
Parallelisation of the Petri Net Unfolding

Algorithm

Keijo Heljanko1, Victor Khomenko2, and Maciej Koutny2

1 Laboratory for Theoretical Computer Science,
Helsinki University of Technology

FIN-02015 HUT, Finland
Keijo.Heljanko@hut.fi

2 Department of Computing Science, University of Newcastle
Newcastle upon Tyne NE1 7RU, U.K.

{Victor.Khomenko, Maciej.Koutny}@ncl.ac.uk

Abstract. In this paper, we first present theoretical results, helping to
understand the unfolding algorithm presented in [6, 7]. We then propose
a modification of this algorithm, which can be efficiently parallelised and
admits a more efficient implementation. Our experiments demonstrate
that the degree of parallelism is usually quite high and resulting algo-
rithms potentially can achieve significant speedup comparing with the
sequential case.
Keywords: Model checking, Petri nets, parallel algorithms, unfolding,
causality, concurrency.

1 Introduction

A distinctive characteristic of reactive concurrent systems is that their sets of
local states have descriptions which are both short and manageable, and the
complexity of their behaviour comes from highly complicated interactions with
the external environment rather than from complicated data structures and ma-
nipulations thereon. One way of coping with this complexity problem is to use
formal methods and, especially, computer aided verification tools implementing
model checking ([2, 1]) — a technique in which the verification of a system is
carried out using a finite representation of its state space. The main drawback
of model checking is that it suffers from the state space explosion problem. That
is, even a relatively small system specification can (and often does) yield a very
large state space. To help in coping with this, a number of techniques have
been proposed, which can roughly be classified as aiming at an implicit compact
representation of the full state space of a reactive concurrent system, or at an
explicit generation of its reduced (though sufficient for a given verification task)
representation. Techniques aimed at reduced representation of state spaces are
typically based on the independence (commutativity) of some actions, often rely-
ing on the partial order view of concurrent computation. Such a view is the basis
for algorithms employing McMillan’s (finite prefixes of) Petri net unfoldings ([6,

2 K.Heljanko, V.Khomenko and M.Koutny

17]), where the entire state space of a system is represented implicitly, using an
acyclic net to represent system’s actions and local states.

In view of the development of fast model checking algorithms employing
unfoldings ([10, 11, 13]), the problem of efficiently building them is becoming in-
creasingly important. Recently, [5–7, 15, 16] addressed this issue — considerably
improving the original McMillan’s technique — but we feel that generating net
unfoldings deserves further investigation.

The contribution of this paper is twofold. First, we present theoretical re-
sults, helping to understand the unfolding algorithm presented in [6, 7]. Second,
we propose a modification of that algorithm, which can be efficiently parallelised.
It does not perform any comparisons of configurations except those needed for
checking the cut-off criterion, reducing the total number of times two config-
uration are compared w.r.t. the adequate total order proposed in [6] down to
the number of cut-off events in the resulting prefix. This allows to gain certain
speedup even in a sequential implementation. Some other optimisations are also
mentioned.

Our experiments demonstrate that the degree of parallelism is usually quite
high and the resulting algorithms can potentially achieve significant speedup
comparing with the sequential case. All proofs can be found in the technical
report [12].

2 Basic Notions

In this section, we first present basic definitions concerning Petri nets, and then
recall (see also [4, 6, 7]) notions related to net unfoldings.

Petri nets A net is a triple N
df

= (P, T, F) such that P and T are disjoint sets of
respectively places and transitions, and F ⊆ (P ×T)∪ (T ×P) is a flow relation.
A marking of N is a multiset M of places, i.e. M : P → N = {0, 1, 2, . . .}. As

usual, we will denote •z
df

= {y | (y, z) ∈ F} and z• df

= {y | (z, y) ∈ F}, for all

z ∈ P ∪ T , and •Z
df

=
⋃

z∈Z

•z and Z• df

=
⋃

z∈Z
z•, for all Z ⊆ P ∪ T . We will

assume that •t 6= ∅ 6= t•, for every t ∈ T .

A net system is a pair Σ
df

= (N, M0) comprising a finite net N = (P, T, F)
and an initial marking M0. A transition t ∈ T is enabled at a marking M if for
every p ∈ •t, M(p) ≥ 1. Such a transition can be executed, leading to a marking

M ′ df

= M − •t + t•. We denote this by M [t〉M ′. The set of reachable markings of
Σ is the smallest (w.r.t. set inclusion) set [M0〉 containing M0 and such that if
M ∈ [M0〉 and M [t〉M ′ (for some t ∈ T) then M ′ ∈ [M0〉.

A net system Σ is safe if for every reachable marking M , M(P) ⊆ {0, 1};
and bounded if there is k ∈ N such that M(P) ⊆ {0, . . . , k}, for every reachable
marking M .

Branching processes Two nodes (places or transitions), y and y′, of a net
N = (P, T, F) are in conflict, denoted by y#y′, if there are distinct transitions

Parallelisation of the Net Unfolding Algorithm 3

t, t′ ∈ T such that •t∩ •t′ 6= ∅ and (t, y) and (t′, y′) are in the reflexive transitive
closure of the flow relation F , denoted by �. A node y is in self-conflict if y#y.

An occurrence net is a net ON
df

= (B, E, G) where B is the set of conditions
(places) and E is the set of events (transitions). It is assumed that: ON is acyclic
(i.e. � is a partial order); for every b ∈ B, |•b| ≤ 1; for every y ∈ B ∪E, ¬(y#y)
and there are finitely many y′ such that y′ ≺ y, where ≺ denotes the irreflexive
transitive closure of G. Min(ON) will denote the set of minimal elements of
B ∪ E with respect to �. The relation ≺ is the causality relation. Two nodes
are concurrent, denoted y co y′, if neither y#y′ nor y � y′ nor y′ � y. We also
denote by x co C, where C is a set of pairwise concurrent nodes, the fact that
a node x is concurrent to each node from C. Two events e and f are separated
if there is an event g such that e ≺ g ≺ f .

A homomorphism from an occurrence net ON to a net system Σ is a mapping
h : B ∪ E → P ∪ T such that: h(B) ⊆ P and h(E) ⊆ T ; for all e ∈ E, the
restriction of h to •e is a bijection between •e and •h(e); the restriction of h

to e• is a bijection between e• and h(e)•; the restriction of h to Min(ON) is
a bijection between Min(ON) and M0; and for all e, f ∈ E, if •e = •f and
h(e) = h(f) then e = f . If h(x) = y then we will often refer to x as y-labelled.

A branching process of Σ ([4]) is a quadruple π
df

= (B, E, G, h) such that
(B, E, G) is an occurrence net and h is a homomorphism from ON to Σ. A
branching process π′ = (B′, E′, G′, h′) of Σ is a prefix of a branching process
π = (B, E, G, h), denoted by π′ v π, if (B′, E′, G′) is a subnet of (B, E, G) such
that: if e ∈ E′ and (b, e) ∈ G or (e, b) ∈ G then b ∈ B′; if b ∈ B′ and (e, b) ∈ G

then e ∈ E′; and h′ is the restriction of h to B′ ∪ E′. For each Σ there exists
a unique (up to isomorphism) maximal (w.r.t. v) branching process, called the
unfolding of Σ.

An example (based on the one in [7]) of a safe net system and two of its
branching processes is shown in Figure 1, where the respective homomorphisms h

are shown by placing the names of the nodes of the net system in Figure 1(a)
inside the conditions and events of the two branching processes. Note that the
branching process in Figure 1(b) is a prefix of that in Figure 1(c).

Sometimes it is convenient to start a branching process with a (virtual) initial
event ⊥, which has the postset Min(ON), empty preset, and no label. We will
assume that h(⊥)• = M0.

Configurations and cuts A configuration of an occurrence net ON is a set of
events C such that for all e, f ∈ C, ¬(e#f) and, for every e ∈ C, f ≺ e implies

f ∈ C. The configuration [e]
df

= {f | f � e} is called the local configuration of
e ∈ E. A set of conditions B′ such that for all distinct b, b′ ∈ B′, b co b′, is
called a co-set. A cut is a maximal (w.r.t. set inclusion) co-set. Every marking
reachable from Min(ON) is a cut.

Let C be a finite configuration of a branching process π. Then Cut(C)
df

=
(Min(ON) ∪ C•) \ •C is a cut; moreover, the multiset of places h(Cut(C)) is a
reachable marking of Σ, denoted Mark (C). A marking M of Σ is represented
in π if the latter contains a finite configuration C such that M = Mark (C).

4 K.Heljanko, V.Khomenko and M.Koutny

(a)

s1 s2

s3 s4 s5

s6 s7

t1 t2 t3

t6 t7

t4 t5

(b)

s1 s2

t1 t2 t3

s3 s4 s5

t4 t5

s6 s7 s6 s7

t6 t7 t6 t7

s1 s2 s1 s2

(c)

s1 s2

t1 t2 t3

s3 s4 s5

t4 t5

s6 s7 s6 s7

t6 t7 t6 t7

s1 s2 s1 s2

t1 t2 t3 t1 t2 t3

s3 s4 s5 s3 s4 s5

t4 t5 t4 t5

s6 s7 s6 s7 s6 s7 s6 s7

Fig. 1. A net system (a) and two of its branching processes (b,c).

Parallelisation of the Net Unfolding Algorithm 5

Every marking represented in π is reachable, and every reachable marking is
represented in the unfolding of Σ.

A branching process π of Σ is complete if for every reachable marking M of
Σ: (i) M is represented in π; and (ii) for every transition t enabled by M , there
is a finite configuration C and an event e 6∈ C in π such that M = Mark (C),
h(e) = t, and C ∪ {e} is a configuration.

ERV unfolding algorithm Although, in general, the unfolding of a finite
bounded net system Σ may be infinite, it is always possible to truncate it and
obtain a finite complete prefix, PrefΣ . A technique for this, based on choosing
an appropriate set Ecut of cut-off events, beyond which the unfolding is not
generated, was proposed in [18]. One can show ([6, 9]) that it suffices to designate
an event e newly added during the construction of PrefΣ as a cut-off event, if the
already built part of a prefix contains a corresponding configuration C without
cut-off events, such that Mark (C) = Mark ([e]) and C � [e], where � is an
adequate order, defined in the following way ([6, 7]).

Definition 1. A strict partial order � on the finite configurations of the un-
folding of a net system is an adequate order if

– � is well-founded,
– � refines ⊂, i.e., C1 ⊂ C2 ⇒ C1 � C2,
– � is preserved by finite extensions, i.e., if C1�C2 and Mark (C1) = Mark (C2)

then C1 ⊕ E � C2 ⊕ IC2

C1
(E) for all finite extensions C1 ⊕ E of C1.

Here C ⊕ E denotes the fact that C ∪ E is a configuration and C ∩ E = ∅, and
IC2

C1
is a mapping from the finite extensions of C1 onto the finite extensions of

C2, i.e., it maps C1 ⊕ E onto C2 ⊕ IC2

C1
(E) (see [6, 7] for details).

We will also write e � f whenever [e] � [f].
In order to detect cut-off events earlier (and thus decrease the size of the

resulting complete prefix), it is advantageous to choose ‘dense’ (ideally, total)
orders, and [6, 7] propose such an order �erv for safe net systems; moreover, it
is shown there that if a total order is used then the number of non-cut-off events
in the resulting prefix will never exceed the number of reachable markings in
the original net system (though usually it is much smaller). The �erv order
refines the McMillan’s partial adequate order �m ([6, 18]), which is defined as
C1 �m C2 ⇐⇒ |C1| < |C2|.

It is often assumed that a corresponding configuration of an event e is the
local configuration of some event f , which is called a correspondent of a cut-off
event e.1

The unfolding algorithm presented in [5–7, 15, 16] (the basic algorithm) is
parameterised by an adequate order � and can be formulated as shown in Fig-
ure 2. It is assumed that the function call PotExt(UnfΣ) finds the set of possible
extensions of a branching process UnfΣ (see the definition below).
1 The more general case of non-local corresponding configurations involves performing

a reachability analysis each time when checking whether an event is cut-off, which
can be quite time consuming ([9]).

6 K.Heljanko, V.Khomenko and M.Koutny

input : Σ = (N, M0) — a bounded net system
output : Unf

Σ
— a finite and complete prefix of Σ’s unfolding

Unf
Σ
← the empty branching process

add instances of the places from M0 to Unf
Σ

pe ← PotExt(Unf
Σ

)
cut off ← ∅
while pe 6= ∅ do

choose e ∈ pe such that e ∈ min�pe
if [e] ∩ cut off = ∅
then

add e and new instances of the places from h(e)• to Unf
Σ

pe ← PotExt(Unf
Σ

)
if e is a cut-off event of Unf

Σ
then cut off ← cut off ∪ {e}

else pe ← pe \ {e}

Fig. 2. The unfolding algorithm presented in [6].

Definition 2. Let π be a branching process of a net system Σ, and e be one
of its events. A possible extension of π is a pair (t, D), where D is a co-set in
π and t is a transition of Σ, such that h(D) = •t and π contains no t-labelled
event with the preset D. It is a (π, e)-extension if e• ∩ D 6= ∅, and e and (t, D)
are not separated.

Note that in the algorithm, and further in the paper, we do not distinguish
between a possible extension (t, D) and a (virtual) t-labelled event e with the
preset D, provided that this does not create an ambiguity. We will also denote by
Unf S

Σ , where S ⊆ PotExt(UnfΣ), the branching process obtained by adding
the events from a set S of possible extensions of UnfΣ (together with their
postsets) to UnfΣ .

When � is a total order, the algorithm in Figure 2 is deterministic, and thus
always yields the same result for a given net system. A surprising fact is that
this is also the case for an arbitrary adequate order.

Theorem 1. If Σ is a bounded net system then the prefixes produced by two
arbitrary runs of the algorithm in Figure 2 are isomorphic.

The above result is also valid in the case when only local corresponding config-
urations are allowed.

For efficiency reasons, the call to PotExt(UnfΣ) in the body of the main
loop of the algorithm in Figure 2 can be replaced by a call

UpdatePotExt(pe ,UnfΣ , e) ,

which finds all (π, e)-extensions and inserts such events into pe according to the
� order on their local configurations (see [5–7, 16]).

Parallelisation of the Net Unfolding Algorithm 7

input : Σ = (N, M0) — a bounded net system
output : Unf

Σ
— a finite and complete prefix of Σ’s unfolding

Unf
Σ
← the empty branching process

add instances of the places from M0 to Unf
Σ

pe ← PotExt(Unf
Σ

)
cut off ← ∅
while pe 6= ∅ do

choose Sl ∈ Slices(pe)
if ∃e ∈ Sl : [e] ∩ cut off = ∅
then

for all e ∈ Sl in any order refining � do
if [e] ∩ cut off = ∅
then

add e and new instances of the places from h(e)• to Unf
Σ

if e is a cut-off event of Unf
Σ

then cut off ← cut off ∪ {e}
pe ← PotExt(Unf

Σ
)

else pe ← pe \ Sl

Fig. 3. Unfolding algorithm with slices.

Almost all the steps of the unfolding algorithm can be implemented quite
efficiently. The only hard part is computing the set of possible extensions carried
out on each iteration of the main loop of the algorithm (a decision version of
this problem is, in fact, NP-complete, see [8, 10]), and in this paper we will focus
our attention on its parallelisation.

3 Unfolding with slices

We now present a general idea behind the parallel unfolding algorithm proposed
in this paper. After that we explain how it can be implemented in the case when
� refines �m , and discuss further improvements aimed at reducing the amount
of performed work.

When looking at the algorithm in Figure 2, one may observe that a possible
way of introducing parallelism would be to process several events from pe simul-
taneously, rather than to insert them one-by-one. This is done in the algorithm
in Figure 3 (the slicing algorithm), where the main loop of the algorithm has
been modified in the following way. A set of events Sl ∈ Slices(pe), called a
slice of the current set of possible extensions, is chosen on each iteration and
processed as a whole, without taking any other events out from pe .

It is assumed that for every Sl ∈ Slices(pe): (i) Sl is a non-empty subset
of pe ; and (ii) for every e ∈ Sl , if g is an arbitrary event in the unfolding
of Σ such that f ≺ g for some f ∈ pe, or g ∈ pe \ Sl , then g 6 e. (*)

8 K.Heljanko, V.Khomenko and M.Koutny

In particular, if f ∈ pe and f � e for some e ∈ Sl , then f ∈ Sl . The set
Slices(pe) is chosen so that it is non-empty whenever pe is non-empty. The
algorithm in Figure 2 can be seen as a special case of that based on slices, by

setting Slices(pe)
df

= {{e} | e ∈ min�pe}.
Note that neither any event in pe \ Sl nor any causal descendant of an event

in pe can be less w.r.t. � than some event in Sl . Therefore, if e ∈ Sl is a cut-off
event then any of its corresponding configurations is in Unf Sl

Σ , where UnfΣ is the
already built part of the prefix. This essentially means that the events from Sl
can be inserted into the prefix in any order consistent with � (the cut-off events
in Sl must be identified while doing so). Such a modification of the unfolding
algorithm is correct due to the following result.

Lemma 1. If Σ is a bounded net system then the algorithm in Figure 3 ter-
minates with a prefix which can be produced by some run of the algorithm in
Figure 2.

Although the result given by Lemma 1 is sufficient to prove the correctness of
our algorithm, a somewhat stronger result, in fact, holds.

Theorem 2. Let Pref ′
Σ and Pref ′′

Σ be the prefixes of the unfolding of a bounded
net system Σ, produced by arbitrary runs of the basic and slicing algorithms
respectively. Then Pref ′

Σ and Pref ′′Σ are isomorphic.

This result, together with Theorem 1, suggests that it is possible to define the
‘canonical’ prefix, which is always generated by the algorithms in Figures 2 and 3.
The theory of such prefixes is developed in [20], where a simpler proof of the
correctness of the algorithm in Figure 3 (comparing to the one given in [12]) is
provided.

Similarly as for the basic algorithm, the call to PotExt in the body of the
main loop of the slicing algorithm can be replaced by a call

UpdatePotExt(pe,UnfΣ ,Sl)

which finds all events f such that f is an (UnfΣ, e)-extension for some e ∈
Sl . The slicing version of the unfolding algorithm provides a basis for sub-
sequent parallelisation, since now possible extensions are derived not from a
single event, but rather from a set of events Sl ; it turns out that comput-
ing UpdatePotExt(pe ,UnfΣ,Sl) can be effectively split into non-overlapping
parts and distributed among several processors. Of course, for such scheme to
work, we need to ensure that the sets in Slices(pe) do satisfy the condition (*)
formulated at the beginning of this section.

3.1 The case of an adequate order refining �m

When � refines �m (this is the case for �erv and for most other orders pro-
posed in literature), there is a simple scheme for choosing an appropriate set
Slices(pe), by setting it to contain all non-empty closed w.r.t. � sets of events

Parallelisation of the Net Unfolding Algorithm 9

from pe whose local configurations have the minimal size. Then the condition
(*) holds. Indeed, suppose that e ∈ Sl ∈ Slices(pe) and g be an event in the
unfolding of Σ. If f ≺ g for some f ∈ pe then it is the case that |[g]| > |[e]|.
Hence, since � refines �m , g 6 e. Moreover, if g ∈ pe \ Sl then g 6 e as Sl is a
closed w.r.t. � set of events from pe .

Notice that in order to achieve better parallelisation, it is advantageous to
choose large slices, since this maximizes the number of tasks which can be per-
formed in parallel. Therefore, we can simply choose as a slice the set of all events
from pe, whose size of the local configuration is minimal (note that this set is
closed w.r.t. �, and, therefore, is in Slices(pe)). With this scheme, we may sim-
ply consider pe as a sequence Sl 1,Sl2, . . . of sets of events such that Sl i contains
the events whose local configurations have the size i (clearly, in each step of the
algorithm there is only a finite number of non-empty Sl i’s). Thus inserting an
event e into the queue is reduced to adding it into the set Sl |[e]|, and choosing
a slice in the main loop of the algorithm can be replaced by a call Front(pe),
returning the first non-empty set Sl i in pe. Now all the required operations with
the queue can be performed without comparisons of configurations at all.

The resulting algorithm is shown in Figure 4. It uses the strategy of finding
cut-offs ‘in advance’ outlined in [15], i.e., it checks the cut-off criterion as soon as
a new possible extension is computed. This guarantees that at the beginning of
each iteration of the main loop there are no cut-off events in Front(pe), and thus
the restriction that the events from Sl must be processed in an order consistent
with � can be safely left out. What is more, this strategy allows one to move
the code computing the cut-off criterion into UpdatePotExt — the part of
the algorithm which is executed in parallel.

When � is a total adequate order, each time two configurations are com-
pared w.r.t. �, one of the events becomes a cut-off event, i.e., the number of
the performed comparisons is exactly |Ecut | (rather than O(|E| log |E|) as in
former implementations), and the algorithm achieves noticeable speedup even
when only one processor is available (see Section 4). One can reduce the num-
ber of comparisons even further, using the fact that the local configurations of
the events which are already in the prefix are always less than those of newly
computed possible extensions. But this would provide almost no speedup, since
in this case the sizes of local configurations to be compared always differ, and
so the comparisons are fast (we assume that the size of the local configuration
is attached to an event).

3.2 Parallelising the unfolding algorithm

As it was already mentioned, the events in Sl can be processed in any order.
This leads to a possibility of parallelising the unfolding algorithm when |Sl | > 1.
There are only two kinds of dependencies between the events in Sl . First, the
cut-off events must be handled properly; this part of the algorithm was explained
in the previous section. Second, the (UnfΣ, f)-extensions for f ∈ Sl may have in
their presets conditions produced by other events from Sl , inserted into the prefix
before f . This can be dealt with by inserting all the events from Sl into UnfΣ

10 K.Heljanko, V.Khomenko and M.Koutny

input : Σ = (N, M0) — a bounded net system
output : Unf

Σ
— a finite and complete prefix of Σ’s unfolding

Unf
Σ
← the empty branching process

pe ← {⊥}
cut off ← ∅
while pe 6= ∅ do

Sl ← Front (pe)
pe ← pe \ Sl

for all e ∈ Sl do
add e and new instances of the places from h(e)• to Unf

Σ

for all e ∈ Sl do parallel
UpdatePotExt(pe,Unf

Σ
, e)

for all e ∈ cut off do
add e and new instances of the places from h(e)• to Unf

Σ

procedure UpdatePotExt(pe,Unf
Σ

, e)
Ignore ← the set of events added into Unf

Σ
after e

Unf
dee
Σ
← Unf

Σ
with f and f• removed, for all f ∈ Ignore

for all (Unf
dee
Σ

, e)-extensions g do
if ∃g′ ∈ Unf

Σ
∪ pe such that Mark ([g]) = Mark ([g′]) and g′

� g
then cut off ← cut off ∪ {g}
else

pe ← pe ∪ {g}
if ∃g′ ∈ Unf

Σ
∪ pe such that Mark([g]) = Mark ([g′]) and g � g′

then
cut off ← cut off ∪ {g′}
pe ← pe \ {g′}

Fig. 4. A parallel algorithm for unfolding Petri nets.

before the loop for computing possible extensions starts, and ignoring some of
the inserted events in UpdatePotExt (see Figure 4).

Since UpdatePotExt is the most time-consuming part of the algorithm,
this strategy usually provides quite good parallelisation. In the majority of our
experiments, there were less than 200 iterations of the main loop, so the time
spent on executing the sequential parts of the algorithm was negligible (this fact
was confirmed by profiling the program). The first and the last few iterations
usually allowed to execute 5–20 UpdatePotExt’s in parallel (which is already
enough to provide quite good parallelism for most of the existing shared memory
architectures), whereas the middle ones were highly parallel (from several hun-
dreds up to several thousands tasks could potentially be executed in parallel).
Thus the scalability of the algorithm is usually very good.

Of course, bad examples do exist, in particular those having ‘long and narrow’
unfoldings, e.g., the Buf100 net (see Section 4). But such examples are very rare

Parallelisation of the Net Unfolding Algorithm 11

in practice. Intuitively, they have only a small number of different partial order
executions of the same length. This means that they have a very small number
of conflicts and a low degree of concurrency (as for the Buf100 example, it has
no conflicts at all and allows only few transitions to be executed concurrently).
Our experiments show that as soon as the initial conflicts are encountered and
added into the prefix being built, the number of events in Front(pe) grows very
quickly from step to step.

We implemented our algorithm on a shared memory architecture. It should
not be hard to implement it on a distributed memory architecture, e.g., on a net-
work of workstations. In that case, each node keeps a local copy of the built part
of the prefix and synchronises it with the master node at the beginning of each
iteration of the main loop. The master node is responsible for maintaining the
queue of possible extensions, checking the cut-off criterion, and for distributing
the work between the slaves; the slaves compute possible extensions and send
them to the master.

The idea of slicing the queue also may result in developing a more efficient
sequential algorithm. Indeed, we now compute possible extensions for all events
in a slice and, therefore, can merge common parts of the work. The technical
report [12] describes a simple improvement taking advantage of this idea.

4 Experimental results

We used the sequential unfolding algorithm described in [15, 16] as the basis for
our parallel implementation and for the comparison (the two implementations
share a lot of code, which makes the comparison more fair). In order to exper-
imentally confirm the correctness of the developed parallel implementation, we
checked that the produced prefixes are isomorphic to those generated by the se-
quential version of the algorithm.2 For this, a special utility for ‘sorting’ prefixes
was developed, so that if two prefixes were isomorphic then after ‘sorting’ they
become equal. It works in the following way:

1. Separate cut-off events, pushing them to the end.
2. Sort non-cut-off events according to �erv .
3. Separate post-cut-off conditions, pushing them to the end.
4. Sort non-post-cut-off conditions according to the following ordering: c′ l c′′

if e′ �erv e′′, or e′ = e′′ and h(c′) � h(c′′), where {e′} = •c′, {e′′} = •c′′, and
� is an arbitrary total order on the places of the original net system (e.g.,
the size-lexicographical ordering on their names).
Note that e and e′ are non-cut-off events, and that the of non-cut-off events
of the prefix have already been sorted according to �erv by this step.

5. Sort the presets of the events (including the cut-offs) according to l.
6. Sort the cut-off events according to the following ordering: e′le′′ if •e′lsl

•e′′,
or •e′ = •e′′ and h(e′) � h(e′′), where lsl is the size-lexicographical order,

2 Note that due to Theorem 1, two algorithms using the same adequate order produce
isomorphic prefixes (provided that the implementations are correct). See also [20].

12 K.Heljanko, V.Khomenko and M.Koutny

built upon l, and � is an arbitrary total order on the set of the transitions
of the original net system (e.g., the size-lexicographical ordering on their
names).
Note that the conditions which can appear in the presets of the events have
already been sorted by this step.

7. Sort post-cut-off conditions according to l.
Note that all events have already been sorted by this step.

8. Sort the postsets of the events (including the cut-offs) according to the l

ordering.
Note that all conditions have already been sorted by this step.

This is an enhanced version of the approach described in [15, 16], the only
difference is that we can no longer assume that the non-cut-off events in prefixes
produced by our algorithm are sorted according to �erv , and therefore have to
explicitly sort them (step 2).

Test cases The popular set of benchmark examples, collected by J.C. Cor-
bett ([3]), K. McMillan, S. Melzer, and S. Römer was attempted3 (this set was
also used in [5, 9–11, 13, 15, 16, 19]). Also we used the Rnd(m, n), Spa(n), and
Spa(m, n) series described in [15, 16]. The experiments were conducted on a
workstation with four PentiumTM III/500MHz processors and 512M RAM. The
parallel algorithm was implemented using Posix threads.

The results of our experiments are summarised in table 1. The meanings of
the columns are as follows (from left to right): the name of the problem; the
number of places and transitions in the original net; the number of conditions,
events and cut-off events in the built complete prefix; the time spent by the
sequential unfolder described in [15, 16]; the time spent by the parallel unfolder
with different number N of working threads; the average/maximal size of a slice
(this characterises the number of independent tasks which may be performed in
parallel on each iteration of the main loop). Although, due to the limited number
of processors, we could not exploit all the arising parallelism in our experiments,
this data shows the potential scalability of the problem.

It is interesting to note that the new algorithm with only one working thread
(N = 1) works faster than the sequential unfolder described in [15, 16]. This is
so because it performs much less comparisons of configurations (see Section 3.1)
and due to the improvement mentioned at the end of Section 3.2.

One can see that our algorithm does not achieve linear speedup. This was a
surprising discovery, since the potential parallelism (the last column in the table)
is usually very high. Profiling shows that the program spends more than 95%
of time in a function which neither acquires locks, nor performs system calls,
so that the contention on locks cannot be the reason for such a slowdown. The
only rational explanation we could think of is the bus contention: the mentioned
function tries to find co-sets forming presets of possible extensions, exploring

3 We chose only those examples from this set whose unfolding time was large enough
to be of some interest.

Parallelisation of the Net Unfolding Algorithm 13

the build part of the prefix. It is a fairly large pointer-linked structure, and the
processors have to intensively access the memory in a quite unsystematic way,
so that the processors’ caches often have to redirect the access to the RAM.
Therefore, the processors are forced to contend for the bus, and the program
slows down. Since this explanation might seem superficial, we decided to establish
that bus contention does reveal itself in practice, and the following experiment
was performed. Several processors intensively read random locations in a large
array and performed some fake computation with the fetched values. The total
number of fetches was fixed and evenly distributed among them. In the absence
of bus contention, the time spent by such a program would decrease linearly in
the number of used processors, but we observed the degradation of speed similar
to that shown by our unfolding algorithm. We hope that future generations of
hardware will alleviate this problem, e.g., by increasing the bus frequency or by
introducing a separate bus for each processor.

5 Conclusions

Experimental results indicate that the algorithm we proposed in this paper can
achieve significant speedups, at least in theory. But this is still not enough for
practical size problems, because the number of processors in shared memory
multiprocessors is usually quite small. Therefore, generating unfoldings is still
a bottleneck for the unfolding based verification of Petri nets. Our future re-
search will aim at developing an effective implementation of this algorithm for
the distributed-memory or hybrid architecture. Another promising area is the
approach allowing non-local correspondent configurations, proposed in [9]. It
sometimes allows to significantly reduce the size of complete prefixes. We plan
to investigate if this idea can be efficiently implemented.

Acknowledgements

This research was supported by an ORS Awards Scheme grant ORS/C20/4 and
by an EPSRC grant GR/M99293. The financial support of Academy of Finland
(Projects 43963, 47754) and Foundation for Technology (Tekniikan Edistämis-
säätiö) is also gratefully acknowledged.

References

1. E. M. Clarke, E. A. Emerson and A.P. Sistla: Automatic Verification of Finite-state
Concurrent Systems Using Temporal Logic Specifications. ACM TOPLAS 8 (1986)
244–263.

2. E. M. Clarke, O. Grumberg, and D.Peled: Model Checking. MIT Press (1999).
3. J. C. Corbett: Evaluating Deadlock Detection Methods. University of Hawaii at

Manoa (1994).
4. J. Engelfriet: Branching processes of Petri Nets. Acta Informatica 28 (1991) 575–

591.

14 K.Heljanko, V.Khomenko and M.Koutny

5. J. Esparza and S. Römer: An Unfolding Algorithm for Synchronous Products of
Transition Systems. Proc. of CONCUR’99, Springer-Verlag, Lecture Notes in Com-
puter Science 1664 (1999) 2–20.

6. J. Esparza, S. Römer and W. Vogler: An Improvement of McMillan’s Unfolding
Algorithm. Proc. of TACAS’96, Margaria T., Steffen B. (Eds.). Springer-Verlag,
Lecture Notes in Computer Science 1055 (1996) 87–106.

7. J. Esparza, S. Römer and W. Vogler: An Improvement of McMillan’s Unfolding
Algorithm. Formal Methods in System Design (2001) to appear.

8. J. Esparza and C. Schröter: Reachability Analysis Using Net Unfoldings. Proc.
of Workshop of Concurrency, Specification & Programming 2000 (CS&P’2000),
H.D. Burkhard, L. Czaja, A. Skowron, and P. Starke, (Eds.). Informatik-Bericht
140, vol. 2. Humboldt-Universitat zu Berlin (2000) 255–270.

9. K. Heljanko: Minimizing Finite Complete Prefixes. Proc. of Workshop Concur-
rency, Specification and Programming 1999 (CS&P’99), (1999) 83–95.

10. K. Heljanko: Deadlock and Reachability Checking with Finite Complete Prefixes.
Technical Report A56, Laboratory for Theoretical Computer Science, Helsinki Uni-
versity of Technology, Espoo, Finland (1999).

11. K. Heljanko: Using Logic Programs with Stable Model Semantics to Solve Deadlock
and Reachability Problems for 1-Safe Petri Nets. Fundamentae Informaticae 37(3)
(1999) 247–268.

12. K. Heljanko, V. Khomenko and M. Koutny: Parallelisation of the Petri Net Unfold-
ing Algorithm. Technical Report CS-TR-733, Department of Computing Science,
University of Newcastle (2001).

13. V.Khomenko and M. Koutny: Verification of Bounded Petri Nets Using Integer
Programming. Technical Report CS-TR-711, Department of Computing Science,
University of Newcastle (2000).

14. V.Khomenko and M. Koutny: LP Deadlock Checking Using Partial Order Depen-
dencies. Proc. of CONCUR’2000, Palamidessi C. (Ed.). Springer-Verlag, Lecture
Notes in Computer Science 1877 (2000) 410–425.

15. V.Khomenko and M. Koutny: An Efficient Algorithm for Unfolding Petri Nets.
Technical Report CS-TR-726, Department of Computing Science, University of
Newcastle (2001).

16. V.Khomenko and M. Koutny: Towards An Efficient Algorithm for Unfolding Petri
Nets. Proc. of CONCUR’2001, Larsen P.G., Nielsen M. (Eds.). Springer-Verlag,
Lecture Notes in Computer Science 2154 (2001) 366–380.

17. K. L. McMillan: Using Unfoldings to Avoid State Explosion Problem in the Verifi-
cation of Asynchronous Circuits. Proc. of 4th CAV, Springer-Verlag, Lecture Notes
in Computer Science 663 (1992) 164–174.

18. K. L. McMillan: Symbolic Model Checking. PhD thesis, CMU-CS-92-131 (1992).
19. S.Melzer and S. Römer: Deadlock Checking Using Net Unfoldings. Proc. of Com-

puter Aided Verification (CAV’97), O. Grumberg (Ed.). Springer-Verlag, Lecture
Notes in Computer Science 1254 (1997) 352–363.

20. W. Vogler, V. Khomenko, and M. Koutny: Canonical Prefixes of Petri Net Unfold-
ings. Technical Report CS-TR-741, Department of Computing Science, University
of Newcastle (2001).

Parallelisation of the Net Unfolding Algorithm 15

Problem Net Unfolding Time, [s]
|S| |T | |B| |E| |Ecut| Seq N=1 N=2 N=3 N=4 a/m |Sl |

Buf(100) 200 101 10101 5051 1 31 18 13 13 13 1.94/9
Byz(1,4) 504 409 42276 14724 752 246 183 110 84 78 184/1536
Dme(7) 470 343 9542 2737 49 7 5 2 2 1 42.67/56
Dme(8) 537 392 13465 3896 64 16 12 6 5 4 56.35/72
Dme(9) 604 441 18316 5337 81 33 26 14 11 10 72.00/90
Dme(10) 671 490 24191 7090 100 61 49 28 21 19 89.62/110
Dme(11) 738 539 31186 9185 121 105 86 50 39 35 109/132
Dph(6) 57 92 14590 7289 3407 10 7 3 3 2 65.80/135
Dph(7) 66 121 74558 37272 19207 286 211 126 97 90 235/538
Elev(4) 736 1939 32354 16935 7337 73 42 25 19 17 310/1456
Ftp(1) 176 529 178085 89046 35197 2820 1609 975 761 714 1224/3918
Furn(3) 53 99 30820 18563 12207 30 15 9 7 5 132/510
Gasnq(4) 258 465 15928 7965 2876 19 11 6 5 4 145/392
Gasnq(5) 428 841 100527 50265 18751 884 553 334 259 243 716/2000
Gasq(4) 1428 2705 19864 9933 4060 30 18 11 7 6 184/720
Key(3) 129 133 13941 6968 2911 10 7 4 3 2 62.42/148
Key(4) 164 174 135914 67954 32049 935 806 485 379 354 466/1311
Mmgt(3) 122 172 11575 5841 2529 6 4 2 1 1 138/423
Mmgt(4) 158 232 92940 46902 20957 556 339 205 159 150 837/2752
Q(1) 163 194 16123 8417 1188 41 25 15 11 10 103/412
Rw(12) 63 313 98378 49177 45069 15 6 3 2 2 316/924
Sync(3) 106 270 28138 15401 5210 79 62 36 27 24 124/369

Rnd(5,14) 70 570 802907 185094 156417 546 471 284 225 215 585/1971
Rnd(5,15) 75 575 842181 195228 163722 665 567 345 274 259 606/1971
Rnd(5,16) 80 580 886158 206265 171957 787 674 413 329 312 624/2013
Rnd(5,17) 85 585 987605 229284 191576 942 822 503 404 382 608/2066
Rnd(5,18) 90 590 1025166 239069 198524 1091 956 584 469 448 614/2114
Rnd(10,4) 40 540 2344821 252320 237000 216 137 80 61 55 730/2435
Rnd(10,5) 50 550 2485903 271083 250600 354 236 140 108 101 759/2413
Rnd(10,6) 60 560 2535070 280560 255010 526 360 216 168 159 751/2345
Rnd(10,7) 70 570 2537646 285323 254767 724 510 306 242 229 711/2323
Rnd(10,8) 80 580 2534970 289550 254000 953 681 411 327 312 790/2125
Rnd(15,2) 30 530 1836868 135307 128358 70 17 9 6 5 695/2046
Rnd(15,3) 45 545 3750719 271074 255560 270 128 74 56 49 913/2147
Rnd(15,4) 60 560 3787575 280560 257515 487 277 162 128 117 886/2333
Rnd(15,5) 75 575 3795090 288075 257515 776 480 286 228 214 826/2488
Rnd(20,2) 40 540 4744587 256197 245750 176 42 21 14 11 871/2808
Rnd(20,3) 60 560 5040080 280560 260020 447 203 118 90 82 856/2262
Rnd(20,4) 80 580 5050100 290580 260020 825 456 271 213 201 873/2535

Spa(7) 167 241 52516 18712 9937 81 48 28 21 19 214/784
Spa(8) 190 385 216772 76181 45774 1005 603 362 280 264 633/2612
Spa(9) 213 657 920270 320582 209449 13512 8066 4854 3750 3537 2268/9469
Spa(2,3) 144 161 15690 5682 2512 8 4 2 2 1 85.68/299
Spa(2,4) 190 385 253219 88944 52826 1412 872 524 406 382 803/3138
Spa(3,2) 144 161 15690 5682 2512 8 4 2 2 1 85.68/299
Spa(3,3) 213 657 1142214 398850 256600 22011 13565 8171 6317 5943 2903/11807

Table 1. Experimental results.

