Fundamenta Informaticae 84 (2000) 1-19 1
I0S Press

Coping With Strong Fairness *

Timo Latvala

Laboratory for Theoretical Computer Science
Helsinki University of Technology

P.O. Box 9700

FIN-02015 HUT

Finland

Timo.Latvala@hut.fi

Keijo Heljanko

Laboratory for Theoretical Computer Science
Helsinki University of Technology

P.O. Box 5400

FIN-02015 HUT

Finland

Keijo.Heljanko@hut.fi

Abstract. We consider the verification of linear temporal logic (LTL) properties of Petri
nets, where the transitions can have both weak and strong fairness constraints. Allowing the
transitions to have weak or strong fairness constraints simplifies the modeling of systems in
many cases. We use the automata theoretic approach to model checking. To cope with the
strong fairness constraints efficiently we employ Streett automata where appropriate. We
present memory efficient algorithms for both the emptiness checking and counterexample
generation problems for Streett automata.

Keywords: Verification, model checking, fairness, Streett automata, counterexamples.

“This research was funded by the National Technology Agency, Nokia Research Center, Helsinki Telephone
Corporation and the Finnish Rail Administration. The second author gratefully acknowledges the financial
support of Helsinki Graduate School on Computer Science and Engineering (HeCSE), the Academy of Finland
(Project 47754), the Emil Aaltonen Foundation and the Nokia Foundation.

2 Latvala and Heljanko / Coping with Strong Fairness

1. Introduction

A concurrent and distributed system can in many cases be an efficient and flexible solution for
a system developer. Unfortunately concurrent and distributed systems are notoriously difficult
to design and implement. They can contain errors which can be extremely hard to find.

The automata theoretic approach to model checking uses the connection between automata
on infinite objects and temporal logic to verify that a system meets its specification. Two features
of model checking which have made it popular are that it can relatively easy be automated, and
that it is often able to produce a counterexample when the system does not meet its specification.
The applicability of model checking is, however, seriously limited by the state space explosion
problem, see e.g. [18]|. One remedy to this problem is performing the model checking on-the-fly.
This means that errors might be found without constructing the complete state space of the
system being model checked.

When constructing a formal model of a system, different fairness assumptions are often em-
ployed [5]. Current model checkers for linear temporal logic (LTL) often employ Biichi automata.
Biichi automata can express weak fairness assumptions efficiently. Since efficient modeling of sys-
tems in many cases requires strong fairness [5], coping with it in an efficient manner would be
desirable. One could argue that since it is possible to express strong fairness in LTL, one can
always verify properties in the form “fairness = property”. The question is how practical this is
from a modeling perspective, and how computationally efficient this approach is. We will discuss
the problems associated with this approach in detail in Sect. 2.

A class of automata that can handle strong fairness constraints efficiently are the Streett
automata, also known as the complemented pairs automata, see e.g. [17]. In this paper we present
an on-the-fly verification method based on a combination of Biichi and Streett automata.

The main contributions of this work are the following. We present how the LTL model
checking problem for Petri nets, with fairness constraints imposed transitions, can be solved
using Streett automata emptiness checking in a straightforward manner. We present an on-
the-fly LTL model checking procedure which uses the emptiness checking for generalized Biichi
automata to potentially avoid some of the more costly Streett automata emptiness checks. We
present simple and memory efficient algorithms for Streett automata emptiness checking and
counterexample generation.

The rest of this paper is structured as follows. In Sect. 2 we introduce Petri nets and define
a P/T net with fairness constraints. Section 3 covers the needed theory for automata on infinite
words. The standard way of performing on-the-fly model checking, and our extension of it, is
discussed in Sect. 4. In Sect. 5 we propose an algorithm for performing the emptiness checking
of Streett automata and a new algorithm for finding counterexamples. The counterexample
algorithm is experimentally evaluated in Sect. 6. In Sect. 7 we present the conclusions and
discuss directions for further work.

Latvala and Heljanko / Coping with Strong Fairness 3

2. Petri Nets

Petri nets are a widely used model for concurrent and distributed systems. Here we briefly define
the basic notation.

Definition 2.1. A net is triple N = (S, T, F'), where S is a set of places, T is a set of transitions
such that SNT =0 and F: (S x T)U (T x S) — N is a flow relation.

A marking of a net is a mapping M : § — N. We identify a marking M with a multi-set
containing M (p) copies of p for every p € S. A tuple (N, M) is a Place/Transition (P/T)
net system if My is a marking of the net N. We say that a transition ¢ € T is enabled in a
marking M if Vs € S : F(s,t) < M(s). The function en(M) is defined to be a function from
the set of markings to the power set of transitions, and it returns all enabled transitions in the
marking M. If a transition ¢ is enabled in a marking M, i.e. t € en(M), the transition ¢ can
occur changing M into another marking M’. The new marking M’ is given by Vs € S': M'(s) =
M(s) — F(s,t) + F(t,s). The occurrence of a transition is denoted by M Lo
The behavior of a P/T net system can be described by a Kripke structure.

Definition 2.2. The Kripke structure of a P/T net system ¥ = (S,T, F, My) is a triple K =
(R, p, My), where R, a set of reachable states, and p, the transition relation, are defined induc-
tively as follows:

1. My e R
2. If M € Rand M 5 M, then M’ € R and (M, M") € p.
3. R and p have no other elements.

The executions of the system are infinite sequences MyMiMs ... of states in R, where My is the
initial state and (M;, M;11) € p for all ¢ > 0. In this work we only consider net systems with a
finite set of reachable states.

An example. We consider an example system which we model with a P/T net system. A
simple mutual exclusion algorithm, known as the contentious mutex algorithm [12], functions in
the following way. We have two parallel processes [and r which at some point must use a shared
critical resource, with the restriction that the resource may not be accessed simultaneously. The
mutual exclusion is obtained by using a shared boolean variable key, which each process checks
before using the shared critical resource. The algorithm can be modeled with a P/T net system
of Fig. 1. This P/T net model satisfies the mutual exclusion property, but if we carefully examine
the behavior of the model we notice that it allows executions of the system where one of the
processes never is able to access the shared critical resource even if it is trying. It is possible for a
process to infinitely often use the shared critical resource without ever allowing the other process
access. In many cases we expect this kind of unfair behavior to be impossible which is why we
would like to ignore it when applying model checking to the system. One possibility is to add
an explicit scheduler to the model, formulate a fairness constraint in LTL for the scheduler and
check properties of the form fairness = property. This solution has several drawbacks. Adding

4 Latvala and Heljanko / Coping with Strong Fairness

pending_| go_crit_| go_crit_r pending_r
request_| request_r
critical_| critical_r
key
- ——>
) ot | '
quiet_| ext_ent | exit_crit 1 quiet r

Figure 1. The contentious mutex algorithm

schedulers to the model is cumbersome at best, and when the model is large and there are several
independent entities which must be scheduled, it can be a challenging task. Another drawback
is that both the state space of the model and the automaton representing the property grow,
which makes verification harder. Each fairness constraint requires an additional LTL expression
and consequently the growth of the Biichi automaton expressing the property is potentially
exponential in the number of fairness constraints, see e.g. [6]. Also, if the fairness constraint
used refers to the firing of a transition, say the transition ¢, then we have to add some state to
the model which corresponds to the property “the transition ¢ has just fired” (because LTL is
state based and cannot thus in general express this property). Adding such things to the model
makes the model with fairness constraints to have more reachable states, and/or less concurrency
between transitions than the original P/T net model.

An alternative solution we suggest here is to extend P/T nets with fairness constraints on
the transitions. For our purpose it is sufficient to distinguish between two notions of fairness. We
can adapt the definitions used in [5] for P/T nets. Weak fairness requires that the occurrence
of a transition will not be indefinitely postponed if it is continuously enabled. A weakly fair
scheduler with a waiting queue is guaranteed to eventually schedule an event once the event has
entered the queue. Other examples where weak fairness is appropriate are systems with busy
waiting or resource-allocation processes. Weak fairness does not, however, cover all situations
encountered in modeling. Quite a usual assumption made for communication protocols is that
if a message is sent infinitely often it will eventually be successfully received. This assumption
could be violated although the communication process would be weakly fair. Strong fairness
requires that if a transition is infinitely often enabled it must occur infinitely often. Using strong
fairness assumptions we can easily model the communciation process so that infinitely often sent
messages are received infinitely often.

Adopting these assumptions to transitions in P/T nets we can define fair P/T nets. (Note
that our notion of weak fairness differs slightly from Reisig’s assumption of progress in [12].)

Latvala and Heljanko / Coping with Strong Fairness 5

Definition 2.3. A fair P/T net system is a tuple Ny = (N, My, f), where N is a P/T net, M
an initial marking of the net and f : T +— {nf, wf, sf} is a function which maps each transition
to a fairness requirement. Here we use “nf” for no fairness, “wf” for weak fairness and “sf” for
strong fairness.

A Kripke structure does not properly describe the behavior of a fair P/T net system, because
it does not take the fairness constraints into account. We extend the definition of a Kripke
structure to be able to describe the behavior of a fair P/T net system. A fair Kripke structure
(FKS) [9] is a tuple Kr = (R, p,r0,J,C), where R is a set of states, p C R x R is a transition
relation and ry € R is an initial state. Computations, i.e. fair executions of the system, are
infinite sequences o = roriry ... of states in R that obey the fairness requirements (to be defined
below), where ry is the initial state, and for all ¢ > 0, (r;,711) € p. The fairness requirements are
defined by a set of justice requirements!, or weak fairness requirements, J = {.Jy,Jo,... , Ji.}
where J; € R, and a set of compassion requirements, or strong fairness requirements, C =
{L1,U4),... ,(Lpm,Upn)} where L;;U; C R. By denoting the quantifier “there exist infinitely
many” by 3 we define for notational convenience the set

Inf(o) ={qe Q| 3Fi: o(i) = q}.

Inf(o) is the set of states occurring infinitely often in the execution p. The justice requirement
demands that /\f:1 Inf(o)NJ; # 0, for every computation o of Kp. The compassion requirement
demands that A/, Inf(oc) N L; =0V Inf(o) NU; # 0, for every computation o of Kp.

Generating a FKS from a fair P/T net requires some care. We have to take into account
the fairness constraints on the transitions and ensure that the legal computations uphold these
constraints. The fairness constraints talk about the occurrence of certain transitions, which is
information that is not explicitly available from the set of reachable states or the transition re-
lation of the Kripke structure. One way to remedy this is to add an intermediate state for each
transition, so that each occurred transition has an own state in the FKS. Thus the computations
of the FKS will be infinite sequences, where the initial state and other states at even indexes
will correspond to “normal” states, while the states at odd indexes will correspond to the tran-
sitions which occur between these “normal” states. Using this construction the justice and the
compassion sets can be used to enforce that only executions which obey the fairness constraints
are accepted.

We define the states of the FKS as pairs (M, t) in order to separate the intermediate states
from the “normal” states. If the state is not an intermediate state ¢ is replaced by a special
symbol L. Hence, to obtain a FKS Krp = (R, p, My, J,C) from a fair P/T net system ¥ =
(S, T, F, My, f), we define R and p inductively as follows:

1. <M0,J_> €ER
2. If (M, 1) € Rand M 5 M’ then, (M',t) € R,(M', 1) € R and (M, L),(M',t)) € p,
((M',t), (M, 1)) € p.

'Here we follow the terminology of [9] and speak about justice and compassion.

6 Latvala and Heljanko / Coping with Strong Fairness

3. R and p have no other elements.
The justice sets and the compassion sets are defined as:

1. Forallt; € T : f(t;) = wf the justice sets are J; = {(M, L) € R:t; ¢ en(M)}U{(M',t;) €
R}.

2. For all t; € T : f(t;) = sf the compassion sets are L; = {(M, L) € R : t; € en(M)} and
U, = {(Ml,ti> S R}

With this definition of the FKS, the justice sets consist of states where the weakly fair
transitions are not enabled or the transition has just occurred. As the executions must include
states from all the justice sets, we accept only executions where the weakly fair transitions are
not continuously enabled, or they occur continuously, and hence we have managed to capture
the notion of weak fairness as we intended. The compassion sets L; consist of states where the
strongly fair transition ¢; is enabled and the Uj; sets of intermediate states where the transition
t; has just occurred. This results in that we only accept executions in which, if a transition #; is
enabled infinitely often, it must occur infinitely often. Consequently, we have also successfully
captured the notion of strong fairness with our definition?.

Running example. If we again consider the contentious mutex algorithm and how we should
modify the model we notice that there are two pairs of transition which we must modify. Strong
fairness constraints on the go_crit transitions ensure that only executions where both processes
have access to the critical section, when they are both continuously trying, are accepted. A
weak fairness constraint would not be enough because these transitions are disabled if the other
process enters the critical section. For the exit_crit transitions a weak fairness constraint is
enough to ensure that we do not accept executions where one of the processes never leaves the
critical section. We not need to place any fairness constraints on the request transitions because
we want to accept executions where the other process never requests entry to the critical section
allowing the other process to use it exclusively. The modified model is shown in Fig. 2.

3. Automata on Infinite Words

The theory of automata on infinite words provides the theoretical foundation we use for model
checking LTL. We use state labeled automata in order to be consistent with [6, 13].

A labeled generalized Biichi automaton (LGBA) [2] is a tuple A = (Q, A, I, F,D, L), where
Q is a finite set of states, A C @ x @ is the transition relation, I C @ a set of initial states,
F = {F,F,,... ,F,} with F; C @ a set of acceptance sets, D some finite domain (in LTL
model checking D = 24 for some set AP of atomic propositions) and £ : Q — 2P is a labeling
function. A run of A is an infinite sequence p = qoq1¢2 - .. such that ¢, € I and for each i > 0,
(¢i, gi+1) € A. If F = {F;} the LGBA corresponds to an ordinary Biichi automaton.

’In an implementation not all of the intermediate states would have to be added. However, these implemen-
tation details are beyond the scope of this work.

Latvala and Heljanko / Coping with Strong Fairness 7

pending_| go_crit_| go_crit_r pending_r
()—> s o <—<)
request_| request_r
nf critical_| critical_r nf
key
- wf wf b——»
quiet | et exit_crit_r quiet_r

Figure 2. A fair model of the contentious mutex algorithm

A run p is accepting if for each acceptance set F; € F there exists at least one state g € F;
that appears infinitely often in p, i.e. Inf(p) N F; # for each F; € F. An infinite word ¢ =
Tox1T2 ... € DY is accepted iff there exists an accepting run p = qpqi1q2 ... of A such that for
each i >0, z; € L(q;).

We define a Streett automaton analogously by replacing F with a set of pairs of acceptance
sets and redefine when a run of the automaton is accepting.

A Streett automaton (see [17] for an arc labeled version) is a tuple A = (Q, A, 1,9, D, L),
where @, A, I, D and L have the same meanings as above. Q = {(L1,U1),...,(Lg, Ux)} with
L;,U; C @ is a set of pairs of acceptance sets. A run of a Streett automaton is defined in the same
way as for an LGBA. The Streett automaton accepts a run p = qoq1q2 - - . if /\le(fnf(p) NL;, =
OV Inf(p) NU; #0). We can read this as that the automaton accepts when “for each i, if some
state in L; is visited infinitely often, then some state in U; is visited infinitely often”. Intuitively
the acceptance condition corresponds to strong fairness conditions as defined in [5]. We define
the set of infinite words accepted by A analogously to the LGBA case, using the new acceptance
condition €.

The set of w-words the automaton A accepts is denoted by £(.A), and it is called the language
of A. L(A) = 0 denotes that the language accepted by A is empty. Testing whether £(A) = ()
is referred to as performing an emptiness check. Note that generalized Biichi acceptance can
be easily simulated by Streett acceptance by letting L; = Q and U; = F; for all 1 < ¢ < k.
However there is no polynomial translation from Streett to Biichi automata, see e.g. [14]. Also
note that the FKS discussed in the previous section can be seen as a Streett automaton, as the
justice requirements correspond to generalized Biichi acceptance sets (which can be simulated
with Streett sets as described above), and the compassion requirements are Streett acceptance
sets. All we need to do is to add a labeling, which labels each state of the FKS with the (unique)
set of atomic propositions which hold in that state.

8 Latvala and Heljanko / Coping with Strong Fairness

4. LTL Model Checking

In order to reason about the reactive behavior of the system, in our case the behavior of the Petri
net model, one must be able to reason about its infinite computations. One suitable candidate
is linear temporal logic (LTL). LTL is interpreted over infinite computations and can therefore
be used for specifying properties of reactive, non-terminating systems.

Using the idea that infinite computations can also be viewed as infinite words over 247 where
AP is a set of atomic propositions, it was shown in [15] that there is an automaton on infinite
words that accepts exactly the computations satisfying a given LTL formula. Later in [19] an
explicit construction was given to convert an LTL formula ¢ into a Biichi automaton A, which
accepts exactly the computations satisfying ¢. A refined algorithm was presented in [6] which
performed the translation to a generalized Biichi automaton on-the-fly. This gives us a method
to check whether a system conforms to its specifications using automata-theoretic constructions.
Fix a labeling of the reachable states of the net system, which labels each state with the set of
atomic propositions that hold in that state.

The steps performed to verify that a system has a property given by a LTL formula ¢ are
the following |2, 10]:

1. Construct a Biichi automaton .A-, corresponding to the negation of the property ¢.
2. Generate the Kripke structure of the system and interpret it as a Biichi automaton IC.
3. Form the product automaton B = A, x K.

4. Check if L(B) = 0.

If £L(B) = 0 the system satisfies the specification. Combining several steps of this approach
in a single algorithm is referred to as “on-the-fly” LTL model checking [2, 10].

A limitation of the on-the-fly method described in [2] is that it can only deal with normal
(non-generalized) Biichi automata. To handle generalized Biichi automata, the algorithm needs
to translate these into Biichi automata, see e.g. [6]. This can also be done on-the-fly, but the
number of states of the resulting product automaton can be the number of states of the original
product automaton times the number of generalized Biichi acceptance sets.

As previously mentioned Biichi automata cannot handle strong fairness efficiently, as there is
no polynomial translation from Streett to Biichi automata, see e.g. [14]. Weak fairness, however,
is manageable with generalized Biichi automata. By combining the best of both worlds it is
possible to deal with both strong and weak fairness and verify claims given in LTL in an efficient
manner.

We propose the following procedure:

1. Construct a generalized Biichi automaton A-,.

2. The fair Kripke structure Kr of the system is generated from the Petri net model of the
system and interpreted both as a generalized Biichi automaton and as a Streett automaton.
The interpretation is easy as the justice requirements correspond to generalized Biichi
acceptance conditions and the compassion requirements correspond to Streett acceptance
conditions. We call this automaton the FKS automaton.

Latvala and Heljanko / Coping with Strong Fairness 9

3. The product automaton of the above two is created on-the-fly using a procedure similar
to that of [2]*. The main difference is the handling of the acceptance sets. The states
of the product automaton obtain acceptance conditions from both the formula- and the
FKS automaton, and thus have to fulfil both the fairness conditions imposed by the system
and Biichi acceptance conditions imposed by the formula. Simultaneously Tarjan’s algo-
rithm [16] is used to calculate the next maximal strongly connected component (MSCC)
of the product automaton.

4. When a MSCC of the product automaton has been calculated, we check for generalized
Biichi acceptance (ignoring Streett acceptance sets for a moment). If the component does
not contain a state from each Biichi acceptance set, i.e. it does not contain a weakly fair
counterexample and hence is not accepted, we return to step 3.

5. If a component is accepted as weakly fair and it does not contain strong fairness constraints,
we can directly generate a counterexample at step 7 using only generalized Biichi sets
interpreted as Streett acceptance sets U; and with each L; set initialized to the universal
set.

6. We know now that the MSCC contains a weakly fair counterexample. To ensure that there
is also some strongly fair counterexample we have to use a Streett emptiness checking
algorithm on this MSCC. (Using the Streett emptiness checking to handle strong fairness
constraints goes back to at least [4, 11].) However, we cannot yet ignore the generalized
Biichi acceptance sets. Therefore each generalized Biichi acceptance sets is simulated with
a Streett acceptance set using the same technique as in the step 5. If no weakly and
strongly fair counterexample is found, we continue from step 3 with a next MSCC of the
product automaton.

7. A counterexample is generated using the subset of vertices of the MSCC, which the empti-
ness checking algorithm gives to the counterexample algorithm.

The steps 1-3 can be done by a single on-the-fly algorithm, as the product creation and Tar-
jan’s algorithm can be implemented on-the-fly (see e.g. [7] for an on-the-fly CTL model checker
based on Tarjan’s algorithm). If the property automaton has generalized Biichi acceptance sets
{Fy,F,,... ,F,}, and the FKS automaton has the justice sets {.Ji, Ja, ... , Jn, }, then the product
automaton will have the generalized Biichi sets {Fy, Fa,... ,Fy, Fyy1,... , Fpim}. The Streett
sets are directly inherited from the compassion sets of the FKS automaton. Note that the steps
4 and 5 are not needed for correctness, they are only an optimization to avoid the more costly
Streett emptiness check whenever possible. By performing the verification in this on-the-fly
manner it is possible to find errors without computing all MSCCs of the product automaton,
which might result in faster running times. Also the fact that only components which contain
weakly fair counterexamples, and have enabled transitions with strong fairness requirements, are
checked for the existence of a counterexample satisfying also strong fairness, potentially results
in less work compared to a naive implementation.

3The synchronization actually synchronizes the property automaton only with “normal” states of the FKS.
Thus the FKS automaton takes two steps for each step of the property automaton. The implementation of this
small change is quite straightforward.

10 Latvala and Heljanko / Coping with Strong Fairness

To our knowledge the procedure in exactly this form has not been presented in the literature.
The on-the-fly model checker of [2] uses only (non-generalized) Biichi automata in the nested-
depth-first-search algorithm. The algorithm of [9] is similar in the sense it uses both Biichi and
Streett acceptance conditions, however their emptiness checking procedure is BDD based, as is
that of [8]. The use of Tarjan’s algorithm in emptiness checking is well known, see e.g. [10]. The
only Tarjan based emptiness checking algorithm we are aware of which explicitly claims to be
on-the-fly is that of [3]. However, it won’t work for our purposes, as it is tailored to handle only
generalized Biichi acceptance sets.

5. Emptiness Checking of Streett Automata

The emptiness checking algorithm is given a MSCC of the product Streett automaton. The
product Streett automaton can be seen as directed graph G = (V| E), where the number of
vertices |V| = n and the number of edges |E| = m. The Streett pairs (L;,U;), L;,U; CV with
1 <4 <k are given and bits(S) is defined as F_,|S N L;| + |S N U;| for S C V. Performing an
emptiness check on a Streett automaton is then to check whether G contains a cycle such that:
if the cycle contains a vertex from L; then it also contains a vertex from Uj, for all 1 <1 < k.

5.1. Emptiness Checking Algorithm

The main idea of the Streett automata emptiness checking algorithm goes back to at least
Emerson and Lei [4], and it was also independently developed in [11]. The algorithm is given
a maximal strongly connected component (MSCC) of the product automaton calculated by
Tarjan’s algorithm [16]. The algorithm begins dynamically modifying the graph by deletion of
so called bad vertices from the MSCC. A vertex is bad if it belongs to some L; set, but the
MSCC it belongs to does not contain a vertex from the corresponding U; set. All other vertices
are good. A MSCC containing only good vertices is said to be a good component. After the
deletion of bad vertices the MSCCs of the modified graph are recalculated and checked again for
bad vertices. The algorithm terminates when it has either found a non-trivial good component
or it can conclude that no such component exists. (A MSCC is non-trivial if it has more than
one vertex, or it has a single vertex with a self-loop. Otherwise it is trivial.)

The algorithm presented here is similar to that of [13] to the extent that we could call our
emptiness checking algorithm a simplified version of it. The data structures designed in this
work are simpler, and thus also easier to implement. As an example, the data structures of the
algorithm of [13] have double linked lists for each set L;, which enables them to easily access
all of the states in L; N S. This implies that each set membership “bit” must have at least two
pointers associated with it. To obtain this set of states, we will do extra work, however we save
the storage for these two pointers. The algorithm of [13] has also a so-called lock-step-search
case, which is also missing here due to memory consumption reasons, as it requires the reverse
transition relation of the product automaton to be available.

Latvala and Heljanko / Coping with Strong Fairness 11

The simpler data structures were a conscious design choice, motivated by the fact that in
many cases the amount of memory available is the limitation in model checking. The memory
overhead of [13] is larger by only a constant factor, though. Therefore, implementing it might
be a better choice in some cases.

5.2. Data Structures

The algorithm needs to keep track of bad vertices and into which MSCC each vertex belongs to
as the original MSCC may split into several MSCCs during the emptiness checking. It is also
necessary to keep track of which fairness sets are present in the currently processed component.
The notation in this section has been chosen in order to be consistent with [13].

We use three global sets L, U, and Badsets of size k which are implemented as a combination
of a stack and a bitmap. They require one-time initialization which takes O(k) time. This is
done the first time the emptiness checking algorithm is called. With this implementation set
membership can be tested in O(1) time. Set union A := A U B, set difference A := A\ B, and
set clear B := () can be done in O(|B|) time.

The data structure C'(S) stores the component information, and for each vertex the informa-
tion into which sets L and U sets the vertex belongs to. It is implemented using a doubly linked
list containing all the vertices of the MSCC. From each node in this list there are pointers to set
lists which specify to which L and U sets the vertex belongs to. These sets are referred to as
L.setlist and U.setlist respectively. Each vertex also records to which MSCC it belongs by using
a component number.

As the original component may split into several MSCCs during the run of the algorithm,
a queue @ is kept where the different components are stored. We define the following operations
for the data structure C(S):

Construct(S) initializes and returns the data structure C(S).
Remove(C(S), B) removes B from S and returns C(S\B) for BC S C V.
Bad(C(S)) returns J; ;< {SNL;|SNTU; =0} for SC V.

Lemma 5.1. The operation Construct(S) can be implemented with a running time of O(|S]).

Proof:
The given vertex list S is traversed. Each vertex is added to the doubly linked list of C(S). O

Lemma 5.2. The operation Remove(C(S), B) can be implemented with a running time of O(|B|).

Proof:
Traversing the given list of vertices B, and removing each entry from the doubly linked list of
C(S) takes time O(|B]). a

Lemma 5.3. The operation Bad(C(S)) can be implemented with a running time of O(|S| +
bits(S)).

12 Latvala and Heljanko / Coping with Strong Fairness

Proof:

Traverse the set lists of each vertex in C(S). Whenever a vertex is member of a L; set or an Uj;
set, add the set number 7 to the sets L or U, respectively. This takes time O(|S|+ bits(S)). Form
the set Badsets = L\U and reset the sets L and U. This can be done in time O(min(k, bits(S)) =
O(bits(S)). Add all those vertices to a list of bad vertices for which L.setlist N Badsets # (),
reset the set Badsets and then return the generated list. This takes time O(|S| + bits(S)) giving
a total running time of O(|S| + bits(S5)). 0

Theorem 5.1. The emptiness checking algorithm will find a good component if it exists.

Proof:

The main loop of the algorithm maintains the invariant that all vertices are either bad, belong to
a trivial MSCC, or are still in the queue. The algorithm initially puts all vertices in the queue.
In the second while loop all bad vertices are deleted, causing the MSCC to be recomputed and
the remaining vertices put back into the queue and again tested for bad vertices. If a component
has no bad vertices the component is accepted, unless it is trivial. Hence the invariant holds and
the algorithm will find a good component if it exists. O

Theorem 5.2. The running time of the algorithm without the Counterezample subroutine is

O((m + bits(V'))min(n, k))

Proof:

The total cost of the calls to Tarjan’s algorithm is O(m min(n,k)) because before each call
at least one vertex and one fairness set has been taken care of. The same factor min(n,k)
bounds the number of calls to Bad, Construct, and Remove. Hence they contribute O((n +
bits(V))min(n,k)) = O((m + bits(V))min(n, k)) to the running time giving a total of O((m +
bits(V))min(n, k)). a

Theorem 5.3. The memory usage of the emptiness checking algorithm is bounded by O(n+m+
k + bits(V))

Proof:

The memory for representing the vertices and the edge information accounts for the term n + m.
The memory required for the C(S) data structure with the Streett set information amounts
to O(n + bits(V)). Finally the sets Badsets, L, and U use O(k) memory giving a total of
O(n+m+ k + bits(V)). 0

5.3. The MSCC search

The MSCC are computed using the Tarjan’s algorithm [16]. It is modified to perform the search
for maximal strongly connected components in the subgraph containing only the nodes and edges
of the component C(S). From each found MSCC a list is created, which contains all the states
in that MSCC. These lists are then stored in the queue Q5.

Latvala and Heljanko / Coping with Strong Fairness 13

proc Empty (S, k) =
Queue Q1, Q2;
List B;
boolean change;
InitSets (k); Initialize sets L, U, Badsets
C(S) := Construct (S);
put (Q1,C(5));
while (Ql 7& @) @
C(S) = get (Q1);
change := false;
while (B := Bad (C(S)) # () do
C(S) := Remove (C(S), B);

change := true;

od
if (change AND C(S) #) then
Tarjan (C(S5), Q2); Recalculate the MSCCs
RemoveLargestMSCC (Q2); Any MSCC will do
while (s # 0) do
B := get (Q2);

C(S) := Remove (C(S), B);
put (Q1, Construct (B));

od
put (Q1,C(5));
else Good component found!
if (NotTrivial (C(S))) then
Counterexample (C(S)); Generate counterexample
return true;
fi
fi
od
return false; No good component exists

Figure 3. The emptiness checking algorithm

5.4. The Counterexample Algorithm

Generating a counterexample to the given property is very important to help in the location
of design errors. The counterexample algorithm given here produces a counterexample after
the emptiness checking algorithm has passed it a good component. Finding a counterexample
is non-trivial because the counterexample can be a cycle which contains several loops. Short

14 Latvala and Heljanko / Coping with Strong Fairness

counterexamples are preferred as they are considered more informative and do not contain much
unnecessary information.

The algorithm we propose searches in a breadth-first manner from the MSCC entry vertex,
which we will henceforth refer to as the root, for a path back to the root. The path must of
course satisfy the requirement that if there is a vertex v; € L; in the path, the path must also
include a vertex v; € Uj, for all 1 <1 < k. As the breadth-first search spawns a path tree, one
must choose which path to use. The algorithm freezes the path traversed to the current vertex
when

e the vertex belongs to an unseen L; set, or
e the vertex belongs to an unseen U; set corresponding to a previously encountered L; set.

The traversed path is then printed from memory, the breadth-first search state is reset using
logs and then search for a path back to the root can proceed. The resetting allows one to
minimize memory requirements because the algorithm only keeps at most one simple cycle of
the counterexample path stored in memory. The algorithm terminates if it reaches the root and
the traversed path satisfies the requirements stated above. To know when to terminate, the
algorithm keeps track of the number of encountered L; sets for which the corresponding U; set
has not been found using the variable unseen_L.

The function that determines whether to freeze the breadth-first search is called checkstate.
It returns true if we are in a vertex v € L;, and no state belonging to L; has been seen before.
It also returns true if the vertex v belongs to an unseen U; set for which a corresponding vertex
u € L; has already been seen. The printing of the path from memory is done by lockpath. This
function also marks all U; sets in the locked path which have not been encountered before as
seen U; sets, and resets the breadth-first search state.

An interesting special case occurs if the component contains no vertex for which v € |J; ;< Li.
In this case the search reduces to a simple breadth-first search for a path back to the root. This
can be done in linear time and space. The path found is also optimal in the sense that it involves
the minimum number of vertices.

Theorem 5.4. The Counterezample algorithm finds the counterezample, when given a good
component with no vertex belonging to a L; set, and its running time is O(n + m + bits(V')).

Proof:

Because no vertex belongs to an L; set the algorithm will not reset. Hence the algorithm does
a breadth-first search for a path back to the root, potentially doing a checkstate(s) call once for
each state. It will find a path to the root, which is the counterexample, achieving the running
time of O(n + m + bits(V)). |

Lemma 5.4. The running time of checkstate(s) is O(bits({s})) for s € S.

Proof:
The function traverses the set list of the state and can in O(1) time check if a specific set has
been taken care of. The time required for the traversal is O(bits({s})). a

Latvala and Heljanko / Coping with Strong Fairness 15

proc checkstate (s) =
Set seen_L;
Set seen_U;
boolean lockpath = false;
integer unseen_L;
forall v € s.L.setlist do
if (v ¢ seen_L) then
seen_L := seen_L U {v};
lockpath := true;
if (v ¢ seen_U) then
unseen_L++;
fi
fi
od
forall v € s.U.setlist do
if (v ¢ seen.U AND v € seen_L) then
unseen_L——;
lockpath := true;
fi
od
return lockpath;

Figure 4. The checkstate algorithm which determines when the BFS path is frozen

Lemma 5.5. The running time of lockpath(s) is O(|S| + bits(S))

Proof:
The function must reset the log storing the path, and go through the set lists of the vertices
in the path and mark all unseen L; sets encountered as seen. This gives a running time of

O(IS| + bits(S)). O

Theorem 5.5. The Counterexample algorithm always finds a counterexample when given a good
component, and its running time is O((m + bits(S))min(n, k)).

Proof:

The algorithm stores the traversed path up to the reset using the BFS search logs created
by the subroutine log_father. After the reset any state can be visited (the states are always
reachable as we are traversing a MSCC). Thus the algorithm will always find a new s; € L, or a
corresponding s; € Uj after a reset, because all states are reachable and visitable and a new reset
will not be performed unless any of the above are found or it enters the root and can terminate.
Hence the algorithm will always find an accepting path given a good component. The algorithm

16 Latvala and Heljanko / Coping with Strong Fairness

proc Counterexample (C'(S)) =
Queue Q;

state s,ro0t,t;

root := root (C(S));

PrintPathTo (root); Print prefix to the loop using search logs
visit (root);

put (Q, root);

log_father (root,0);

while (Q # 0) do

s = get (Q);
if (checkstate (s)) then Do we freeze the BFS?
lockpath (s); Print path and reset the BFS state
fi
forall t € succ_in_comp(s) do Check if we are done
if (t = root AND unseen_L; = 0) then
return ;
fi
od
forall ¢ € succ_in_comp (s) do Put the successors in the queue
if (~(visited (#)) then
visit (t);
put (Q, t);
log_father (t, s); Store the path
fi
od

Figure 5. The counterexample algorithm

performs min(n,2k) resets in the worst case. Consequently the algorithm may have to traverse
the graph and perform a checkstate at most min(n,2k) times. This gives a total running time
of O((n + m + bits(S))min(n, k)). |

Theorem 5.6. The memory usage of the Counterexample algorithm is bounded by O(n + m +
k + bits(S)).

Proof:

The functions lockpath and checkstate can use the same sets Badsets, L and U for their book-
keeping as the emptiness checking algorithm. Consequently the algorithm does not need addi-
tional data structures to those already created by the emptiness checking algorithm, except for a
breadth-first search log and a father log created by the subroutine log_father, which only incurs

Latvala and Heljanko / Coping with Strong Fairness 17

a linear penalty in the number of states n. O

The maximum length of the counterexample is n min(n,2k). There is a slightly different
approach presented in the literature. In this approach the algorithm always goes trough all U;
sets (in increasing 7 order) for which the corresponding L; set is non-empty. Using this idea
it generates a counterexample which has a maximum length of n min(n,k) [9] (see also [8]).
(It would in fact be quite easy to first run both of the algorithms “silently” on the input, only
calculating the length of the created counterexample. When these lengths would be known, one
could then choose the better algorithm for the counterexample output to the user.) Deciding
whether there exists a counterexample of length n, where n is the number of nodes is in fact
NP-complete [1] (proof with a reduction from a Hamiltonian cycle problem).

6. Experimental Results

In order to evaluate the performance of the counterexample algorithm, it was compared against
the non-lazy algorithm suggested in [9]. Both algorithms were implemented in Java and tested
with randomly generated graphs*. As the algorithms perform roughly the same amount of work,
their speed is not an interesting thing to compare. The critical measure of their performance is
the ability to produce short counterexamples.

The algorithms were evaluated in the following way. Random graphs G = (V| E) of size N
were generated with k fairness sets, and (v;,v;) € F with a probability p. Each vertex v € V
belongs to a L; set or a U; set with the probability p. The emptiness algorithm was used to
calculate a good component of the graph, which was given to the two counterexample algorithms.
The length of the counterexample was then recorded.

There are several possibilities to investigate how the algorithms scale when varying some
parameter. The one we used is to see how the algorithms differ when the number of fairness sets is
varied. This shows how the algorithms cope when the model has more fairness constraints, which
make the counterexamples more complex. This was tested by letting k € {5,15,25,35,45,55}
and generating twenty graphs for each value of k. The values of the other parameters were
N =600,p = 0.05 and p = 0.1. In Fig. 6 we can see the results averaged over the twenty times.
The error bars represent the standard deviation of the runs. From the figure it can be seen that
the new algorithm scales better than the non-lazy algorithm of [9]. Especially when the number
of fairness sets grows, the lazy nature of the new algorithm gives it an edge.

7. Conclusions

Including both weak and strong fairness constraints in the modeling language one can make the
modeling of many systems more straightforward than when the fairness constraints are supplied
by an LTL formula (and potential changes in the model to accommodate this). However especially
the handling of strong fairness efficiently requires changes to the LTL model checking procedure.

*The sources can be found from http://www.tcs.hut.fi/ timo/FI-Experiment.

18 Latvala and Heljanko / Coping with Strong Fairness

100

T T
——— The Non—Lazy Algorithm

—_—— The New Algorithm
90 —

80

70 —

Length of the counterexample
o
o]
T

.
o 10 20 30 40 50 60
The number of fairness sets

Figure 6. Performance of the two algorithms

We have presented an approach which makes a set of design choices on how to handle strong
fairness efficiently. We give semantics to fair P/T nets through fair Kripke structures borrowing
notation from [9]. Our proposed on-the-fly LTL model checking procedure presented in Sect. 4 is
new, and it tries to avoid the costly Streett emptiness checking whenever possible. The emptiness
checking algorithm with data structure design choices were motivated by [13], however we choose
to use more time in order to save some memory. The counterexample generation algorithm is
new, and seems to sometimes work better than the algorithm of [9]. We have also implemented
the emptiness checking algorithm and the counterexample algorithm in Java.

As future work we would like to extend this approach to model checking CTL* under fairness
assumptions. Also the effect of the fairness constraints on the partial-order reduction algorithms
such as stubborn sets and persistent sets (see e.g. [18]) needs to be investigated. Also lifting the
fairness notions to high-level Petri nets should be investigated from the perspective of modeling
convenience.

Acknowledgements

The authors also wish to thank Tommi Junttila for helpful criticisms and comments on earlier
versions of this work, and Heikki Tauriainen for sharing his random Kripke structure generator
with us.

References

[1] Clarke, E., Grumberg O., McMilllan K. and Zhao, X.: Efficient Generation Counterexamples
and Witnesses in Symbolic Model Checking. Technical Report TR CMU-CS-94-204, Carnegie
Mellon University, School of Computer Science, Pittsburg, 1994.

Latvala and Heljanko / Coping with Strong Fairness 19

[2] Courcoubetis, C., Vardi, M., Wolper, P. and Yannakakis, M.: Memory-Efficient Algorithms
for the Verification of Temporal Properties. Formal Methods in System Design, vol 1. pp.
275-288, 1992.

[3] Couvreur, J.-M.: On-the-fly Verification of Linear Temporal Logic. In Proceedings of the
World Congress on Formal Methods in the Development of Computing Systems (FM’99),
Volume I, pp. 253-271, Springer, 1999. LNCS 1708.

[4] Emerson, E.A. and Lei, C-L.: Modalities for Model Checking: Branching Time Logic Strikes
Back. Science of Computer Programming, vol. 8, no. 3, pp 275-306, 1987.

[5] Francez, N.: Fairness. Springer Verlag, New York, 1986.

[6] Gerth, R., Peled, D., Vardi, M.Y. and Wolper, P.: Simple On-the-fly Automatic Verification
of Linear Temporal Logic. Proceedings of the 15th Workshop on Protocol Specification, Testing
and Verification, pp. 3-18. Chapman and Hall, Warsaw Poland, 1995.

[7] Heljanko, K.: Model Checking the Branching Time Temporal Logic CTL. Research Report
A45, Digital Systems Laboratory, Helsinki University of Technology, 1997.

[8] Hojati, R., Singhal, V., and Brayton, R.K.: Edge-Strett/ Edge-Rabin Automata Environment
for Formal Verification Using Language Containment. Memorandum No. UCB/ERL M94/12,
Electronics Res. Lab., Cory Hall, University of California, Berkeley, 1994.

[9] Kesten Y., Pnueli, A. and Raviv, L.: Algorithmic Verification of Linear Temporal Properties.
In Proceedings of the 25th International Colloquium on Automata, Languages, and Program-
ming (ICALP 1998), Lecture Notes in Computer Science, vol. 1443, pp. 1-16. Springer-Verlag,
1998.

[10] Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes: The Automata-
Theoretic Approach. Princeton University Press, Princeton, New Jersey, 1994.

[11] Lichtenstein, O. and Pnueli, O.: Checking that finite state concurrent programs satisfy their
linear specifications. Proc. 12th ACM Symp. Princ. of Prog. Lang., pp 97-107, 1985.

[12] Reisig, W.: Elements of Distributed Algorithms, Springer Verlag, Berlin Heidelberg, 1998.

[13] Rauch Henzinger, M., Telle, J.: Faster Algorithms for the Nonemptiness of Streett Automata
and for Communication Protocol Pruning. Proceedings of the 5th Scandinavian Workshop on
Algorithm Theory (SWAT’96), pp. 10-20. 1997.

[14] Safra, S.: Complexity of Automata on Infinite Objects, PhD Thesis, The Weizmann Institute
of Science, 1989.

[15] Sherman, R., Pnueli, A. and Harel, D.: Is the Interesting Part of Process Logic Uninterest-
ing: a Translation From PL to PDL. SIAM Journal on Computing, vol. 13, no. 4, pp. 825-839,
1984.

[16] Tarjan, R.: Depth-First Search and Linear Graph Algorithms. STAM Journal of Computing,
vol. 1, no. 2, pp 146-160, 1972.

[17] Thomas, W.: Languages, Automata and Logic, in: Handbook of Formal Languages (G.
Rozenberg, A. Salomaa, Eds.). Vol II1, pp. 385-455, Springer-Verlag, New York, 1997.

[18] Valmari, A.: The State Explosion Problem, in: Lectures on Petri Nets I: Basic Models, pp.
429-528, Springer, 1998. LNCS 1491.

[19] Vardi, M.Y., Wolper, P.: Reasoning About Infinite Computations. Information and Com-
putation, vol. 115, no. 1, pp. 1-37, 1994.

