a three bit instane, i.e. n = 3). The net systemats like a binary ounter starting from all low bits, when the initial markingis M 00 = fs(0); s(b0l); s(b1l); s(b2l)g. The ontents of the binary ounter areonsistent when the plae s(0) is marked, otherwise the arry propagation anbe thought to be in progress. The exat behavior of the net system is atually ofno interest to us, we are only interested in the sizes of di�erent �nite ompletepre�xes generated from it.
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Fig. 2. A three bit binary ounter net system.Let us onsider what happens when the initial marking is the marking inFig. 2. We an �nd the invariants: M(s(i)) +P0�i<nM(s(i)) = 1, and for all0 � j < n : M(s(ibj))+M(s(bjh))+M(s(bj l)) = 1. These n+1 invariants givean upper bound of (n+1) �3n reahable markings. This is also the exat numberof reahable markings, whih an also be seen by simple stati analysis. Namely,�ring one (or none) of the transitions of the set ft(i0); : : : ; t(in�1)g an setthe �rst invariant to any of n + 1 values, and also �ring one (or none) of the



transitions ft(ibjh); t(ibj l)g an set the invariant of the bit j into any of threevalues. Also in the initial state these n + 1 sets of transitions are onurrentlyenabled, and thus �ring a transition from one set does not disable transitionsfrom other sets. Thus all the (n + 1) � 3n reahable markings are within oneonurrent �step� from the initial marking.We an atually reate the �nite pre�x of Fig. 3 from this net system, andthen verify that it ful�lls the semanti pre�x ompleteness riterion (Def. 1).We an see that the pre�x of Fig. 3 is polynomial in the size of the ounternet system of Fig. 2, and that suh a �ompat pre�x� an be onstruted for aounter net system of any �xed amount of bits.
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Fig. 3. A �nite omplete pre�x for the three bit ounter example.Here we give a proof sketh for the ompleteness of the �nite pre�x in Fig. 3.The pre�x is idential to the two �rst levels of the unfolding of the net system ofFig. 2. The �rst requirement of pre�x ompleteness is ful�lled, as all of the reah-able markings an be reahed by a on�guration ontaining only events from the�rst level of the pre�x. The seond pre�x ompleteness riterion intuitively re-quires that all the ars of the reahability graph are present in the pre�x. Thisis the ase, beause both the �rst and seond levels of this pre�x are identialto the unfolding, and thus they ontain extensions for all the on�gurations (ofthe �rst level) mentioned in the seond ompleteness riterion.Note that all the events on the seond level are marked as ut-o� events, asthey introdue no new reahable markings to the pre�x. This requires allowingthat the orresponding on�guration (see [10℄) of a ut-o� event is a non-loalon�guration. Suh an idea was already presented in our earlier work [14℄.



When we onsider the sizes of �nite omplete pre�xes generated by the ur-rently employed pre�x generation tools, the piture is quite di�erent. We havegathered pre�x sizes for small instanes of this family of net systems in Table 1.For this family of examples, the MMillan's algorithm [19℄ and the improve-ment by Esparza et.al. [10℄ (implemented in the PEP tool [1℄) both generate thesame pre�xes. While the number of non-ut-o� events (the olumn jEj�# ofMMillan/ERV Pre�x) grows muh more slowly than the number of reahablemarkings, the growth in this olumn is still exponential (we get the reursionxi = 2xi�1+i+4, with the initial value x2 = 16). Contrast this with the ompatpre�x, whose size grows polynomially in the number of bits in the ounter. ThusTable 1. Pre�x sizes for ounter net systems.System Reahability Graph MMillan/ERV Pre�x Compat Pre�xSize jSj jT j Markings Ars jBj jEj # jEj�# jBj jEj # jEj�#2 9 10 27 66 43 23 7 16 17 10 4 63 13 15 108 351 105 55 16 39 25 15 6 94 17 20 405 1620 225 116 30 86 33 20 8 125 21 25 1458 6885 453 231 50 181 41 25 10 156 25 30 5103 27702 887 449 77 372 49 30 12 187 29 35 17496 107163 1721 867 112 755 57 35 14 21the pre�xes generated by the urrent pre�x generation algorithms [19, 10℄ an beexponentially larger than the ompat �nite omplete pre�x whih we generatedusing semanti arguments. This onstrution relied on the speial properties thefamily of net systems under disussion has. We don't know of a pratial algo-rithm to always generate a polynomial pre�x when it is allowed by the semantinotion of pre�x ompleteness.In the rest of this work we adopt the semanti de�nition of pre�x omplete-ness (Def. 1) as the only property a �nite omplete pre�x has. Thus we anuse purely semanti arguments, and do not have to onsider the peuliaritiesof a �xed pre�x generation algorithm. However, as presented by Table 1, some-times the urrent algorithms will generate exponentially larger pre�xes. Thus theomplexity results we will present do not automatially apply to these pre�xes.4 Complexity of Model Cheking with Complete Pre�xesWe an see a 1-safe Petri net system as a representation of its (�nite, interleaved)reahability graph. Thus in model heking a Petri net we atually interpret themodel heking questions on its reahability graph. Beause a �nite ompletepre�x is a symboli representation of the same reahability graph, we an domodel heking when a �nite omplete pre�x is given as input. We will nowshow that many model heking problems for �nite omplete pre�xes of 1-safePetri nets are PSPACE-omplete in the size of the pre�x. This result has been�rst published in [13℄, where detailed proofs an be found.



The proof is based on the PSPACE-hardness proof of the reahability problemfor 1-safe Petri nets by Jones, Landweber and Lien [15℄. The proof involvessimulating a Turing mahine with a �xed number of tape ells with a 1-safePetri net. Our proof is based on the variation of this proof by Esparza [6℄, fromwhih most of the material of the following setion is from. We �rst introduethis proof, beause our proof is built on top of it in two steps.4.1 Reahability with 1-safe Petri netsWe use slightly nonstandard notation in this work. We onsider Turing mahineswith �nite tape, i.e. they have both a �rst and a last ell on their tape. As inthe standard de�nition, a move to the left of the �rst ell results in the mahinestaying on the �rst ell. Slightly nonstandard is the handling of the last ell. Ifthe program of the Turing mahine tries to move right when being on the lastell, it stays on the last ell. We de�ne the notions of exeution and aeptaneof a Turing mahine in what is in the essene a standard way, see e.g. [20℄, withonly minor notational di�erenes, for the details see [13℄.A Turing mahine is de�ned to be a tuple M = hQ;�; Æ; q0; F i, where Q isa �nite set of states, � a �nite set of tape symbols (ontaining a speial blanksymbol #), Æ : (Q�� ) 7! P(Q���fR;Lg) is the (non-deterministi) transitionfuntion, q0 2 Q is the initial state, and F � Q is the set of �nal states. Wede�ne the size of a Turing mahine to be the number of bits needed to enodeits transition relation, i.e. 2 � jQj2 � j� j2.We de�ne a linearly bounded automaton to be a Turing mahine whih usesn tape ells for a Turing mahine desription of size n (i.e. the amount of tapemathes the size of the transition relation). We enode the on�guration of an au-tomaton as hq; i; wi, where q is the ontrol state of the automaton, i 2 f1; : : : ; ngis the urrent loation of the tape head, and w 2 �n is a string of length n whihgives the ontents of the n tape ells of the automaton. We all a on�gurationhq; i; wi an initial on�guration if q = q0.Many question about the omputations of linearly bounded automata arePSPACE-hard. The �rst one we use is the empty-tape aeptane problem:De�nition 2. EMPTY-TAPE ACCEPTANCE:Given a linearly bounded automaton A = hQ;�; Æ; q0; F i, does A aept on theempty input?It is well known that EMPTY-TAPE ACCEPTANCE is PSPACE-omplete.Moreover, it remains PSPACE-omplete even if we restrit the automaton A tohave only one aepting state qF , see e.g. [6℄. We de�ne the size of a 1-safe Petrinet system � = hS; T; F;M0i to be the number of bits needed to enode the�ow relation F , i.e. O(jSj � jT j). The result we use is the following theorem, �rstproved by Jones, Landweber and Lien [15℄:Theorem 1. A linearly bounded automaton of size n an be simulated by a 1-safe Petri net system of size O(n2). Moreover, there is a deterministi polynomialtime proedure in the size of the automaton whih onstruts this net.



We now introdue this mapping from a linearly bounded automaton to a1-safe Petri net system N(A). See Fig. 4 for an example when jQj = 3, n = 2(smaller than the real n to make the �gure smaller), and � = f#; a; bg.Let A = hQ;�; Æ; q0; F i be a linearly bounded automaton of size n. We denotethe set of tape ells with C = f1; : : : ; ng. The simulating Petri net N(A)ontains a plae s(q) for eah state q 2 Q, a plae s(i) for eah ell i 2 C,and a plae s(a; i) for eah pair a 2 �; i 2 C. A token on plae s(q) tells thatthe mahine is in state q, a token on s(i) marks the urrent head loation, andwhen the plae s(a; i) is marked it means that the symbol on tape ell i is a.The transitions of N(A) are obtained from the transition funtion of A.If s(q0; a0; R) 2 Æ(q; a), then there exists for eah ell  2 C a orrespondingtransition t(s(q; a; )w(a0)s(q0; 0)), whose input plaes are s(q), s(), and s(a; ),and whose output plaes are s(q0), s(0), and s(a0; ), where 0 is the ell to theright of , exept when  is the last ell, in whih ase 0 = . The left movesare handled similarly, exept that now the �rst ell is an exeption, moving lefton it will leave the head on the leftmost ell. The initial marking of N(A) hasone token on s(q0), one on s(1), and one on eah of the plaes s(#; i), for alli 2 f1; : : : ; ng. The total size of the net system N(A) is O(n2) [6℄.
s(q0)

s(q2)

s(q1)

s(#,c2)

s(a,c2)

s(c2)s(c1)

s(#,c1)

s(a,c1)

s(b,c1)
s(b,c2)

t(s(q0,#,c1)w(a)s(q1,c2)) t(s(q0,#,c2)w(a)s(q1,c2))

Fig. 4. A part of N(A) simulating a transition (q1; a; R) 2 Æ(q0;#).In this work we use polynomial-time many-one redutions (i.e. Karp redu-tions). Thus given a linearly bounded automaton A with a unique aeptingstate qF , we an in deterministi polynomial time onstrut N(A). Now to de-ide EMPTY-TAPE ACCEPTANCE we need to answer the following problemon N(A): Is there a reahable marking M of N(A), suh that M(s(qF )) = 1?It is easy to see from the semantis of the branhing time temporal logi CTL[3℄, that the question above is equivalent to the CTL model heking question:N(A) j= EF (s(qF )), i.e. does the formula EF (s(qF )) hold on the interleavedreahability graph of N(A)? (We use plae names as atomi propositions, e.g.s(qF ) is true in a marking M i� M(s(qF )) = 1.) Thus CTL model heking is



PSPACE-hard in the size of the net system N(A). The model heking problemis also in PSPACE in the size of the 1-safe net system for CTL [6℄.4.2 Another PSPACE-hardness Proof with 1-safe Petri NetsWe present an alternative PSPACE-hardness proof for CTL model heking with1-safe Petri nets. This proof was reated to make our proof about pre�x modelheking omplexity (to be presented in the next setion) easier.We use another PSPACE-omplete problem for linearly bounded automata:De�nition 3. ARBITRARY-TAPE-STATE ACCEPTANCE:Given a linearly bounded automaton A = hQ;�; Æ; q0; F i with unique aeptingstate qF , does there exists an initial on�guration on whih A aepts?In other words: Does there exist an aepting exeution of A starting fromsome initial on�guration hq0; i; wi, where i 2 f1; : : : ; ng and w 2 �n?Theorem 2. ARBITRARY-TAPE-STATE ACCEPTANCE is PSPACE-omplete.Proof. See [13℄. utGiven a linearly bounded automaton A we will now redue the problemARBITRARY-TAPE-STATE ACCEPTANCE into the problem of model hek-ing a ertain �xed CTL-formula � on a 1-safe net system C(A). The main intu-ition behind the redution is that C(A) is a �heating simulation� of A, namelyit has also behaviors whih do not orrespond to a simulation of an exeution ofA. The formula � takes are of ignoring the heating runs of the net system. Weonstrut a 1-safe Petri net, whih �rst �randomly� initializes the system intosome initial state, and then starts to simulate the behavior of the automaton A.We use the net system N(A) as de�ned in the previous setion as the basisof our mapping, add some plaes and transitions, and hange the initial markingto reate a net system C(A) (for details, see [13℄). See Fig. 5 for an example ofthe initialization and simulation of the same transition as in Fig. 4. The plaess(nq); s(n), and s(ni) for all i 2 f1; : : : ; ng are new. They are used to markthat the ontrol state, head loation, or ontents of the tape ell i has not beeninitialized yet, respetively. For eah state qi 2 Q there exists a new transitiont(nqi) whose preset is s(nq) and whose postset is s(qi). For eah tape ell i 2 Cthere exists a new transition t(ni) whose preset is s(n) and whose postset iss(i). Also for eah pair (a; i), suh that a 2 �; i 2 C, there exists a newtransition t(n(a; i)) whose preset is s(ni) and whose postset is s(a; i). Theinitial marking is hanged to have a token on the new plaes added to C(A),and no tokens on other plaes. This denotes the fat that the initialization needsto be done for state, head loation, and eah tape ell.Note that we are even initializing the simulation initial state randomly, in-stead of initializing it to the state q0. Thus our simulator is a heating one. Also
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Fig. 5. A heating Turing mahine simulator.note that the initialization and the beginning of the simulation are not synhro-nized. This is needed for the pre�x to be reated to be a ompat one, however,it somewhat ompliates the proofs in [13℄.Lemma 1. The net system C(A) is 1-safe.Proof. The net system C(A) has the following marking invariants:� M(s(nq)) +Pqi2Q M(s(qi)) = 1,� M(s(n)) +Pi2C M(s(i)) = 1, and� for all i 2 f1; : : : ; ng : M(s(ni)) +Pa2� M(s(a; i)) = 1.The invariants over all the plaes of the net system C(A), thus it is 1-safe. utNow we an show PSPACE-ompleteness by model heking the CTL formula� = EF (s(q0) ^ EF (s(qF ))) on the net system C(A).Lemma 2. Let A be a linearly bounded automaton with a unique aepting stateqF . It holds that C(A) j= EF (s(q0) ^ EF (s(qF ))) i� A has an aepting exeu-tion starting from some initial on�guration of A.Proof. The idea of the proof in one diretion is to take an aepting exeution ofA, and transform it to an exeution of C(A), whih �rst �res n+2 initializationtransitions and then starts simulating the exeution of A, giving a witness forthe formula �. The other diretion is a bit more involved. Whenever C(A) hasan exeution whih is a witness of �, it atually also has an exeution whih �rst�res n + 2 initialization transitions, and then starts simulating (an aeptingexeution of) A. Proving this requires a number of lemmas about (a partiularkind of) ommutativity between the initialization and simulation transitions ofC(A). For more details, see [13℄. ut



Theorem 3. Model heking a �xed size CTL formula � is PSPACE-ompletein the size of the 1-safe net �.Proof. To show PSPACE-hardness we use the Lemma 2 to redue the problemARBITRARY-TAPE-STATE ACCEPTANCE to the problem of CTL modelheking a �xed size formula � = EF (s(q0) ^ EF (s(qF ))) on the net systemC(A). The size of C(A) is O(n2), i.e. polynomial in the size of A, and theredution an be done in deterministi polynomial time.The problem is in PSPACE by Lemma 1, ombined with the proof of CTLmodel heking being in PSPACE in the size of 1-safe net system, see e.g. [6℄. ut4.3 Model Cheking with Finite Complete Pre�xesWe will now make use of the mahinery reated in the previous setions. We willprove model heking omplexity results for algorithms whih are given a �niteomplete pre�x of a 1-safe Petri net as the input.We use the net system C(A) as our starting point, and de�ne the pre�x�C(A) to be idential to the �rst two levels of the unfolding of C(A) (see [13℄for the formal de�nition). For an example of the pre�x, see Fig. 6, whih is thepre�x of the net system in Fig. 5. The pre�x �C(A) ontains exatly as many
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b(a,c2,e(...))Fig. 6. A �nite omplete pre�x of the heating Turing mahine simulator.events as there are transitions in C(A). Only the onditions in the postsets of thetransitions orresponding to the simulation transitions are new, and there are atmost 6 � jQj2 � j� j2 of them. Therefore the size of the pre�x �C(A) is polynomialin the size of C(A) (and thus also in size of A).



Lemma 3. The pre�x �C(A) is a �nite omplete pre�x of the net system C(A).Proof. See [13℄. utNow we an present the main result of this work.Theorem 4. Model heking a �xed size CTL formula � is PSPACE-ompletein the size of a �nite omplete pre�x � of a 1-safe net �.Proof. See [13℄ for details. To show PSPACE-hardness we use the redution usedin the proof of Theorem 3, and then redue this problem further to CTL modelheking � with �C(A) by reating �C(A) in deterministi polynomial time fromC(A). Thus by Lemma 3 we get the PSPACE-hardness result.To show that the problem is in PSPACE in the size of the pre�x we use thefat that given a pre�x � of a 1-safe net system �, and a formula �, we an inpolynomial spae onstrut a net system �0 (by folding the ayli pre�x bakinto a yli net system in the labelling respeting way). For this net system itholds that �0 j= � i� � j= �. Then we CTL model hek �0 j= � in PSPACE [6℄for a total omplexity of PSPACE. utThe CTL formula � = EF (s(q0) ^ EF (s(qF ))) syntatially belongs to allthe logis UB�, UB, CTL, and CTL� (see [3℄, for the UB logis see e.g. [8℄).Therefore the PSPACE-hardness result also applies to them.We will now require without loss of generality that all exeutions of theautomaton A entering the �nal state qF will keep on looping bak to the �nalstate qF thus reating an in�nite exeution in whih the �nal state is repeated.We an then reate the linear temporal logi LTL (see [3℄) formula  =2(:(s(q0)) _ 2(:(s(qF )))). Now it is easy to see from the semantis of LTLthat C(A) j= � i� C(A) 6j=  . A violation of this LTL formula an be expressedby a Bühi automaton, whih an be translated into an equivalent linear-time�-alulus formula (see e.g. [2℄). The LTL formula  is also a syntati safetyformula, and thus a violation of this property an also be expressed by a de-terministi �nite automaton [17℄. Thus we get a PSPACE-hardness result forLTL model heking, Bühi emptiness heking, linear-time �-alulus modelheking, and safety model heking.The model heking problems mentioned above are in PSPACE in the sizeof the 1-safe net system, and thus we an use the proof of Theorem 4 also withthem (see [6℄, for CTL� we reate a onurrent program from a 1-safe Petri netin deterministi polynomial time, and then use a similar result presented foronurrent programs in e.g. [16℄). Therefore these model heking problems arePSPACE-omplete in the size of a �nite omplete pre�x of a 1-safe Petri net.5 ConlusionsWe have shown that model heking a �xed size formula of several temporal log-is, inluding LTL, CTL, and CTL�, is PSPACE-omplete in the size of a �nite



omplete pre�x of a 1-safe Petri net. This is to be ontrasted with the reah-ability problem, in whih a PSPACE-omplete problem for 1-safe Petri nets istransformed by the pre�x generation proess into (a potentially exponentiallylarger) NP-omplete problem, see e.g. [13℄. However, suh a drop in omplexity(assuming NP is easier than PSPACE) does not our in the ase of model hek-ing involving nested temporal modalities. Thus, loosely speaking, with pre�xesreahability is easier than �repeated reahability� (see [13℄).Our proof employs a lass of 1-safe Petri nets for whih it is easy to reate a�nite omplete pre�x by using semanti arguments. We have shown that some-times the pre�xes reated by urrent pre�x generation algorithms [10℄ will be ex-ponentially larger than allowed by the semanti ompleteness riterion (Def. 1).The de�nition of a suitable pre�x minimality riterion, and the reation of aproedure to always obtain these ompat pre�xes is left for further work.There are pre�x based model hekers whih handle nested temporal modal-ities. The LTL model heker of [21℄ reates a ertain graph, whose size an beexponential in the size of the pre�x. The onstrution employed by the branh-ing time model heker of [5, 12℄ to handle nested temporal modalities is moreinvolved, and relating our work to the results of [12℄ is left for further study. Wewould also like to know whether the pre�xes generated by [10℄ have some prop-erties whih would allow simpler model heking algorithms than the pre�xesful�lling only the semanti pre�x ompleteness riterion. Finally, for LTL modelheking we an hange the model heker to take both the net system, and theLTL(-X) formula  as input to the pre�x generation proess. In this approahalso the semanti pre�x ompleteness riterion is parameterized by the hekedformula, and the model heking an be done in polynomial time in the size ofthis �produt� pre�x [7℄. The prie to pay is a larger pre�x. A simpler produtmethod works with safety model heking.AknowledgementsPart of this work was done during a visit to Prof. J. Esparza's researh groupat TU Münhen. The author would like to thank for the visit opportunity, andfor disussions about the unfolding method. The author would also like to thankIlkka Niemelä and Tommi Junttila for ritial omments on this work.Referenes[1℄ E. Best. Partial order veri�ation with PEP. In Proeedings of POMIV'96, Work-shop on Partial Order Methods in Veri�ation. Amerian Mathematial Soiety,July 1996.[2℄ M. Dam. Fixpoints of Bühi automata. In Proeedings of the 12th InternationalConferene of Foundations of Software Tehnology and Theoretial Computer Si-ene, pages 39�50, 1992. LNCS 652.[3℄ E. A. Emerson. Temporal and modal logi. In Handbook of Theoretial Com-puter Siene, Volume B, Formal Models and Semantis, pages 995�1072. North-Holland Pub. Co./MIT Press, 1990.
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