
Fundamenta Informaticae 34 (2000) 1�19 1IOS PressCoping With Strong Fairness �Timo LatvalaLaboratory for Theoretical Computer ScienceHelsinki University of TechnologyP.O. Box 9700FIN-02015 HUTFinlandTimo.Latvala@hut.�Keijo HeljankoLaboratory for Theoretical Computer ScienceHelsinki University of TechnologyP.O. Box 5400FIN-02015 HUTFinlandKeijo.Heljanko@hut.�
Abstract. We consider the veri�cation of linear temporal logic (LTL) properties of Petrinets, where the transitions can have both weak and strong fairness constraints. Allowing thetransitions to have weak or strong fairness constraints simpli�es the modeling of systems inmany cases. We use the automata theoretic approach to model checking. To cope with thestrong fairness constraints e�ciently we employ Streett automata where appropriate. Wepresent memory e�cient algorithms for both the emptiness checking and counterexamplegeneration problems for Streett automata.Keywords: Veri�cation, model checking, fairness, Streett automata, counterexamples.�This research was funded by the National Technology Agency, Nokia Research Center, Helsinki TelephoneCorporation and the Finnish Rail Administration. The second author gratefully acknowledges the �nancialsupport of Helsinki Graduate School on Computer Science and Engineering (HeCSE), the Academy of Finland(Project 47754), the Emil Aaltonen Foundation and the Nokia Foundation.

2 Latvala and Heljanko /Coping with Strong Fairness1. IntroductionA concurrent and distributed system can in many cases be an e�cient and �exible solution fora system developer. Unfortunately concurrent and distributed systems are notoriously di�cultto design and implement. They can contain errors which can be extremely hard to �nd.The automata theoretic approach to model checking uses the connection between automataon in�nite objects and temporal logic to verify that a system meets its speci�cation. Two featuresof model checking which have made it popular are that it can relatively easy be automated, andthat it is often able to produce a counterexample when the system does not meet its speci�cation.The applicability of model checking is, however, seriously limited by the state space explosionproblem, see e.g. [18]. One remedy to this problem is performing the model checking on-the-�y.This means that errors might be found without constructing the complete state space of thesystem being model checked.When constructing a formal model of a system, di�erent fairness assumptions are often em-ployed [5]. Current model checkers for linear temporal logic (LTL) often employ Büchi automata.Büchi automata can express weak fairness assumptions e�ciently. Since e�cient modeling of sys-tems in many cases requires strong fairness [5], coping with it in an e�cient manner would bedesirable. One could argue that since it is possible to express strong fairness in LTL, one canalways verify properties in the form �fairness) property �. The question is how practical this isfrom a modeling perspective, and how computationally e�cient this approach is. We will discussthe problems associated with this approach in detail in Sect. 2.A class of automata that can handle strong fairness constraints e�ciently are the Streettautomata, also known as the complemented pairs automata, see e.g. [17]. In this paper we presentan on-the-�y veri�cation method based on a combination of Büchi and Streett automata.The main contributions of this work are the following. We present how the LTL modelchecking problem for Petri nets, with fairness constraints imposed transitions, can be solvedusing Streett automata emptiness checking in a straightforward manner. We present an on-the-�y LTL model checking procedure which uses the emptiness checking for generalized Büchiautomata to potentially avoid some of the more costly Streett automata emptiness checks. Wepresent simple and memory e�cient algorithms for Streett automata emptiness checking andcounterexample generation.The rest of this paper is structured as follows. In Sect. 2 we introduce Petri nets and de�nea P/T net with fairness constraints. Section 3 covers the needed theory for automata on in�nitewords. The standard way of performing on-the-�y model checking, and our extension of it, isdiscussed in Sect. 4. In Sect. 5 we propose an algorithm for performing the emptiness checkingof Streett automata and a new algorithm for �nding counterexamples. The counterexamplealgorithm is experimentally evaluated in Sect. 6. In Sect. 7 we present the conclusions anddiscuss directions for further work.

Latvala and Heljanko /Coping with Strong Fairness 32. Petri NetsPetri nets are a widely used model for concurrent and distributed systems. Here we brie�y de�nethe basic notation.De�nition 2.1. A net is triple N = hS; T; F i, where S is a set of places, T is a set of transitionssuch that S \ T = ; and F : (S � T) [(T � S) 7! N is a �ow relation.A marking of a net is a mapping M : S 7! N. We identify a marking M with a multi-setcontaining M(p) copies of p for every p 2 S. A tuple hN;M0i is a Place/Transition (P/T)net system if M0 is a marking of the net N . We say that a transition t 2 T is enabled in amarking M if 8s 2 S : F (s; t) � M(s). The function en(M) is de�ned to be a function fromthe set of markings to the power set of transitions, and it returns all enabled transitions in themarking M . If a transition t is enabled in a marking M , i.e. t 2 en(M), the transition t canoccur changing M into another marking M 0. The new marking M 0 is given by 8s 2 S :M 0(s) =M(s)� F (s; t) + F (t; s). The occurrence of a transition is denoted by M t!M 0.The behavior of a P/T net system can be described by a Kripke structure.De�nition 2.2. The Kripke structure of a P/T net system � = hS; T; F;M0i is a triple K =hR; �;M0i, where R, a set of reachable states, and �, the transition relation, are de�ned induc-tively as follows:1. M0 2 R2. If M 2 R and M t!M 0, then M 0 2 R and hM;M 0i 2 �.3. R and � have no other elements.The executions of the system are in�nite sequences M0M1M2 : : : of states in R, where M0 is theinitial state and (Mi;Mi+1) 2 � for all i � 0. In this work we only consider net systems with a�nite set of reachable states.An example. We consider an example system which we model with a P/T net system. Asimple mutual exclusion algorithm, known as the contentious mutex algorithm [12], functions inthe following way. We have two parallel processes l and r which at some point must use a sharedcritical resource, with the restriction that the resource may not be accessed simultaneously. Themutual exclusion is obtained by using a shared boolean variable key, which each process checksbefore using the shared critical resource. The algorithm can be modeled with a P/T net systemof Fig. 1. This P/T net model satis�es the mutual exclusion property, but if we carefully examinethe behavior of the model we notice that it allows executions of the system where one of theprocesses never is able to access the shared critical resource even if it is trying. It is possible for aprocess to in�nitely often use the shared critical resource without ever allowing the other processaccess. In many cases we expect this kind of unfair behavior to be impossible which is why wewould like to ignore it when applying model checking to the system. One possibility is to addan explicit scheduler to the model, formulate a fairness constraint in LTL for the scheduler andcheck properties of the form fairness) property . This solution has several drawbacks. Adding

4 Latvala and Heljanko /Coping with Strong Fairness

�
�
�

�
�
�

critical_l

pending_l

quiet_l

go_crit_l

exit_crit_l

request_l

�
�
�
�

�
�
�
�

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

key

quiet_r

pending_rgo_crit_r

exit_crit_r

request_r

critical_r

Figure 1. The contentious mutex algorithmschedulers to the model is cumbersome at best, and when the model is large and there are severalindependent entities which must be scheduled, it can be a challenging task. Another drawbackis that both the state space of the model and the automaton representing the property grow,which makes veri�cation harder. Each fairness constraint requires an additional LTL expressionand consequently the growth of the Büchi automaton expressing the property is potentiallyexponential in the number of fairness constraints, see e.g. [6]. Also, if the fairness constraintused refers to the �ring of a transition, say the transition t, then we have to add some state tothe model which corresponds to the property �the transition t has just �red� (because LTL isstate based and cannot thus in general express this property). Adding such things to the modelmakes the model with fairness constraints to have more reachable states, and/or less concurrencybetween transitions than the original P/T net model.An alternative solution we suggest here is to extend P/T nets with fairness constraints onthe transitions. For our purpose it is su�cient to distinguish between two notions of fairness. Wecan adapt the de�nitions used in [5] for P/T nets. Weak fairness requires that the occurrenceof a transition will not be inde�nitely postponed if it is continuously enabled. A weakly fairscheduler with a waiting queue is guaranteed to eventually schedule an event once the event hasentered the queue. Other examples where weak fairness is appropriate are systems with busywaiting or resource-allocation processes. Weak fairness does not, however, cover all situationsencountered in modeling. Quite a usual assumption made for communication protocols is thatif a message is sent in�nitely often it will eventually be successfully received. This assumptioncould be violated although the communication process would be weakly fair. Strong fairnessrequires that if a transition is in�nitely often enabled it must occur in�nitely often. Using strongfairness assumptions we can easily model the communciation process so that in�nitely often sentmessages are received in�nitely often.Adopting these assumptions to transitions in P/T nets we can de�ne fair P/T nets. (Notethat our notion of weak fairness di�ers slightly from Reisig's assumption of progress in [12].)

Latvala and Heljanko /Coping with Strong Fairness 5De�nition 2.3. A fair P/T net system is a tuple NF = hN;M0; fi, where N is a P/T net, M0an initial marking of the net and f : T 7! fnf ;wf ; sf g is a function which maps each transitionto a fairness requirement. Here we use �nf � for no fairness, �wf � for weak fairness and �sf � forstrong fairness.A Kripke structure does not properly describe the behavior of a fair P/T net system, becauseit does not take the fairness constraints into account. We extend the de�nition of a Kripkestructure to be able to describe the behavior of a fair P/T net system. A fair Kripke structure(FKS) [9] is a tuple KF = hR; �; r0;J ; Ci, where R is a set of states, � � R � R is a transitionrelation and r0 2 R is an initial state. Computations, i.e. fair executions of the system, arein�nite sequences � = r0r1r2 : : : of states in R that obey the fairness requirements (to be de�nedbelow), where r0 is the initial state, and for all i � 0, (ri; ri+1) 2 �. The fairness requirements arede�ned by a set of justice requirements1, or weak fairness requirements, J = fJ1; J2; : : : ; Jkgwhere Ji � R, and a set of compassion requirements, or strong fairness requirements, C =fhL1; U1i; : : : ; hLm; Umig where Li; Ui � R. By denoting the quanti�er �there exist in�nitelymany� by 9! we de�ne for notational convenience the setInf(�) = fq 2 Q j 9!i : �(i) = qg:Inf(�) is the set of states occurring in�nitely often in the execution �. The justice requirementdemands thatVki=1 Inf(�)\Ji 6= ;, for every computation � ofKF . The compassion requirementdemands that Vmi=1 Inf(�) \ Li = ; _ Inf(�) \ Ui 6= ;, for every computation � of KF .Generating a FKS from a fair P/T net requires some care. We have to take into accountthe fairness constraints on the transitions and ensure that the legal computations uphold theseconstraints. The fairness constraints talk about the occurrence of certain transitions, which isinformation that is not explicitly available from the set of reachable states or the transition re-lation of the Kripke structure. One way to remedy this is to add an intermediate state for eachtransition, so that each occurred transition has an own state in the FKS. Thus the computationsof the FKS will be in�nite sequences, where the initial state and other states at even indexeswill correspond to �normal� states, while the states at odd indexes will correspond to the tran-sitions which occur between these �normal� states. Using this construction the justice and thecompassion sets can be used to enforce that only executions which obey the fairness constraintsare accepted.We de�ne the states of the FKS as pairs hM; ti in order to separate the intermediate statesfrom the �normal� states. If the state is not an intermediate state t is replaced by a specialsymbol ?. Hence, to obtain a FKS KF = hR; �;M0;J ; Ci from a fair P/T net system � =hS; T; F;M0; fi, we de�ne R and � inductively as follows:1. hM0;?i 2 R2. If hM;?i 2 R and M t! M 0 then, hM 0; ti 2 R; hM 0;?i 2 R and (hM;?i; hM 0; ti) 2 �,(hM 0; ti; hM 0;?i) 2 �.1Here we follow the terminology of [9] and speak about justice and compassion.

6 Latvala and Heljanko /Coping with Strong Fairness3. R and � have no other elements.The justice sets and the compassion sets are de�ned as:1. For all ti 2 T : f(ti) = wf the justice sets are Ji = fhM;?i 2 R : ti =2 en(M)g[fhM 0; tii 2Rg.2. For all ti 2 T : f(ti) = sf the compassion sets are Li = fhM;?i 2 R : ti 2 en(M)g andUi = fhM 0; tii 2 Rg.With this de�nition of the FKS, the justice sets consist of states where the weakly fairtransitions are not enabled or the transition has just occurred. As the executions must includestates from all the justice sets, we accept only executions where the weakly fair transitions arenot continuously enabled, or they occur continuously, and hence we have managed to capturethe notion of weak fairness as we intended. The compassion sets Li consist of states where thestrongly fair transition ti is enabled and the Ui sets of intermediate states where the transitionti has just occurred. This results in that we only accept executions in which, if a transition ti isenabled in�nitely often, it must occur in�nitely often. Consequently, we have also successfullycaptured the notion of strong fairness with our de�nition2.Running example. If we again consider the contentious mutex algorithm and how we shouldmodify the model we notice that there are two pairs of transition which we must modify. Strongfairness constraints on the go crit transitions ensure that only executions where both processeshave access to the critical section, when they are both continuously trying, are accepted. Aweak fairness constraint would not be enough because these transitions are disabled if the otherprocess enters the critical section. For the exit crit transitions a weak fairness constraint isenough to ensure that we do not accept executions where one of the processes never leaves thecritical section. We not need to place any fairness constraints on the request transitions becausewe want to accept executions where the other process never requests entry to the critical sectionallowing the other process to use it exclusively. The modi�ed model is shown in Fig. 2.3. Automata on In�nite WordsThe theory of automata on in�nite words provides the theoretical foundation we use for modelchecking LTL. We use state labeled automata in order to be consistent with [6, 13].A labeled generalized Büchi automaton (LGBA) [2] is a tuple A = hQ;�; I;F ;D;Li, whereQ is a �nite set of states, � � Q � Q is the transition relation, I � Q a set of initial states,F = fF1; F2; : : : ; Fng with Fi � Q a set of acceptance sets, D some �nite domain (in LTLmodel checking D = 2AP for some set AP of atomic propositions) and L : Q 7! 2D is a labelingfunction. A run of A is an in�nite sequence � = q0q1q2 : : : such that qo 2 I and for each i � 0,(qi; qi+1) 2 �. If F = fF1g the LGBA corresponds to an ordinary Büchi automaton.2In an implementation not all of the intermediate states would have to be added. However, these implemen-tation details are beyond the scope of this work.

Latvala and Heljanko /Coping with Strong Fairness 7

�
�
�

�
�
�

critical_l

pending_l

quiet_l

go_crit_l

exit_crit_l

request_l

�
�
�
�

�
�
�
�

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

key

quiet_r

pending_rgo_crit_r

exit_crit_r

request_r

critical_r

sf

nf

wf

sf

nf

wfFigure 2. A fair model of the contentious mutex algorithmA run � is accepting if for each acceptance set Fi 2 F there exists at least one state q 2 Fithat appears in�nitely often in �, i.e. Inf(�) \ Fi 6= for each Fi 2 F . An in�nite word � =x0x1x2 : : : 2 D! is accepted i� there exists an accepting run � = q0q1q2 : : : of A such that foreach i � 0, xi 2 L(qi).We de�ne a Streett automaton analogously by replacing F with a set of pairs of acceptancesets and rede�ne when a run of the automaton is accepting.A Streett automaton (see [17] for an arc labeled version) is a tuple A = hQ;�; I;
;D;Li,where Q, �, I, D and L have the same meanings as above.
 = f(L1; U1); : : : ; (Lk; Uk)g withLi; Ui � Q is a set of pairs of acceptance sets. A run of a Streett automaton is de�ned in the sameway as for an LGBA. The Streett automaton accepts a run � = q0q1q2 : : : if Vki=1(Inf(�)\Li =; _ Inf(�) \ Ui 6= ;). We can read this as that the automaton accepts when �for each i, if somestate in Li is visited in�nitely often, then some state in Ui is visited in�nitely often�. Intuitivelythe acceptance condition corresponds to strong fairness conditions as de�ned in [5]. We de�nethe set of in�nite words accepted by A analogously to the LGBA case, using the new acceptancecondition
.The set of !-words the automaton A accepts is denoted by L(A), and it is called the languageof A. L(A) = ; denotes that the language accepted by A is empty. Testing whether L(A) = ;is referred to as performing an emptiness check. Note that generalized Büchi acceptance canbe easily simulated by Streett acceptance by letting Li = Q and Ui = Fi for all 1 � i � k.However there is no polynomial translation from Streett to Büchi automata, see e.g. [14]. Alsonote that the FKS discussed in the previous section can be seen as a Streett automaton, as thejustice requirements correspond to generalized Büchi acceptance sets (which can be simulatedwith Streett sets as described above), and the compassion requirements are Streett acceptancesets. All we need to do is to add a labeling, which labels each state of the FKS with the (unique)set of atomic propositions which hold in that state.

8 Latvala and Heljanko /Coping with Strong Fairness4. LTL Model CheckingIn order to reason about the reactive behavior of the system, in our case the behavior of the Petrinet model, one must be able to reason about its in�nite computations. One suitable candidateis linear temporal logic (LTL). LTL is interpreted over in�nite computations and can thereforebe used for specifying properties of reactive, non-terminating systems.Using the idea that in�nite computations can also be viewed as in�nite words over 2AP , whereAP is a set of atomic propositions, it was shown in [15] that there is an automaton on in�nitewords that accepts exactly the computations satisfying a given LTL formula. Later in [19] anexplicit construction was given to convert an LTL formula ' into a Büchi automaton A' whichaccepts exactly the computations satisfying '. A re�ned algorithm was presented in [6] whichperformed the translation to a generalized Büchi automaton on-the-�y. This gives us a methodto check whether a system conforms to its speci�cations using automata-theoretic constructions.Fix a labeling of the reachable states of the net system, which labels each state with the set ofatomic propositions that hold in that state.The steps performed to verify that a system has a property given by a LTL formula ' arethe following [2, 10]:1. Construct a Büchi automaton A:' corresponding to the negation of the property '.2. Generate the Kripke structure of the system and interpret it as a Büchi automaton K.3. Form the product automaton B = A:' �K.4. Check if L(B) = ;.If L(B) = ; the system satis�es the speci�cation. Combining several steps of this approachin a single algorithm is referred to as �on-the-�y� LTL model checking [2, 10].A limitation of the on-the-�y method described in [2] is that it can only deal with normal(non-generalized) Büchi automata. To handle generalized Büchi automata, the algorithm needsto translate these into Büchi automata, see e.g. [6]. This can also be done on-the-�y, but thenumber of states of the resulting product automaton can be the number of states of the originalproduct automaton times the number of generalized Büchi acceptance sets.As previously mentioned Büchi automata cannot handle strong fairness e�ciently, as there isno polynomial translation from Streett to Büchi automata, see e.g. [14]. Weak fairness, however,is manageable with generalized Büchi automata. By combining the best of both worlds it ispossible to deal with both strong and weak fairness and verify claims given in LTL in an e�cientmanner.We propose the following procedure:1. Construct a generalized Büchi automaton A:'.2. The fair Kripke structure KF of the system is generated from the Petri net model of thesystem and interpreted both as a generalized Büchi automaton and as a Streett automaton.The interpretation is easy as the justice requirements correspond to generalized Büchiacceptance conditions and the compassion requirements correspond to Streett acceptanceconditions. We call this automaton the FKS automaton.

Latvala and Heljanko /Coping with Strong Fairness 93. The product automaton of the above two is created on-the-�y using a procedure similarto that of [2]3. The main di�erence is the handling of the acceptance sets. The statesof the product automaton obtain acceptance conditions from both the formula- and theFKS automaton, and thus have to ful�l both the fairness conditions imposed by the systemand Büchi acceptance conditions imposed by the formula. Simultaneously Tarjan's algo-rithm [16] is used to calculate the next maximal strongly connected component (MSCC)of the product automaton.4. When a MSCC of the product automaton has been calculated, we check for generalizedBüchi acceptance (ignoring Streett acceptance sets for a moment). If the component doesnot contain a state from each Büchi acceptance set, i.e. it does not contain a weakly faircounterexample and hence is not accepted, we return to step 3.5. If a component is accepted as weakly fair and it does not contain strong fairness constraints,we can directly generate a counterexample at step 7 using only generalized Büchi setsinterpreted as Streett acceptance sets Ui and with each Li set initialized to the universalset.6. We know now that the MSCC contains a weakly fair counterexample. To ensure that thereis also some strongly fair counterexample we have to use a Streett emptiness checkingalgorithm on this MSCC. (Using the Streett emptiness checking to handle strong fairnessconstraints goes back to at least [4, 11].) However, we cannot yet ignore the generalizedBüchi acceptance sets. Therefore each generalized Büchi acceptance sets is simulated witha Streett acceptance set using the same technique as in the step 5. If no weakly andstrongly fair counterexample is found, we continue from step 3 with a next MSCC of theproduct automaton.7. A counterexample is generated using the subset of vertices of the MSCC, which the empti-ness checking algorithm gives to the counterexample algorithm.The steps 1-3 can be done by a single on-the-�y algorithm, as the product creation and Tar-jan's algorithm can be implemented on-the-�y (see e.g. [7] for an on-the-�y CTL model checkerbased on Tarjan's algorithm). If the property automaton has generalized Büchi acceptance setsfF1; F2; : : : ; Fng, and the FKS automaton has the justice sets fJ1; J2; : : : ; Jmg, then the productautomaton will have the generalized Büchi sets fF1; F2; : : : ; Fn; Fn+1; : : : ; Fn+mg. The Streettsets are directly inherited from the compassion sets of the FKS automaton. Note that the steps4 and 5 are not needed for correctness, they are only an optimization to avoid the more costlyStreett emptiness check whenever possible. By performing the veri�cation in this on-the-�ymanner it is possible to �nd errors without computing all MSCCs of the product automaton,which might result in faster running times. Also the fact that only components which containweakly fair counterexamples, and have enabled transitions with strong fairness requirements, arechecked for the existence of a counterexample satisfying also strong fairness, potentially resultsin less work compared to a naive implementation.3The synchronization actually synchronizes the property automaton only with �normal� states of the FKS.Thus the FKS automaton takes two steps for each step of the property automaton. The implementation of thissmall change is quite straightforward.

10 Latvala and Heljanko /Coping with Strong FairnessTo our knowledge the procedure in exactly this form has not been presented in the literature.The on-the-�y model checker of [2] uses only (non-generalized) Büchi automata in the nested-depth-�rst-search algorithm. The algorithm of [9] is similar in the sense it uses both Büchi andStreett acceptance conditions, however their emptiness checking procedure is BDD based, as isthat of [8]. The use of Tarjan's algorithm in emptiness checking is well known, see e.g. [10]. Theonly Tarjan based emptiness checking algorithm we are aware of which explicitly claims to beon-the-�y is that of [3]. However, it won't work for our purposes, as it is tailored to handle onlygeneralized Büchi acceptance sets.5. Emptiness Checking of Streett AutomataThe emptiness checking algorithm is given a MSCC of the product Streett automaton. Theproduct Streett automaton can be seen as directed graph G = (V;E), where the number ofvertices jV j = n and the number of edges jEj = m. The Streett pairs (Li; Ui); Li; Ui � V with1 � i � k are given and bits(S) is de�ned as �ki=1jS \ Lij+ jS \ Uij for S � V . Performing anemptiness check on a Streett automaton is then to check whether G contains a cycle such that:if the cycle contains a vertex from Li then it also contains a vertex from Ui, for all 1 � i � k.5.1. Emptiness Checking AlgorithmThe main idea of the Streett automata emptiness checking algorithm goes back to at leastEmerson and Lei [4], and it was also independently developed in [11]. The algorithm is givena maximal strongly connected component (MSCC) of the product automaton calculated byTarjan's algorithm [16]. The algorithm begins dynamically modifying the graph by deletion ofso called bad vertices from the MSCC. A vertex is bad if it belongs to some Li set, but theMSCC it belongs to does not contain a vertex from the corresponding Ui set. All other verticesare good. A MSCC containing only good vertices is said to be a good component. After thedeletion of bad vertices the MSCCs of the modi�ed graph are recalculated and checked again forbad vertices. The algorithm terminates when it has either found a non-trivial good componentor it can conclude that no such component exists. (A MSCC is non-trivial if it has more thanone vertex, or it has a single vertex with a self-loop. Otherwise it is trivial.)The algorithm presented here is similar to that of [13] to the extent that we could call ouremptiness checking algorithm a simpli�ed version of it. The data structures designed in thiswork are simpler, and thus also easier to implement. As an example, the data structures of thealgorithm of [13] have double linked lists for each set Li, which enables them to easily accessall of the states in Li \ S. This implies that each set membership �bit� must have at least twopointers associated with it. To obtain this set of states, we will do extra work, however we savethe storage for these two pointers. The algorithm of [13] has also a so-called lock-step-searchcase, which is also missing here due to memory consumption reasons, as it requires the reversetransition relation of the product automaton to be available.

Latvala and Heljanko /Coping with Strong Fairness 11The simpler data structures were a conscious design choice, motivated by the fact that inmany cases the amount of memory available is the limitation in model checking. The memoryoverhead of [13] is larger by only a constant factor, though. Therefore, implementing it mightbe a better choice in some cases.5.2. Data StructuresThe algorithm needs to keep track of bad vertices and into which MSCC each vertex belongs toas the original MSCC may split into several MSCCs during the emptiness checking. It is alsonecessary to keep track of which fairness sets are present in the currently processed component.The notation in this section has been chosen in order to be consistent with [13].We use three global sets L, U , and Badsets of size k which are implemented as a combinationof a stack and a bitmap. They require one-time initialization which takes O(k) time. This isdone the �rst time the emptiness checking algorithm is called. With this implementation setmembership can be tested in O(1) time. Set union A := A [B, set di�erence A := A n B, andset clear B := ; can be done in O(jBj) time.The data structure C(S) stores the component information, and for each vertex the informa-tion into which sets L and U sets the vertex belongs to. It is implemented using a doubly linkedlist containing all the vertices of the MSCC. From each node in this list there are pointers to setlists which specify to which L and U sets the vertex belongs to. These sets are referred to asL:setlist and U:setlist respectively. Each vertex also records to which MSCC it belongs by usinga component number.As the original component may split into several MSCCs during the run of the algorithm,a queue Q is kept where the di�erent components are stored. We de�ne the following operationsfor the data structure C(S):Construct(S) initializes and returns the data structure C(S).Remove(C(S), B) removes B from S and returns C(SnB) for B � S � V .Bad(C(S)) returns S1�i�kfS \ Li jS \ Ui = ;g for S � V .Lemma 5.1. The operation Construct(S) can be implemented with a running time of O(jSj).Proof:The given vertex list S is traversed. Each vertex is added to the doubly linked list of C(S). utLemma 5.2. The operation Remove(C(S); B) can be implemented with a running time of O(jBj).Proof:Traversing the given list of vertices B, and removing each entry from the doubly linked list ofC(S) takes time O(jBj). utLemma 5.3. The operation Bad (C(S)) can be implemented with a running time of O(jSj +bits(S)).

12 Latvala and Heljanko /Coping with Strong FairnessProof:Traverse the set lists of each vertex in C(S). Whenever a vertex is member of a Li set or an Uiset, add the set number i to the sets L or U , respectively. This takes time O(jSj+bits(S)). Formthe set Badsets = LnU and reset the sets L and U . This can be done in time O(min(k; bits(S)) =O(bits(S)). Add all those vertices to a list of bad vertices for which L:setlist \ Badsets 6= ;,reset the set Badsets and then return the generated list. This takes time O(jSj+ bits(S)) givinga total running time of O(jSj+ bits(S)). utTheorem 5.1. The emptiness checking algorithm will �nd a good component if it exists.Proof:The main loop of the algorithm maintains the invariant that all vertices are either bad, belong toa trivial MSCC, or are still in the queue. The algorithm initially puts all vertices in the queue.In the second while loop all bad vertices are deleted, causing the MSCC to be recomputed andthe remaining vertices put back into the queue and again tested for bad vertices. If a componenthas no bad vertices the component is accepted, unless it is trivial. Hence the invariant holds andthe algorithm will �nd a good component if it exists. utTheorem 5.2. The running time of the algorithm without the Counterexample subroutine isO((m+ bits(V))min(n; k))Proof:The total cost of the calls to Tarjan's algorithm is O(m min(n; k)) because before each callat least one vertex and one fairness set has been taken care of. The same factor min(n; k)bounds the number of calls to Bad , Construct , and Remove . Hence they contribute O((n +bits(V))min(n; k)) = O((m+ bits(V))min(n; k)) to the running time giving a total of O((m+bits(V))min(n; k)). utTheorem 5.3. The memory usage of the emptiness checking algorithm is bounded by O(n+m+k + bits(V))Proof:The memory for representing the vertices and the edge information accounts for the term n+m.The memory required for the C(S) data structure with the Streett set information amountsto O(n + bits(V)). Finally the sets Badsets , L, and U use O(k) memory giving a total ofO(n+m+ k + bits(V)). ut5.3. The MSCC searchThe MSCC are computed using the Tarjan's algorithm [16]. It is modi�ed to perform the searchfor maximal strongly connected components in the subgraph containing only the nodes and edgesof the component C(S). From each found MSCC a list is created, which contains all the statesin that MSCC. These lists are then stored in the queue Q2.

Latvala and Heljanko /Coping with Strong Fairness 13proc Empty (S; k) �Queue Q1; Q2;List B;boolean change;InitSets (k); Initialize sets L, U, BadsetsC(S) := Construct (S);put (Q1; C(S));while (Q1 6= ;) doC(S) := get (Q1);change := false;while (B := Bad (C(S)) 6= ;) doC(S) := Remove (C(S); B);change := true;odif (change AND C(S) 6= ;) thenTarjan (C(S); Q2); Recalculate the MSCCsRemoveLargestMSCC (Q2); Any MSCC will dowhile (Q2 6= ;) doB := get (Q2);C(S) := Remove (C(S); B);put (Q1;Construct (B));odput (Q1; C(S));else Good component found!if (NotTrivial (C(S))) thenCounterexample (C(S)); Generate counterexamplereturn true;��odreturn false; No good component exists. Figure 3. The emptiness checking algorithm5.4. The Counterexample AlgorithmGenerating a counterexample to the given property is very important to help in the locationof design errors. The counterexample algorithm given here produces a counterexample afterthe emptiness checking algorithm has passed it a good component. Finding a counterexampleis non-trivial because the counterexample can be a cycle which contains several loops. Short

14 Latvala and Heljanko /Coping with Strong Fairnesscounterexamples are preferred as they are considered more informative and do not contain muchunnecessary information.The algorithm we propose searches in a breadth-�rst manner from the MSCC entry vertex,which we will henceforth refer to as the root, for a path back to the root. The path must ofcourse satisfy the requirement that if there is a vertex vi 2 Ll in the path, the path must alsoinclude a vertex vj 2 Ul, for all 1 � l � k. As the breadth-�rst search spawns a path tree, onemust choose which path to use. The algorithm freezes the path traversed to the current vertexwhen� the vertex belongs to an unseen Li set, or� the vertex belongs to an unseen Ui set corresponding to a previously encountered Li set.The traversed path is then printed from memory, the breadth-�rst search state is reset usinglogs and then search for a path back to the root can proceed. The resetting allows one tominimize memory requirements because the algorithm only keeps at most one simple cycle ofthe counterexample path stored in memory. The algorithm terminates if it reaches the root andthe traversed path satis�es the requirements stated above. To know when to terminate, thealgorithm keeps track of the number of encountered Li sets for which the corresponding Ui sethas not been found using the variable unseen L.The function that determines whether to freeze the breadth-�rst search is called checkstate.It returns true if we are in a vertex v 2 Li, and no state belonging to Li has been seen before.It also returns true if the vertex v belongs to an unseen Ui set for which a corresponding vertexu 2 Li has already been seen. The printing of the path from memory is done by lockpath . Thisfunction also marks all Ui sets in the locked path which have not been encountered before asseen Ui sets, and resets the breadth-�rst search state.An interesting special case occurs if the component contains no vertex for which v 2 S1�i�k Li.In this case the search reduces to a simple breadth-�rst search for a path back to the root. Thiscan be done in linear time and space. The path found is also optimal in the sense that it involvesthe minimum number of vertices.Theorem 5.4. The Counterexample algorithm �nds the counterexample, when given a goodcomponent with no vertex belonging to a Li set, and its running time is O(n+m+ bits(V)).Proof:Because no vertex belongs to an Li set the algorithm will not reset. Hence the algorithm doesa breadth-�rst search for a path back to the root, potentially doing a checkstate(s) call once foreach state. It will �nd a path to the root, which is the counterexample, achieving the runningtime of O(n+m+ bits(V)). utLemma 5.4. The running time of checkstate(s) is O(bits(fsg)) for s 2 S.Proof:The function traverses the set list of the state and can in O(1) time check if a speci�c set hasbeen taken care of. The time required for the traversal is O(bits(fsg)). ut

Latvala and Heljanko /Coping with Strong Fairness 15proc checkstate (s) �Set seen L;Set seen U ;boolean lockpath := false;integer unseen L;forall v 2 s:L:setlist doif (v =2 seen L) thenseen L := seen L [fvg;lockpath := true;if (v =2 seen U) thenunseen L++;��odforall v 2 s:U:setlist doif (v =2 seen U AND v 2 seen L) thenunseen L��;lockpath := true;�odreturn lockpath;. Figure 4. The checkstate algorithm which determines when the BFS path is frozenLemma 5.5. The running time of lockpath(s) is O(jSj+ bits(S))Proof:The function must reset the log storing the path, and go through the set lists of the verticesin the path and mark all unseen Li sets encountered as seen. This gives a running time ofO(jSj+ bits(S)). utTheorem 5.5. The Counterexample algorithm always �nds a counterexample when given a goodcomponent, and its running time is O((m+ bits(S))min(n; k)).Proof:The algorithm stores the traversed path up to the reset using the BFS search logs createdby the subroutine log father . After the reset any state can be visited (the states are alwaysreachable as we are traversing a MSCC). Thus the algorithm will always �nd a new si 2 Ll, or acorresponding sj 2 Ul after a reset, because all states are reachable and visitable and a new resetwill not be performed unless any of the above are found or it enters the root and can terminate.Hence the algorithm will always �nd an accepting path given a good component. The algorithm

16 Latvala and Heljanko /Coping with Strong Fairnessproc Counterexample (C(S)) �Queue Q;state s; root; t;root := root (C(S));PrintPathTo (root); Print pre�x to the loop using search logsvisit (root);put (Q; root);log_father (root; 0);while (Q 6= ;) dos := get (Q);if (checkstate (s)) then Do we freeze the BFS?lockpath (s); Print path and reset the BFS state�forall t 2 succ in comp(s) do Check if we are doneif (t = root AND unseen Li = 0) thenreturn ;�odforall t 2 succ_in_comp (s) do Put the successors in the queueif (:(visited (t)) thenvisit (t);put (Q; t);log_father (t; s); Store the path�odod. Figure 5. The counterexample algorithmperforms min(n; 2k) resets in the worst case. Consequently the algorithm may have to traversethe graph and perform a checkstate at most min(n; 2k) times. This gives a total running timeof O((n+m+ bits(S))min(n; k)). utTheorem 5.6. The memory usage of the Counterexample algorithm is bounded by O(n+m+k + bits(S)).Proof:The functions lockpath and checkstate can use the same sets Badsets , L and U for their book-keeping as the emptiness checking algorithm. Consequently the algorithm does not need addi-tional data structures to those already created by the emptiness checking algorithm, except for abreadth-�rst search log and a father log created by the subroutine log father , which only incurs

Latvala and Heljanko /Coping with Strong Fairness 17a linear penalty in the number of states n. utThe maximum length of the counterexample is n min(n; 2k). There is a slightly di�erentapproach presented in the literature. In this approach the algorithm always goes trough all Uisets (in increasing i order) for which the corresponding Li set is non-empty. Using this ideait generates a counterexample which has a maximum length of n min(n; k) [9] (see also [8]).(It would in fact be quite easy to �rst run both of the algorithms �silently� on the input, onlycalculating the length of the created counterexample. When these lengths would be known, onecould then choose the better algorithm for the counterexample output to the user.) Decidingwhether there exists a counterexample of length n, where n is the number of nodes is in factNP-complete [1] (proof with a reduction from a Hamiltonian cycle problem).6. Experimental ResultsIn order to evaluate the performance of the counterexample algorithm, it was compared againstthe non-lazy algorithm suggested in [9]. Both algorithms were implemented in Java and testedwith randomly generated graphs4. As the algorithms perform roughly the same amount of work,their speed is not an interesting thing to compare. The critical measure of their performance isthe ability to produce short counterexamples.The algorithms were evaluated in the following way. Random graphs G = (V;E) of size Nwere generated with k fairness sets, and (vi; vj) 2 E with a probability �. Each vertex v 2 Vbelongs to a Li set or a Ui set with the probability p. The emptiness algorithm was used tocalculate a good component of the graph, which was given to the two counterexample algorithms.The length of the counterexample was then recorded.There are several possibilities to investigate how the algorithms scale when varying someparameter. The one we used is to see how the algorithms di�er when the number of fairness sets isvaried. This shows how the algorithms cope when the model has more fairness constraints, whichmake the counterexamples more complex. This was tested by letting k 2 f5; 15; 25; 35; 45; 55gand generating twenty graphs for each value of k. The values of the other parameters wereN = 600; � = 0:05 and p = 0:1. In Fig. 6 we can see the results averaged over the twenty times.The error bars represent the standard deviation of the runs. From the �gure it can be seen thatthe new algorithm scales better than the non-lazy algorithm of [9]. Especially when the numberof fairness sets grows, the lazy nature of the new algorithm gives it an edge.7. ConclusionsIncluding both weak and strong fairness constraints in the modeling language one can make themodeling of many systems more straightforward than when the fairness constraints are suppliedby an LTL formula (and potential changes in the model to accommodate this). However especiallythe handling of strong fairness e�ciently requires changes to the LTL model checking procedure.4The sources can be found from http://www.tcs.hut.�/�timo/FI-Experiment.

18 Latvala and Heljanko /Coping with Strong Fairness

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

The number of fairness sets

Len
gth

 of
the

 co
unt

ere
xam

ple

The Non−Lazy Algorithm
The New Algorithm

Figure 6. Performance of the two algorithmsWe have presented an approach which makes a set of design choices on how to handle strongfairness e�ciently. We give semantics to fair P/T nets through fair Kripke structures borrowingnotation from [9]. Our proposed on-the-�y LTL model checking procedure presented in Sect. 4 isnew, and it tries to avoid the costly Streett emptiness checking whenever possible. The emptinesschecking algorithm with data structure design choices were motivated by [13], however we chooseto use more time in order to save some memory. The counterexample generation algorithm isnew, and seems to sometimes work better than the algorithm of [9]. We have also implementedthe emptiness checking algorithm and the counterexample algorithm in Java.As future work we would like to extend this approach to model checking CTL� under fairnessassumptions. Also the e�ect of the fairness constraints on the partial-order reduction algorithmssuch as stubborn sets and persistent sets (see e.g. [18]) needs to be investigated. Also lifting thefairness notions to high-level Petri nets should be investigated from the perspective of modelingconvenience.AcknowledgementsThe authors also wish to thank Tommi Junttila for helpful criticisms and comments on earlierversions of this work, and Heikki Tauriainen for sharing his random Kripke structure generatorwith us.References[1] Clarke, E., Grumberg O., McMilllan K. and Zhao, X.: E�cient Generation Counterexamplesand Witnesses in Symbolic Model Checking. Technical Report TR CMU-CS-94-204, CarnegieMellon University, School of Computer Science, Pittsburg, 1994.

Latvala and Heljanko /Coping with Strong Fairness 19[2] Courcoubetis, C., Vardi, M., Wolper, P. and Yannakakis, M.: Memory-E�cient Algorithmsfor the Veri�cation of Temporal Properties. Formal Methods in System Design, vol 1. pp.275-288, 1992.[3] Couvreur, J.-M.: On-the-�y Veri�cation of Linear Temporal Logic. In Proceedings of theWorld Congress on Formal Methods in the Development of Computing Systems (FM'99),Volume I, pp. 253�271, Springer, 1999. LNCS 1708.[4] Emerson, E.A. and Lei, C-L.: Modalities for Model Checking: Branching Time Logic StrikesBack. Science of Computer Programming, vol. 8, no. 3, pp 275-306, 1987.[5] Francez, N.: Fairness. Springer Verlag, New York, 1986.[6] Gerth, R., Peled, D., Vardi, M.Y. and Wolper, P.: Simple On-the-�y Automatic Veri�cationof Linear Temporal Logic. Proceedings of the 15th Workshop on Protocol Speci�cation, Testingand Veri�cation, pp. 3-18. Chapman and Hall, Warsaw Poland, 1995.[7] Heljanko, K.: Model Checking the Branching Time Temporal Logic CTL. Research ReportA45, Digital Systems Laboratory, Helsinki University of Technology, 1997.[8] Hojati, R., Singhal, V., and Brayton, R.K.: Edge-Strett/ Edge-Rabin Automata Environmentfor Formal Veri�cation Using Language Containment. Memorandum No. UCB/ERL M94/12,Electronics Res. Lab., Cory Hall, University of California, Berkeley, 1994.[9] Kesten Y., Pnueli, A. and Raviv, L.: Algorithmic Veri�cation of Linear Temporal Properties.In Proceedings of the 25th International Colloquium on Automata, Languages, and Program-ming (ICALP 1998), Lecture Notes in Computer Science, vol. 1443, pp. 1-16. Springer-Verlag,1998.[10] Kurshan, R.P.: Computer-Aided Veri�cation of Coordinating Processes: The Automata-Theoretic Approach. Princeton University Press, Princeton, New Jersey, 1994.[11] Lichtenstein, O. and Pnueli, O.: Checking that �nite state concurrent programs satisfy theirlinear speci�cations. Proc. 12th ACM Symp. Princ. of Prog. Lang., pp 97-107, 1985.[12] Reisig, W.: Elements of Distributed Algorithms, Springer Verlag, Berlin Heidelberg, 1998.[13] Rauch Henzinger, M., Telle, J.: Faster Algorithms for the Nonemptiness of Streett Automataand for Communication Protocol Pruning. Proceedings of the 5th Scandinavian Workshop onAlgorithm Theory (SWAT'96), pp. 10-20. 1997.[14] Safra, S.: Complexity of Automata on In�nite Objects, PhD Thesis, The Weizmann Instituteof Science, 1989.[15] Sherman, R., Pnueli, A. and Harel, D.: Is the Interesting Part of Process Logic Uninterest-ing: a Translation From PL to PDL. SIAM Journal on Computing, vol. 13, no. 4, pp. 825-839,1984.[16] Tarjan, R.: Depth-First Search and Linear Graph Algorithms. SIAM Journal of Computing,vol. 1, no. 2, pp 146-160, 1972.[17] Thomas, W.: Languages, Automata and Logic, in: Handbook of Formal Languages (G.Rozenberg, A. Salomaa, Eds.). Vol III, pp. 385-455, Springer-Verlag, New York, 1997.[18] Valmari, A.: The State Explosion Problem, in: Lectures on Petri Nets I: Basic Models, pp.429�528, Springer, 1998. LNCS 1491.[19] Vardi, M.Y., Wolper, P.: Reasoning About In�nite Computations. Information and Com-putation, vol. 115, no. 1, pp. 1-37, 1994.

