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Niebert has observed [13℄ that this exponential blow-up already appears in a sys-tem of n independent proesses, eah of them onsisting of an endless loop withone single ation as body. The omplete pre�x has size O(n), whih in prinipleshould lead to large savings in time and spae with respet to an interleavingapproah, but the graph is of size O(2n), i.e. as large as the state spae itself.In this paper we present a di�erent unfolding tehnique whih overomes thisproblem. Instead of unrolling the system until a omplete pre�x has been gener-ated, we \keep on unrolling" for a while, and stop when ertain onditions aremet. There are two advantages: (i) the model heking problem an be solved bya diret inspetion of the pre�x, and so we avoid the onstrution of the possiblyexponential graph; and, (ii) the algorithm for the onstrution of the new pre�xis similar to the old algorithm for the omplete pre�x; only the de�nition of aut-o� event needs to be hanged. The only disadvantage is the larger size of thenew pre�x. Fortunately, we are able to provide a bound: the pre�x of a systemwith K reahable states ontains at most O(K2) events, assuming that the sys-tem is presented as a 1-safe Petri net or as a produt of automata1. Notie thatthis is an upper bound: the new pre�x is usually muh smaller than the statespae, and in partiular for Niebert's example it grows linearly in n.The paper is strutured as follows (for detailed de�nitions and proofs seethe full version [5℄). Setion 2 presents the automata theoreti approah to LTLmodel heking. In Set. 3 the unfolding method is introdued. Setions 4 and5 ontain the tableau systems for the two subproblems. In Set. 6 we show howLTL model heking an be solved with the presented tableau systems. In Set. 7we onlude and disuss topis for further researh.2 Automata theoreti approah to model heking LTLPetri nets. We assume that the reader is familiar with basi notions, suh asnet, preset, postset, marking, �ring, �ring sequene, and reahability graph. Weonsider labelled nets, in whih plaes and transitions arry labels taken from a�nite alphabet L, and labelled net systems. We denote a labelled net system by� = (P; T; F; l;M0), where P and T are the sets of plaes and transitions, F isthe ow funtion F : (P � T ) [ (T � P ) ! f0; 1g, l:P [ T ! L is the labellingfuntion, and M0 is the initial marking.We present how to modify the automata theoreti approah to model hek-ing LTL [15℄ to best suit the net unfolding approah. For tehnial onvenienewe use an ation-based temporal logi instead of a state-based one, namely thelinear temporal logi tLTL0 of Kaivola, whih is immune to the stuttering of in-visible ations [9℄. With small modi�ations the approah an also handle statebased stuttering invariant logis suh as LTL-X. Given a �nite set A of ations,and a set V � A of visible ations, the abstrat syntax of tLTL0 is given by:' ::= > j :' j '1 _ '2 j '1 U '2 j '1 Ua '2; where a 2 V1 More preisely, the number of non-ut-o� events is at most O(K2).



Formulas are interpreted over sequenes of A!. The semantis of '1 U '2 isas expeted. Loosely speaking, a sequene w satis�es '1 Ua '2 if '1 holds untilthe �rst a in w, and then '2 holds2.Given a net system � = (P; T; F; l;M0), where the transitions of T are la-belled with ations from the set A, and a formula ' of tLTL0, the model hekingproblem onsists of deiding if all the in�nite �ring sequenes of � satisfy '.The automata theoreti approah attaks this problem as follows. First, aproedure similar to that of [6℄ onverts the negation of ' into a B�uhi automatonA:' over the alphabet � = V [f�g, where � 62 A is a new label used to representall the invisible ations. Then, this automaton is synhronized with � on visibleations (see [5℄ for details). The synhronization an be represented by a newlabelled net system �:' ontaining a transition (u; t) for every u = q a���! q0 inA:' and for every t 2 T , suh that l(t) = a and a 2 V , plus other transitions forthe invisible transitions of �. We say that (u; t) is an in�nite-trae monitor if q0is a �nal state of A:', and a livelok monitor if the automaton A:' aepts anin�nite sequene of invisible transitions (a livelok) with q0 as initial state. Thesets of in�nite-trae and livelok monitors are denoted by I and L, respetively.An illegal !-trae of �:' is an in�nite �ring sequene M0 t1t2:::������! suh thatti 2 I for in�nitely many indies i. An illegal livelok of �:' is an in�nite �ringsequene M0 t1t2:::ti�������! M ti+1ti+2:::���������! suh that ti 2 L, and ti+k 2 (T n V )for all k � 1. We have the following result:Theorem 1. Let � be a labelled net system, and ' a tLTL0-formula. � j= ' ifand only if �:' has no illegal !-traes and no illegal liveloks.The intuition behind this theorem is as follows. Assume that � an exeutean in�nite �ring sequene orresponding to a word w 2 (V [ f�g)! violating '(where `orresponding' means that the �ring sequene exeutes the same visibleations in the same order, and an invisible ation for eah �). If w ontainsin�nitely many ourrenes of visible ations, then �:' ontains an illegal !-trae; if not, it ontains an illegal livelok.In the next setions we provide unfolding-based solutions to the problemsof deteting illegal !-traes and illegal liveloks. We solve the problems in anabstrat setting. We �x a net system � = (P; T; F;M0), where T is divided intotwo sets V and T nV of visible and invisible transitions, respetively. Moreover, Tontains two speial subsets L and I . We assume that no reahable marking of �onurrently enables a transition of V and a transition of L. We further assumethat M0 does not put more than one token on any plae. In partiular, whenapplying the results to the model heking problem for tLTL0 and Petri nets, thesystem � is the synhronization �:' of a Petri net and a B�uhi automaton, andit satis�es these onditions. We use as running example the net system of Fig. 1.We have V = ft6g, I = ft1g, and L = ft2g. The system has illegal !-traes (forinstane, (t1t3t4t6t7)!), but no illegal liveloks.2 Kaivola's semantis is interpreted over A�[A!, whih is a small tehnial di�erene.
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VFigure 1. A net system3 Basi de�nitions on unfoldingsIn this setion we briey introdue the de�nitions we need to desribe the un-folding approah to our two problems. More details an be found in [4℄.Ourrene nets. Given two nodes x and y of a net, we say that x is ausallyrelated to y, denoted by x � y, if there is a path of arrows from x to y. We saythat x and y are in onit, denoted by x#y, if there is a plae z, di�erent fromx and y, from whih one an reah x and y, exiting z by di�erent arrows. Finally,we say that x and y are onurrent, denoted by xo y, if neither x � y nor y � xnor x#y hold. A o-set is a set of nodes X suh that x o y for every x; y 2 X .Ourrene nets are those satisfying the following three properties: the net, seenas a graph, has no yles; every plae has at most one input transition; and, nonode is in self-onit, i.e., x#x holds for no x. A plae of an ourrene net isminimal if it has no input transitions. The net of Fig. 2 is an in�nite ourrenenet with minimal plaes a; b. The default initial marking of an ourrene netputs one token on eah minimal plae an none in the rest.Branhing proesses. We assoiate to � a set of labelled ourrene nets, alledthe branhing proesses of �. To avoid onfusions, we all the plaes and transi-tions of branhing proesses onditions and events, respetively. The onditionsand events of branhing proesses are labelled with plaes and transitions of �,respetively. The onditions and events of the branhing proesses are subsetsfrom two sets B and E , indutively de�ned as the smallest sets satisfying:{ ? 2 E , where ? is an speial symbol;{ if e 2 E , then (p; e) 2 B for every p 2 P ;{ if ; � X � B, then (t;X) 2 E for every t 2 T .In our de�nitions we make onsistent use of these names: The label of aondition (p; e) is p, and its unique input event is e. Conditions (p;?) have no



input event, i.e., the speial symbol ? is used for the minimal plaes of theourrene net. Similarly, the label of an event (t;X) is t, and its set of inputonditions is X . The advantage of this sheme is that a branhing proess isompletely determined by its sets of onditions and events. We make use of thisand represent a branhing proess as a pair (B;E).De�nition 1. The set of �nite branhing proesses of a net system � with theinitial marking M0 = fp1; : : : ; png is indutively de�ned as follows:{ (f(p1;?); : : : ; (pn;?)g; ;) is a branhing proess of �.3{ If (B;E) is a branhing proess of �, t 2 T , and X � B is a o-set labelledby �t, then (B [f(p; e) j p 2 t�g ; E [feg ) is also a branhing proess of �,where e = (t;X). If e =2 E, then e is alled a possible extension of (B;E).The set of branhing proesses of � is obtained by delaring that the unionof any �nite or in�nite set of branhing proesses is also a branhing proess,where union of branhing proesses is de�ned omponentwise on onditions andevents. Sine branhing proesses are losed under union, there is a unique max-imal branhing proess, alled the unfolding of �. The unfolding of our runningexample is an in�nite ourrene net. Figure 2 shows an initial part. Events andonditions have been assigned identi�ators that will be used in the examples.For instane, the event (t1; f(p1;?)g) is assigned the identi�ator 1.
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Figure 2. The unfolding of �3 This is the point at whih we use the fat that the initial marking is 1-safe.



Con�gurations. A on�guration of an ourrene net is a set of events C satis-fying the two following properties: C is ausally losed, i.e., if e 2 C and e0 < ethen e0 2 C, and C is onit-free, i.e., no two events of C are in onit. Givenan event e, we all [e℄ = fe0 2 E j e0 � eg the loal on�guration of e. LetMin denote the set of minimal plaes of the branhing proess. A on�gura-tion C of the branhing proess is assoiated with a marking of � denoted byMark (C) = l((Min [ C�) n �C).In Fig. 2, f1; 3; 4; 6g is a on�guration, and f1; 4g (not ausally losed) orf1; 2g (not onit-free) are not. A set of events is a on�guration if and onlyif there is one or more �ring sequenes of the ourrene net (from the defaultinitial marking) ontaining eah event from the set exatly one, and no fur-ther events. These �ring sequenes are alled linearisations. The on�gurationf1; 3; 4; 6g has two linearisations, namely 1 3 4 6 and 3 1 4 6. All linearisations leadto the same reahable marking. For example, the two sequenes above lead to themarking fp1; p7g. By applying the labelling funtion to a linearisation we obtaina �ring sequene of �. Abusing of language, we also all this �ring sequene alinearisation. In our example we obtain t1t3t4t6 and t3t1t4t6 as linearisations.Given a on�guration C, we denote by "C the set of events e 2 E, suh that:(1) e0 < e for some event e0 2 C, and (2) e is not in onit with any event ofC. Intuitively, "C orresponds to the behavior of � from the marking reahedafter exeuting any of the linearisations of C. We all "C the ontinuation afterC of the unfolding of �. If C1 and C2 are two �nite on�gurations leading tothe same marking, i.e. Mark (C1) = M = Mark (C2), then "C1 and "C2 areisomorphi, i.e., there is a bijetion between them whih preserves the labellingof events and the ausal, onit, and onurreny relations (see [4℄).4 A tableau system for the illegal !-trae problemIn this setion we present an unfolding tehnique for deteting illegal !-traes.We introdue it using the terminology of tableau systems, the reason being thatthe tehnique has many similarities with tableau systems as used for instanein [18℄ for model-heking LTL, or in [14℄ for model-heking the mu-alulus.However, no previous knowledge of tableau systems is required.Adequate orders. We need the notion of adequate order on on�gurations [4℄. Infat, our tableau system will be parametri in the adequate order, i.e., we willobtain a di�erent system for eah adequate order. Given a on�guration C of theunfolding of �, we denote by C�E the set C[E, under the ondition that C[Eis a on�guration satisfying C \E = ;. We say that C �E is an extension of C.Now, let C1 and C2 be two �nite on�gurations leading to the same marking.Then "C1 and "C2 are isomorphi. This isomorphism, say f , indues a mappingfrom the extensions of C1 onto the extensions of C2; the image of C1 �E underthis mapping is C2 � f(E).De�nition 2. A partial order � on the �nite on�gurations of the unfolding ofa net system is an adequate order if:



{ � is well-founded,{ C1 � C2 implies C1 � C2, and{ � is preserved by �nite extensions; if C1 � C2 and Mark (C1) = Mark (C2),then the isomorphism f from above satis�es C1 � E � C2 � f(E) for all�nite extensions C1 �E of C1.Total adequate orders are partiularly good for our tableau systems beausethey lead to stronger onditions for an event to be a terminal, and so to smallertableaux. Total adequate orders for 1-safe Petri nets and for synhronous prod-uts of transition systems, have been presented in [4, 3℄.4.1 The tableau systemGiven a on�guration C of the unfolding of �, denote by #IC the number ofevents e 2 C labelled by transitions of I .De�nition 3. An event e of a branhing proess BP is a repeat (with respetto �) if BP ontains another event e0, alled the ompanion of e, suh thatMark ([e0℄) = Mark ([e℄), and either(I) e0 < e, or(II) :(e0 < e), [e0℄ � [e℄, and #I [e0℄ � #I [e℄.A terminal is a minimal repeat with respet to the ausal relation; in other words,a repeat e is a terminal if the unfolding of � ontains no repeat e0 < e. Repeats,and in partiular terminals, are of type I or type II, aording to the onditionthey satisfy.Events labelled by I-transitions are alled I-events. A repeat e with ompanione0 is suessful if it is of type I, and [e℄ n [e0℄ ontains some I-event. Otherwiseit is unsuessful.A tableau is a branhing proess BP suh that for every possible extensione of BP at least one of the immediate ausal predeessors of e is a terminal. Atableau is suessful if at least one of its terminals is suessful.Loosely speaking, a tableau is a branhing proess whih annot be extendedwithout adding a ausal suessor to a terminal. In the ase of a terminal of typeI, "[e℄ need not be onstruted beause "[e0℄, whih is isomorphi to it, will bein the tableau. In the ase of a terminal of type II, "[e℄ need not be onstrutedeither, beause "[e0℄ will appear in the tableau. However, in order to guaranteeompleteness, we need the ondition #I [e0℄ � #I [e℄.The tableau onstrution is straightforward. Given � = (N;M0), whereM0 = fp1; : : : ; png, start from the branhing proess (f(p1;?); : : : ; (pn;?)g; ;).Add events aording to the indutive de�nition of branhing proess, but withthe restrition that no event having a terminal as a ausal predeessor is added.Events are added in � order; more preisely, if [e℄ � [e0℄, then e is added beforee0. The onstrution terminates when no further events an be added.



We onstrut the tableau orresponding to the net system of Fig. 1 using thetotal adequate order of [4℄.4 All we need to know about this order is that forthe events 4 and 5 in Fig. 2, [4℄ � [5℄ holds. The tableau is the fragment of theunfolding of Fig. 2 having events 16, 17, and 5 as terminals. Events 16 and 17 areterminals of type I having event 4 as ompanion. Event 16 is suessful beausethe set [16℄ n [4℄ = f6; 7; 10; 11; 12; 16g ontains an I-event, namely 10. Theintuition behind these terminals is rather lear: a terminal of type I orrespondsto a yle in the reahability graph. Loosely speaking, the events of [16℄ n [4℄orrespond to a �ring sequene leading from Mark ([4℄) to Mark ([16℄), and thesetwo markings oinide. Sine [16℄ n [4℄ ontains an I-event, the �ring sequeneontains a transition of I , and so we have found an illegal !-trae. The set [17℄n[4℄doesn't ontains any I-event, but "[17℄ need not be onstruted, beause it isisomorphi to "[4℄. Event 5 is a terminal of type II with event 4 as ompanionbeause Mark ([4℄) = fp6; p7g = Mark ([5℄), [4℄ � [5℄, and 1 = #I [4℄ � #I [5℄ = 0.The intuition is that "[5℄ need not be onstruted, beause it is isomorphi to"[4℄. However, this doesn't explain why the ondition #I [e0℄ � #I [e℄ is needed.In [5℄ we present an example showing that after removing this ondition thetableau system is no longer omplete.Let K denote the number of reahable markings of �, and let B denote themaximum number of tokens that the reahable markings of � put in all theplaes of �. We have the following result:Theorem 2. Let T be a tableau of � onstruted aording to a total adequateorder �.{ T is suessful if and only if � has an illegal !-trae.{ T ontains at most K2 � B non-terminal events.{ If the transitions of I are pairwise non-onurrent, then T ontains at mostK2 non-terminal events.5 A tableau system for the illegal livelok problemThe tableau system for the illegal livelok problem is a bit more involved thatthat of the illegal !-trae problem. In a �rst step we ompute a set CP =fM1; : : : ;Mng of reahable markings of �, alled the set of hekpoints. This sethas the following property: if � has an illegal livelok, then it also has an illegallivelok M0 t1t2:::ti�������!M ti+1ti+2:::���������! suh that ti 2 L and M is a hekpoint.For the omputation of CP we use the unfolding tehnique of [4℄ or [3℄; theproedure is desribed in Set. 5.1.The tableau system solves the problem whether some hekpoint enables anin�nite sequene of invisible ations. Clearly, � has an illegal livelok if andonly if this is indeed the ase. For this, we onsider the net Ninv obtained fromN by removing all the visible transitions together with their adjaent ars. Weonstrut unfoldings for the net systems (Ninv ;M1); : : : ; (Ninv ;Mn), and hek4 We an also take the order of [3℄, whih for this example yields the same results.



on them if the systems exhibit some in�nite behavior. The tableau system isdesribed in Set. 5.2.5.1 Computing the set of hekpoints.We onstrut the omplete pre�x of the unfolding of � as de�ned in [4℄ or [3℄.In the terminology of this paper, the omplete pre�x orresponds to a tableauin whih an event e is a terminal if there is an event e0 suh that Mark ([e0℄) =Mark ([e℄), and [e0℄ � [e℄.De�nition 4. A marking M belongs to the set CP of hekpoints of � if M =Mark ([e℄) for some non-terminal event e of the omplete pre�x of � labelled bya transition of L.Let us ompute CP for our example. The omplete pre�x of � oinideswith the tableau for the illegal !-trae problem. The events labelled by t2, theonly transition of L, are 2 and 11. The orresponding markings are Mark ([2℄) =fp2; p4g and Mark ([11℄) = fp4; p7g. So CP = f fp2; p4g; fp4; p7g g.5.2 The tableau systemLet fM1; : : : ;Mng be the set of hekpoints obtained in the �rst phase. We willuse �1; : : : ; �n to denote the net systems (Ninv ;M1); : : : ; (Ninv ;Mn).De�nition 5. Let BP1; : : : ;BPn be branhing proesses of �1; : : : ; �n, respe-tively. An event e of BP i is a repeat (with respet to �) if there is an indexj � i and an event e0 in BP j , alled the ompanion of e, suh that Mark ([e0℄) =Mark ([e℄), and either(I) j < i, or(II) i = j and e0 < e, or(III) i = j, :(e0 < e), [e0℄ � [e℄, and j[e0℄j � j[e℄j.A repeat e of BP i is a terminal if BP i ontains no repeat e0 < e. Repeats,and in partiular terminals, are of type I, II, or III, aording to the onditionthey satisfy. A repeat e with ompanion e0 is suessful if it is of type II, andunsuessful otherwise.A tableau is a tuple BP1; : : : ;BPn of branhing proesses of �1; : : : ; �n suhthat for every 1 � i � n and for every possible extension e of BP i at least oneof the immediate ausal predeessors of e is a terminal. Eah BP i is alled atableau omponent. A tableau is suessful if at least one of its terminals issuessful.Observe that an event of BP i an be a repeat beause of an event thatbelongs to another branhing proess BP j . The de�nition of repeat depends onthe order of the hekpoints, but the tableau system de�ned above is sound andomplete for any �xed order. Beause the de�nition of the tableau omponent
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Figure 3. The tableau system for the illegal livelok problemBP i depends only on the omponents with a smaller index, we an reate thetableau omponents in inreasing i order. Tableau omponents are onstrutedas for the illegal !-trae problem, using the new de�nition of terminal.The tableau for our example is shown in Fig. 3. The names of plaes and tran-sitions have been hosen to math \piees" of the unfolding in Fig. 2. The �rsttableau omponent ontains no terminals; the onstrution terminates beauseno event labelled by an invisible transition an be added. In the seond ompo-nent, event 12 is a terminal with event 3 in the �rst omponent as ompanion.The intuition is that we don't need to unfold beyond 12 in the seond omponent,beause what we onstrut an be found after 3 in the �rst omponent.Similarly to the ase of the illegal !-trae problem, a terminal of type IIorresponds to a yle in the reahability graph. Sine the transitions of Ninvare all invisible, suh a yle always originates an illegal livelok, and so terminalsof type II are always suessful. For terminals of type III, the intuition is that" [e℄ need not be onstruted, beause it is isomorphi to " [e0℄. The onditionj[e0℄j � j[e℄j is required for ompleteness (see [5℄). We have the following result:Theorem 3. Let T1; : : : ; Tn be a tableau of �1; : : : ; �n onstruted aording toa total adequate order �.{ T1; : : : ; Tn is suessful if and only if � ontains an illegal livelok.{ T1; : : : ; Tn ontain together at most K2 �B non-terminal events.5.3 A tableau system for the 1-safe aseIf � is 1-safe then we an modify the tableau system to obtain a bound of K2non-terminal events. We modify the de�nition of the repeats of type II and III:(II') i = j and :(e0#e), or



(III') i = j, e0#e, [e0℄ � [e℄, and j[e0℄j � j[e℄j.Theorem 4. Let � be 1-safe. Let T1; : : : ; Tn be a tableau of �1; : : : ; �n on-struted aording to a total adequate order �, and to the new de�nition ofrepeats of type II and III.{ T1; : : : ; Tn is suessful if and only if � ontains an illegal livelok.{ T1; : : : ; Tn ontain together at most K2 non-terminal events.6 A tableau system for LTL model hekingPutting the tableau systems of Setions 4 and 5 together, we obtain a tableausystem for the model heking problem of tLTL0. For the sake of larity we haveonsidered the illegal !-trae problem and the illegal livelok problem separately.However, when implementing the tableau systems there is no reason to do so.Sine all the branhing proesses we need to onstrut are \embedded" in theunfolding of �:', it suÆes in fat to onstrut one single branhing proess,namely the union of all the proesses needed to solve both problems.Clearly, this pre�x ontains O(K2 � B) non-terminal events. If the systemis presented as a 1-safe Petri net, then the pre�x ontains O(K2) non-terminalevents beause the following two onditions hold: (i) None of the reahable mark-ings of the synhronization �:� enable two I-transitions onurrently. (ii) If thesystem is a 1-safe Petri net, then the synhronization �:� is also 1-safe.7 ConlusionsWe have presented a new unfolding tehnique for heking LTL-properties. We�rst make use of the automata-theoreti approah to model heking: a ombinedsystem is onstruted as the produt of the system itself and of an automatonfor the negation of the property to be heked. The model heking problemredues to the illegal !-trae problem and to the illegal livelok problem for theombined system. Both problems are solved by onstruting ertain pre�xes ofthe net unfolding of the ombined system. In fat, it suÆes to onstrut theunion of these pre�xes.The pre�xes an be seen as tableau systems for the illegal !-trae and theillegal livelok problem. We have proved soundness and ompleteness of thesetableau systems, and we have given an upper bound on the size of the tableau.For systems presented as 1-safe Petri nets or produts of automata, tableauxontain at most size O(K2) (non-terminal) events, where K is the number ofreahable states of the system. An interesting open problem is the existene ofa better tableau system suh that tableaux ontain at most O(K) events. Weonjeture that it doesn't exist.The main advantage of our approah is its simpliity. Wallner's approah pro-eeds in two steps: onstrution of a omplete pre�x, and then onstrution of agraph. The de�nition of a graph is non-trivial, and the graph itself an be expo-nential in the size of the omplete pre�x. Our approah makes the onstrutionof the graph unneessary. The prie to pay is a larger pre�x.
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